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Effect of Force-Constant Changes on the Incoherent Neutron Scattering
from Cubic Crystals with Point Defects*
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tuboratory of Atomic und SolidState I'hysf'cs, Cornel/ VrNoersity, Ithaca, Seu Fork 14f50
(Received 18 April 1968)

This is a study of the vibrational properties of random substitutional impurities and their nearest neighbors
in cubic monatomic harmonic crystals in the low-impurity-concentration limit. Mass changes, as well as force-
constant changes between the impurity and its nearest and, in some cases, next-nearest neighbors, are taken
into account. The problem is formulated in terms of an incoherent-neutron-scattering experiment, although
the results are useful for other experiments as well. Analytic expressions are given for the resonance frequen-
cies for all the normal modes of the defect cage in fcc and bcc lattices. Expressions for the mean-square dis-
placement of the impurity and its nearest neighbors at all frequencies are given for the fcc case. Results are
expressed in terms of perfect-lattice Green's functions. Numerical computations are performed on Al contain-
ing heavy impurities. The Al-impurity force constants are treated as parameters which are varied over a
wide range.

I. INTRODUCTION
' 'N recent years, much theoretical and experimental
~ - work has been done on the effects of impurities on
lattice vibrations. ' " The theoretical work usually
involves the evaluation of various lattice Green's
functions or correlation functions that can be directly
related to measurable quantities.

Most of the theory has been restricted to models in
which only the mass of the impurities is assumed to be
diBerent from the host atoms. "Recently, some results
have been obtained on the effects of force-constant
changes between the impurities and their nearest
neighbors with low impurity concentration. ' "Most
of the work is restricted to special situations (e.g.,
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equal central- and noncentral-force-constant changes,
or only central-force-constant changes") or to only one
aspect of the problem (e.g., motion of the impurity only,
not of other atoms in the lattice). Some of the work is
restricted to 6nding the resonance or local-mode fre-
quencies to determine such properties as the strength
and width of the resonances. '

Many experimental techniques probe either the be-
havior of the impurities (e.g., optical absorption) or
only the average behavior of the lattice (optical-absorp-
tion sidebands, thermal conductivity, heat capacity).
By means of neutron-scattering experiments, however,
it is possible to probe the various effects of impurities
on lattice vibrations in a more detailed manner. %ith
incoherent neutron scattering, one can directly measure
the motion of the impurities and their neighbors, while
coherent neutron scattering allows the study of the
effect of impurities on individual phonons. Some
coherent-neutron-scattering experiments have been
pel formed.

The object of this paper is to study the motion of
impurities and their neighbors as a function of frequency
at low concentrations in various cubic harmonic mon-
atomic lattices. Force-constant changes between the
impurities and their neighbors are taken into account,
in addition to mass change. Resonance and local-mode
conditions for the impurity and its neighbors are given
for all the modes of the defect subsystem with arbi-
trary central- and noncentral-force-constant changes in
fcc and bcc lattices. Expressions for the average-square
displacement of the impurity and its neighbors as a
function of frequency are given for the fcc case. The
corresponding general results with central and non-
central force changes have also been found, but are too
lengthy to be given explicitly here. Numerical results
are given for Al containing heavy impurities. They show
signilcant diBerences from the simple mass-defect case.

The problem is formulated in terms of an incoherent-
neutron-scattering experiment, although the correlation
functions found here are useful for other experiments as
well. The effects of the impurities on the lattice phonons
84i
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(e.g., shift, broadening, and branch rruxing), measurable

by coherent neutron scattering, have also been studied
and will be presented in a subsequent paper.

Il. THEORY

We treat the scattering of neutrons from the lattice
in the usual Fermi pseudopotential or scattering-length

approximation. ' "The single-phonon contribution to
the scattering cross section from an harmonic lattice

per unit solid angle per unit of outgoing energy per
atom in the Born approximation is then given by (the
12= 1 convention will be followed throughout)

gi ii gcoh+gincgi2 i (4)

where a"" and a'"' are the true physical scattering
lengths, and similarly for k and f; &2, qh„,"and it~, are
statistically independent random phases.

For use in the following equations we define

a6ected by them di6er from that of a perfect-lattice
atOmc

Denoting the e6ective scattering length of impurity
s by b, ,«, of a nearest neighbor of an impurity by fn fi,
and of host atom / by a$ ff we can write

S(K,~o),
dQdoo 2~ }ki}

where h» is the incoming neutron momentum, k2 is the

outgoing neutron momentum, os=(k2' —ki')/2222, 222 is

the neutron mass, K=42=k», and

I
S(K ~&)

— Q A Ao, ecx iai—Ri i

g t, t~

X dte'"'K. ul, t K ul', 0 . 2

g —g,—g„)ze,e

and

& ).—=

g„n
To zeroth order in impurity concentration, the average
scattering length of the lattice is then

l aCO

Here, Ri is the equilibrium position of atom 1, u(l, t) is

the instantaneous displacement of atom t from equi-

librium, Ai ——gi exp{—-', ([K n(l)]2)} is the thermalized

scattering length, exp{——',([K n(l)]2)) is the Debye-
Waller factor, gi is the complex scattering length of
atom/, (it)=(Tre ~&«&~&8)/(Tre ~i« &~'), andHisthe-
full Hamiltonian of the system.

I.et
At=-a) gfe

—~

define the temperature-dependent quantity a$ ff, '
where e

—~ is the Debye-Wailer factor for theperfect
lattice.

We shall now make a major assumption, namely,

that the solute atoms are distributed completely at
random, with no chemical or other tendency to be
correlated in position. R.andom variations in a$ ff as a
function of lattice. site l give rise to incoherent scatter-

ing. In the system under consideration here, there are
two sources of incoherent scattering in addition to
those already present in the perfect lattice: (a) The
impurities usually have a di8erent scattering length

than the host atoms, and (b) the Debye-Wailer factors
of the impurities and. those neighbors appreciably

~4 L. S. Kothari and K. S. Singwi, in Solid State Physics, edited
by F. Seiti and D. Turnbull (Academic Press Inc. , New York,
1959), Vol. 8.

~t' A. Sjolander, in Phonons and Phonon Interactions, edited by
Y. A. Bak (W. A. Benjamin, Inc. , New York, 1964).

'~R. J. . Elli&~tt and A. A. Maradudin, in Proceedings of the

Chalk Riser. SymPosium on Inelastic Scattering of Neutrons Solids
and Iiquids (Internati'onal .Atomic .Energy Agency, Vienna,
j.963), Vol; I, p. 23I;

The sources of incoherent scattering are the deviations
of the scattering lengths of the atoms from the average
value. A proper calculation of the incoherent-scattering
contribution has been done by Taylor' for the mass-
defect case. However, it is dificult to generalize his
method to the defect considered here. We define the
incoherent contribution as that part of the scattering
that is independent of scattering angle. Then to linear
order in impurity concentration we obtain

where

di „, '(2') = ( } g
}
') —(g)i2= (gine) 2

d,2(r) = (}k}2),—q),2+&b—g),2

—(bine) 2+. (bcoh gcoh) 2

d 2(2') —(finc) 2+ (fcoh gcoh) 2

(7a)

(N N, N„)d, „,,.'+—N, d—.'+N„d. '=N((g ) (A P), —
}}A2}}=[(N—N, —N„)/N](} g} ')i+ (N /N)(} b } ')

+(N./N)&}f} )-,
'

(7b)

}}A]}=[(N N, N„)/N]&g)$/— (N,—/N)(b),
+(N /N)&f)

and only terms of order 1, N, /N, and N /N are re-
tained. The fact that the average scattering length of
the impurities is (b), and that of their nearest neighbors
is (f)„rather than (g)i has been accounted for. , The
source of the terms g'"', b' c, and "f' ' is dynamical, while
that of b"h g"h and —f h a"h is spatial, i.e., t—he po-
sitions of the impurities are random.

Equation (2) can now be separated into coherent
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and incoherent contributions' ":
S(K,ot) =S,.h(K,oi)+5; .(K,oi),

(K Oi) e-sst+—
1(O) 2 Q eiK (Ri—Ri')

dk e'"t u l,k e l',0, 9

5;„,(K,ot) =e 2"N '—P dis(T)

dh e'"' u l t u 30 10

The problem is reduced, as usual, to the evaluation of

dt e'"'(K n(t t)K n(t'0))

which can be done by the method of Green's functions.
To detect the behavior of the impurities in 8;,

above the host-lattice background experimentally, the
condition

&d imp ~hdhost

should be satis6ed, where c is the impurity concen-
tration. Some lower-bound estimates for c are given in
Table I.Ke wish to call particular attention to the low
concentrations of some impurities that may be studied.
A general impression seems to have been created that
incoherent scattering is not easily usable for the study
of resonant modes. This is perhaps based on the er-
roneous assumption that an impurity with an incoherent
cross section much larger than the host cross section is
needed; Eq. (6) shows why this is not the case. The
situation has been demonstrated experimentally by
Chernoplekov'~ for Pb in Mg, in good agreement with
estimates similar to those in Table I for Al alloys. We
hope that the incoherent-scattering method may hand

more general use than it has so far.
For incoherent-neutron-scattering results presented

in this paper, we only need Eq. (11)with t= t'. However,
the general formulation is not more dificult and will

provide a basis for the calculation of S„h in a subse-
quent paper.

