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This is a study of the vibrational properties of random substitutional impurities and their nearest neighbors
in cubic monatomic harmonic crystals in the low-impurity-concentration limit. Mass changes, as well as force-
constant changes between the impurity and its nearest and, in some cases, next-nearest neighbors, are taken
into account. The problem is formulated in terms of an incoherent-neutron-scattering experiment, although
the results are useful for other experiments as well. Analytic expressions are given for the resonance frequen-
cies for all the normal modes of the defect cage in fcc and bec lattices. Expressions for the mean-square dis-
placement of the impurity and its nearest neighbors at all frequencies are given for the fcc case. Results are
expressed in terms of perfect-lattice Green’s functions. Numerical computations are performed on Al contain-
ing heavy impurities. The Al-impurity force constants are treated as parameters which are varied over a

wide range.

I. INTRODUCTION

N recent years, much theoretical and experimental
work has been done on the effects of impurities on
lattice vibrations.!~!* The theoretical work usually
involves the evaluation of various lattice Green’s
functions or correlation functions that can be directly
related to measurable quantities.

Most of the theory has been restricted to models in
which only the mass of the impurities is assumed to be
different from the host atoms.!:? Recently, some results
have been obtained on the effects of force-constant
changes between the impurities and their nearest
neighbors with low impurity concentration.®~1° Most
of the work is restricted to special situations (e.g.,
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equal central- and noncentral-force-constant changes,
or only central-force-constant changes!) or to only one
aspect of the problem (e.g., motion of the impurity only,
not of other atoms in the lattice). Some of the work is
restricted to finding the resonance or local-mode fre-
quencies to determine such properties as the strength
and width of the resonances.?

Many experimental techniques probe either the be-
havior of the impurities (e.g., optical absorption) or
only the average behavior of the lattice (optical-absorp-
tion sidebands, thermal conductivity, heat capacity).
By means of neutron-scattering experiments, however,
it is possible to probe the various effects of impurities
on lattice vibrations in a more detailed manner. With
incoherent neutron scattering, one can directly measure
the motion of the impurities and their neighbors, while
coherent neutron scattering allows the study of the
effect of impurities on individual phonons. Some
coherent-neutron-scattering experiments have been
performed.1%.13

The object of this paper is to study the motion of
impurities and their neighbors as a function of frequency
at low concentrations in various cubic harmonic mon-
atomic lattices. Force-constant changes between the
impurities and their neighbors are taken into account,
in addition to mass change. Resonance and local-mode
conditions for the impurity and its neighbors are given
for all the modes of the defect subsystem with arbi-
trary central- and noncentral-force-constant changes in
fce and bec lattices. Expressions for the average-square
displacement of the impurity and its neighbors as a
function of frequency are given for the fcc case. The
corresponding general results with central and non-
central force changes have also been found, but are too
lengthy to be given explicitly here. Numerical results
are given for Al containing heavy impurities. They show
significant differences from the simple mass-defect case.

The problem is formulated in terms of an incoherent-
neutron-scattering experiment, although the correlation
functions found here are useful for other experiments as
well. The effects of the impurities on the lattice phonons
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(e.g., shift, broadening, and branch mixing), measurable
by coherent neutron scattering, have also been studied
and will be presented in a subsequent paper.

II. THEORY

We treat the scattering of neutrons from the lattice
in the usual Fermi pseudopotential or scattering-length
approximation.”#~16 The single-phonon contribution to
the scattering cross section from an harmonic lattice
per unit solid angle per unit of outgoing energy per
atom in the Born approximation is then given by (the
#=1 convention will be followed throughout)

de 1
=——5(Kw), 1
dQdw 27 |kl

where ky is the incoming neutron momentum, k;, is the
outgoing neutron momentum, w= (ks?—k:?)/2m, m is
the neutron mass, K=k,—k;,; and

1
S(K)w)=_ Z A1 4*p X Ri—Ri)
N v

X/w dt et K-u(,)K-u(,0)). (2)

Here, R, is the equilibrium position of atom /, u(l,f) is
the instantaneous displacement of atom I from equi-
librium, 4,=a; exp{—3{(K-u(?)]*)} is the thermalized
scattering length, exp{—3%((K-u())]*)} is the Debye-
Waller factor, a; is the complex scattering length of
atom [, ()= (Tre-#E-+Ng) /(Tre~FH-#N)) and H is the
full Hamiltonian of the system.
Let
Alzal effe_A (3)

define the temperature-dependent quantity a; ess,?'®
where ¢~ is the Debye-Waller factor for the perfect
lattice. ,

We shall now make a major assumption, namely,
that the solute atoms are distributed completely at
random, with no chemical or other tendency to be
correlated in position. Random variations in @; ¢t as a
function of lattice site I give rise to incoherent scatter-
ing. In the system under consideration here, there are
two sources of incoherent scattering in addition to
those already present in the perfect lattice: (a) The
impurities usually have a different scattering length
than the host atoms, and (b) the Debye-Waller factors
of the impurities and those neighbors appreciably

4L, S, Kothari and K. S. Singwi, in Solid State Physics, edited
by F. Seitz and D. Turnbull (Academic Press Inc., New York,
1959), Vol."8. ‘

15 A, Sjolander, in Phonons and Phonon Interactions, edited by
T. A. Bak (W. A. Benjamin, Inc., New York, 1964).

18R, J. Ellictt and A. A. Maradudin, in Proceedings of the
Chalk River Symposium on Inelastic Scattering of Neutrons Solids
and Liquids (International Atomic Energy Agency, Vienna,
1963), Vol. I, p. 231.

K. LAKATOS AND ]J.

A. KRUMHANSL 175
affected by them differ from that of a perfect-lattice
atom.

Denoting the effective scattering length of impurity
s by bs es1, of a nearest neighbor of an impurity by fa e,
and of host atem I by a; e, we can write

) off= acoh+ ainceidzz’ (4)

where ¢t and a'™ are the true physical scattering
lengths, and similarly for b and f; ¢, ¢a, and ¢, are
statistically independent random phases.

For use in the following equations we define

1
( hs————
N—N,—Np tsims’

1
< >'ERZ‘: (5)

and
(= - 2z
n'—Nn ”.

To zeroth order in impurity concentration, the average
scattering length of the lattice is then

(ahi=ak. (©)

The sources of incoherent scattering are the deviations
of the scattering lengths of the atoms from the average
value. A proper calculation of the incoherent-scattering
contribution has been done by Taylor? for the mass-
defect case. However, it is difficult to generalize his
method to the defect considered here. We define the
incoherent contribution as that part of the scattering
that is independent of scattering angle. Then to linear
order in impurity concentration we obtain

@1 s n2(T) = (] @] 21— (a)s2= (a™)?,
dX(T)=(| 5] B)s— (B)s>+(b—a)s?
= (bine)2+ (b""h-— a°°h)2 ,
0(T) = (o) (for— a2,

(72)

where

(N—=Ny—Nu)diaan?+ N o+ Nudu?= N4}~ {4 ),
[4?}=[(N—N.—=N.)/NK|al|*)t-(No/ V)| 5],
+Wa/NX[f1%)n, (TH)

[A}=[(N—N,—Nu)/NXa)i+(Ns/N)(b)s
+Wa/N){f)n,

and only terms of order 1, N,/N, and N,/N are re-
tained. The fact that the average scattering length of
the impurities is (b), and that of their nearest neighbors
is (f)» rather than (e); has been accounted for. The
source of the terms ai™, b7, and fin¢ is dynamical,while
that of beh—geoh and jfeob—geoh jg gpatial, i.e., the po-
sitions of the impurities are random. , '

Equation (2) can now be separated into coherent
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and incoherent contributions?15;
S(K,0) = Soon(K,w)+ Sine(K,) , (8)

Seon(Kw)=eAN-Ya)? 3 ¢'% (R-R1)
1,

X / " e R u()K-u0), ()

—00

and

Sine(K,w)=€e"2AN"13_ d*(T)
1
X / dt e{K-u(l,)K-u(,0)). (10)
The problem is reduced, as usual, to the evaluation of

/‘” dt e« K-u(l,H)K-u(?,0)), (11)

which can be done by the method of Green’s functions.
To detect the behavior of the impurities in Sine
above the host-lattice background experimentally, the

condition
Cdimp2>>dhost2 (12)

should be satisfied, where ¢ is the impurity concen-
tration. Some lower-bound estimates for ¢ are given in
Table I. We wish to call particular attention to the low
concentrations of some impurities that may be studied.
A general impression seems to have been created that
incoherent scattering is not easily usable for the study
of resonant modes. This is perhaps based on the er-
roneous assumption that an impurity with an incoherent
cross section much larger than the host cross section is
needed; Eq. (6) shows why this is not the case. The
situation has been demonstrated experimentally by
Chernoplekov!” for Pb in Mg, in good agreement with
estimates similar to those in Table I for Al alloys. We
hope that the incoherent-scattering method may find
more general use than it has so far.

For incoherent-neutron-scattering results presented
in this paper, we only need Eq. (11) with /=/". However,
the general formulation is not more difficult and will
provide a basis for the calculation of Sen in a subse-
quent paper.

