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The Boltzmann equation is used to investigate the influence of umklapp scattering on the galvano-
magnetic properties of a nearly-free-electron bcc metal with a spherical Fermi surface. A phenomenological
scattering function is used to describe the umklapp scattering. If the areas of the Fermi surface where
umklapp scattering occurs are very small and the scattering very intense, the transverse magnetoresistance
is found to increase linearly with the magnetic field to a saturation value. The linear variation can occur
up to values of oJ,r as large as 150, i.e., well into the high-magnetic-field region, The Hall "constant" is
also found to vary with the magnetic field strength. Application of the results to potassium, aluminum,
and cadmium is brieQy discussed.

I. INTRODUCTION

HE possibility of obtaining information about the
electronic structure of a metal from its galvano-

magnetic properties was first proposed theoretically in a
rigorous fashion by Lifshitz, Azbel, and Kaganov
(LAK).' The LAK theory was first applied to specific
physical situations by Lifshitz and Peschanskii. ' The
LAK theory, together with the work of Lifshitz and
Peschanskii, provided an interpretation for much of the
previously unexplained behavior of the magnetoresis-
tance of metals. '4 The main feature of the LAK theory
is its emphasis in the geometry of k space and its dis-
regard of the exact nature of the scattering process.
The most significant results are summarized in Table I.
A further important result of the LAK theory is its
agreement with Kohler's rule, which states that

~P/P(o) = LP (H) —P (0)7/P(o)
is a function only of

~
H

~ LP(0)j '. However, the agree-
ment with Kohler's rule is valid only if magnetic
breakdown' is not present and if the sole eGect of a
change in temperature or purity of the sample may be
described by changing ~ to 'Ar, where X is a constant and
r is a relaxation time which can 'be used to describe the
scattering process.

In spite of the success of the LAK theory there
remains a number of metals (e.g., potassium, copper,
silver, and aluminum) whose galvanomagnetic pro-
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perties do not agree with those predicted by the LAK
theory. ' 6 In particular, recent experiments which
measure the transverse magnetoresistance of potas-
sium' ' indicate that the scattering mechanism can play
as important a role in determining the high-magnetic-
field behavior of the resistivity tensor as does the
geometry of the orbit in the LAK theory. Since the
Fermi surface of potassium" may be considered to be
spherical to one part in 10', the theory of LAK predicts
that the transverse magnetoresistance should saturate
at high magnetic fields. Also, since the Fermi surface is
contained within the first Brillouin zone there can be no
magnetic breakdown sects present. Penz Qnds that
the transverse magnetoresistance increases linearly with
magnetic field for values of co,r as large as 150, where
~, is the cyclotron frequency and r is a relaxation time
determined from the dc resistance of the single crystal.
The transverse magnetoresistance exhibits some corre-
lation with the orientation of the magnetic field relative
to the crystal axes and with the amount of stress
exerted on the sample. " Finally, we note that these
results show a marked deviation from Kohler's rule.

Further evidence of the inQuence of scattering on the
behavior of the galvanomagnetic properties has been
found in cadmium' and in aluminum 3 6 Both the
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TABLE I. Magnetic-field dependence of the galvanomagnetic
properties of metals in the high-Geld limit.

Type of orbits and state
of compensation

I. All closed orbits
Uncompensated n, Hey,

II. All closed orbits
Compensated e.=eI,

ID. Open in direction perpendicular
to 8 and making angle n with
current

Transverse
magneto- Transverse
resistance Hall voltage

Saturates II/(e, —eI,)

H2 cos~o. JV

experiments on aluminum and cadmium indicate that
Kohler's rule is violated in the high-magnetic-Geld
region.

The variation of p2~ with magnetic field strength
(8~~[0001)) shows a most unusual behavior in the case
of cadmium. Since cadmium is a compensated metal it
is dificult to predict what the sign of the Hall resistivity
should be. One would expect, however, that in the high-
Geld limit the sign of the Hall coefFicient would not
change as the temperature of a cadmium sample is
varied. The experimental results, however, indicate that
the sign of the Hall resistivity changes as the tempera-
ture of the sample increases from 2 to O'K, the sign
being negative (electronlike) at 2'K and positive
(holelike) at 4'K. The existing theory of high-magnetic-
6eld galvanomagnetic properties (LAK with magnetic
breakdown) is incapable of explaining the unusual
behavior of the Hall resistivity in cadmium.

From the above examples it is obvious that a careful
study of the effect of scattering on the behavior of the
magnetoresistance is needed. Both Pippards r' and Jones
and Sondheimer' have considered the explicit depen-
dence of the magnetoresistance on the scattering of the
electrons. Neither of these papers, however, makes any
attempt to include the explicit effects of umklapp
scattering on the electrons.

In this paper we investigate the effects of umklapp
scattering on the behavior of the galvanomagnetic pro-
perties of a nearly-free-electron metal. The umklapp
scattering is treated by using a phenomenological
scattering function and explicitly including the effects
of such a scattering function in the solution of the
Boltzmann equation. Since our primary interest is in
the influence of scattering, we shall consider only a
single-sheet spherical Fermi surface (such a surface
shows no magnetoresistance in the relaxation time
approximation) which is close enough to the Brillouin
zone boundaries to allow an appreciable amount of wave-
function mixing for wave vectors k which are in the
immediate neighborhood of the zone faces. Such wave-
function mixing can give rise to umklapp scattering
which, under extreme conditions, can generate electron

» A. B. Pippard, Proc. Roy. Soc. (London) A282, 464 (1964).
'8 M. C. Jones and E. H. Sondheimer, Phys. Rev. 155, -567

(1967), hereafter referred to as JS.