We assume low impurity concentration in the present
discussions. The probability that two impurities are
nearest or next-nearest neighbors, as well as the possi-
bility of resonant scattering of excitations between
defects, is assumed to be negligible. This treatment. ,
therefore, does not consider the case of impurity cluster-
ing. Then only the single-impurity problem need be
treated; at the end of the calculation, corrections are
made that express results to linear order in impurity"¹A. Chernoplekov and M. G. Zemlyanov, Zh. Eksperim. i
Teor. Fiz. 49, 449 (1965)(English transL: Soviet Phys. —JETP 22,
315 (1966)g.

Tmx, z I.Lovrer bound on impurity concentration for resonance-
mode detection from incoherent neutron scattering' Scattering
lengths in units of 10-'~ cm.

Alloy

Al(Au)
Al(Ag)
Al(Zn)

Mg(Pb)
Be(Cu)
Cu(W)
Ag(Hg)

geo h gllLC

0.35
0.35
0.35
0.35
0.54
0.77
0.79
0.61

~3X10 ~

~3X10 '
~3X10 ~

~3X10 '
0.09
3X10 '
0.23
0.39

0.76
0.61
0.59

—0.36
0.96
0.79
0.47
1.3

[
tsioc

f

0.37
0.39
0.09
0.18
0.09
0.23
0.48
0.60

&LB=sthost /dimp

(%)
~.3~.4
m.2

4.4
1.4

17
18

a Solubility values are given in M. Hansen, Constitution of Binary Alloys
(McGraw-Hill Book Co., New York, 1958), 2nd ed. ; W. 8. Pearson,
A Handbook of Lattice SPacings and Structures of Metals and Alloys (The
Macmillan Co., New York, 1958). Little information is available on solu-
bility upon quenching.

b D. J. Hughes and J. A. Harvey, Neutron Cross Sections (McGraw-Hill
Book Co. , New York, 1955}.

concentration. For the incoherent-scattering cross
section this simply involves multiplying single-impurity
effects by the number of impurities present.

G.s (t,t') —=«A (t),B(t')»
—=2(l A(t),B(t')3)e(t'—t).

Here, A and 8 are operators and

A (t) —sit'tH pri) iA s i{% pK—)i——

fA, BJ=AB rtBA, rt=&1-
t)(t)=1, t&0

=0, t(0.

(13b)

rt is +1 if A and B are Bose operators and —1 if they
are Fermi operators, If they are neither or are mixed,
either sign for q may be chosen. In our case, g= l. Both
Green's functions satisfy the equation of motion

(2/2~)dG(t, t')/dt= b(t—t')(LA, Bj)+&&)A,a); B&&. (14)

This equation is a direct consequence of the de6nition
(13). The Green's functions are related to Eq. (11) by

= lirn (eti" 9) '$G(i»+sb) G—(ot
—
2tt)j, (15)— —

it D. N. Zuharev, Usp. Fiz. Nauk 71, /1 (1960) LEnglish transL:
Soviet Phys. —Usp. 3, 320 (1960)j.» R. J. Elliott and D. W. Taylor, Proc. Phys. Soc. (London)
83, 189 (1964).

III. GREEN'8-FUNCTION FORMULATION

Equation (11) can be related to the retarded and
advanced Green's functions deined by Zubarev" and
used by Klliott and Taylor" for the mass-defect
problem:

G...(t,t') =—«A (t);B(t'))),
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where t';(k, X) is the eigenvector component of the
perfect lattice, (0(k,X) are the eigenfrequencies, and X
is the branch index. Equation (21) can be reexpressed
in terms of O'. In matrix notation,

t M—go)'I+A jG= I+—QG (24)

where

G((u+ib) = (2)r)-' (/ /t)&i(ra+i)) (t—t')d(/ /t)

Herc G(/ —/ )=G„with +i/I and G with —ig Eq. llatloll
(15) incorporates the boundary condition necessary for
the solution of Eq. (14).

The Green's functions needed here are
tt M~—'I+A jGo= I. —

G'= —(—M~2I+A}-I

G—GD+ GOQG

(25)
Therefore

G,.(l, /'; / —/') = 2~«N, (/, /); N. (/', /')», (17)

(1g) G; (l,l'; &v) =G;„'(l,l'; c0)

+Ma&co' Q G;„'(/,s; (o)G„(g,/'; co)

II= II()+II',

where i and m denote Cartesian components. The
Hamiltonian for the harmonic lattice containing im-
purltles ls

Ht)= p +', p A;-„(/, /')I, (/)I„(/')
2~0

l,t'
—Z G;.,'(/ts~; ~)AA„t..(sg, sg )G.,„(sg.,/'; (u}. (2g)

+, P [A, '(/, /') —A,„(/,/')jl, (/)N. (/'). (20)

Ho is the perfect-lattice Hamiltonian with atomic mass
Mo and force constants A; (l,l'). The only contributions
to H' come from impurity sites and other atoms di-
rectly affected by force-constant changes. There is no
restriction on the magnitude of the mass and force-
constant changes.

In general, the equation of motion (14) for G intro-
duces a new unknown Green's function that, in turn, has
its own equation of motion. It is peculiar to a harmonic
system that the original Green's function is recovered

by taking two time derivatives. Fourier-transforming
the resulting equation according to Eq. (16) gives

MpaPG; (l,—l', (a)+ Q A; (1,/")G „(/",1'; co)

b; h(/, /')+ —Q Q,.(l,l";(o)G (1",1';(u), (21)

Q (//'~) = ((Mo M(/))~'b —/'I(//')—

+LA;„(/, /') —A;„'(l,l'}] (22)

contains all the information concerning the impurities.
In Eqs. (21) and (22) and below, ~ is complex unless
otherwise indicated, or unless the imaginary part ib is
explicitly indicated.

The perfect-lattice solution of Eq. (22) (Q= 0),
denoted by Go and assumed to be known, is

Her«=(MO-M')/Mo, M' is the impurity mass, s
indicates impurity sites, sq are the sites of atoms
directly affected by force-constant changes, including
the impurities, and

AA; (1,1') =A; (l,l') A; '(l,l').— (29)

Equation (29) can be rewritten in matrix notation in
somewhat more detail than Eq. (28):

G=G'+ g'Qg, (30)

where G and G' have dimension 3EX3$, g and g have
dimension 3A")&3/)I"q or BcVqX3Ã, and Q has dimension
3X~&(3Ã~. E is the total number of atoms in the lattice
and Eg is the number of atoms directly aGected by
force-constant changes. Letting 1 range over all the s~ in
Eq. (28) gives

g= g +g~'Qg,

w'here g~o has dimension 33Tq&3g~, or

g=(1—g"Q) 'g'

The formal solution ()f Eq. (31) is then

G= G'+ g'Q(1 —g"Q) 'g'
ol

(32)

G; (l,l'; co) =G,„'(/, /'; (0)

+ Z LG". (/, I~; ~)Q...,(s~,sg, ~)
SdtSIJly$ttlt~ )

RltRQ, R$

g& Q) It&tttt(I&'Pct" t ct))Get~ (&g«tl; ct))j, (34)

and the problem has been reduced to the evaluation of
tile lllvclsc of thc 3Ett)(3A't) Illatllx 1—g„'Q.

G,„o(/,/'; ~+ih) = (ÃM, )-I

c;,(k,X)e *(k,X)t'"'Rt ""
td' coI(kt X)+i6—

IV. SOLUTION TO LINEAR ORDER IN
IMPURITY CONCENTRATION

(23) Consider a lattice with a single impurity. For an
fcc lattice in which force-constant changes to nearest



Thus, the square displacement or incoherent-scattering
contribution from a perfect-lattice atom at a given
frequency is proportional to the density of states at that
frcqucncy. In R defect lattice) thc scRttcl'lng from atoms
that are not too close to the defects is also given ap-
proximately by Eq. (37).

In the mass-defect approximation, the impurity
Green's function is given by

(1—g~'Q) '= V 'LV(1—O'Q) V '3 'V

where V(1—gPQ) V ' is block-diagonal and V is de-
termined from the sylnmetry of the lattice. Each block
in PV(1—gq'Q) V I] ' corresponds to a normal mode of
the defect cage, and is of the form 1/Dr X{asubmatrix),
vrhcrc the Dr are functions of frequency and the various
parameter changes. They arc the determinants that
occur in the inversion. As veil be seen below', resonances
occur at frequencies satisfying ReDr(ra)=0. Explicit
expressions for the DI are given in Appendices A and 8
for the fcc and bcc cases, respectively. Results for general
central- and noncentral-force-constant changes are
given. %C have complete analytic expressions for
matrix Q(1—g~'Q) ' for fcc and 1—g~'Q for bcc lattices
vnth central-force-constant changes, but the results
are too lengthy to be included here.