We assume low impurity concentration in the present
discussions. The probability that two impurities are
nearest or next-nearest neighbors, as well as the possi-
bility of resonant scattering of excitations between
defects, is assumed to be negligible. This treatment,
therefore, does not consider the case of impurity cluster-
ing. Then only the single-impurity problem need be
treated; at the end of the calculation, corrections are
made that express results to linear order in impurity

17 N. A. Chernoplekov and M. G. Zemlyanov, Zh. Eksperim. i

Teor. Fiz. 49, 449 (1965)[ English transl.: Soviet Phys.—JETP 22,
315 (1966)].
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TasLE I. Lower bound on impurity concentration for resonance-
mode detection from incoherent neutron scattering.® Scattering
lengthsb in units of 10712 cm.

LB = Ghost?/Bimp?

AllOy ach | ainol peoh l pine l (%)
Al(Au) 035 ~3X1072 0.76  0.37 ~A0.3
Al(Ag) 035 ~3X1072 0.61 - 0.39 ~A0.4
Al(Zn) 035 ~3X1072 0.59 0.09 ~1.4
Al(Mn) 035 ~3X10?2 —-036 0.18 ~A0.2
Mg(®Pb) 0.54 0.09 096 0.09 4.4
Be(Cu) 0.77 3X1072 0.79 0.23 14
Cu(W) 0.79 0.23 047 048 17
Ag(Hg) 0.61 0.39 1.3 0.60 18

# Solubility values are given in M. Hansen, Constitution of Binary Alloys
(McGraw-Hill Book Co., New York, 1958), 2nd ed.; W. B. Pearson,
A Handbook _of Lattice Spacings and Structures of Metals and Alloys (The
Macmillan Co., New York, 1958). Little information is available on solu-
bility upon quenching.

b D, J. Hughes and J. A. Harvey, Neutron Cross Sections (McGraw-Hill
Book Co., New York, 1955).

concentration. For the incoherent-scattering cross
section this simply involves multiplying single-impurity
effects by the number of impurities present.

III. GREEN’S-FUNCTION FORMULATION

Equation (11) can be related to the retarded and
advanced Green’s functions defined by Zubarev!® and
used by Elliott and Taylor!® for the mass-defect
problem:

Gret(t,)=<KA@); B>,

=—i[A0); BE)o(—1),  (13a)
Gadv(t)t’) = <<A (t) 7B(t,)>>¢
=iL4(),BE) o —1). (13b)

Here, A and B are operators and
A (t) = ei(H—pN)tAe—i(H—nN)t R
[4,B]=AB—nBA4, n==1
0)=1, >0
=0, <0.
nis +1if A and B are Bose operators and —1 if they
are Fermi operators. If they are neither or are mixed,

either sign for » may be chosen. In our case, 7= 1. Both
Green’s functions satisfy the equation of motion

(1/2m)dG(t,t')/di=6(t—t'){[A,B])+<[4,H]; B>. (14)

This equation is a direct consequence of the definition
(13). The Green’s functions are related to Eq. (11) by

[ dt=0) ceoimoraw)
T = m e Gt ~Ge—in)], (15)

18 D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [ English transl.:
Soviet Phys.—Usp. 3, 320 (1960)].

1 R. J. Elliott and D. W. Taylor, Proc. Phys. Soc. (London)
83, 189 (1964).
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where

Glw=18)=(2n)! / G(—1t)erwxi® =g (t—¢),  (16)

Here G(t—#)=G, with 46 and G, with —45. Equation
(15) incorporates the boundary condition necessary for
the solution of Eq. (14).

The Green’s functions needed here are

Gim(l, Vs 1= 1) =20 <ui(L1); um(V' ), (17)

where ¢ and m denote Cartesian components. The
Hamiltonian for the harmonic lattice containing im-
purities is

H=H+H, (18)
where
P’
Hoy=3% —+3 2 Am,Dui(Dua(t)  (19)
! ) i.m,;
and
H=3 32 1 1 )
R VYT
+3 2 [ G = A1) Js(Dun(l') . (20)

im;
124

H, is the perfect-lattice Hamiltonian with atomic mass
M and force constants 4 ;,(},/'). The only contributions
to H’ come from impurity sites and other atoms di-
rectly affected by force-constant changes. There is no
restriction on the magnitude of the mass and force-
constant changes.

In general, the equation of motion (14) for G intro-
duces a new unknown Green’s function that, in turn, has
its own equation of motion. It is peculiar to a harmonic
system that the original Green’s function is recovered
by taking two time derivatives. Fourier-transforming
the resulting equation according to Eq. (16) gives

— M’ Gin(ll 5 @)+ 2 AV )Gan(V,; w)
ll/’n
= ’"Bima(l;l/)-*. Z Qiﬂ (l,l”; w)Gnm(l,/yl,; w) ) (21)
Un

where
Qin(Ll'; w)=—[Mo—M (1) Jw*6:md(L,}')
HAm@)—Am'G)] (22)

contains all the information concerning the impurities.
In Egs. (21) and (22) and below, « is complex unless
otherwise indicated, or unless the imaginary part 46 is
explicitly indicated.

The perfect-lattice solution of Eq. (22) (Q=0),
denoted by G° and assumed to be known, is

Gimo(l,l’; w—f—1,6) = (ATMO)—1
e'i(k;)‘)em*(k,)\)eik' (Ri—Ry?)
ex o=\ +id

, (23)
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where e;(k,\) is the eigenvector component of the
perfect lattice, w(k,\) are the eigenfrequencies, and A
is the branch index. Equation (21) can be reexpressed
in terms of G°. In matrix notation,

[— M T+ A4]G=—I+QG (24)
and
[—M w4+ A476G=—1. (25)
Therefore
G'=—(—M I+ A4)1 (26)
and
G=G"4-GG, (27)
or
Cim(Ll'; 0)=Gum (11 ; w)
+Moews? 3 Gin®(lys5 0)Grum(s,l'; )
- Z Ginlo(l)sd; w)AA nlnz(sd)sd’)anm(Sd',l/; w) . (28)

$d,Sd’
n,n2

Here e=(Mo—M')/Mo, M’ is the impurity mass, s
indicates impurity sites, s; are the sites of atoms
directly affected by force-constant changes, including
the impurities, and

A in(bV)= A i) — Ain G1) . (29)

Equation (29) can be rewritten in matrix notation in
somewhat more detail than Eq. (28):

G=G"+¢'Qs, (30)

where G and G° have dimension 3VX 3N, g and g° have
dimension 3N X 3N or 3N4X 3N, and Q has dimension
3NaX3Ng4. N is the total number of atoms in the lattice
and Ng is the number of atoms directly affected by
force-constant changes. Letting / range over all the s, in
Eq. (28) gives

£=g"+4.0g, (31)
where g,° has dimension 3N¢X 3N, or
g=(1-glQ)7'g". (32)
The formal solution of Eq. (31) is then
G=G"+g'0(1—g0)g" (33)
or
Gin(ll; 0)=Gi®(l; w)
+ Z [Goiﬂl(l:sd; w)QmM(sdxsd’; w)
Sd,Sdr,Sdrt s
n1,n2,13
X(1—ga" Q) nans(sarysarr; @)Gram®(sarl s )], (34)

and the problem has been reduced to the evaluation of
the inverse of the 3VyX 3V, matrix 1— g,°Q.

IV. SOLUTION TO LINEAR ORDER IN
IMPURITY CONCENTRATION

Consider a lattice with a single impurity. For an
fec lattice in which force-constant changes to nearest
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neighbors are included, N4=13. In a bec lattice, next-
nearest-neighbor force changes must also be considered,
because their distance from the impurity is not much
greater than that of the nearest neighbors: Ng3=15.

To invert 1—g,°Q analytically, it is first necessary
to block-diagonalize it using the symmetry properties
of the lattice. Thus

(1=gLQ) 1=V [V(1—-gQVIV,  (35)

where V(1—g,°Q)V—! is block-diagonal and V' is de-
termined from the symmetry of the lattice. Each block
in [V(1—g,°Q) V-] corresponds to a normal mode of
the defect cage, and is of the form 1/DpX (a submatrix),
where the Dr are functions of frequency and the various
parameter changes. They are the determinants that
occur in the inversion. As will be seen below, resonances
occur at frequencies satisfying ReDr(w)=0. Explicit
expressions for the Dr are given in Appendices A and B
for the fcc and bec cases, respectively. Results for general
central- and noncentral-force-constant changes are
given. We have complete analytic expressions for
matrix Q(1— g,°Q)~! for fcc and 1—g,°Q for bec lattices
with central-force-constant changes, but the results
are too lengthy to be included here.

A. Incoherent Scattering from Impurities

The incoherent-scattering contribution from the
impurities themselves is related to

S'ine(w,imp) = [¢~2Acdimp22(w) ]

X[ lim —ImG(0,0; w+iw)],
30+

(36)

obtained from Eq. (34) by letting /=2=0 be the im-
purity site [see Egs. (11), (15), and (17)7]. Here n(w)
= coshw/2kpT, and emission and absorption processes of
frequency w have been combined. G;,(0,0)=0 by the
symmetry of the system. Only the I';s mode is con-
sidered, because it is the only mode in which the im-
purity moves. For subsequent comparison with the
force-constant-change results, we first consider results
for a perfect-lattice atom and for an impurity in the
mass-defect approximation.?16:1? From Eq. (23) with
I=1 the former gives

—ImGﬁ"(O, 0, w—!—z&)

1 1
=—Im >
3N Mo w?— w2 (k,\) 5

. /w D(w')de’

w?—w'2+}18

1 00
=—— Im(P/
M, 0

= (r/2M o)D(w)/w.

dw’' —— —D(w
w?—w'? 2w 2

D(w')do’ , 1imr )

(37)
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Here, P denotes the principal-value integral and D(w)
is the normalized density of states of the perfect lattice:

/ . D(w)dw=1. (38)

Thus, the square displacement or incoherent-scattering
contribution from a perfect-lattice atom at a given
frequency is proportional to the density of states at that
frequency. In a defect lattice, the scattering from atoms
that are not too close to the defects is also given ap-
proximately by Eq. (37).

