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The Boltzmann equation is used to investigate the influence of umklapp scattering on the galvano-
magnetic properties of a nearly-free-electron bcc metal with a spherical Fermi surface. A phenomenological
scattering function is used to describe the umklapp scattering. If the areas of the Fermi surface where
umklapp scattering occurs are very small and the scattering very intense, the transverse magnetoresistance
is found to increase linearly with the magnetic field to a saturation value. The linear variation can occur
up to values of w.r as large as 150, i.e., well into the high-magnetic-field region. The Hall “constant” is
also found to vary with the magnetic field strength. Application of the results to potassium, aluminum,

and cadmium is briefly discussed.

I INTRODUCTION

HE possibility of obtaining information about the
electronic structure of a metal from its galvano-
magnetic properties was first proposed theoretically in a
rigorous fashion by Lifshitz, Azbel, and Kaganov
(LAK).! The LAK theory was first applied to specific
physical situations by Lifshitz and Peschanskii? The
LAK theory, together with the work of Lifshitz and
Peschanskii, provided an interpretation for much of the
previously unexplained behavior of the magnetoresis-
tance of metals.®# The main feature of the LAK theory
is its emphasis in the geometry of k space and its dis-
regard of the exact nature of the scattering process.
The most significant results are summarized in Table I.
A further important result of the LAK theory is its
agreement with Kohler’s rule, which states that

Ap/p(0)=[p(H)—p(0)1/0(0)

is a function only of |H|[p(0)]™ However, the agree-
ment with Kohler’s rule is valid only if magnetic
breakdown® is not present and if the sole effect of a
change in temperature or purity of the sample may be
described by changing 7 to Az, where A is a constant and
7 is a relaxation time which can be used to describe the
scattering process.

In spite of the success of the LAK theory there
remains a number of metals (e.g., potassium, copper,
silver, and aluminum) whose galvanomagnetic pro-
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perties do not agree with those predicted by the LAK
theory.®4® In particular, recent experiments which
measure the transverse magnetoresistance of potas-
sium™?® indicate that the scattering mechanism can play
as important a role in determining the high-magnetic-
field behavior of the resistivity tensor as does the
geometry of the orbit in the LAK theory. Since the
Fermi surface of potassium!® may be considered to be
spherical to one part in 10%, the theory of LAK predicts
that the transverse magnetoresistance should saturate
at high magnetic fields. Also, since the Fermi surface is
contained within the first Brillouin zone there can be no
magnetic breakdown effects present. Penz®? finds that
the transverse magnetoresistance increases linearly with
magnetic field for values of w,r as large as 150, where
w, is the cyclotron frequency and r is a relaxation time
determined from the dc resistance of the single crystal.
The transverse magnetoresistance exhibits some corre-
lation with the orientation of the magnetic field relative
to the crystal axes and with the amount of stress
exerted on the sample.’! Finally, we note that these
results show a marked deviation from Kohler’s rule.

Further evidence of the influence of scattering on the
behavior of the galvanomagnetic properties has been
found in cadmium® and in aluminum.’- Both the
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TasLE I. Magnetic-field dependence of the galvanomagnetic
properties of metals in the high-field limit.

Transverse
Type of orbits and state magneto-  Transverse
of compensation resistance  Hall voltage
I. All closed orbits Saturates H/(n.—ns)

Uncompensated 7. ns
II. All closed orbits H? H
Compensated n.=n
III. Open in direction perpendicular
to H and making angle o with
current

H? cos’a H

experiments on aluminum and cadmium indicate that
Kohler’s rule is violated in the high-magnetic-field
region.

The variation of p.; with magnetic field strength
(H||[00017]) shows a most unusual behavior in the case
of cadmium. Since cadmium is a compensated metal it
is difficult to predict what the sign of the Hall resistivity
should be. One would expect, however, that in the high-
field limit the sign of the Hall coefficient would not
change as the temperature of a cadmium sample is
varied. The experimental results, however, indicate that
the sign of the Hall resistivity changes as the tempera-
ture of the sample increases from 2 to 4°K, the sign
being negative (electronlike) at 2°K and positive
(holelike) at 4°K. The existing theory of high-magnetic-
field galvanomagnetic properties (LAK with magnetic
breakdown) is incapable of explaining the unusual
behavior of the Hall resistivity in cadmium.

From the above examples it is obvious that a careful
study of the effect of scattering on the behavior of the
magnetoresistance is needed. Both Pippard®!” and Jones
and Sondheimer'® have considered the explicit depen-
dence of the magnetoresistance on the scattering of the
electrons. Neither of these papers, however, makes any
attempt to include the explicit effects of umklapp
scattering on the electrons.