—ImG;;(0, 0; co+ih)

G;co(0, 0; co+ih)= —Im
1—Moau'G '(0 0. a)+ih)

" D(~')
1—eo'8 Zco

o N —
GP

D(a))

2%0 GP

+x47r'(o'c'D'(a&) . (39)

A. Incoherent Scattering from Imyuxities

neighbors are included, Xq=13. In a bcc lattice, next- Here, I' denotes the principal-value integral and D(~)
nearest-neighbor force changes must also be considered, is the normalized density of states of the perfect lattice:
because their distance from the impurity is not much
greater than that of the nearest neighbors: Xg= j.s.

To invert 1—gq'Q analytically, it is first necessary
to block-diagonalize it using the symmetry properties
of the lattice. Thus

The lncohcI'cnt-scRttcllng contllbutlon from thc
impurities themselves is related to

5;,((o,imp) = $e 'lcd; I,'N(ca) 1

X L lim —ImG;, (0,0; ca+i+)1, (36)

obtained from Eq. (34) by letting i=i'=0 be the im-

purity site Lsee Eqs. (11), (15), and (17)j. Here e(co)
= coshc0/2k' T, and emission and absorption processes of
frequency &o have been combined. G;„{0,0)=0 by the
symmetry of the system. Only the I'g5 mode is con-
sidered, because it is the only mode in @which the im-
purity moves. For subsequent comparison with the
force-constant-change results, vrc 6rst consider results
for a perfect-lattice atom and for an impurity in the
I11Rss-defect appl'oxlIllatloI1. ' ' Flolll Eq. (23) wltll
l=P the former gives

—Img"(0 0 co+ih)

= —Im-
3+~0 t, l ~1 o)1(k,X)+—ih

D(u)')d(u'

The impurity motion is thus that of a perfect-lattice
atom modified by a "resonance denominator. " The
impurity amplitude or scattering is greatest at frequen-
cies coo that satisfy the conditions

{d/d ')L—ImG;;(0, 0; ~,+ih) j=o

C
d'/(d ')'jI ImG*'—(o, o; ~.0+ih)j«,

or approximately when the "resonance condition"

" D(ru')
eo ~

6)p
—

OP

(40)

(41)

is satis6ed. Note that although Eq. (41) is generally
used as the resonance condition, the frequencies ob-
tained from it can differ from those found through Eq.
(40) by as much as 15jo in typical solids when the
density of states D(coo) varies rapidly.

If e is close to 1 (very light impurity), Eq. (41) may
be satis6cd for a frequency el. above the lattice band
LD(col,)=Oj, giving rise to a localized mode

—ImG;;(0, 0; col.+ch)

1 ( "D(co')dco')
hi 1—ea z,

' i. (42)
3fgrol, 'e k 0 Cgl, —

CO

" D(a)')da)' 1 is
dco' ———D((o)

2 N.

= (~/m 0)D{~)/~.

If c is large and negative {heavy impurity), Eq. (41)
may be satisfied at a frequency (oo within the lattice
band, giving rise to a resonance mode. Equation (39) is

(3p) then similar to a Lorentzian, and the quantity-, 'IrcdocD(&oo)
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is roughly the width of the resonance or inverse life-
time for an excitation of frequency coo to remain local-
ized at the impurity.

In the presence of force-constant changes the reso-
nance characteristics of the impurity involve perfect-
lattice Green's functions other than G; (0,0). This is a
consequence of the fact that the defect is no longer a
point imperfection. Let G;; (I, P; a&+ib) =—Gg'(et, tss, es),
where (et,ms, ns) a= Rt—Rt, and 2a is the unit-cube edge.
For the fcc lattice, there is a total of 702 possible per-
fect-lattice Green's functions among the impurity and
its 12 nearest neighbors. Sy symmetry considerations,
only 13 of these are independent. For the bcc lattice,
including nearest and next-nearest neighbors of the
impurity, of the 1980 Green's functions 15 are indepen-
dent. The fcc and bcc Green's functions are given in

Table II.
Then only central-force-constant changes are con-

sidered, the impurity Green s function in the fcc lattice,
using the symbols of Table II and the definition of o
of Appendix A, is

G,;(0, 0; to+ t'b)

=G.rr/t 1 iVsero'G—.rr+2n(Gt 8Gs 8—G4+X—)],
Gef f Gt+ 2n[Gt —4(Gs+G4) '+GtX],
X=Gs G4+G7+Gs+Gls+ 2G12+GD '

%e have also evaluated the impurity Green's function
for general central- and noncentral-force-constant
changes, but the result is too lengthy andunrevealing
to be reproduced here. As in the mass-change case,
resonance or localized modes occur when Kqs. (40) are
satisfied. , or approximately when the real part of the
denominator of Kq. (43) is zero for some frequency. The
resonance condition is thus bilinear in mass and force-
constant change. It cannot be factored into a mass- and
force-constant-dependent terms: Every resonance is
determined by both, although one or the other might

30-

'Q

p 25-
O
es

5 20-
0

~ l5

CQ

EM IO

0.424

dominate the properties of a particular resonance. If
noncentral-force-constant changes are included, the
resonance condition is a quadrilinear function in the
defect parameters.

We have evaluated ImG;;(0, 0; co+i b) for heavy im-
purities with several mass and force-constant changes
in Al. Pure Al is a very weak incoherent scatterer, so
that defect characteristics should be easily observable.
Accurate Al data were supplied to us by Raubenheimer
and Gilat" of Oak Ridge National Laboratories. They
also made available to us a very accurate method to
calculate frequency spectra from experimentally de-
termined perfect-lattice force constants. " Ke have
used a slightly modiied version of their method to
evaluate the various perfect-lattice Green's functions.

Figure 1 shows ImG'(0, 0,0) for Al, given by Kq. (37).
Figure 2 shows ImG(0, 0,ce) for Au (e= —6.301/), Ag
(e= —2.9983), Zn (e= —1.4233), and Mn (e= —1.0363)
in Al in the mass-defect approximation, Kq. (39). The

00.0 O. I Q2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I.O
v lofts cps

FIG. 1. ImG'(0, 0,0) for Al perfect lattice from experimental data
of Oair Ridge National Laboratories (Ref. 23).

TABLE II. Perfect-lattice Green's functions for fcc and bcc cases.

30

I~Ag
~Zfl

Symbol

G1

G2

Gg

G4

Gr

G6

Gy

G8

Gg

Glo

G11

G13

G14

GIs

GI0

fcc

GHO(0, 0,0)
G, '(1,1,0)
G*.'(»1,0)
G,„'(1,1,0)
G,o(o,o,2)
G„o(0,0,2)
G 0(2,2,0)
G„ (2,2,0)
G yo{2,2,0}
G 0(2,1,1)
G,„'(2,1,1)
G „0(2,1,1}
G~ o(2 11)

bcc

G;;0{0,0,0)
G '(1,1,1)
G „'(1,1,1)

G„'(2, —2, 0)
G „0(2, —2, 0)
G ,0(2,2,2)
G „0{2,2,2)
G '(200)
G„„'(2,0,0)
G '(4,0,0)
G„„'(4,o,o)
G '(3,1,1)
G 0(311)
G „'(3,&,i)
Gy, 0(3,1,1)

Ol

~25
P

20

o 15
O

CP

E~ 10

00 0.1 02 03 04 05 06 07 0.8 09 1.0
v IO's cps

FIG. 2. Impurity Green's function for Au, Ag, Zn, and
Mn in Al in the mass-defect approximation.

g L. J. Raubenheimer and G. Gilat (private communication)."L. J. Raubenheimer and G. Gilat, Oak Ridge National
Laboratory Report No. ORNL-TM-1425, 1966 (unpublished).
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low-frequency resonance becomes stronger and narrower
as the mass of the impurity increases and the resonance
frequency decreases.

As the impurity mass decreases in Fig. 2, a small
peaked structure begins to appear in the high-frequency
region where the perfect-Al-lattice density of states has
a minimum. Equation (40) can be satisfied, or almost
satisfied, for high coo even for negative e, if the principal-
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Fzo. 4. Height of the impurity-resonance peak in ImG(0, 0,0)
as a function of (a}mass change for several central-force-constant
changes; (b) central-force-constant changes for several mass
changes.

0 O.l 0.2 03 0,4 0.5 0.6 0.7 0.8 0.9 I.O

v IO' cps

Pro. 3. Impurity Green's function with mass and central-force-
constant changes: (a) Ag in Al, with central-force constants 70
(high peak) and 30%%u~ weaker than in the host lattice; (b) similarly
for Mn in Al.
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I
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FIG. S. Impurity resonance frequency as a function of (a) mass
change for several central-force-constant changes; {b) central-
force-constant change for several mass changes.

value integral, whose largest contributions come from
the region D (co'~too), is suSciently small and negative.
The host lattice is unable to propagate excitations of
this frequency effectively and they tend to remain
spatially and energetically localized at the impurity.