In the mass-defect approximation, the impurity
Green’s function is given by

——ImG;,(O, 0; w+i8)
G20, 0; w+15)
1~ M0G0, 0; w-+id)
7 D(w) D(o’
=— ”:1——&021’/ ¢ )dw:l
2My w 0

w?—w'?

+%7r2w262D2(°’)} - (39)

The impurity motion is thus that of a perfect-lattice
atom modified by a ‘“resonance denominator.” The
impurity amplitude or scattering is greatest at frequen-
cles wo that satisfy the conditions

(d/dw?)[—ImG::(0, 0; wy+i8)]=0
(40)

and
[d%/(de?)¥][—ImG:i(0, 0; we+18)]<0,

or approximately when the “resonance condition”
® D)
ewo’P /
]

wo2~w12

is satisfied. Note that although Eq. (41) is generally
used as the resonance condition, the frequencies ob-
tained from it can differ from those found through Eq.
(40) by as much as ~15% in typical solids when the
den31ty of states D(wo) varies rapidly.

If € is close to 1 (very light impurity), Eq. (41) may
be satisfied for a frequency wy, above the lattice band
[D(wz)=0], giving rise to a localized mode

—ImG;i(O, 0; wL+ 1,5)

1 o0
3(1— 60)],2 /
Mywre 0

If e is large and negative (heavy impurity), Eq. (41)
may be satisfied at a frequency wy within the lattice
band, giving rise to a resonance mode. Equation (39) is
then similar to a Lorentzian, and the quantity ZrwoeD(w,)

do'~1

(41)

D(w’)dw') @)

wL2.__w’2
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is roughly the width of the resonance or inverse life-
time for an excitation of frequency wo to remain local-
ized at the impurity.

In the presence of force-constant changes the reso-
nance characteristics of the impurity involve perfect-
lattice Green’s functions other than G;%(0,0). This is a
consequence of the fact that the defect is no longer a
point imperfection. Let Gi;°(, V; w+18)=G:;*(n1,n2,m3),
where (#1,12,13)a= R;— Ry, and 2a is the unit-cube edge.
For the fcc lattice, there is a total of 702 possible per-
fect-lattice Green’s functions among the impurity and
its 12 nearest neighbors. By symmetry considerations,
only 13 of these are independent. For the bcc lattice,
including nearest and next-nearest neighbors of the
impurity, of the 1980 Green’s functions 15 are indepen-
dent. The fcc and bee Green’s functions are given in
Table II.

When only central-force-constant changes are con-
sidered, the impurity Green’s function in the fcc lattice,
using the symbols of Table II and the definition of «
of Appendix 4, is

G,~,~(0, 0; w+i6)
= Gott/[1— M o6w’Gott+20(G1— 8G>—8Gs+ X) ],
Goit=G1+20[G12—4(G2+G1)*+G1 X ],
X =G5—Gs+GrtGot+Grot+2G12+Gis.

We have also evaluated the impurity Green’s function
for general central- and noncentral-force-constant
changes, but the result is too lengthy and unrevealing
to be reproduced here. As in the mass-change case,
resonance or localized modes occur when Egs. (40) are
satisfied, or approximately when the real part of the
denominator of Eq. (43) is zero for some frequency. The
resonance condition is thus bilinear in mass and force-
constant change. It cannot be factored into a mass- and
force-constant-dependent terms: Every resonance is
determined by both, although one or the other might

(43)

TapiE II. Perfect-lattice Green’s functions for fcc and bee cases.

Symbol fce bee
G Gi:°(0,0,0) Gi:°(0,0,0)
G, G22°(1,1,0) Gz*(1,1,1)
Ga Gzzo(l,lyo) 6200(1:171)
Ga Gzyo(lyl,o) Gﬂ?o(z) '—Z, 0)
Gs Gzzo(0,0,2> Gzzo(zy ‘_2; 0)
Gs G.:2(0,0,2) Gar(2, —2,0)
Gy G2°(2,2,0) G2:°(2,2,2)
Gs G2:°(2,2,0) G°(2,2,2)
Go Gz,°(2,2,0) G22"(2,0,0)
Guo G=2"(2,1,1) G4,°(2,0,0)
Gll G””O(z’l,l) GZﬂo (41010)
G G»"(2,1,1) Gy,"(4,0,0)
G G,*(2,1,1) G2"(3,1,1)
Gus G*(3,1,1)
Glﬁ Gzﬂo(silyl)
Gls Gyzo(3,1,1)
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o
(=]
T

n
o
T

0.424

[
[=]
T

o
T

ImG°(0,0) 10728 (sec/rad)?

o
T

825

1 1 L '

o7 08

0 . s '
0.0 0.l 0.2 0.9 10

F1c. 1. ImG°(0,0,0) for Al perfect lattice from experimental data
of Oak Ridge National Laboratories (Ref. 23).

dominate the properties of a particular resonance. If
noncentral-force-constant changes are included, the
resonance condition is a quadrilinear function in the
defect parameters.

We have evaluated ImG;(0, 0; w+48) for heavy im-
purities with several mass and force-constant changes
in Al. Pure Al is a very weak incoherent scatterer, so
that defect characteristics should be easily observable.
Accurate Al data were supplied to us by Raubenheimer
and Gilat® of Oak Ridge National Laboratories. They
also made available to us a very accurate method to
calculate frequency spectra from experimentally de-
termined perfect-lattice force constants.?! We have
used a slightly modified version of their method to
evaluate the various perfect-lattice Green’s functions.

Figure 1 shows ImG°(0,0,0) for Al, given by Eq. (37).
Figure 2 shows ImG(0,0,0) for Au (e=—6.3017), Ag
(e=—2.9983), Zn (e=—1.4233), and Mn (e=—1.0363)
in Al in the mass-defect approximation, Eq. (39). The
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Fic. 2. Impurity Green’s function for Au, Ag, Zn, and
Mn in Al in the mass-defect approximation.

2 L. J. Raubenheimer and G. Gilat (private communication).
21L. J. Raubenheimer and G. Gilat, Oak Ridge National
Laboratory Report No. ORNL-TM-1425, 1966 (unpublished).
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F1c. 3. Impurity Green’s function with mass and central-force-
constant changes: (a) Ag in Al, with central-force constants 70
(high peak) and 309, weaker than in the host lattice; (b) similarly
for Mn in Al

low-frequency resonance becomes stronger and narrower
as the mass of the impurity increases and the resonance
frequency decreases.

As the impurity mass decreases in Fig. 2, a small
peaked structure begins to appear in the high-frequency
region where the perfect-Al-lattice density of states has
a minimum. Equation (40) can be satisfied, or almost
satisfied, for high w, even for negative e, if the principal-
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F16. 4. Height of the impurity-resonance peak in ImG(0,0,0)
as a function of (a) mass change for several central-force-constant
changes; (b) central-force-constant changes for several mass
changes.
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Fic. 5. Impurity resonance frequency as a function of (a) mass
change for several central-force-constant changes; (b) central-
force-constant change for several mass changes.

value integral, whose largest contributions come from
the region D (w’~wy), is sufficiently small and negative.
The host lattice is unable to propagate excitations of
this frequency effectively and they tend to remain
spatially and energetically localized at the impurity.

Figure 3 shows the effect of 70 and 309, weaker
central force constants for impurities with the masses
of Ag and Mn in Al, Eq. (43) (note scale changes). The
weakening of force constants for fixed e drastically
sharpens and strengthens the resonance peak and lowers
the resonance frequency. The effects of weakening
force constants are much stronger than those of a mass
increase, as shown in Figs. 4 and 5. Lower resonance
frequencies can be reached with weakly bound impuri-
ties even if the latter are light than by just increasing
the impurity mass. )

Note that in the heavy-mass-weak-force cases there
is still only one low-frequency resonance, even though
more parameters have now been varied. We shall deal
briefly with the case of central and noncentral force-
constant changes later.

In general, the situation in which mass and forces
change in opposite directions is more interesting than
when they change in the same direction. We have
studied the case of heavy impurities with strong forces.
Figures 6-8 show ImG:i(0,0,w) for impurities with the
masses of Ag, Mn, and Al in Al for central-force con-
stants 50, 100, and 2009, stronger than in the host
lattice. In the e<O0 cases there is still a low-frequency
resonance mode that moves up in frequency and loses
strength and sharpness with increasing force constant.
This behavior continues until the absolute fractional
change in force constant |A4/4 |~ |e|, when the mass
and force effects in the low portion of the band tend to
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F1c. 6. Impurity Green’s function for Ag in Al with mass and
central force-constant changes. Curves A, B, and C correspond to
forces that are 50, 100, and 2009, sironger than in the host lattice,
respectively. A high-frequency local mode appears in case C.

cancel and the perfect-lattice characteristics begin to
reappear. The low-resonance peak then coincides with
the first maximum in the host-lattice density of states,
and a rather drastic mass or force change is needed to
move it. This reflects the fact that the eigenstates of the
system depend on the sum of potential and kinetic
energies. In any lattice that itself scatterers incoherently,
the effect of adding impurities with such a combination
of mass and force changes would hardly be discernible
in the low portion of the frequency spectrum.