FzG. 1. A spherical Fermi surface enclosed by the first Brillouin
zone of a bcc lattice. The shaded regions indicate the areas of the
Fermi surface where large-angle (hot spot) scattering can occur.

trajectories in k space which closely resemble those that
would occur if magnetic breakdown were present. The
e8ect, however, as shown in Sec. II is opposite to that
of magnetic breakdown in the sense that it becomes less
pronounced as ~H~ increases. In Sec. II we de6ne the
model of the Fermi surface and the scattering function
of the electrons to be used in our calculation. In Sec. III
the linearized Boltzmann equation is solved for the
above model and the resistivity tensor is determined.
In Sec. IV the results of the above calculation are
analyzed for various cases which may be of physical
interest.

O. SmTTEM. Ne MaDEL

We consider a nearly-free-electron metal with a bcc
lattice and a spherical Fermi surface lying entirely
within the 6rst Brillouin zone (Fig. 1).We assume that
the one-electron wave function

lpga

for a wave vector k
lying on the Fermi stlrface (jk~ =kx) may be written
as a linear combination of the two plane waves

~
k) and

~
k—K;), where

~k)=Q-'ls exp(ik x). (2 1)

Ps ——u, (k) ~k)+as(k) ~k —K;). (2.2)

The proper K; to be insexted into Eq. (2.2) is the one
which minimizes k K;.

One consequence of the plane-wave mixing given by
by Eq. (2.2) is illustrated by the calculation of the
matrix element Qa ~

Villa), where V is a perturbing
potential to the otherwise perfect crystal lattice. The

'o For a more complete discussion of this approximation see
J. G. Collins, Proc. Roy. Soc. (London) A263, 531 (1961).

Here 0 is the volume of the crystal and K; is one of the
12 reciprocal lattice vectors whose normal planes deGne

the Grst Brillouin zone of the bcc lattice. ' Thus the
wave function for the state k assumes the form
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Pro. 2. A typical large-angle
scatterin event (1r -+ —k) for
a small &l( dne to plane-wave
mixing.

use of (2.2) for ga and Pa yields, in the case k'= —k,

&P-. l
VIA)=~ *(—k)o (k)V.

+[as*(—k)ut(k)+ as(k) u,*(—k)]VK —sa

+os(k)os (—k) V»K;—sa, (2 3)

where we set V»=(k+q~ V[k) and we have assumed

that V» is a function of ~q~ only. Equation (2.3) shows

that even if V~=0 for large angle scattering, i.e., for

~q~ larger than some qs, we can still get large-angle

scattering (umklapp scattering) if
~
K;—2k

~

& qs. Thus a
potential whose V» is sharply peaked at ~q~ =0 and

which would normally give rise only to small-angle

scattering (i.e., &fs«2k') produces large-angle scattering
as a result of the plane-wave mixing given by (2.2). One

such scattering process is illustrated in Fig. 2.
Since ~as(k)( would normally decrease as (k K;(

decreases, we will, as a Grst approximation, neglect the
effects of wave-function mixing except when k is nearly
antiparallel to some K;. We can then include phenome-

nologically the possibility of large-angle scattering by
assuming that for a solid angle 00 about all the I s we

can get large-angle scattering. We shall call these
angular regions hot spots Outside .of these hot-spot
regions we assume that ~as(k)~ can be considered

negligible and as a consequence V gives rise only to
small-angle scattering (Fig. 1). Eventually we must
allow for the possibility that j us(k)

~
is large enough to

generate large-angle scattering over most of the Fermi
surface; this is accomplished by letting 00 increase. In
all cases, regardless of the size of

~
as(k) ~, we retain the

spherical Fermi surface as a computational con-
venience. "It is important to notice that the hot-spot
scattering as described above occurs only between two
hot spots. Such scattering has a well-defined directional
character which must be explicitly included in the
calculation of the resistivity tensor.

In order to determine the scattering properties of
these hot spots the following classical two-channel
problem may be considered. We assume that there are
two channels, A and 8 and a variable q which specifies
the position along the channels. On each channel we

specify a function S(cpA, »&B)=S(&pB,&pA) such that
S(»&A, &pB)d»&A is the probability per unit time that a
particle at p~ will be scattered into the range between

cpA and &pA+d&pA. For convenience we assume that
S(cpA, )pB) is nonzero only in the region 0& &pA, &pB&h,
and we neglect any intrachannel scattering.

~ It is well known from energy-band calculations for the alkali
metals that in spite of the mixing of plane waves the Fermi
surface remains spherical for potassium. See, e.g., F. S. Ham,
Phys. Rev. 128, 82 (1962).

The problem may then be stated as follows: If a.

particle enters channel A at time t= 0, we must find the
probability that the particle is in channel A at t= .
If we let UA(»(cpA(B), t)d)pA(B) be the probability that
the particle will be in channel A (B) between &pA&B) and

»&A(B)+d&pA(B) at time t, and o&.= dcpA/dt= dcpB/dt be the
drift velocity of the particle on either channel, then the
following system of integro-differential equations is
obtained (for derivation see Appendix):

BUg BUg
+ UA d)pBS (cpB cpA)

a~& at

+ d)pBUB()pB&t)S(cpA)'PB) & (2 4)

BUg BUg
o&c +

a~& at
UB dcpAS()pA&)pB)

0

+ dcpAUA(cpA, t)S(cpB,)pA). (2.5)

P=o), UA(h, t)dk (2.7)

UB(h, t)dt=1 P, —(2.8)

where Q is the probability that the particle will emerge
in the opposite channel.