Figure 3 shows the effect of 70 and 30/z weaker
central force constants for impurities with the masses
of Ag and Mn in Al, Eq. (43) (note scale changes). The
weakening of force constants for 6xed e drastically
sharpens and strengthens the resonance peak and lowers
the resonance frequency, The effects of weakening
force constants arc much stronger than those of a mass
increase, as shown in Figs. 4 and 5. Lower resonance
frequencies can be reached with weakly bound impuri-
ties even if the latter are light than by just increasing
the impurity mass.

Note that in the hcavy-mass —weak-force cases there
is stiB only one low-frequency resonance, even though
more parameters have now been varied. VVe shaB deal

briefly with the case of central and noncentral force-
constant changes later.

In general, the situation in which mass and forces
change in opposite directions is morc interesting than
when they change in the same direction. %e have
studied the case of heavy impurities with strong forces.
Figures 6—8 show ImG;;(0, 0,a&) for impurities with the
masses of Ag, Mn, and Al in Al for central-force con-
stants 50, 100, and 200%%u~ stronger than in the host
lattice. In the a&0 cases there is still a low-frequency
resonance mode that moves up in frequency and loses
strength and sharpness with increasing force constant.
This behavior continues until the absolute fractional
change in force constant

(
&A jA [

=
~

e I, when the mass
and force effects in the low portion of the band tend to
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TABLE III. Motion of impurities —central force-constant changes.

—6.3017 (Au)—6.3017—6.3017—6.3017—6.3017—6.3017

—2.9983 (Ag)—2.9983—2.9983—2.9983—2.9983—2.9983

—1.4233 (Zn)—1.4233—1.4233—1.4233—1.4233—1.4233

—1.0363 (Mn)—1.0363—1.0363—1.0363—1.0363—1.0363

nA /A

—2—1—0.5
0
0.3
0.7

—2—1—0.5
0
0.3
0.7

—2

—0.5
0
0.3
0.7

—2

—0.5
0
0.3
0.7

—2—1—0.5

Low-
frequency
resonance
(10"cps)

0.241
0.225
0.211
0.185
0.161
0.095

0.331
0.311
0.289
0.255
0.219
0.131

0.423
0.417
0.383
0.333
0.285
0.167

0.423
0.421
0.417
0.367
0.313
0.181

Width of
resonance
(10"cps)

0.141
0.102
0.077
0.045
0.026

&0.010

o.218
0.166
0.126
0.080
0.044

&0.010

0.152
0.135
0.102
0.061

&0.015

0.118
0.104
0.067

&0.015

Height of
resonance

t 10 + (sec/rad)'g

10.95
16.21
23.14
43.48
85.93

&850

8.855
13.09
18.78
35.6
70.59

&1107

10.57
13.40
17.49
32.00
62.78

&586

11.21
15.06
19.10
31.85
61.41

&581

High-frequency
resonance or
local mode
(10"cps)

0.979~.887~.840

1.022 (L)~9~.857
0.825

1.089 (L)
0.983
0.887~.829

1.125 (L)
0.975
0.889
0.833

1.373 (L)
1.142 (L)
1.018 (L)

could probably be obtained by considering the impurity
and its neighbors as a molecule embedded in a static
lattice. Even the simplest version of the force-constant-
change problem when forces are strong is far more
complicated than the mass-defect case.

ln the cases considered here, the results with both
central and noncentral force changes are similar in
character to those with only central force changes.
The number of resonance and localized modes in the
various cases does not change. This may, in part, be
due to the fact that we have kept the relative magni-
tudes

~
&,~«~~„~/A «~t„q

~
equal to their relative magni-

tude in pure Al, where the ratio is =0.12." Some
results for the resonance in the low-frequency portion
of the spectrum are given in Table V as a function of
mass and central force-constant changes. Case 1 corre-
sponds to either strengthening or weakening both
central and weakening the noncentral force-constant
changes, or vice versa. Case 3 corresponds to central
force-constant changes only. Greater differences and
perhaps more resonances would occur if the central and
noncentral force-constant changes were more nearly
equal in magnitude.

B. Incoherent Scattering from Nearest
Neighbors of Impurity

A typical nearest-neighbor contribution to the scat-
tering cross section is

S;,(a, neighbor) =e '~cd„b, 'e(co)

Xlim P E~„ImG; (1, 1;~+i 8) . (44)
8~0 i,m

Here, 1=/'=1 represents the nearest neighbor (1,1,0)
and

G;„(1,1; (a) =G,,o(0,0; (a)b;„

+ E (G'. '(1,~.; )LQ(1—g"Q) ')--( ~" )

XG,„'(sg,1; (u)) . (45)

0.3 0.7
—6.3017

(Au)
—2.9983

(Ag)
—1.4233

(Zn)
—1.0363

(Mn)

0
(No mass
change)

0.317
(0.241)

0.427
(0.331)
0.548
(0.423)

0.597
(0.423)

0.259
(0.225)

0.350
(0.311)
0.448
(0.41/)
0.489

(0.421)

0.225
(0.211)
0.303
(0.289)

0.388
(0.383)

0.424
(0.417)

0.183
(0.185)

0.248
(0.255)

0.317
(0.333)
0.345
(0.367)

0.153
(0.161)
0.207
(0.219)
0.265
(0.285)

0.288
(0.313)

0.100
(0.095)

0.136
(0.131)
0.173
(0.167)

0.190
(0.181)

0.855 0.697 0.606 0.494 0.413 0.270

TABLE IV. Einstein-oscillator frequencies versus computed reso-
nances (in parentheses) in units of 10"cps. vz= (4n~e~/kr ~)'".
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TaaLz V. Motion of impurity —centra) and noncentral force-constant changes.

—6.301'?
—6.3017—6.3017—6.3017

aA/A
central

0
0.3
0.7

0.213
0.185
0.155
0.121

0.082
0.045
0.022
0.009

Case 1
Low-

frequency
resonance Width
(10"cps) (10"cps)

Height
(10-28

(sec/rad)'j

20.45
43.48

104.7
&333

0.233
0.185
0.167
0,059

0.122
o.o45
0.030

Case 2
Low-

frequency
resonance Width
(10"cps) (10"cps)

13.26
43.48
73.18

0.225
0.185
0.161
0.095

Low-
Height frequency
[10 " resonance

(sec/rad)'j (10"cpsl

Case 3

Width
(10"cps)

0.102
0.045
0.026

&0.01

Height

(sec/rad) 'j
16.21
43.48
85.93

&850

—2.9983—2.9983—2.9983—2.9983

—1
0
0.3
0.'?

0.291
0.255
0.229
0.165

0.130
0.080
0.050
0.017

16.87
35.6
59.2

255.4

0.327
0.255
0.211
0.079

0.205 10.46
0.080 35.6
0.038 85.33

0.311
0.255
0.219
0.131

0.166
0.080
0.044

&0.005

13.08
35.6
70.59

&110'?

—1.4233—1.4233—1.4233—1.4233

—1.0363—1.0363—1.0363—1.0363

—1
0
0.3
0.7

—1
0
0.3
0.7

0.377
0.333
0.299
0.213

0.406
0.367
0.331
0.233

0.137
0.102
0.070
0.018

0.116
0.104
0.080
0.025

16.08
32.0
53.32

261.8

16.99
31.85
52.30

235.9

0.423
0.333
0.271
0.103

0.423
0.367
0.299
0.115

~.160
0.102
0.053

0.166
0.104
0.059

12.19
32.0
75.12

11.52
31.85
72.69

0.417
0.333
0.285
0.167

0.421
0.367
0.313
0.181

~.152
0.102
0.061

&0.015

~.177
0.104
0.067

&0,015

13.40
32.0
62.78

&586

15.06
31.85
61.41

&581

By symmetry, only three independent Green's functions
enter in Eq. (43), namely, ImG„(1,1), ImG„(1,1), and
ImG, „(1,1). They are plotted separately below, since
the combination in which they contribute to 5;,
depends on K. Note that in the perfect lattice G„(1,1)
=G„(1,1) and G,„(1,1)=0. Analytic expressions for
G;„(1,1) are given in Appendix C for the mass-defect
and mass- and central-force-constant-change cases.

Mass-defect results are given first for comparison.
The scale is here again the same as in Figs. 1 and 2.
Figures 9 and 10 show ImG; (1,1) for the nearest
neighbors of Ag and Mn in Al. The motion of the
neighbors is very similar to that of an atom in the perfect
lattice (Fig. 1). The perfect-lattice singularities all

appear at exactly the same frequencies but are not as
sharp here. The decrease in sharpness is not very sensi-
tive to the value of e as long as it is negative. The great
decrease of the perfect-lattice peak at v=0.580X10"
cps in ImG„(1,1) occurs for all negative e and is dificult
to explain. ImG, „(1,1) remains quite small in all cases.
As

i ei increases, a remnant oi the impurity resonance
begins to appear in the motion of the neighbors. As seen
in Fig. 9, this effect is absent for Mn in Al, while

ImG„(1,1) for Ag shows a considerable broad peak
centered at v=0.233X10" cps (v resonance=0. 255

X 10" cps) and ImG„(1,1) shows a broad peak around
~=0.221X10"cps.