The increase in force constants has a strong effect
in the high-frequency portion of the spectrum. As the
forces become stronger, the peakedstructure that began
to appear in Fig. 2 becomes enhanced and pushed to
higherfrequencies until it becomesa localized mode. As
the resonance frequency increases within the band, the
peak is broadened, because it approaches the maximum
in the perfect-lattice density of states: The host lattice
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F1c. 7. Impurity Green’s function for Mn in Al with mass and
central force-constant changes. Curves A, B, and C correspond to
forces that are 50, 100, and 200% stronger than in the host lattices,
respectively. A high-frequency local mode appears in case C.
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can easily propagate excitations at these frequencies and
they have a short lifetime at the impurity. Beyond the
maximum the resonance peak again becomes sharper
until it becomes a very sharp localized mode. The upper
end of the curve in Fig. 7, which has a resonance peak
almost at the band edge, has been indicated by a dotted
line because in this region our calculations are very
sensitive to small errors, and the amplitude indicated
may be quite inaccurate.

As the impurity mass increases, the force-constant
change needed for a localized mode to appear also
increases, but it is difficult to give an exact criterion
other than Eq. (43) for the ratio AM/AA needed. The
fractional mass and force changes must be roughly equal
and opposite.

Table III is a summary of the central-force-constant-
change results for various mass changes. As resonance
peaks approach peaks in the perfect-lattice spectrum,
the width at half-height does not have much meaning
because of the asymmetry of the curves, so that they
are not indicated. The height of the very narrowest
resonances is inaccurate because computations were
made at discrete intervals of Ar=0.002X10" cps.
Localized modes are followed by a letter L.

Table IV shows the impurity Einstein-oscillator fre-
quencies for the various mass and central force-constant
changes considered.?? The agreement between this
value and that of the actual low-frequency resonance,
indicated in parentheses, is remarkably good when force
constants are weaker than those of the perfect lattice.
The impurity acts like an independent oscillator when
it is weakly coupled to the lattice. As might be expected,
the agreement is poor when force constants are stronger,
and a simple Einstein-oscillator model cannot, of course,
produce two resonance frequencies. A goodestimate of
the resonance and local-mode frequencies}in this case
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F16. 8. Impurity Green’s function for a defect with no mass
change but with central force-constant changes in Al. Curves A
and B correspond to forces which are 50 and 200% sironger than
in the host lattice, respectively. High-frequency local modes
appear in both cases.

2 J, A. Krumhansl, in Localized Excitations in Solids, edited by
R. F. Wallis (Plenum Press, Inc., New York, 1968).
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TasrE III. Motion of impurities—central force-constant changes.

Low- High-frequency
frequency Width of Height of resonance or
resonance resonance resonance local mode

€ AAJA (1013 cps) (1013 cps) [10728 (sec/rad)*] (1012 cps)
—6.3017 (Auw) -2 0.241 0.141 10.95 0.979
—6.3017 -1 0.225 0.102 16.21 ~A0.887
—6.3017 —-0.5 0.211 0.077 23.14 ~0.840
—6.3017 0 0.185 0.045 4348
—6.3017 0.3 0.161 0.026 85.93
—6.3017 0.7 0.095 <0.010 >850
—2.9983 (Ag) -2 0.331 0.218 8.855 1.022 (L)
—2.9983 —1 0.311 0.166 13.09 ~0.9
—2.9983 —0.5 0.289 0.126 18.78 ~0.857
—2.9983 0 0.255 0.080 35.6 ~0.825
—2.9983 0.3 0.219 0.044 70.59
—2.9983 0.7 0.131 <0.010 >1107
—1.4233 (Zn) -2 0.423 10.57 1.089 (L)
—1.4233 -1 0.417 0.152 13.40 0.983
—1.4233 —-0.5 0.383 0.135 17.49 0.887
—1.4233 0 0.333 0.102 32.00 ~A0.829
—1.4233 0.3 0.285 0.061 62.78
—1.4233 0.7 0.167 <0.015 > 586
—1.0363 (Mn) -2 0.423 11.21 1.125 (L)
—1.0363 —1 0.421 15.06 0.975
—1.0363 —0.5 0.417 0.118 19.10 0.889
—1.0363 0 0.367 0.104 31.85 0.833
—1.0363 0.3 0.313 0.067 61.41
—1.0363 0.7 0.181 <0.015 >581
0 -2 1.373 (L)
0 —1 1.142 (L)
0 —-0.5 1.018 (L)

could probably be obtained by considering the impurity
and its neighbors as a molecule embedded in a static
lattice. Even the simplest version of the force-constant-
change problem when forces are strong is far more
complicated than the mass-defect case.

In the cases considered here, the results with both
central and noncentral force changes are similar in
character to those with only central force changes.
The number of resonance and localized modes in the
various cases does not change. This may, in part, be
due to the fact that we have kept the relative magni-
tudes | 4 noncentral/ A central| €qual to their relative magni-
tude in pure Al, where the ratio is ~0.12.% Some
results for the resonance in the low-frequency portion
of the spectrum are given in Table V as a function of
mass and central force-constant changes. Case 1 corre-
sponds to either strengthening or weakening both
central and weakening the noncentral force-constant
changes, or vice versa. Case 3 corresponds to central
force-constant changes only. Greater differences and
perhaps more resonances would occur if the central and
noncentral force-constant changes were more nearly
equal in magnitude.

B. Incoherent Scattering from Nearest
Neighbors of Impurity

A typical nearest-neighbor contribution to the scat-
tering cross section is

Sino(w, neighbor) = e=2A¢d b1 (w)

Xlim Y. KiKn ImGin(l, 1; 0+148).

60 7,m

(44)

Here, I=0'=1 represents the nearest neighbor (1,1,0)
and

Gin(1,1; ©)=G:2(0,0; ©)dim
+ 2 {Gin*(1,54; @)[Q(1—£2°Q)  nsno(5a,50; @)

§d,Sd’;
ny,n2

XGrgm¥(sar,1; )} (45)

TasiE 1IV. Einstein-oscillator frequencies versus computed reso-
nances (in parentheses) in units of 103 cps. vp= (danew/4w2M)1/2,

\RAA/A -2 -1

—0.5 0 0.3 0.7
—6.3017 0317 0259 0.225 0.183 0.153 0.100
(Au) (0.241) (0.225) (0.211) (0.185) (0.161) (0.095)
—2.9983 0427 0350 0.303 0248 0.207 0.136
(Ag) (0.331) (0.311) (0.289) (0.255) (0.219) (0.131)
—14233 0548 0448 0.388 0.317 0265 0.173
(Zn) (0.423) (0.417) (0.383) (0.333) (0.285) (0.167)
—1.0363 0.597 0489 0424 0.345 0.288 0.190
(Mn) (0.423) (0.421) (0.417) (0.367) (0.313) (0.181)
0
(Nomass 0.855 0.697 0.606 0.494 0413 0.270
change)
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TasrLE V. Motion of impurity—central and noncentral force-constant changes.

Case 1 Case 2 Case 3
Low- Low- Low-
frequency Height frequency Height  frequency Height
AA/A resonance Width 10-28 resonance Width [10-28 resonance Width [10728

€ central (10 cps) (103 cps) (sec/rad)?] (102 cps) (108 cps) (sec/rad)?] (10 cps) (102 cps)  (sec/rad)?]
—6.3017 —1 0.213 0.082 20.45 0.233 0.122 13.26 0.225 0.102 16.21
—6.3017 0 0.185 0.045 43.48 0.185 0.045 43.48 0.185 0.045 43.48
—6.3017 0.3 0.155 0.022 104.7 0.167 0.030 73.18 0.161 0.026 85.93
—6.3017 0.7 0.121 0.009 >333 0.059 0.095 <0.01 >850
—2.9983 -1 0.291 0.130 16.87 0.327 0.205 10.46 0.311 0.166 13.08
—2.9983 0 0.255 0.080 35.6 0.255 0.080  35.6 0.255 0.080 35.6
—2.9983 - 0.3 0.229 0.050 59.2 0.211 0.038 85.33 0.219 0.044 70.59
—2.9983 0.7 0.165 0.017 255.4 0.079 oo cee 0.131 <0.005 >1107
—1.4233 —1 0.377 0.137 16.08 0.423 ~A0.160 12.19 0.417 ~A0.152 13.40
—1.4233 0 0.333 0.102 32.0 0.333 0.102 32.0 0.333 0.102 32,0
—1.4233 0.3 0.299 0.070 53.32 0.271 0.053 75.12 0.285 0.061 62.78
—1.4233 0.7 0.213 0.018 261.8 0.103 cee cee 0.167 <0.015 >586
—1.0363 -1 0.406 0.116 16.99 0.423 ~0.166 11.52 0.421 ~A0.177 15.06
—1.0363 0 0.367 0.104 31.85 0.367 0.104 31.85 0.367 0.104 31.85
—1.0363 0.3 0.331 0.080 52.30 0.299 0.059 72.69 0.313 0.067 61.41
—1.0363 0.7 0.233 0.025 235.9 0.115 oo e 0.181 <0.015 >581

By symmetry, only three independent Green’s functions
enter in Eq. (43), namely, ImG..(1,1), ImG..(1,1), and
ImG.,(1,1). They are plotted separately below, since
the combination in which they contribute to Sine
depends on K. Note that in the perfect lattice G..(1,1)
=G,,(1,1) and G.,(1,1)=0. Analytic expressions for
Gim(1,1) are given in Appendix C for the mass-defect
and mass- and central-force-constant-change cases.
Mass-defect results are given first for comparison.
The scale is here again the same as in Figs. 1 and 2.
Figures 9 and 10 show ImG;n(1,1) for the nearest
neighbors of Ag and Mn in Al. The motion of the
neighbors is very similar to that of an atom in the perfect
lattice (Fig. 1). The perfect-lattice singularities all
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appear at exactly the same frequencies but are not as
sharp here. The decrease in sharpness is not very sensi-
tive to the value of € as long as it is negative. The great
decrease of the perfect-lattice peak at »=0.580X10%
cps in ImG,.(1,1) occurs for all negative e and is difficult
to explain. ImG,,(1,1) remains quite small in all cases.
As | €| increases, a remnant of the impurity resonance
begins to appear in the motion of the neighbors. As seen
in Fig. 9, this effect is absent for Mn in Al, while
ImG,.(1,1) for Ag shows a considerable broad peak
centered at »=0.233X10* cps (v resonance=0.255
X108 ¢ps) and ImG,.(1,1) shows a broad peak around
»=10.221X10"8 cps.