The solution of (2.4) and (2.5) for P and Q for any
separable scattering function S(&p,q') =s(q)s(y') is
given in the Appendix. The result for the case s(&p)
=C'&s(0&&p&h), where C is a constant, is given by

1 e '&"c & ', o)cV'(1 e— '&"c &—))-—
P= 1+ —

i; (2.9)
2 1—-', o&, V'(1 —e—'&" &)

Q= 1 P, and we have s—et 9" '=CA'. A graph of P and

Q versus o&, V' is shown in Fig. 3. The above formula is
discussed in more detail in the appendix. For our present
purposes it is only necessary to use the two limiting
expressions for P and Q when &0,W)1 and o&,9"«1.When
o&, I&)1, we have P=1 (o&,V') ' and Q=(o),9") '; —when
o),V'«1, we can set P=Q=-,'.The f&rst limit corresponds
to the case where there is a very small probability of
transfer between channels A and 8 as the particle
passes through the scattering region; the second limit
occurs when the particle is scattered many times

Equations (2.4) and (2.5) are to be solved with the
boundary conditions

UA()pA&0) =&(q A) & UB(cpB&0)=0, (2.6)

where &)(z) is the Dirac &) function. Letting P be the
probability that a particle will emerge in the incident
channel, we have
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Fro. 3. Variation of 2' and (l as a function of ro, V' for e(y) =C'I'.

between channels A and 8 as it passes through the
scattering region. The above asymptotic forms for I'
and Q are used in Sec. III to obtain a simple physical
interpretation of the magnetoresistance of our model. scattering takes pic|:between the ith and —zth hot spots.

IIL SOLUTION OF BOLTZMANN'S EQUATION

A. Relaxation Time Solution

In order to determine the CGccts of hot-spot scattering
on thc resistivity tensor we assume that the electron
distribution function f(k) satisfies the steady-state,
spatially homogeneous Soltzxnann equation, vrhich me
%'rite as

WIMrc Q(Ik —k I) is R small-angle isotl'opic scRttcl'Iiig
function and gs(k, k') accounts for the anisotropic
scattering of the hot spots. If wc approximate the CGect
f Pt(lk —k'I) by a relaxation time r, then (3.3)

bccomcs

Bg(k) g(k)
A 'u+oeg

1 df(k)-F =
I f(k') —f{k)jQ(k,k')dk'. (3.1) + Lg(k') —g(k) jets(k, k')dQ' (3.6)

In (3.1) F is the external force acting on the electrons,

If= hk= —IeII E+(v/c)XHj, (3.2)

and Q{k,k')dk' is the transition probability per unit
time that an electron with wave vector k will scatter to
a state whose wave vector lies between k' and k'+dlt. '.
Linearizing (3.1) in the electric field E and assuming
that only elastic scattering can occur yields"

8g{ )
A u+cv, -= Lg(k') —g(k) jg(k,k')dQ', (3.3)

Bp

where A=E/IEI, u=v/vr„co, = IeI IHI/ere*@, y is the
azimuthal Riiglc of k about H) Rnd $(k)k )dQ 1s thc
transition probability per unit time for an electron vnth
wave vector h to be scattered into a solid angle dQ'

about k'. The function g(k) in (3.3) is defined by

f(k)= fo+ IeI IEI I vl ( 8fo/8@)g(k) (—3 4)

where fs is the equilibrium Fermi distribution function.
At very low temperatures ( 8fo/88) =8($—81), where-
by is the Fermi energy. Hot-spot scattering is included
in (3.3) by assuming that g(k,k') has the form

g{k,k)=g, (Ik-k I)+g,{k,k), {3.5)

"J.M. Ziman, preacipfes of the Theory of So&fde (Cambridge
University Press, Cambridge, 1964), Chap. /.

Fol computational convenience we deform the boun-
daries of the hot-spot regions on the Fermi surface to
resemble squares (Fig. 4). Using these new boundaries,
we write Q(k,k') in the separable form

Qs(k, k') =& Q 1.(K;,k)L(K;, k'), (3."/)
6

where K;=—K; (Fig. 3). In (3.'I), L(K;,k) = 1 if k lies
within the solid angle Qo about K; and 0 if k lies outside
Qo. 8 ls a posltlvc arbitrary constant.

The solution of (3.6) using (3.'I) assumes the following
forms in thc dlGcreIlt l'cglons of thc FCDQi sulfacc
shown in Fig. 4. For k lying outside of the hot-spotbands

rfMgrA o
—A ~j

g(k) =g, (k) = sin8 cosy
1+(oe,r)s

r fc0grA ~+A ej
sin8 siny —rA, cos8, (3.g)

1+((o,r)s

for k lying in the hot-spot bands but not in a hot spot

g(k) =g, (k)+C;;(8) exp( —y/ro, r), (3.9)

and for k lying in the ith hot spot we have

g{k, )= '&G-'+g.*(k)+C (8) m( —y/ ~ ') (3 10)
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P..5

0.5

F&G. 5. The Fermi surface and Srillouin zone of a s.c. metal.
The anisotropic part of the electron scattering function is a
maximum for k parallel and antiparalleI to the h s.