In the mass-defect approximation, then, the drastic
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FIG. 9. Diagonal Green's func-
tions for nearest neighbor (1,1,0)

I,O of impurities in Al in the mass-
defect approximation: (a) ImG
for neighbor of Ag in Al; (b) Img
for neighbor of Mn in Al; (c) ImG,
for neighbor of Ag in Al; and (d)
ImG„ for neighbor of Mn in Al.
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impurities in Al in the mass-defect approximation: (a) ImG „
for neighbor of Ag in Al; (b} ImG„ for neighbor of Mn in Al,
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FIG. 11. Diagonal Green's functions for neighbor (1,1,0) of
impurities in Al with mass changes and central force constants
70'Po meuker than in the host lattice: (a) neighbor of Ag in Al;
(b) neighbor of Mn in Al.

changes in S;,occur at the impurity. The motion of its
nearest neighbors is already very similar to that of a
perfect-lattice atom.

Figures 11—14 show IrnG, (1,1) for the nearest
neighbors of impurities with the masses of Ag and Mn
in Al for various central-force constant changes. In all
cases, ImG„ is affected much more than ImG„, because
the former represents motion along the force-constant-
change direction (recall that G» ——G„),while the latter
represents motion perpendicular to the force change.
We return to G„ later.
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Fro. 13. Diagonal Green's functions for neighbor (1,1,0) of
impurities in Al with mass changes and central-force constants
100% strolger than in the host lattice: (a) neighbor of Ag in Al;
(b) neighbor of Mn in Al.

When force constants are stronger, Fig. 13 shows
that the high-frequency peaks are enhanced and the
low-frequency ones washed out with respect to the
perfect lattice, Fig. i. The opposite occurs for weaker
forces. The frequencies of the peaks are also shifted up
(stronger forces) or down (weaker forces).

%hen forces are weak, the neighbors show a sharp
low-frequency resonance in the neighborhood of the
impurity resonance, much more pronounced than in
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FIG. 12. Diagonal Green's functions for neighbor (1,1,0) of
impurities in Al with mass changes and central force constants
30/o meuker than in the host lattice: (a) neighbor of Ag in Al;
(b) neighbor of Mn in Al.
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Fn. 14. Off-diagonal Green's functions for neighbor (1,1,0) of
impurities in Al with central-force constants 70 and 30%%uz meuker
and 100/& stronger than in the host lattice: (a) neighbor of Ag in
Ai; (bl neighbor of Mn in Al.
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the mass-defect case. This does not contradict the earlier
statement that in the weak-force case the impurity could
bc considered as being an Einstein osciHRtor in a static
lattice: The impurity resonance amplitude increases far
more rapidly vrith vreakening forces than that of its
neighbors.

Ixl thc cases consldcI'cd here's localized Inodcs of the
impurity are caused by strong forces rather than by a
light 1IQpullty mass. SHlcc thc nearest nclghbols Rrc

directly coupled to thc force changes, each onc vill
vibrate at the local™modefrequencies vrith an amplitude
roughly &~~ tha, t of thc impurity, vrhich is connected to
I2 strong force constants. A very sharp amplitude
reduction occurs from next-nearest neighbors on.

In the ca,ses considered here, the resonance behavior
of the neighbors still comes only from the I'15 mode even
though G, (1,1) depends on all the modes of the cage.
In fact, none of the other resonance denominators
(Appendix A) even comes close to satisfying the reso-
nance condition Rea=o. Much larger force-constant
changes are needed to observe resonances or local modes
caused by them. In our calculations, the c6ect of the
other modes is just to shift the I'~5 low-frequency peak
down or up with respect to the impurity peak when the
forces are vreak or strong, respectively. When the
central-force change is large (e.g., 70% weakening),
ImG;;(0, 0) and IrnG„(1,1) show a resonance at the
same frequency~ lndlcRtlDg that thc I j5 mode 1s then
practically the only one of any importance in determin-
ing the peak frequency.

Note that the reason vrhy the I"15 mode shows
resonance or local-mode characteristics for parameters
for vrhich the other modes do not is definitely not the
fact that it alone depends on the mass change. This can
be seen from Fig. 8:Even when there is no mass change„
a 50'%%u~ increase in force constants is already sufhcient
to give a I'15 local mode. It is rather that the impurity,
which moves only in the I'15 mode, is affected by 12
force changes, so that the C6ective disturbance for this
mode is much larger than for the others.

As mentioned earlier, ImG„(1,1) is much less affected
by the presence of the defect than ImG. ,(1,1). The
local-mode ampHtudc, not shown in the figures, is
also decreased. However, an interesting CGect occurs,
which can be seen in Figs. 11 and 12: ImG„(1,1) shows
a depression or loss of amplitude around the impurity
resonance frequency, in contrast to the behavior of
ImG„(1,1). This effect begins to appear in the mass-
defect case (Fig. 9) but is much stronger when force
changes are also present. ImG„(1,1) thus shows an
cetiresonance. It seems that some amplitude or density-
of-states sum rule is operating, vrith Imo„counteracting
the effects of IrnG„(1,1) and ImG;;(0, 0) to some
extent.

Table VI is a summary of some of the results indicated
above, including mass changes not shown in the 6gures.
The low-frequency peak positions are indicated for

TsaLE VI. Resonances and antiresonances in the motion of
an impurity and in the motion of its nearest neighbors. Central-
force-constant changes.

—6.3017—6.3017—6.3017
—2.9983—2.9983—2.9983
—1.4233—1.4233—1.4233
—1.0363—1.0363—1.0363

0
0.3
0.7
0
0.3
0.7
0
03
0.7
0
0.3
0.7

vg ln
Imo(0, 0)
(10"cps)

0.185
0.161
0.095

0.255
0.219
0.131

0.333
0.285
0.167

0.367
0.313
0.181

vg in
I G..(1,1)
(10"cps)

0.177
0.155
0.095

0.233
0.207
0.131

4 e 0

0.267
0.167

0 ~ ~

0.303
0.179

Min and max
around vg in
Ima..|',1,1)
(10"cps)

0.169-0.197
0.147-0.171
0.095-0.099
0.221—0.265
0.191-0.227
0.127-0.131

~ 4 ~

0.243-0.283
0,155—0.171

~ ~ 4

0.271-0.303
0.167-0.183

ImG;;(0, 0) and ImG„(1,1).For IrnG„(1,1) the positions
of the maximum and minimum tha. t define the anti-
lcsonRncc arc glvcn.

The off-diagonal Green's function ImG„„(1,1) is shown
in Fig. 14 for impurities with the masses of Ag Rnd Mn
in Al. It has appreciable lovr-frequency structure with
vreakened force constants and high-frequency structure
with strong forces.

It would perhaps be more physically transparent to
rotate the reference coordinate system about the s
axis along the line joining the impurity and neighbor
(1,1,0). Then the diagonal Green's functions are
G, , (1,1)=G, (1,1)+G „(1,1), G„„=G —G~, and

6„,and the o&-diagonal Green's functions vanish. The
diagonal Green's functions, then, truly represent the
square amplitude of motion of the neighbors of the
impurity. The defect characteristics are then brought
out more sharply and the host-lattice characteristics
are suppressed. For instance, in RB cases of vreakened
forces the v= 0.887X 10"-cps peak disappears in
Ime. .. and is replaced with a structure similar to the
high frequency-1Hlpurlty stI'uctuI'c. Thc I 15 1csoDRnce

is also sharpened.

Although we have evaluated our equations nu-
merically for only a limited range of parameters
(—6.3(a&0 and —2&HA/A(0. 7), there are some
conclusions that can be drawn which are quite likely
to hoM in general:

(a) The resonance characteristics of the defect sys-
tern (frequencies and amplitudes) are more sensitive to
folcc-constRnt changes thRD to mass chRnges.

(b) Of all the modes that must be considered to de-
termine the motion of the neighbors of the impurity, the
F15 mode is by far the most important one. Since this
is the only mode in which the impurity moves, and since
the impurity is directly coupled to all the force-constant
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changes, the effective disturbance for this mode is
greater than for the other modes.

(c) The neighbors of the impurity share strongly in
the resonances and local modes that are caused by
force-constant changes to which they are directly
coupled. These large resonance amplitudes occur in the
planes containing the force-constant changes.

(d) In the planes that do not contain force-constant-
change components, the motion of the neighbors of the
impurity exhibits an antiresonance near the resonance
frequency, indicating the possible existence of a density-
of-states sum rule.

Some conclusions that may apply only to the cases
explicitly evaluated here are the following:

(a) When mass and force changes act in the same
direction (i.e., heavy mass and weak force constants), we
found only one resonance mode in all cases. When they
act in opposite directions, we found two resonance
modes or one resonance and one local mode.

(b) In the cases considered here the changes in non-
central force constants used were too small to produce
experimentally observable eRects. Such eRects may
appear for sufficiently large changes.