In the mass-defect approximation, then, the drastic
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Fic. 10. Off-diagonal Green’s functions for neighbor (1,1,0) of

impurities in Al in the mass-defect approximation: (a) ImGazy
for neighbor of Ag in Al; (b) ImG:;, for neighbor of Mn in Al,
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Fic. 11. Diagonal Green’s functions for neighbor (1,1,0) of
impurities in Al with mass changes and central force constants
70% weaker than in the host lattice: (a) neighbor of Ag in Al;
(b) neighbor of Mn in Al.

changes in Sie occur at the impurity. The motion of its
nearest neighbors is already very similar to that of a
perfect-lattice atom.

Figures 11-14 show ImG;n(1,1) for the nearest
neighbors of impurities with the masses of Ag and Mn
in Al for various central-force constant changes. In all
cases, ImG,, is affected much more than ImG,,, because
the former represents motion along the force-constant-
change direction (recall that G,,=G.s), while the latter
represents motion perpendicular to the force change.
We return to G, later.
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F16. 12. Diagonal Green’s functions for neighbor (1,1,0) of
impurities in Al with mass changes and central force constants
30%, weaker than in the host lattice: (a) neighbor of Ag in Al;
(b) neighbor of Mn in Al.
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Fic. 13. Diagonal Green’s functions for neighbor (1,1,0) of
impurities in Al with mass changes and central-force constants
1009 stronger than in the host lattice: (a) neighbor of Ag in Al;
(b) neighbor of Mn in Al

When force constants are stronger, Fig. 13 shows
that the high-frequency peaks are enhanced and the
low-frequency ones washed out with respect to the
perfect lattice, Fig. 1. The opposite occurs for weaker
forces. The frequencies of the peaks are also shifted up
(stronger forces) or down (weaker forces).

When forces are weak, the neighbors show a sharp
low-frequency resonance in the neighborhood of the
impurity resonance, much more pronounced than in
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F16. 14. Off-diagonal Green’s functions for neighbor (1,1,0) of
impurities in Al with central-force constants 70 and 309, weaker

and 1009, stronger than in the host lattice: (a) neighbor of Ag in
Al; (b) neighbor of Mn in Al
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the mass-defect case. This does not contradict the earlier
statement that in the weak-force case the impurity could
be considered as being an Einstein oscillator in a static
lattice: The impurity resonance amplitude increases far
more rapidly with weakening forces than that of its
neighbors.

In the cases considered here, localized modes of the
impurity are caused by strong forces rather than by a
light impurity mass. Since the nearest neighbors are
directly coupled to the force changes, each one will
vibrate at the local-mode frequencies with an amplitude
roughly 7% that of the impurity, which is connected to
12 strong force constants. A very sharp amplitude
reduction occurs from next-nearest neighbors on.

In the cases considered here, the resonance behavior
of the neighbors still comes only from the I'y; mode even
though G;x(1,1) depends on all the modes of the cage.
In fact, none of the other resonance denominators
(Appendix A) even comes close to satisfying the reso-
nance condition ReD=0. Much larger force-constant
changes are needed to observe resonances or local modes
caused by them. In our calculations, the effect of the
other modes is just to shift the I';s low-frequency peak
down or up with respect to the impurity peak when the
forces are weak or strong, respectively. When the
central-force change is large (e.g., 709, weakening),
ImG;:(0,0) and ImG,.(1,1) show a resonance at the
same frequency, indicating that the I';; mode is then
practically the only one of any importance in determin-
ing the peak frequency.

Note that the reason why the I';; mode shows
resonance or local-mode characteristics for parameters
for which the other modes do not is definitely #not the
fact that it alone depends on the mass change. This can
be seen from Fig. 8: Even when there is no mass change,
a 509, increase in force constants is already sufficient
to give a I'y5 local mode. It is rather that the impurity,
which moves only in the I'y; mode, is affected by 12
force changes, so that the effective disturbance for this
mode is much larger than for the others.

As mentioned earlier, ImG,.(1,1) is much less affected
by the presence of the defect than ImG..(1,1). The
local-mode amplitude, not shown in the figures, is
also decreased. However, an interesting effect occurs,
which can be seen in Figs. 11 and 12: ImG..(1,1) shows
a depression or loss of amplitude around the impurity
resonance frequency, in contrast to the behavior of
ImG.(1,1). This effect begins to appear in the mass-
defect case (Fig. 9) but is much stronger when force
changes are also present. ImG,,(1,1) thus shows an
antiresonance. It seems that some amplitude or density-
of-states sum rule is operating, with ImG,. counteracting
the effects of ImG,,(1,1) and ImG;(0,0) to some
extent.

Table VI is a summary of some of the results indicated
above, including mass changes not shown in the figures.
The low-frequency peak positions are indicated for
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TasLe VI. Resonances and antiresonances in the motion of
an impurity and in the motion of its nearest neighbors. Central-
force-constant changes.

Min and max

vrin vrin around »zin
ImG0,0) ImG,(1,1)  ImG..(1,1)
€ AA/A  (10cps) (10'3cps) (102 cps)
—6.3017 0 0.185 0.177 0.169-0.197
—6.3017 0.3 0.161 0.155 0.147-0.171
—6.3017 0.7 0.095 0.095 0.095-0.099
—2.9983 0 0.255 0.233 0.221-0.265
—2.9983 - 0.3 0.219 0.207 0.191-0.227
—2.9983 0.7 0.131 0.131 0.127-0.131
—1.4233 0 0.333 cee ‘.-
—1.4233 0.3 0.285 0.267 0.243-0.283
—1.4233 0.7 0.167 0.167 0.155-0.171
—1.0363 0 0.367 ..
—1.0363 0.3 0.313 0.303 0.271-0.303
—1.0363 0.7 0.181 0.179 0.167-0.183

ImG;;(0,0) and ImG»,(1,1). For ImG..(1,1) the positions
of the maximum and minimum that define the anti-
resonance are given.

The off-diagonal Green’s function ImG,,(1,1) is shown
in Fig. 14 for impurities with the masses of Ag and Mn
in Al It has appreciable low-frequency structure with
weakened force constants and high-frequency structure
with strong forces.

It would perhaps be more physically transparent to
rotate the reference coordinate system about the z
axis along the line joining the impurity and neighbor
(1,1,0). Then the diagonal Green’s functions are
Goo(1,1)=G2a(1,1)+Goy(1,1), Gyry=Goo—Gr, and
G.., and the off-diagonal Green’s functions vanish. The
diagonal Green’s functions, then, truly represent the
square amplitude of motion of the neighbors of the
impurity. The defect characteristics are then brought
out more sharply and the host-lattice characteristics
are suppressed. For instance, in all cases of weakened
forces the »=0.887X10%-cps peak disappears in
ImG,» and is replaced with a structure similar to the
high frequency-impurity structure. The I';s resonance
is also sharpened.

V. CONCLUSION

Although we have evaluated our equations nu-
merically for only a limited range of parameters
(—6.3<e<0 and —2<AA/A<0.7), there are some
conclusions that can be ‘drawn which are quite likely
to hold in general:

(a) The resonance characteristics of the defect sys-
tem (frequencies and amplitudes) are more sensitive to
force-constant changes than to mass changes.

(b) Of all the modes that must be considered to de-
termine the motion of the neighbors of the impurity, the
T';s mode is by far the most important one. Since this
is the only mode in which the impurity moves, and since
the impurity is directly coupled to all the force-constant
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changes, the effective disturbance for this mode is
greater than for the other modes.

(c) The neighbors of the impurity share strongly in
the resonances and local modes that are caused by
force-constant changes to which they are directly
coupled. These large resonance amplitudes occur in the
planes containing the force-constant changes.

(d) In the planes that do not contain force-constant-
change components, the motion of the neighbors of the
impurity exhibits an antiresonance near the resonance
frequency, indicating the possible existence of a density-
of-states sum rule.

Some conclusions that may apply only to the cases
explicitly evaluated here are the following:

(a) When mass and force changes act in the same
direction (i.e., heavy mass and weak force constants), we
found only one resonance mode in all cases. When they
act in opposite directions, we found two resonance
modes or one resonance and one local mode.