G;= g(k, i)dQ, .
Oo

The unknown functions C;(8) and C;;(8) together with
the unknown constants G; are determined by deInanding
that g(k) be continuous and periodic in p.

Using the above solution for g(k) we determine the
rcslstlvlty tcDsoI' from tl1c cxpIcssloD

e=(o) '
—300 I (k)gp(k)dQ (a, P=s, y, s), (3.12)

where ge(k) is the solution of (3.6) when the electric
field is in the P direction and ls is the number density of
conductloD clcctI'ODs.

Thc parameters 8, Qo, and v. introduced in the above
calculation are easily Ielated to experimental data. If
ere mite the zero-magnetic-6eld dc resistivity as

0
0 25 50 75 l00 l25 150 t75

fgJc Teff

FIG. f. The average transverse magnetoresistance as a function of
ao.r,u for Hii(00ij. The parameter r=r.lan=I.4&(10» sec.

then in the case where Qo&&1 it can be shown that
v =r pt,. If, on the other hand, Qo is not much less
than j., we can calculate an CGective relaxation time
terr (B,Qe, v) wlllch gives 'tllc pl'opcl 'tllcol'c'tlcal 1'csls'tlvlty

and a relationship among 8, Qo, and 7. is determined by
rcqulrlng that

&eff (fliQsi&) = riant '

ID lntcrplctlng thc lcsults glvcIl ln Scc. IV lt ls to bc
understood that 8, Qo, and v are always related to the
zero-6cld I'csls'tlvl'ty by 11Malls of (3.14).

B. Exact Solution for Large Solid Angle

Wc expect that as Qo increases the approximation of
replacing gl(~ k—k'

~ ) by a form involving a relaxation
time tends to lose much of its validity. That this is
true is seen from the fact that as Qo increases, so does
the possibility that an electron whose k vector lies out-
side a hot-spot region may be scattered into a hot-spot
region. Thus although gl((k —k'~) is assumed to give
rise only to small-angle scattering, it can cause con-
siderable scattering from regions outside the hot spots
to lcglons lnslde thc hot spots and 't11us gcDcI'atc large"
angle scattering as Qo increases. It is just such two-
region scattering that is ignored in the relaxation tinM

p, t, (H=O) =me/Neer, s, (3.13)

P..O

~)12

QO

0
0 50 90 . 120

O~

150 0 I.
0 25 50 75 F00 F25 )50 n5

c eff
Fto. 6. The anisotropic component of the electron scattering

function used in the calculation of the magnetoresistsnce by the Flo. 8. The average transverse msgnetoresistsnce for H(jL110$.
method oi JS. The parameter ~= v&ff =1.4X10 jo sec,
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Q.5

I.2x IQ

Q

Sx l0

I I I I I

0 25 50 75 IOO I25 l50 I75

&c &err

Fre. 9. The average transvers~e magnetoresistance for HII 111$.
The parameter v =v,ff=1.4&(10 '0 sec.

approximation, and the neglect of such scattering could
easily affect the quantitative Rnd even the qualitative
behavior of the magnetoresistance tensor.

In order to determine just how critical the relaxation-
time approximation is to the behavior of the resistivity
tensor we have used the method of JS to obtain an
exact solution of the Boltzmann equation when wc have
large anisotropic scattering regions. It is sufhcient for
our purposes to consider a metal. with cubic synlmctry
and a minimum number of hot-spot regions. For this
reason wc assume that we have a spherical Fermi
surface enclosed by a simple-cubic (s.c.) Brillouin zone
(Fig. 5). Although this model does not correspond to
our previous one, its resemblance is close enough so
thRt Rny qualltatlvc difference ln thc magnctoreslstancc
obtained with the relaxation-time approximation will
be evident upon comparison with the exact results
obtained with our simpler model. We begin the calcu-
lation by rewriting (2.2) of JS in the form

Bgy
+gt(k) go(k', k)df)'

Bp

= —u A+ Qt(k', k)gt(k')dQ', (3.15)

I i I I I I

0 I 2 5 4 5 6
~c ~elf

FIG, 11. The average transverse magnetoresistance for a s.c.
metal as determined by the method of JS.For curve I the isotropic
part of the electron scattering function is zero. For curve II the iso-
tropic part of the scattering function is given by 400(1+%.h'/kg~).
For both curves the anisotropic part of the scattering function is
that shown in Fig. 6.

by (3.4) and the following notation has been used:

gt(k) = sLg(k) —g(—k)],
go(k,k') = —,'Lg(k, k')+ si(k, —k')],

/ $ / /

We choose the following form for g(k,k'):

Q(k, k') =&o(
~
k—k'

~ )+ +(&;(k')&,(—k)

+P;(k)P;(—k')), (3.1/)

Po(ik —k'j) =P;L (k) (k')]', (3 18)
2m

P;(k) =P d;Ln(k) .n(k~)]', (3.19)

n(k) is the unit vector in the k direction, k; s= 1, 2, 3 are
here the solution of the Boltzmann equation ls given the vectors shown ln Flg 5 Rnd the c 's are constants.

The angular variation of Eo(~k—k ~) is shown in Fig. 6

0.2
I.02

I.OI," 0 I "IO ~ 8 IIIIO

0

Fro. 10. The average transverse tnagnetoresistance for H~IL111j
a„d g,= p, g=yyj. 09, &=Iy)0-9, and &.«——1.4&j.0-~' sec.
The behavior is typical for 8 in the other two symmetry directions.