From the theoretical point of view, even in the single-
impurity approximation, there are several problems
that have not yet been considered. For instance, there

may be some relaxation of the neighbors of the impurity
to new equilibrium positions, causing an effective-force-
constant change among the neighbors in addition to the
impurity-neighbors ones considered here. To our

knowledge, the eRects of anharmonic impurity-lattice
coupling for heavy impurities has not been treated.

Experimentally, a system such as Al plus a low con-

centration of heavy impurities seems to be a pro6table
one to study via incoherent neutron scattering, because
Al itself is an almost perfectly coherent scatterer.

We have studied the eRect of the impurities considered
here on the phonons of the Al system (e.g., shift,

broadening, and branch mixing); these results will be

presented in a subsequent paper.
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APPENDIX A

For the fcc case with force-constant changes between the impurity and its nearest neighbors (preserving the
point symmetry of the cage), the irreducible representation I' of the full cubic group appears in V(1—gzoQ) V ' a
total of IV(1') times as follows'.

73(1'1)=1, N(1" )=1, 72(1' )=2,
72(1' ') = 2, 73(I'25') = 2, 72(1'2') = 1,
n(1'12') = 1, 72(I'2,)= 2, N(I'1,)=4.

Let the perfect-lattice central- and noncentral-force constants be denoted by no+go, oto yo, an—d Po, e.g. ,
"

'Op yp 0 '
&;„(1,1,0)= po ~o 0

.0 0 Po.

Let 42=429—n,„,and similarly for p and y. (When only central forces change, n= y and &=0.) Using'the notation
of Table II, the resonance denominators are

D(I" )=1+(42+y)(G +2G, 2G,+G, G, G—G, 2G„——4—G„——2G„—),
D(l'2) = 1+(42—y)(G1—2Gs+2G4+Gs —Gs—G7+Gg+2Glo 4G12+2G13) )

D(1'12)= 1+242(G1+Gs—Gg—G7+ 2G12)+2y( —Gs+ G4—Gg+ Gl9+ Gl3)+ (n —y )L(G2+ Gs—Gg—G7+ 2G12)
—(Gs —G4+Gg —Glo —Gls) '—3(Gs+G4—Glo+Gls)'j,

D(1'15') = 1+ p(G1+ 2G4—Gs+ 2Glg)+ (42—y) (Gl—Gs+Gg —G7+Gg)+ p(42 —y) I (2G4- G,+2G„)
X(—G5+G6 G7+G9)+Gl(G1+2G4 G5+G6 G7 Gs+G9+2G13) 4(G2 Gll+G12) j p

D(l' ') =1+P(G —2G —G —2G )+(n+y)(G —G +G —G —G )+P( +y)L(2G,+G,+2G )
X (Gs—Gg+ G7+Gg) +Gl(G1—2G4—Gs+ Gg—G7—Gs—Gg —2G13)—4(G2—G11

—Gls) j,
23 G. Leibfried, IIo77dhgsrh der Physgh, edited by S. Fliigge (Springer-Verlag, Berlin, 1955), Vol. 7, Part l,
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D(PR ) 1+P(G1 4«2Go+Go+4G») y

D(1'»') = 1+P(Gg+ 2G4—2Go+ Go—2G»),

D(1'oo) = 1+2a(Gx—Go+«+Gv —Gxo—G»)+2v(Go —2G»)+ (a' —v')L(Gx —Go+G4+Gv —G»—G»)'
—(Go—2&o) '—(Go+«—Go—Go+G» —G») ']

D(1'») has been explicitly evaluated only for central-force-constant changes. In the general case, D(1'») is the
determinant of the matrix given below {central force change):

D(1'w) = 1—~o~'R+2a(5Gi —SGo+Go —9G4+G~+Go+G»+2&o+Ro)
—2Moao'a[GP —4(Go+ G4) '+G) (Go—G4+ Gg+ Go+ Gxo+ 2G»+ Gio)]

In general, D(1'») is the determinant of the 4&&4 matrix with the following elements:

(1,1)= 1—Moro'(Gg+ SGo+4Go)/13,

(1,2) =20(+91)$1 n(5—Go+2Go Go —Go —Gy —2G»— 2G—»)+y( G+oG+o4G»)]/ 91,

(1,3)= ——,'(g14)t1—p(4G, +3G,—2G,—G,—4G„)],
(1,4) = 2(+26)Ln(G4+Gg+4G») —y(5Go+2G, —G,—Go—Gp —2Gg, —2Gg,)]/13,
(2,1)= 2{+91)Moan''(Gg —2Go+Go)/91,

(2,2) = 10/1—(—5G +14G —6G —G —G —G —2G o+2G )—y(4G —G )]/'I,
(2,3)=—,'o(+26) f1—P(3Gg—4Go —2Go—Go+4G»)],

(2)4) = —(+14)t n(4G4 —Gg)+y( —5Gg+14Go —6Go —Go —Go—Gy —2G»+ 2G») ]/7,
(3 1)= —2(+14)M ea)o(2Gg+3Go —5Go)/91,

(3,2) =5{+26)L3—o(13Gg+28G9 46Go 3Go 3Go 3G'I 6GjQ+ 20GQQ) —p(—16G4—3Go+ 14G»)]/91,

(3,3) = 1+-,'P (13Gg+6Go—28Go+ 10Go+5Go—6G»),

(3,4) = —(g91)gn( —16G,—3G,+14G„)+p(13G,+28G,—46G,—3G;—3G,—3G;—6G„+20G„)]/91,
(4, 1)= —2(+26)M oooo'G4/13,

{4,2) =5(+14)L—a(SG4—Go—2G&p)+y(GJ 2G4 Go Go+G7+2G»)]/7,

(4,3)=-;(+91)pG„

(4,4) = 1+n(Gg 2G4 Go Go+—G7+ 2—Gyp)—y(SG4 Go 2G—») . — —

APPENDIX 8
For the bcc case with force-constant changes between the impurity and its nearest and next-nearest neighbors,

the irreducible representation I' of the full cubic group appears in V(1—gqoQ) V ' a total of e(I") times as follows'.

e(1"g) =2, e{I'»)=2, e(1'»') = 2,
oo(1'oo') =3, e(1"o')= 1, N(1'»') = 1,
N(1'o,)=2, e(1'») =5.

There are now two central and two noncentral force constants, "denoted by Go+2'yo, ffo, Go—'yo, and po ..

0'0 Po +0 0 0
A;„(1,1,1)= Yo ao yo, A; (2,0,0) 0 Po 0

,vo vo ~o. .o 0 po.

Let a=no n„, ,—and—similarly for y, p, and p. Force-constant changes to next-nearest neighbors can be left out by
letting g=p =0. Central-force changes correspond to u= y and p= 0. Using the notation of Table II, the resonance
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denominators are

D(l x) = 1+2(~+2~)(Gx-2G4+Gs+2G6-Gx-2G6-Go+2Gxo)+2~(Gx+4G6-Gxx)+4~(~+2~)
X L

—4(G2—2Gs —Gxs —2Gxs)'+ (Gi+ «6—Gxx) (Gx—2G4+Gs+2G6-Gx —2Gs—Go+ 2Gio) j,
D(~-) = 1+2(--.){G -2G.+G.-G;G+G.-G.+2G.)+2~{G.-2G.-G.)+4~(--~)

XL 4(G2+Gs Gxs+Gxs) +(Gx 2—Gs G»)(Gx 2—«+Gs G—s G—2+Gs —Gg+2G10)j,
D(1'xs') = 1+2(~ V) (—Gx Gs —Gs —Gv+—Go+Go)+2P(Gi 2G—6 Gxs—)+4P(~ V)—

XL
—4(G2+Gs —G14+Gxs) 2+ (Gx—2Gs—G12) (Gx—Gs—Gs—Go+Go+Go) j,

D(1 2 ) = 1+(42+ 2y) (Gl 2G4+Gs+ 2G6+Gx+2G8+Gs 2G10),

D(Fis )= 1+(42—y) (Gi—2G4+Gs —Gs+Gx—Go+Go —2Gxo),

D(r„)=1+2( —q)(G,—G,—G,+G,—G,—G,)+2P(G,—2G,+G„)
+4P(42 V)L 4(2Gs G15+G16) +(Gx 2G5+G12)(Gx Gs Gs+Gx Gs Go)g

D{I'25') is the determinant of the 3X3 matrix with the following elements:

(1,1)= 1+ xs (42+2y) (3Gi+ 2G4 Gs —2Gs—3Gv—6Gs—+Go 2Gi—o),

(»2)= s(V'6)p(G2 —Gxs—Gis—Gis),

(1,3)=5%~—V)(—«—Gs+Gs+Gs+Gxo),

(2,1)= s(V"6)(~+2V)(G2—Gis—G»—Gis),

(2,2)= 1+p(Gx+2G6 —Gis),

(2,3)=V~(~—V)(G2—3Gs—Gxs—Gxs+2Gis),

(3,1)=K~(+2&)(-«-G+G+G+G.),
(3,2)=-,'vSP(G, —3G,—G„—G„+2G„),

(3,3)= 1+6 (42 y) (3G—1+4G4+ Gs+ 5Gg 3Gy+—3G5 Go—4—Gxo) ~

D(F15) is the determinant of the 5X5 matrix with the following elements:

(1,1)= 1—M06012Gx,

(1,2) = —(/6)P(G1 —Gio),

(13)= s(~3)n(Gi —Gg)

(1,4) =—s(V'6)(~+2V) (Gi—Gs—2G6),

(1,5) =V~(~—V) (Gi—Gs+Gs),

(2,1)=-', (/6)L3 —Mosses(Gs+2G10) j,
(2,2) = 1+P (Gi+ 2G4+2G5 —2Gg —4Gxo+Gxs),

(2,3)= —
xg (V2)L3+g(Gx+4G4 —2Gg —4Gio+ G»)$,

(2,4) = -', (n+ 2y) (3G2—2Gs—2G2 —4Gig+Gxs+ 2G14+4G15+ 2G16),

(2,5) =-,~2( —~)(—3G,—G,+2G,+4G„—G„—2G„+2G„+G„),
(3,1)= 6~3M 0640'(Gs —Gio),

(3,2)=—v2['1+P(Gx—4G4+2G5+4G2 —«xo+Gxs) j,
{3)3) 6 L1+xj{Gx 2G4 2G9+ 2G10+Gli)j i

(3,4) = 6~2(45+2m)(2Gs+2Gs —2G10 Gis+G14 Gis+Gxs),

(3,5) = s(42—V)(2Gs—«6+4810+2Gxs —2G14—Gxs+Gxs),

(4,1)=——6'(+6)M06002(G2+2Gs),

(4,2) = —2P(G2+«2 —G14—Gxs—Gxs),

(4,3)= -6V2g(G2+ 6Gs—Gis—2G15),
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(4)4) = 1+&(n+ 2y) (3Gz—8Gg —16Gs+ 2G4 —Gs —2Gs+ 3Gv+6G:—Go+ 2Glo) ~

(4,5) = s~(n —v)(4Gg+8Gs —Gs—Gs+Gs —Gg —Gvo),

(5,1)= ssVSMondg(Gg —Gs),

(5,2) =~&P(2Gg 4—Gs 2—Ggs+Gu+Gu),

(SP)= —
s vt(Gg —3Gs—Gu+Gu),

(5,4) = s~(n+2y) (4Gg 4Gs G4 Gs+Gs Gg G—vo),

(5,5) = 1+s (n —y) (3Gz—16Gg+ 16Gs+4Gs+ Gs+ SGs+ 3Gv 3G—s+Gg+4Ggo) ~

APPENDIX C

The Green s functions for the nearest neighbors of the impurity with central-force-constant changes in the fcc
case have been worked out up to a point that makes computer evaluation very easy. The expressions below could
be simplified further at the expense of much work and little gain. Ke first define a large list of symbols for quantities
that enter in the Green's functions; the latter are given at the end of this Appendix. Some of the symbols used here
are defined in Table II and in Appendix A.

I et

Xg ——(+13)M osovg/13, Xg ———2(Q7)

(Moan''

—10n)/7

Xs ——2(+182)(2Mosoo' —13n)/91, X4——2%2n,

Xs———5(+7)n/14, X = (/182)n/28, and x7———-„'v2n,.

tv = (+13){1+4Mosoo (2Gg+Gs) —2n( —5Gi+28Gg+7Gs+SG4 —4Gs—4Gs—5Gv —SGg —9Gvo —8G&v —18Gu —Gu)
8MQsov'n[G, (—G,—G,+G4)+G,(2G,+4G4+ Go+ Go—Gv —Gg+ 2Gg g

—2Gu)

+Go( Go+ 3Gs—Gv —Gg —Gu —2Gu —Gu)+G4(Go+ Gs+Gv+Gg+2Gu+ 2Gv 1+4Gu)]}/13,
pl= —2(Q7) {1+Mooov ( 2Gg+Gs)—+2n(6Gg —SGs—SGs—Gs—Gs—Ggo+2G»+2Gu+G„)

2Mo '—soo[Gn(GggG, G4)+G—g(2Gg Gs Gs—+Gv—+Gg+2Ggg+4Gvg+2Gvs)

Gs(G3+G4+ Gv+ Go+ Gvo+ 2Gu+ Gu) —Gs(G;+Go+ Gv+ Gg+ 2Gu —2G&g)jj/7,
gy= 2(+182){2+Moo(d (3Gg 5Gs) n( 7Gv+60Gg SOGs+20G4 —3Gs—3Gs—7Gv —7Gg 10Gvo

+20G»+ 6Gu —4Gzs) —Mono n[Gv( —3Gg+ 10Gs+ 3G4)+Go( —20Gg —14G4+ 3Gs

+3Gs 3Gv—3Gg —20Gvg 26Gu 6Gvs)+Gs(10Gs 4G4+10Gv+10Gg+10Gvo+20Ggg+10G]s)

+G4(3Gs+ 3Gs+3Gv+3Gg+6Gio —20Gl v
—14Gu) j}/91,

rq= 2V2{59MonogG, —91n(—G,+10Gs+Gs+Gs —Gv —G,—2Gu — 2G)uMo' s—o[oGn, (11G +g80G s1 1G4)

+Gg( —342G4 11Gs—11Gs+11Gv+11Gg+22Ggg+22Ggs)+Gs( —182G4—80G.—80Gs+80Gv+80Gg

+160Gu+160Gu) G4(11Gs+11Gs+11Gv+11Gg+22Gu+320G»+342Gu)]}/91 q

t,= (+13){1 Mosov'G—& n( 10G—&+—11Gg—4Gs+ 19G4+Go+ Go—Gv —G,+2G» —2Gu)
—Monad n[Gv(Gv 2Gg 2Gs Gs Gs+Gv+Gg 2G»+2Gu)+4(Gg+G4)(Gs 2G4)]}/13 q

pg= (+7){1—Mosco Gv —n( —SGv+2Gg+4Gs+14G4+Gs+Gs Gv Gg —2G» —4Gu 2Gu) Mom n

X [G&(G,+2Gg 2G4—Gs Go+ Gv+ Gg+ 2Gvv+ 4Gvg+ 2Gu) 4(Go+ G4) (Go+ 2G4)jj/14 q

qg= (+182){3—3Moao Gv n'( 43G—v+2—0Gg+40Gs+70G4+3Gs+3Gs —3Gv —3Gg —20G» —26Ggg 6Gu)
—Mosov n[Gv(3Gv+20Gg —6G4—3Gs—3Gs+3Gv+3Gg+20Gvv+26Gu+6Gu) (Gg+G4)(40Gs+24G4))j/364'

rg K2{ 48M——ohio'G—4 91n(Gv —10G4 Gs—Gs+—Gv+—Gg+2Gvg+2G)s) Mayo' [—n(11 g G8+0G,)
X (—Gv+2G4+Gs+Gs —Gv —Gg—2Ggg —2Ggs)+408GgG4+320G4(G»+Gu)+88G4']}/364)

ts- (+13){n(SGg+2G3 G4 G—s Gs Gv Gg 2Gvo 2G—» 4G—u) —Monogn—

X[—Gg(Gz+ 2Gg+ 2Gs+ Go+Go+ Gv+ Gg+2Gu+ 2Gy v+ 4Gvg)+ (8G,+4Gs) (G,+G,)jj/13,
P,= (Q7) {n( SGv+ 14G—g 6Gs+4G4—Gs Gs —Gv —Gg —2Gu—+2G—») Mosoo n—

X[—Gv(Gg —2Gg+ 2Gs+ G;+Go+ Gv+Gg+ 2Gu —2G»)+4(2Gg —Gs) (Gg+ Gs)jj/14,
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qs= (+182){n(13G1+28G2 46G3—16G4 3G5—3G6—3G7 3Gg —6G10+20G11+14G17) Mpgofn

X[G1( 3G1+20G2 6G3 3G5—3Gg—3G7—3Gg—6Glp+20G11+14G12)+8(3G2—5G3)(G2+G4)]}/364~

rs=&2{91—3II0640 (59G1—48G2+80G3) —91n(—9G1+16G2—2Gs+SG4 —Gs—Gs—Gv —Gg —2G10 2G12)
—Moaosn[G1(11G1+ 320G2+ 102Gs+ 11G5+11Gs+11Gv+ 11G9+22Glo+ 320G11+342Gu)

—G2(408G2+ 640G3+88G4+ 320G11+320G12)+80Gs(2Gs —SG4+Gs+ Ge+Gv+ Gg+ 2Glo+ 2Gu) ]}/364,
t4= (+13){1—3II0607 Gl 2n( ——5G1+SG2—Gs+9G4 —Gv —Gg —Glg —2G12 Gls)

—2&0607'n[G1(G1+Gs —G4+Gv+ Go+ Glo+ 2G12+Gls) —4(G2+ G4) ']}/13,
p4= —(+91)ts/14,

q4 ———5(+14)t4/14,

and

r4 ——40&2{&0640 G4 Mpfpo n[Gl( Gl+G2+G4+Gs+Gs G7 Gg—2G12—2G13)