(b) In the cases considered here the changes in non-
central force constants used were too small to produce
experimentally observable effects. Such effects may
appear for sufficiently large changes.

From the theoretical point of view, even in the single-
impurity approximation, there are several problems
that have not yet been considered. For instance, there

NEUTRON SCATTERING FROM CUBIC CRYSTALS

853

may be some relaxation of the neighbors of the impurity
to new equilibrium positions, causing an effective-force-
constant change among the neighbors in addition to the
impurity-neighbors ones considered here. To our
knowledge, the effects of anharmonic impurity-lattice
coupling for heavy impurities has not been treated.

Experimentally, a system such as Al plus a low con-
centration of heavy impurities seems to be a profitable
one to study via incoherent neutron scattering, because
Al itself is an almost perfectly coherent scatterer.

We have studied the effect of the impurities considered
here on the phonons of the Al system (e.g., shift,
broadening, and branch mixing); these results will be
presented in a subsequent paper.
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APPENDIX A

For the fcc case with force-constant changes between the impurity and its nearest neighbors (preserving the
point symmetry of the cage), the irreducible representation T' of the full cubic group appears in V(1—gQ)V=" a

total of N(T') times as follows?:
n(rl) =1 )

%(Flz’) = 1 )

n(1‘2)=1, n(P12)=2,
%(I‘ls,) =2 , n(I‘gs’) =2 )
n(T25)=2, n(Ty5)=4.

M(PQ,) =1 )

Let the perfect-lattice central- and noncentral-force constants be denoted by aop+70, ®o—"0, and B, e.g.,%

Aim(1,1,0)= [

a v O
Yo a O [.
0 0 B

Let a=ao—anew, and similarly for 8 and . (When only central forces change, =+ and 8=0.) Using"the notation

of Table II, the resonance denominators are

D(T'y) =14+ (a+7)(G1+2Gs— 2G4+ Gs— Ge— G1— Go— 2G 19— 4G 12— 2G13) |
D(T3) =14 (a—7)(G1— 2G5+ 2G4+ G5— Gs— G+ Go+2G10— 4G 12+ 2Gr3)
D(F12) =1+ 2""((-"1""65_ GG_G7+ 2G12)+ 2’)’(_ Gs4-Gi—Got GlO+G13) + (062— 72) [(Gl+Gs— Ge— G+ 2G12)2

—(Gs— G4t+Go—G1o—G13)*—3(Gs+Gi—GrotG1s)* ],

D(T'15") =14-8(G1+2Gs—Gs+2G13)+ (a—7) (G1— G5+ Gs— Gr+Go)+B(a—v)[(2Gs— Gs+ 2G13)
X (=Gs+Gs—G1+Go)+G1(G1+-2G1— G5+ Gs— Gr1— Gs+Go+-2G15) — 4(Ge— Gu+-Gr) 2],

D(T25") = 14-B(G1— 2Gs— Gs—2G13) + (a+7) (G1— G5+ Gs— Gr— Go) +B (a+7) [ (2G 4+ Gs+2G13)
X(Gs—Gs+Gr4-Go)+G1(Gi— 2Gs— G5+ Go— Gi— Go— Go— 2G13) — 4(G2— Gui— G12)?],

28 G, Leibfried, Handbuch der Physik, edited by S. Fliigge (Springer-Verlag, Berlin, 1955), Vol. 7, Part 1,
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D(I'y")=14-8(G1—4G+— 2G5+ Gs+4G1s) ,
D(T'1e)=14-B(G1+2G4s— 2G5+ Gs—2G1s) ,

and

D(T'25) =14 2a(G1— Gs+ G4+ Gr— Gro— G13) + 27(Go— 2G12) + (> — ¥ [ (G1— G35+ Ga+ Gr— G1o— G13)
- (Gs’* 2G12)2"“ (Gs+G4“ Gs"‘ Gs+ Glo_ Gl3) 2] .

D(T';5) has been explicitly evaluated only for central-force-constant changes. In the general case, D(I';5) is the
determinant of the matrix given below (central force change):

D(T'y5) = 1— M ¢’G1+20(5G1— 8Go+G3— 9G4 Gr+Go+ G104 2G 10+ Gis)
- 2Mgew2a[G12— 4(G2+G4)2+G1(G3" G4+ G7+G9+G10+ 2612+G13)] .

In general, D(Ty5) is the determinant of the 4X4 matrix with the following elements:

(1,1) = 1— M oew?(G1+8G2+4G5) /13,
(1,2)=20(y/9)[1~0(5G2+2G3— G5~ Go— Gr— 2G10— 2G11) +v(GatGo+4G12) ]/91,
(1,3)=—1(/14)[1—-B(4G:+3G;— 2G5— Gs—4Gu) ],

(1,4) = 2(n/26) [ G4+ Gs+4G12) — 7(5Go+2G3— G5— Go— Gr— 2Gro— 2G11) ]/13

(2,1) =2(x/91) M oes®(G1— 2Go+G5) /91,

(2,2) = 10[1—a(—5G1+14G2— 6G3— Gs— Gs— G1— 2G10+2G11) — v (4Gs—Go) /7,
(2,3)=15(1/26)[1—B(3G1—4G>— 2G5— Gs+-4Gn1) ],

(2,4) = — (v/14)[a(4G4— Go)+v(— 5G1+14Go— 6G5— G5 — Go— G1— 2G10+2G11) ]/ 7,

(3,1) = —2(2/14) M 0e?(2G1+3G>—5G5) /91,

(3,2) = 5(1/26)[3—a(13G1+28G>—46G3— 3G5— 3Gs— 3G1— 6G10+ 20G11) — y(— 16G4—3Go+14G12) 1/91,
(3,3) = 14-18(13G1+6Ga— 28G5+ 10G5+5Gs— 6G1a)

(3,4) = — (v/91)[a( — 16G4— 3Go+ 14G o) +v(13G1 428Gy — 46Gs— 3G 35— 3Gs— 3G1— 6Gro+20G1) 1/91
(4,1)= —2(7/26) M 0es’G4/13 ,

(4,2) = 5(1/14) [ — (8Gs—Gy—2G15) +7(G1— 2G4— G5— Go+Gr+2G15) /7 ,

(4,3)=2(+/91)BG4,

and

(4,4)=14-a(G1—2G4+— G5— G+ Gr+2G13) —v(8G4— Gy—2G1a) .

APPENDIX B

For the bee case with force-constant changes between the impurity and its nearest and next-nearest neighbors,
the irreducible representation I' of the full cubic group appears in V(1—g,°Q) V! a total of #(T") times as follows?:

%(F1)=2, n(I‘m)——-Z, ﬂ(P15’)=2,
n(I‘%’) == 3 B n(I‘g') =1 y '}’L(Fm’)= 1 5
n(P25)=2, n(I‘15)=5.

There are now two central and two noncentral force constants,? denoted by ag+ 20, 70, 2o— 7o, and Bo:

Q€ Yo Yo 720 0 O
Am(1,1,1)=]v0 a0 7|, Am(2,0,00=[{0 By O
Yo Yo Qo 0 0 B

Let a=0ao—anew, and similarly for v, n, and 8. Force-constant changes to next-nearest neighbors can be left out by
letting n=p8=0. Central-force changes correspond to a=+ and 8=0. Using the notation of Table II, the resonance
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denominators are

D(T'y) =14-2(a+2v)(G1— 2G4+ G5+ 2Ge— G1— 2Gs— G+ 2G10) + 29(G1+4Gs— Gua) +4n(a+2y)
X [~ 4(G2—2G3— G 13— 2G15)*+ (G1+4Gs— G11) (G1— 2G4+ G5+ 2Gs— G1— 2Gs— Go+2G10) ],
D(T'15) = 14 2(a—7) (G1— 2G4+ G5—Gs— Gr+Gs— Got2G10) + 21(G1— 2Gs— G11) +4n(a—7)
X[—4(Ge+Gs— G+ Gis) 2+ (G1— 2Gs— G11) (Gi1— 2G4+ Gs—Ge— G+ Gs— Go+-2Gro) ],
D(T'15") = 14-2(a—7) (G1—Gs— Gs— Gr+Gs+Go) +28(G1— 2Gs— G12)+4B8(a—7)
X [—4(GetGs—GratG15)*+ (G1— 2Gs—G12) (G1— Gs— Gs—Gr+Gs+Go) ],
D(I‘2’) =14+ (a+27)(G1—2Gs+G5+2Ge+Gr+-2Gs+Go— 2610) )
D(I'y) =14 (a—7)(G1— 2G4+ Gs— Gs+Gr— Gs+Go— 2G o),
and
D(T'z5) = 14-2(a—7)(G1— G5—Go+Gr—Gs— Go)+ 28(G1— 2G5+G12)
+48(a—7)[—4(2Gs— G157+ G16) >+ (G1— 2G5+ G12) (G1— G5— G+ Gr— Gs—Go) ] .