I.O I I I

0 25 50 75 IOO I 25 l50 l75

c &est

Fro. 12.The variation of E= (n.+nq)/(n, ns) for HALO—01j.The
behavior is similar for 8 in the other symmetry directions.
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FIG. 13. Projection onto the k k„
plane of the electron orbits which pass
through hot spots. For H

~
$001) orbits

of type b occur, for H~~)110) orbits of
types s aud b occur, for HJ(L111$
orbits of type c occur, and for H in
a nonsymmetry direction orbits of
types a and d can occur. The hot spots
are indicated by dots.

ilk

for a particular set of c s. This set is chosen so as to
generate the most sharply peaked function of the form
(3.18). These same values can be taken for the d s to
obtain the greatest possible anisotropy in g(k, k'). The
importance of minimizing the number of hot-spot
regions is evident from Fig. 6 since the fewer hot spots
the less overlap there is between the functions E;(k)
centered at different k;. The exact solution of (3.15)
using (3.17)—(3.19) is obtained by the method described
in Sec. II of JS. The results of this calculation as well

as those obtained using the relaxation-time approxima-
tion are discussed in Sec. IV.

In Figs. 7—9 we show the results obtained for the
transverse magnetoresistance of our bcc model as a
function of ~,v, fq for various orientations of H. Figure
10 displays thc results for the same model in the case of
large Qo. Figure II shows the results obtained for the
simple cubic model using the method of JS and the
scattering functions (3.18) and (3.19). In all these
Ggurcs the value of the ordinate is given by.

~~ sG -(H)+p.s(H) j p(0)—

Po p(0)
(4.1)

In Fig. 12 we show the behavior of the Hall coeScicnt
for the case H parallel to the L001) direction. For this
curve the ordinate S is given by

L
—p"(8)p"(H)j'"

p(0)&crsn
(4.2)

which is proportional to the magnitude of the Hall
"constant" K

The most important result of this calculation is the
linear magnetoresistance shown in Figs. 7-9.The physi-
cal origin of this CGcct can be seen by considering the
following simple model. We assume that for Oo«1 we
can neglect the dynamics of the electrons inside the hot
spots Rnd use instead the approximation that an electron
has a probability I' of passing undisturbed through the
hot spot and a probability Q of suffering umklapp
scattering and emerging from the hot spot on the oppo-
site side of the Fermi surface. The probabilities I' and

Q are magnetic-Geld dependent (see Appendix). Because
wc RI'c conccrncd only with R quRlltRtlvc cxplRnRtlon
of the transverse magnctorcsistance, we make the ap-

proximation that we can neglect the change of the k,
component of k due to hot-spot scattering and. that the
resultant planar scattering in the k,k„plane may be
approximated by the two-dimensional models shown in

Fig. 13.The conductivity tensor for a group of electrons
w'1th hot-spot locations Rs shown fol Distance ln Flg.
13(b) is easily calculated by the method of Falicov and
Sievert, "Assuming that a fraction ql of the electrons
have hot-spot orbits, wc then add the conductivity
tensor of the fraction 1—g~ of electrons which experience
only a relaxation time scattering over their orbits. The
resulting two-dimensional conductivity tensor for large
values of co,v is given by

+= u'norm+ trhot spot

P(1+rftX)/(o, r)s —(1+Yet)/s&, r
(4.3)

i (1+Yet)/u), r (1+titX)/(to, r)s
where

4~el-. I
2QLI'-(1+e)3

X= and F=
~(&'+Q') ~(&'+Q')

If we assume that although ~,v&)1 we still have
P=-'„Q=-,' and invert (4.3), we then get

hp/p p o:Qs'Isos, r

Equation (4.4) not only yields a linear transverse
magnetoresistance but it also predicts that the slope
should vary as Qo'I' when Qo«1. This is very dose to
the dependence found in Figs. 7-9. Using the above
model as a guide we can divide the range of magnetic
Geld strengths into three regions as follows: Region I is
given by 0&co.v & j.. In this region there is little chance
that an electron will be able to traverse the distance
separating two successive hot spots without Grst being
scattered back into the equilibrium Fermi sea. Thus, the
cGect of the hot spots is neghgiblc, and the transverse
magnetoresistance increases as I 8 I

'. Region 2 occurs
when os,r))1 while E=Q= ss. For this range of magnetic
Gclds the electron is able to pass through many hot
spots before being scattered into thc equilibrium Fermi
sea. In this region we obtain the linear behavior given
by (4.4). Region 3 occurs when o«,r))1, and P ap-
proaches 1 while Q approaches 0. For this range of
magnetic 6cld we call sct

Q=1—P=(os, r) ',
~ L. M. Falicov and P. R. Sievert, Phvs. Rev. 138, 88 (1965).
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Rnd 6 18 R typical rRnge of the RzlnlUthRl Rngle p SUb-

tended by a hot spot. The insertion of these values into
(4.3) yields the saturation of hp/pe. The saturation
value is proportional to Qo~/re, where r* is given by
Eq. (3.11).The results shown in Figs. 7-9 agree remark-
ably well with the results obtained by the approximate
RDRlys18 given Rbovc. Thc transltlon bctwcc1l 1eg10Ds 2
and 3 can be estimated from the formula

ore(tI'allsltloll) V =4

if 80,v&&I.
A further test of the validity of the physical process

which gives rise to -the linear magnctoresistance can be
obtained by considering the behavior of the Hall
coeKcicnt Rs co,v increases. The above RDRly818 pledicts
that in region 2 the Hall cocKcient' would reach a
maximumsince /R/=(fN. nr, f