+ G2(6G4 Gs Gs+ G7+Gg+ 2G12+ 2G13)+G4( 2G3+ SG4 Gs Gs Gv Gg 2Glp 2G12)]}/9 1 j

Y,= [x,t,+x,p,+x,q,+xsr,)/D(1'„),
F2 [Xlt +Xspv+Xsqs+Xsrs)/D(r»)
Ys= [Xit +X ps+Xsqs+X4rs)/D(1'1 ),
Y4——[Xlt4+X2p4+X3q4+X r4]/D(1 15)

Ys= [X5pl+xsql+xvrl]/D(1'l5),

Ys [I/D(11)+2/D(1 )+3/D(1 ')+3/D(1 ))+[X (p +p )+Xs(q +q )+Xv(r +r ))ID%'»)
Y =n[—2/D(1', )+2/D(1' )+3/D(1'„)]/24+[x,p,+x,q,+X r )/D(1' ),
Y8 [X5P4+Xgq4+Xvr4)/D(I ») )

F =n[—2/D(I')+2/D(1' )+3/D(1' ))/24+[x P +x q+xvr )/D(1' ),
Ylo =—,', [—I/D(1'1) —2/D(1'12)+3/D(1'25'))+ [Xs(ps—ps)+Xs(q. —qs)+Xv(rs —rs))/D(1'»),
Y„=—,',n[1/D(1', )+2/D(1' )—3/D(1'25'))+ [Xs(ps—p,)+X,(qs qs)+Xv(rs rs)]/D(1'15),
Y„= [2/D(1', )—2D(1', )+3/D(1' )]/24+ f X,P,+x,q,+xvr )/D(r»),
Yls ——n[—2/D(1"1)+2/D(1'12) —3/D(1'25)]/24 —[Xsp3+ Xsqs+Xvr, )/D(I'15),

aIld

Y14———,'-, n[1/D(I'1)+2/D(1'12)+3/D(I'", ')—3/D(1 )]+[X,(P2+P2)+Xs(qs+qs)+Xv(rs+rs)]/D(115) i

and

Zl= F1G2+ Y2(G1+2G3+Gs+Gs+Gv+2Glp)+ Ys(G9+2Gu)+2Y4(G2+Gll),
Zs ——F1G4+ Fs(Go+ 2G1,)+Ys(G1—2G4—Gs —G,+Gv+ 2G1,)+2 Y4G12 I

Z3 YIG3+4Y2(G2+Gll)+4Y3G12+ Y4(G1+2G5+Gs) p

Z4 ——Ys(G2+G4)+ FgG1+2Y7G3+2Ys(G2+Gll+G12) 2FgG4+ Y10G5+ Y11G6

+2Y12(G10+G12) 2F13(G12+Gls)+ Y14(Gv+Gg) I

Zs= YsG2+ YsG3+ Yv(Gl G4+Gs —Gls)+2Y8(G2+Gll) —Y9Gu+ Ylo(Gs Gu)+FilG10
+Y12(G4+G6+G7+G13) Y13(G9+G12)+Y14(G10+G12) y

Zs= (Fs Ys+ Yll)G—4+ Yg(G1+Gs —Gs—Glo) —(Yv 2Ys—Yll—Yu —Y14)G12

+F12G9+ Y13(G3+Gs G7 Glp) (Ylo Y14)G13 y

Z7 Y5G3+ (Ys+ Yv+ Yll+ Y12)G2+ (Y7+Ylo+ F12+Y14)G11+Y8(G1+2G5+G8)+ (Y9 Fll Yls+ Y14)G12 I

Z8 = Y5(G2 G4)+ Y6G5+ 2 Yv(G3 G12)+2 Y8(G2+ Gll G12) 2 Y'gGls+ Ylo(G1—Gg)

+Y11G7+2F12G10 2Y13(G4+G12)+ Y14G6)

Zg = —Ys(G2—G4) —Y6G6—2 YvGlo —2Ys(G2+ Gu —G12)—2 Yg(G4+ G12)
—YloG7 —Fu(G1—Gg) —2Y12(G3—Gu) —2F13G13 Y14G5,

Zlp (Y5+ Ylo Y14)G4+ Y6(G12+Gls)+ (F7+2Y8+ Ylo Y12)G12+Y9( G3 G5+G7+Glp) Y11G13

F13(G1+G3 G6 Glo)
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Zll I 6G2+(I 6+ I 9 I xx+I xs)G12+(I 6+I xo)Gxo+I 7(G4+G6+G7+Gls)+2I 8(G2+Gll)+I 9G9

+(I xx+ I 14)G8+ I 12(Gx G4+Gs Gls) g

Z12 I 6G8 (I 6+ I 7+ I xx+I 12)Gxx (I 6+1 9 I xs)Gxs (I7+I 10+I 12+I 14)G2 I 8(Gx+2G8+G8) g

and

Zls= I'6(G2+G4)+ I 6(G7+Gg)+2I'7(Gxo+Gxs)+2I 8(G2+Gxx+Gxg)+2I 9(Gxg+Gxs)+ &xoG6

+ I'xxG6+2 I'xgG8+2I'xsG4+ I'14Gx.

The Green's functions are then given by

Ggg(1, 1;40) =Gl(1+Z4)+G2Z1+2G8Z6+G4(Z2 —2Z6)+G6Z8 —G6Zg

+ (G7+Go)Z18+2(Gxo+Gxg)Zxx+2(Gxg+Gxs)Zlo,
Ggg(1)1 j oo) Gx+4G2Z7+G8Z8 4(Gxx+Gxg)Z12g

and

G»(1, f
& &0) =GlZ4+G2Z2+2G8Z6+G4(Z1 —2Z6)+G6Zg —GsZs+(G7+Gg)Zls+2(Glo+Gxg)Zlo+2(G12+Gls)Zxx.
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Theoretical estimates are presented for the Landau Fermi-liquid parameters in Na and K, and a com-

parison is made with the experimental values. The calculations are presented in two parts. The effects of

the Coulomb interaction between the electrons are taken from previous calculations which use the random-

phase approximation and include exchange diagrams approximately. The electron-phonon-interaction effects

are calculated using the observed phonon spectra and a screened pseudopotential approximation for the
electron-ion coupling. The theoretical estimates for Na are found to be in surprisingly good agreement with

six independent experimentally determined parameters. In K, the experimental values are less accurate, but

a preliminary comparison is encouraging.

I. INTRODUCTION

'HE Landau theory of a Fermi liquid' as extended

by Silin' has been very successful in explaining
the qualitative nature of many-body effects in metals.
In this theory the effects of the interactions are char-
acterized by an effective mass m* and an interaction
function f(itxrit 47 ), w'h'ich are to be determined from

experiment. Until recently, however, the experimental
information on the size of f was very limited. The
observation of spin waves" and high-frequency

plasmalike waves' 7 in Na and K has led to the deter-
mination of several of the Legendre coefFicients of the

~L. D. Landau, Zh. Eksperim. i Teor. Fiz. 30, 1058 (1956}
/English transl. : Soviet Phys. —JETP 3, 920 (1956}].

V. P. Silin, Zh. Eksperim. i Teor. Fiz. 33, 495 (1957) t English
transl. : Soviet Phys. —JETP 6, 945 (1958)g.

3 P. M. Platzman and P. A. Wolff', Phys. Rev. Letters 18, 280
(1967).

4 S. Schultz and G. Dunifer, Phys. Rev. Letters 18, 283 (1967).
5 W. M. Walsh, Jr. and P. M. Platzman, Phys. Rev. Letters 15,

784 (1965).
6 P. M. Platzman and W. M. Walsh, Jr., Phys. Rev. Letters 19,

514 (1967);20, 89(E) (1968).
7 P. M. Platzman, W. M. Walsh, Jr., and E-Ni Foo, Phys. Rev.

172, 689 (1968).

function f In this pap. er we will be concerned with a
comparison of the experimental values of these coefFi-

cients, the Landau parameters, with theoretical
estimates based on microscopic theory.

In metals there are two sources of interactions
between electrons, (a) the Coulomb repulsion between
two electrons and (b) the attraction caused by the
virtual exchange of phonons, There are, in addition,
effects due to the periodic potential of the ions. Na and
K have Fermi surfaces which deviate from the free-
electron sphere by less than 0.2%,' so that we will, for
the most part, ignore band-structure effects. The
contribution to interaction effects from the Coulomb

repulsion, which we will refer to as the electron-electron
contribution, may then be obtained from calculations
for a uniform electron gas. 9 The derivation of the

8 For Na, M. J. G. Lee, Proc. Roy. Soc. (London) A295, 440
(1966); for K, M. J. G. Lee and L. M. Falicov, ibid. A314, 319
(1968}.

'A. W. Overhauser /Phys. Rev. 128, 1437 (1962); 167, 691
(1968)g has suggested that at lovr temperatures K may not be a
normal metal. Our calculations and the interpretation of the ex-
perimental data, which we shall cite, are based on the assumption
that Na and K are normal metals.