D(T'5") is the determinant of the 3)X3 matrix with the following elements:

(1,1)=14-1(a+27)(3G1+2Gs— Gs— 2Gs— 3G1— 6Gs+Gy— 2Gro)
(1,2)=3(1/6)8(G2—G14—G15—G1e) ,
(1;3) = %‘/Z(a—’)’)(—G4—G5+GB+G9+G10) y
(2,1)=3(+/6)(a+27)(Ge—G14—G15—G1e) ,
(2,2)=14+8(G1+2Gs—Gro) ,
(2,3)=3V3(a—7)(G2— 3Gs—G1a—G15+2G1s)
(3,1)=3V2(a+27)(— Gs— Gs+Ge+Go+Gro)
(3,2)=3V38(G2— 3Gs— Gu—G15+2G) ,
and
(3,3)=1+3(a—7)(3G1+4Gs+Gs+5Ge— 3G+ 3Gs— Gy— 4Gho) .
D(T'y5) is the determinant of the 5X5 matrix with the following elements:

(1,1) = 1— M oG,

(1,2)=—(+/6)8(G1—G),

(1,3)=3(3)1(G1—Gy),

(1,4)=—3(/6)(a+2v)(G1—G:—2G3),

(1,5)=$3(a—7v)(G1—G2+G3),

(2,1) = %(\/6)[3‘“M06w2(G9+2G10)] ’

(2,2) =14-B(G1+ 2G4+ 2G5— 2Gy— 4G 1+Gr2) ,

(2,3)= —§(V2)[3+1(G1+4G:— 2Gy— 4G+ Gur) ],

(2,4)=3(a+27) (3G~ 2Gs— 2Go— 4G 10+ G154 2Guu+4G15+2Ghs)

(2,5)=3V2(a—7)(—3G2— G5+ 2Go+4G10— G13— 2G14+2G15+Gre)

(3,1)=23V3M yew?(Gy— Gro) ,

(3,2)=3V2[1+B(G1— 4G+ 2G5+4Gs— 4G 1o+ Gr2) ],

(3,3)=3[141(G1—2Gs— 2Gy+2G1+Gu) ],

(3,4) =3V2(a+27) (2Gs+ 2Go— 2G10— G1s+G14— G5+ Ge)

(3,5) =3(a—7)(2Gs—4Gs+4CG10+2G 13— 2G1u— G15+Ge)

(4,1)=—3(+/6) M s*(G2+2G3)

(4,2) = —28(G2+4Gs—Gu—G15—Ghe)

(4,3)=3V21(Ge+6G3— G13—2G1s) ,
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(4,4)=143(c+2v)(3G1—8G2— 16G3+2G1— Gs— 2G 6+ 3G+ 6Gs— Go+2Gro)
(4,5)=3V2(a—7)(4G21+8Gs—Gs—Gs+Ge— Go— Gro)
(5,1)=$V3M 1e?(G2—G3) ,
(5,2) =V2B(2G2—4Gs— 2G14+G15+Grs)
(5,3) = —4$n(G2—3Gs—G1s+Gis) ,
(5,4) = %\/Z(a—i— Z’Y) (462—4G3—G4— Gs+Ge— Gs‘—Gm) N
and
(5,5) = 143(a—7)(3G1— 16G2+ 16G3+-4G s+ G5+ 5Gs+ 3G 71— 3Gs+Go+4Gro) -

APPENDIX C

The Green’s functions for the nearest neighbors of the impurity with central-force-constant changes in the fcc
case have been worked out up to a point that makes computer evaluation very easy. The expressions below could
be simplified further at the expense of much work and little gain. We first define a large list of symbols for quantities
that enter in the Green’s functions; the latter are given at the end of this Appendix. Some of the symbols used here
are defined in Table IT and in Appendix A.

Let
X1=(\/13)M pew?/13, Xo=—2(/T)(M pew*—10a) /7 ,
Xz=2(2/182)(2M yew®—13a) /91, X4=2V2a,
Xs=—35(+/T)a/14, Xe=(1/182)a/28 , and Xy=—3V2a;

= (V13){1+4M yew?(2G2+G3) — 2a(— 5G1+ 28G o+ T1G3+ 5SG4— 4G5— 4G 6— 5G1— 5G9 — 9G 10— 8G 11— 18G12— G13)
—8M vew?a[ G1(— Go—Gs+Ga)+ G2(2Go4-4G 4G5+ Go— Gr— G+ 2G11— 2G1s)
+G3(—Gs+3Gs— Gr— Go— Gro— 2Gro— G13)+ Go(Gs+Go+-Gr+ Got+ 2Gro+2G11+-4G12) 1} /13,
p1=—2(/T1){1+ M per’(— 2G2+G3) + 20(6G2— 5G3— 5G4— Gs— Gs— Gro+2G 11+ 2G1a+ Grs)
— 2M o0’ G1(Ga— Gs— Go)+ G2(2Ga— Gs— G+ G+ Gyt 2G 1+ 4G1o+-2Grs)
—G3(Gs+GitGr4-GotGrot 2G 1o+ G1z) — Go(Gs+- G+ Gr4-Go+2G1o— 2G1) 1} /7,
q1=2(1/182){ 2+ M 0ew?(3G2— 5G5) — a(— TG 1+ 60G:— 50G3+20G s~ 3G 5— 3Ge— TG7— T1Gy— 10G 1o
+20G 11+ 6G12— 4G 13) — M e’ G1(— 3G2~+ 10G3+- 3G 1)+ Go( — 20G— 14G4+ 3G
+3Gs— 3G1— 3Gs— 20G11— 26G12— 6G13) + G3(10G3— 4G4+ 10G 1+ 10Go+ 10G 10+ 20G 124 10G13)
+G4(3Gﬁ+ 3Gs+367+3G9+ 6610*‘ 20Gll“‘ 14612)]}/91 )

71=2V2{59M ¢0?G 14— 91a(— G1+ 10G s+ G5+ Ge— Gr— Gy— 2G13— 2G15) — M oew’a G1(11G2+-80Gs— 11G4)
+Go(— 342G — 11G5— 11Go+ 11G 1+ 11Go+-22G15+22G15) + Gs(— 182G 4— 80G5— 80G 6+ 80G++80Gy
+ 160G 15+ 160G15) — Go( 1G5+ 11G s+ 11Gr+11Go+ 22G 1o+ 320G+ 342G12) ]} /91,
ty=(v/13){1— M 4e0’G1—a( — 10G1+ 11G— 4G5+ 19Gs4+ G5+ Go— Gr— Go+-2G11— 2G'13)
— M oew’?a[ G1(Gr— 2G2— 2G4~ G5~ G+ Gr+Go— 2Gu+2G13)+4(Go+G o) (Gs— 2G4) 1} /13,
po= (/1) {1— M ¢ew?G1— a(— 5G1+ 2G2+4Gs+ 14G1+- G5+ Gs— Gr— Go— 2G11— 4G 12— 2G15) — M pew’ar
X [G1(G1+2G2—2G s— G5— Go+ Gt Got2G 11+ 4G1o+2G15) — 4(Go+-G 1) (Gs+2G4) 1} /14,
g2=(1/182){3—3M 4’G1— a(— 43G 1+ 20G2+40G5+ 710G 4+ 3G5+ 3Gs— 3G71— 3Go— 20G 11— 26G 12— 6G'15)
— M e[ G1(3G1+20G 23— 6G s— 3Gs— 3G s+ 3G+ 3G+ 20G 11+ 26G 1o+ 6G1s) — (Go+-G 1) (40Gs+-24G4) ]} /364 ,
ra=V2{—48M 1w’Gs— 9a(G1— 10Gs— G5— G+ Gr+Got2G 12+ 2G15) — M pew’a[ (11G1+80Gs)
X (—G142G 4+ G5+ Go— G1— Gy— 2G12— 2G13) +408G oG 1+ 320G (G114 G12) +88G 2]} /364 ,
{3= (\/13) {a(562+ 2G3'— G4”‘ Gs“' Ge— G1— Gg— 2G10— 2G11— 4G12) - Moew?a
X [=G1(G14 2G4+ 2G4+ G5+ G+ GrtGot 2G 10+ 2G 144G o)+ (8Ga+-4Gs) (Ga+Go) 1} /13,
pa= (V4D {a(—5G1+14Go— 6Gs+-4G 44— G5— Ge— G1— Go— 2G10+2G11) — M pew’a
X [—G1(G1— 2G4 2G5+ G5+ Gt Grt-Go-2G10— 2G11) +4(2G2—Gs) (Go1-Go) 1} /14,
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q;;= (\/182) {Ot( 13Gl+ 28G2— 4603— 16G4— 305"‘ 365— 3G7— 369— 6Glo+ 20611-}— 14G12) —Moewza
X [G1(—3G1+20G:— 6G3— 3G5— 3Gs— 3G1— 3Go— 6G 10+ 20G11+ 14G15) +-8(3G2— 5Gs) (Go+Ga) 1} /364,
r3= \[2_{91 —Moew"’(59Gl—- 48G2+ 80G3) - 91&(— 9G1+ 1662— 2G3+8G4'— Ga— Ge— G’z—‘ Gg““ 2010— 2G12)
— Moew?a[ G1(11G1+ 320G+ 102G+ 1G5+ 11G s+ 11G 1+ 11Go+ 22G1o+ 320G 11+ 342G 12)
— G2(408G2+-640G3+88G 4+ 320G 11+ 320G 12) +80G3(2G3— 8Ga+Gs+Got-Gr+-Got2Gro+-2G12) 1} /364,

la= (\/13){ 1—M oer?G1— 20!(— 5G14-8G2—G3+9Gs— Gi—Go— G 19— 2G 12— G13)
—2M e’ G1(G1+Gs— Gat-Gr4-Got-Grot 2G1a+G1s) — 4(Go+G9) 2]} /13,
pa=—(/M)t/14,
gi=—5(/14)t,/14,
and
74=40V2{ M 0ew’Gs— M pe?a[ G1(— G1+ G+ Gs+G5+Go— Gi— Go— 2G 12— 2G13)
+Go(6Gi— G5— G+ G1+Go+2G10+2G13) + G o(— 2G5+ 8G 1— Gs— Go— Gr— Go— 2G10— 2G12) ]} /91;