—(e[c) 'andthehot-spot
scRt'tcx'1Dg generates holc11kc orbits. From Flg. j.2 we
sce that this increase in E occurs in region 2 as predicted.
S1ncc 1Il thc intermediate I'cglons whc11 both hole Rnd

electron orbits are present, it is possible to obtain
extended orbits or, in the limit, open orbits, the con-
clusion reached from the above analysis is that these
holclike, extended, Rnd open orbits generated by the
hot-spot scattering are responsible for the linear
D1RgnC't01 C818'tRDCC.

TIlc Rnisot1opy of thc magnctoresistancc sho%'D 1n

Figs. '7-9 is due both to the change in the geoInetry of
the hot-spot orbits (Fig. 13) and the change in the
Dumber OI clcc'tx'GDS Underg01ng hot-spot scRtteI'1ng Rs

tlm d1rectlon of H ls varied. I'ol' H 111 a nonsyxllmetly
d11ectlon it 18 posslblc to obtR1n two d16crcnt types of
hot-spot conGgurations. One configuration is obtained
when H is directed so that at least one plane perpen-
dicular to 8 contains more than one hot spot. This
a1rangcmcnt of hot Spots CRD g1vc rise to extended
orbits, and we would expect a hncar magnetorcsistance
for these orientations of H. A second conhguration is
obtained when 8 is oriented so that no plane per-
pendicular to H contains more than one hot spot. In this
case it is impossible to obtain open orbits t Fig. 13(d)j,
Rnd we would expect. no linear magnetoresistance.

Finally we note that by letting the value of Qo

1ncI'ease up to values O.I wc CRD achieve values of
Dp/pe=30 for or.r,It=150. It is thus possible to obtain
a large variation. in the- slope Gf the Inagnetoresistance

by varying Qo.

Thc RbscIlcc of Rny 11ncRx' xQRgIlctoI'cslstancc Rt, high
6elds for Qo= elrr (Figs. 10 and 11) can also be qualita-
tively explained using the above model. Since the Eneax'

cGcct is due to the prcseIlce of extended and holeEke
orb1ts we may expect a 11near dcpcndcncc Rs long as
P=-,' and ()=-', . The results of Sec. II show that this
1IIlplles

(4 3)

6 is R typical angle that the electron passes thxough
when t1RvcI'sing R hot-spot rcg10D~ Rnd 8 18 R tr'RD81t1OD

pI'GbRb1llty pcx' Unit time pel unit solid Rnglc. Now' fox'

large hot spots we can take Qob, =i, so that (4.5)
becomes 8/co&&1. B ut when the hot s-pot region is large,
the hot-spot Scattcx'1ng dominates the rclRZRtlon time&

and we exp««ha«. tt '=»f &&1/«nd (4.5)
GDRBy becomes

(46)

It is clear that (4.6) cannot be satisied for or,r,tt»1
and that the linear cNcct disappears for large 00 as
shown in Pigs. 10 and j.j.,

These results dramatically illustrate the inadequacy
of Rny I'elRXRtlon time Rppro~atlon 'When UIDMapp
scattering is not negligible. It is also apparent that
8Uch Scatterlllg CRD cause slgn16canf, dcv1atlons froID
the high-Inagnetic-Geld behavior predicted by the LAK
theory.

The direct apphcabiEty of the above results to any
real metal is rather limited due to the ideal Inodel used
1D studylDg the pI'OblcID. PotassiuID, however, does
conform weB to the Inodel used in the calculation and,
as we have seen, does exhibit the CGect of linear mag-
netoresistancc at. high GeMs. The values that the
pRI'RIDctc18 8qQO) Rnd T must R88UIIlc 1D older" to Obtain
a slope similar to the experimental value (=10 ) are
8=5XIO'8, Qo= iglo 5, and v™-1.4&10 '0.

It is dificult to attach much physical signiGcancc to
such R small valve of Qq Rnd R large value of 8.However,
recent experiments by Habiskin23 show a saturation of
the transverse magnetoresistance of polycrystalline
potassium for magnetic 6eM strengths between 6 and
15 ko, whereas Penz 6nds no saturation for Geld

strengths RS large as 60 kG. The linear magnetore-
sistance at very high 6elds does not appear to be a bulk
pI'opcl ty of potassium. Thcsc 1csUlts tcDd to modify the
extreme values which Qo and 8 must assume to 6t
Penz's data, but the values are such as to make it
appear un11kely that hot-spot scattering 18 totally
responsible for the anomalous behavior of potassium.
There does exist, however, at least one possible mecha-
nism in potassium which can give rise to sharply
localized umklapp scattering and which Inay also be
expernllentRBy observable. It is well known~ that for
transverse phonons with wave vector tI in the L110)
direction thcI'c exists a Donirliun1 Dl the sound vcloclty.
PurthcrInore, the measurements of MacDonaM ef a&."
Show that the resistivity of potassium obeys a T~ law
for temperatures as high as 8'K. The T' dependence
indicates that the umklapp scattering due to phonons
is frozen out over most of the Fermi surface, However,
the velocity minimum in the L110j direction could