Vi=[Xatr+Xopr+Xsqi+Xar1]/D(T'15),

Vo= [Xybo+XopotXage+Xers ]/D(T'1s) ,

V= [Xuts4Xops+Xsqs+Xars]/D(T15) ,

Y= [Xatst+Xops+XsqstXars]/D(T15)

Ys=[Xsp1+Xeq1+Xor1]/D(T15),

Vo= —15a[1/D(T1)+2/D(T'15)+3/D(T25")+3/D(Ts5) J4-[Xs(pat ps)+Xo(ga+gs)+ Xo(ra+75) 1/D(T15)

Vi=a[ —2/D(T1)~+2/D(T19)+3/D(T5) 1/ 24+ [XspotXeget+Xars]/D(T15)

V= [XspatXegstXsrs]/D(T1s),

Yo=a[ —2/D(T'1)+2/D(T12)+3/D(T5) 1/ 24+ [Xsps+Xegs+Xars]/D(T1s) ,
Y1o=15a[—1/D(T'1)—2/D(T15)~+3/D(Ta5") ]+ [Xs(p2— ps)+Xes(g2— gs) +Xa(ra—173) 1/ D(T'15) ,
Y1u=15e[1/D(T1)+2/D(T12)— 3/D(Ts5) 1+ [Xs(pa— ps)+Xe(qe— gs)+Xz(ra—75) ]/ D(T'15) ,
Y12=0a[2/D(T1)—2D(T'12)+3/D(T55) ]/ 244 [ Xspa+Xege+Xor2]/D(T'15)

Vis=a[ —2/D(T1)+2/D(T12)— 3/D(T'35) ]/ 24— [Xsps+Xegs+Xor5]/D(T15)
and
Y14=150[1/D(T1)42/D(T'13)43/D(Ts5") — 3/ D(T25) ]+ [Xs(pat p2)+Xe(ga+tgs) +Xa(ra+75) ]/ D(T1s) ;

and

Z1=Y1Go+ YV5(G1+ 2G5+ G5+ G+ Gr4-2G10) + ¥V 5(Go+ 2G12) +- 2V o(Go+-Gri)
Zy=Y1G4F Y o(Go+2G10)+ YV 3(G1— 2G1— Gs— G+ Gr+2G15) + 2V 4G1s ,
Z3=Y1Gs+4Y 3(Go+G11)+4Y sG1o+ YV o(G1+2G5+Gs)
Z4=Y5(GoFG o)+ Y G142V 1G5+ 2V 3(Go+Grat+Gia) — 2V §Ga+ ¥V 10Gs+ YV 11G
+2Y 15(Gro+G12) — 2V 13(Gr2+Grs) + Y 14(Gr+Gy)
Z5=Y Gyt Y Gs+ YV 1(G1— G4+ Gs— G13)+ 2V §(Go+G11) — VsGro+ YV 10(Gs— G12)+ Y 13G 1o
+Y12:(GHGo+Grt-Gr3)— Vi3(Go+Gr2) + Y 14(Gro+Grz)
Ze=(Y5— Y6t V11)GatYo(Gr1HGs—Gs— Gro)— (V71— 2V 5— V11— V15— V14) G2
+ YV 1:Got V13(Gs+Gs—Gr—G10) — (Y 10— Y 14)G1s,
Zr=YsGs+ (Yot Vot Yut Y1) Got (Yot Yot Vot V1) Gt Vs(Gi4-2Gs5+Gs)+ (Yo— Vii— Vis+ V140G,
Zs=Y5(Go—G9)+ Y G5+ 2Y1(Gs— G12)+ 2V 8(Go+ Gr1i— G12) — 2V 4G5+ ¥V 10(G1— Gy)
+ Y1161+ 2V 1:G10— 2V 15(Gs+G12)+- Y 14G,
Zy=—Y5(Go—Gy)— Y¢Gs— 2V 1G10— 2V 5(Ga+G11— G12) — 2V 9(G4+G1a)
— Y10G1— V'11(G1— G9) — 2V 12(Gs— G12) — 2V 15G 13— V1G5,
Z10= Y5+ Y10~ Y1) Gst Yo(G1o+G1a)+ (V14 2V s+ V10— V 12) Gra+ Vo(— G3— G5+ Gr4-Gio) — Y 11G1s
—YV13(G1+Gs—Gs—Gro)
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Z1u=Y Gt (Yot Vo= Vit Y15)Grat (Yot Y 10)Grot+ Vo(Gut-GotGrt-G13) 42V 5(Got- Gur)+ VoG

+ (Y 1+ YV 14)Gs+ Y 12:(G1— G4+ G5—Ghs)

Zyp=—YGs— Vet Yt VutV10)Gu— (Yot Vo=V 15)Gro— (Vo Vot V1otV 14)Ga— Vs(Gi+2G5+Gs)

and

Z13=Y§(Go+G)+ YV §(Gr+Go)+2Y 1(Gro+ G12)+ 2V 5(Got Guit-Gra) +2Y o(Gra+G1s)+ Y 10Gs

The Green’s functions are then given by

+ YV 11G5+2Y 120G+ 2Y 1G4+ V4G

G2:(1,1;0)=G1(14Z9)+G2Z 1+ 2GsZ5+Gu(Z2—2Z6)+GsZs—GeZy

G..(1,1; ) =G1H+4GZ1+GsZ3—4(Gut-Gro) 212,

and

+(Gr+Go)Z 13+ 2(Gro+G12) Z 11+ 2(Gra+-G1s) Z 10,

Gay(L,1;0) =G1Z4+GoZ ot 2GsZ s+ Go(Z1— 22 5)+GsZs— GoZs+ (GrtGo) Z15+ 2(Gro+G12) Z10+ 2(G1a+G13) Z1s -
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Landau Fermi-Liquid Parameters in Na and K
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Theoretical estimates are presented for the Landau Fermi-liquid parameters in Na and K, and a com-
parison is made with the experimental values. The calculations are presented in two parts. The effects of
the Coulomb interaction between the electrons are taken from previous calculations which use the random-
phase approximation and include exchange diagrams approximately. The electron-phonon-interaction effects
are calculated using the observed phonon spectra and a screened pseudopotential approximation for the
electron-ion coupling. The theoretical estimates for Na are found to be in surprisingly good agreement with
six independent experimentally determined parameters. In K, the experimental values are less accurate, but

a preliminary comparison is encouraging.

I. INTRODUCTION

HE Landau theory of a Fermi liquid! as extended

by Silin? has been very successful in explaining

the qualitative nature of many-body effects in metals.
In this theory the effects of the interactions are char-
acterized by an effective mass m* and an interaction
function f(kek’e’) which are to be determined from
experiment. Until recently, however, the experimental
information on the size of f was very limited. The
observation of spin waves®* and high-frequency
plasmalike waves®7 in Na and K has led to the deter-
mination of several of the Legendre coefficients of the

1L. D. Landau, Zh. Eksperim. i Teor. Fiz. 30, 1058 (1956)
[English transl.: Soviet Phys.—JETP 3, 920 (1956)7].

2V, P. Silin, Zh. Eksperim. i Teor. Fiz. 33, 495 (1957) [English
transl.: Soviet Phys.—JETP 6, 945 (1958)].
( 3 P7.) M. Platzman and P. A. Wolff, Phys. Rev. Letters 18, 280

1967).

48.'Schultz and G. Dunifer, Phys. Rev. Letters 18, 283 (1967).

5 W. M. Walsh, Jr. and P. M. Platzman, Phys. Rev. Letters 15,
784 (1965).

6 P. M. Platzman and W. M. Walsh, Jr., Phys. Rev. Letters 19,
514 (1967); 20, 89(E) (1968).

7 P. M. Platzman, W. M. Walsh, Jr., and E-Ni Foo, Phys. Rev.
172, 689 (1968).

function f. In this paper we will be concerned with a
comparison of the experimental values of these coeffi-
cients, the Landau parameters, with theoretical
estimates based on microscopic theory.

In metals there are two sources of interactions
between electrons, (a) the Coulomb repulsion between
two electrons and (b) the attraction caused by the
virtual exchange of phonons. There are, in addition,
effects due to the periodic potential of the ions. Na and
K have Fermi surfaces which deviate from the free-
electron sphere by less than 0.29%,8 so that we will, for
the most part, ignore band-structure effects. The
contribution to interaction effects from the Coulomb
repulsion, which we will refer to as the electron-electron
contribution, may then be obtained from calculations
for a uniform electron gas.? The derivation of the

8 For Na, M. J. G. Lee, Proc. Roy. Soc. (London) A295, 440

E1966g; for K, M. J. G. Lee and L. M. Falicov, ibid. A314, 319
1968).

9 A. W. Overhauser [Phys. Rev. 128, 1437 (1962); 167, 691
(1968)7 has suggested that at low temperatures K may not be a
normal metal. Our calculations and the interpretation of the ex-
perimental data, which we shall cite, are based on the assumption
that Na and K are normal metals.