~ J. Babiskin (private communication).
'4 See e.g. , C. Kittel, Irrtrodtcctjon to SotNE State Physics (John

Wiley 8z Sons, Inc. , New York, j.966)„3rd ed., Chap. 4."B.K. C. MacDonald, G. K. ~te, and S. 3, Woods, Proc.
Roy. Soc. (London) A235, 358 (1956).



cause a sharp increase in the possibility of umklapp
scattering as the electron wave vector k approaches the

I 1101direction.
A much more detailed study of the scattering process

must be made before one can determine the quantitative
effects .of scattering by these low-velociy transverse
phonons, and the above discussion serves only to indi-
cate that the possibility of higMy localized umMapp
scattering does exist in, potassium. " We might also
mention that if phonon-generated uIIlklapp processes
are responsible for the Hncar magnctorcsistancc one
should observe a variation in the slope of the magneto-
resistance as a function of temperature. On the basis of
the above model one would expect that as T~ 0 the
c6'cct would disappear and as T increases from zero the
slope shoUld reach R mRximum Rnd then dlsRppcRI' Rs
2'-+ 0'o where OD is the Debye temperature for the
low-velocity transverse phonons.

Another metal where the above calculation may be
qualitatively applicable is aluminum. Although there is
Dcw cxpcllIDcQtRl cvldcncc ~ which sUggcsts thRt Inu. ch
of the anomalous behavior of the magnetorcsistancc of
RlUIIllnum ls duc to magnetic bI'cakdownq ' lt 18 pos"
sible that hot-spot scattering at the tips of the arms of
the second band hole sheet~ could enhance the anoma-
lous behavior of the magnctorcsistancc for field strengths

I
H

I
whe. e the mag etic bre»down probability i»mail.

FlDRlly, wc consldcl thc cRsc of cRdIQlum whcI'c
recent experiments by Gerritscn and KatyaP' indicate
thRt hot-spot scRttcl'lng plRys Rn lmpol taDt, 1olc ln
determining the sign of the HRB resistivity. These
experiments confirm that the sign of the Hall resistivity
(HIIL0001$) is negative for very low temperatures
(T=1.4'K, H=20 kG) while for higher temperatures
(T&4'K, H=20 kG) the Hail resistivity becomesposi-
tive. In addition, the temperature at which the HRB
resistivity becomes positive is found to increase as the
concentration of impurities is increased. This behavior
may be qualitatively explained by assuming that the
impurities generate hot-spot scattering between adja-
cent cusps on the "belly" of the second band hole
sheet. '2 Such scattering generates clcctronlikc orbits,
and thc HRB cocKcicnt is negative since the compensa-
tion between holes and electrons is thus destroyed. As
the temperature increases the increased phonon scatter-
ing" tends to diminish the effect of this hot-spot
scRttcllng Rnd coIQpcnsatloD ls restored. The geometry
of thc Fermi sUIfRCC then CRUscs thc Hall cocfBclcnt to

become positive. A more detailed calculation of the
above efkct is the subject of other papers. ~

The metals discussed above serve only to indicate a
few of the possibilities for the application of the present
theory. In cases where the geometry is simple (potas-
sium) it should be possible to obtain from experimental
results the values of the parameters 8, Qo, and r. In
cases of more complicated geometry (cadmium) the
cfkcts of hot-spot scattering may be determined by
localizing the scattering to a single point~ Rnd using the
method of Falicov and Sievert~ together with the
expressions for I' and Q (see Appendix) to determine
the resistivity tensor. In conclusion, it appears that
hot-spot scattering docs occUr ln Inctals Rnd in ordcl
to observe 1'ts 1QQUcncc on thc gRlvRnoIDRglMtlc plo"
perties one must perform experiments which emphasize
scattering and. minimize geometric CGects, which can
often swamp the scattering e8ects.

The author would like to thank Professor L. M.
Falicov for suggesting this problem Rnd for many
stimulating discussions. Thc author would also like to
thank Professor M. H. Cohen and Dr. P. A. Penz for
valuable discussions. The research bene6tcd from partial
8Uppolt of I'clRtcd solid-state theory by tlM NRtloDRl
AcronRUtlcs Rnd SpRcc AdInlnlstlRtloQ RDd gcncral
support of the James Franck Institute by the Advanced.
Research Projects Agency and the National Science
FOUndRtloIl.

APPENIHX

A. Derivation of Eqs. (2.4) and (2.5)

Kc bcgln by divldiQg time into sIQR11 Dlt, crvR18 8 Rnd
letting t„=nb. Assuming that the probability per unit
time of scattering a particle from yg, ;=~,t; to yg, ;
=co.i; is g(q~,;,q~„), we find that the probability of
scRttcllng OUt, of R state p~, q to RQy state pgg, y durlQg
the interval of time b is given by

(A1)

ThUS thc pl obablllty thRt during the tnnc intcrva1
t;+~—t; the particle will propagate to q ~,;+~ at time t;~1 ls

(A2)

"The presence of a charge density wave has also been proposed
as an explanation of the linear magnetoresistance of potassium by
J. R. Reitz and A. W. Overhauser„BuB. Am. Phys. Soc. 13, 42
(I968)."R.J. Balcombe (private communication)."N. %. Ashcroft, Phil. Mag. 8, 2055 (j.N3).

'9 V. G. Peschanskii, Zh. Eksperim, i Teor. Fiz. 52„j.342 (19g')
LEnglish transL: Soviet Phys. —JKTP 25, 872 (19e7)g.

'0 In aluminum such hot-spot scattering can also cause scattering. .
from the second band hole sheet to the third band electron sheet.

"A. N. Gerritsenand0. P. Katyal (private communication)."D, C. Tsui@nd R. %. Stark. , Phys. Rev. Letters 16, I9 (1966).

Simil. arly wc have for channel 8

3g O. P. Katyal, A. N. Gerritsen, J. Ruvalds, Richard A. Voung,
and L. M. Falicov, Phys. Rev. Letters 21, 694 (1968);Richard A.
Young, J. RuvaMs and L. M. Falicov (to be published)."In this approximation the parameters 8 and Oo no longer have
any physical significance, The only signi6cant parameter is V'

(see Appendix),
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(w Le z~gi (i/2wps) (e-@~ted e-s ~&a&)~i-i

S((p, (p') =s((p)s (p'),

I( )= s(V)~V,

(A16)

in agreement with Eq. (29).

P= (i/cu, ))N(a) —N(0)).

In the simplest case, where s(y)=C'Is, 0(q'(6, we
find using (Aii) that

i f
~-i(co'9 w cz'(i e-1/cuq ) lI'= /i+-

2E i—see, q"(i—e»"' ) I (Ai&)

= j—I

The fact that E&~& as eu, V' —& 0 can be explained as
follows. In the case where C-+ " (i.e., a&,V'~ 0) the
particle is uniformly scattered over a region of width
6 in channel 8 as soon as it enters the scattering region
at I,=0. During the next increment of time a fraction of
this uniform probability density Qows out of channel 8,
the remainder of the density being uniformly scattered
back into channel A. During the next increment of time
the same process described above occurs in channel A;
however, the amount of probability density that Qows

out; of channel A durIng this second Increment of tlIQC

is less than that which originally Qowed out of channel
8 an instant before. This same periodic process con-
tinues as f ~ . If we now subtract the probability
density exnerging in channel A from that emerging in
channel 8 in a pairwise fashion it is obvious that
Q—E&0, and thus that E(si as &o,9"~ 0.
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Elecb'on-Hole Recombination in Bismuth*
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We have measured the electron-hole recombination time rg in bismuth at temperatures from 2 to 50'K
for two single-crystal samples with residual resistivity ratios, pew'K/pe. s'u, of 260 and 560. Above ~6'I,
the value of rg is the same for both samples and decreases rapidly as the temperature increases from
~10 sec at 6'K. We postulate a model in which the absorption or emission of a single phonon provides
for momentum conservation in the recombination of electrons and holes. The data above ~6'K can be
Gtted with two phonons, one of energy (43+4)'K, the other (130+15)'K.We have determined, by group-
theoretical methods, the selection rules for the phonons involved, and have shown our data to be consistent
with them. At lower temperatures, r@ becomes a function of sample purity. Below ~3'K, the value of rg
was found to be temperature-independent for both samples and equal to 1.3&10 I and 2.5&10 8 sec,
respectively, the ratio of which equals the ratio of the residual resistivities. The results were obtained from
measurements of the acoustomagnetoelectric e8ect (AME) at frequencies ranging from 6 to 35 MHz, in
which high-frequency ultrasound sent longitudinally along. a sample in a transverse magnetic Geld generates
a dc electric Geld normal to both the magnetic Geld and the sound-propagation direction. The dependence of
the AME on frequency and on the magnitude and direction of the magnetic Geld was measured and compared
with the theory of Yamada. The temperature dependence of the ultrasonic attenuation coefBcient e was
also obtained. For T&20'K, the attenuation is mainly due to the interaction of the sound wave with
carriers via the deformation potential, which interaction also produces the AME. For large magnetic Gelds,
quantum oscillations similar to the de Haas-van Alphen effect are observed in both 0. and the AME voltage.
Electron periods in the trigonal plane are identiGed. Finally, a lower bound for the deformation potential
that describes the change of overlap of the electron and hole bands due to a trigonal compression is obtained:
(E E„i&1.5 eV. —

I. INTRODUCTION

HE crystal structure of bismuth, a group-V
semimetal, is a slight distortion from a simple-

cubic 8ravais lattice, with two atoms per unit cell.
The 10 electrons per unit cell would 611 the 6fth Bril-

*Submitted in partial fulGllment of the requirements for a
Ph.D. degree at the Swiss Federal Polytechnic Institute (ETH),
Zurich.

H. Jones Proc. Roy. Soc. (London) A147, 396 (1934).

louin zone were it not for a 0.036-CV overlap' with the
sixth zone produced by the distortion. The result is a
material which, Rt low temperatures, hRS
electrons/cc equally distributed among the geometric-

~ D. Weiner, Phys, Rev. 125, 1226 (1962); ¹ B.Srandt, T. F.
Dolgolenko, and N. N. Stupochenko, Zh. Eksperim. i Teor. Fix.
45, 1319 (1963) LEnglish transl. : Soviet Phys. —JETP 18, 908
(1964)g; G. E. Smith, G. A. Sarah', and I. M. Rowell, Phys. Rev.
135, A1118 (1964); L. Esaki and P, J. Stiles, Phys. Rev. Letters
14, 902 (1965); G. A. Williams, Ph . Rev. 139, A771 (1965);
R. N. Bhargava, ibid. 156, 785 (196'1 . See also Ref. 3.