In this paper we investigate the effects of umklapp
scattering on the behavior of the galvanomagnetic pro-
perties of a nearly-free-electron metal. The umklapp
scattering is treated by using a phenomenological
scattering function and explicitly including the effects
of such a scattering function in the solution of the
Boltzmann equation. Since our primary interest is in
the influence of scattering, we shall consider only a
single-sheet spherical Fermi surface (such a surface
shows no magnetoresistance in the relaxation time
approximation) which is close enough to the Brillouin
zone boundaries to allow an appreciable amount of wave-
function mixing for wave vectors k which are in the
immediate neighborhood of the zone faces. Such wave-
function mixing can give rise to umklapp scattering
which, under extreme conditions, can generate electron

17 A, B. Pippard, Proc. Roy. Soc. (London) A282, 464 (1964).
18 M. C. Jones and E. H. Sondheimer, Phys. Rev. 155, 567
(1967), hereafter referred to as JS.
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F16. 1. A spherical Fermi surface enclosed by the first Brillouin
zone of a bee lattice. The shaded regions indicate the areas of the
Fermi surface where large-angle (hot spot) scattering can occur.

trajectories in k space which closely resemble those that
would occur if magnetic breakdown were present. The
effect, however, as shown in Sec. II is opposite to that
of magnetic breakdown in the sense that it becomes less
pronounced as |H| increases. In Sec. IT we define the
model of the Fermi surface and the scattering function
of the electrons to be used in our calculation. In Sec. IT1
the linearized Boltzmann equation is solved for the
above model and the resistivity tensor is determined.
In Sec. IV the results of the above calculation are
analyzed for various cases which may be of physical
interest.

II. SCATTERING MODEL

We consider a nearly-free-electron metal with a bec
lattice and a spherical Fermi surface lying entirely
within the first Brillouin zone (Fig. 1). We assume that
the one-electron wave function Yy for a wave vector k
lying on the Fermi syrface (|k|=*%r) may be written
as a linear combination of the two plane waves |k) and
| k—K;), where

|k)=0"12 exp(ik-r). (2.1)

Here Q is the volume of the crystal and K; is one of the
12 reciprocal lattice vectors whose normal planes define
the first Brillouin zone of the bcc lattice.”® Thus the
wave function for the state k assumes the form

Y= a1(k) lkH”az(k) lk"‘Ki>-

The proper K; to be inserted into Eq. (2.2) is the one
which minimizes k- K;.

One consequence of the plane-wave mixing given by
by Eq. (2.2) is illustrated by the calculation of the
matrix element (Yi|V |¢x), where V is a perturbing
potential to the otherwise perfect crystal lattice. The

(2.2)

1 For a more complete discussion of this approximation see
J. G. Collins, Proc. Roy. Soc. (London) A263, 531 (1961).
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Fic. 2. A typical large-angle
scattering event (k — —k) for
a small [q| due to plane-wave
mixing.

[
N
use of (2.2) for Yx and Yy yields, in the case k'=—k,

<¢—k l |4 | ¢k>= ar* (“k)al (k) Vox
+[as*(—k)ai(k)+ax(k)a*(— k) ]V k2
+a, (k)az* ( - k) V2K,~—2k s

(2.3)

where we set Vy=(k+q|V|k) and we have assumed
that ¥ is a function of |q| only. Equation (2.3) shows
that even if V,=0 for large angle scattering, i.e., for
|q| larger than some go, we can still get large-angle
scattering (umklapp scattering) if | K;—2k| < go. Thus a
potential whose V, is sharply peaked at |q| =0 and
which would normally give rise only to small-angle
scattering (i.e., oK 2k r) produces large-angle scattering
as a result of the plane-wave mixing given by (2.2). One
such scattering process is illustrated in Fig. 2.

Since |as(k)| would normally decrease as |k-Ki
decreases, we will, as a first approximation, neglect the
effects of wave-function mixing except when k is nearly
antiparallel to some K;. We can then include phenome-
nologically the possibility of large-angle scattering by
assuming that for a solid angle Qo about all the K’s we
can get large-angle scattering. We shall call these
angular regions kot spots. Outside of these hot-spot
regions we assume that |ay(k)| can be considered
negligible and as a consequence V gives rise only to
small-angle scattering (Fig. 1). Eventually we must
allow for the possibility that |e.(k)| is large enough to
generate large-angle scattering over most of the Fermi
surface; this is accomplished by letting Qo increase. In
all cases, regardless of the size of |a.(k)|, we retain the
spherical Fermi surface as a computational con-
venience.2? It is important to notice that the hot-spot
scattering as described above occurs only between two
hot spots. Such scattering has a well-defined directional
character which must be explicitly included in the
calculation of the resistivity tensor.

In order to determine the scattering properties of
these hot spots the following classical two-channel
problem may be considered. We assume that there are
two channels, 4 and B and a variable ¢ which specifies
the position along the channels. On each channel we
specify a function S(ea4,¢5)=S(¢ne4) such that
S(pa,08)dea is the probability per unit time that a
particle at ¢p will be scattered into the range between
o4 and ¢4+des. For convenience we assume that
S(¢4,08) is nonzero only in the region 0< ¢4, 0<A,
and we neglect any intrachannel scattering.

% 1t is well known from energy-band calculations for the alkali
metals that in spite of the mixing of plane waves the Fermi
surface remains spherical for potassium. See, e.g., F. S. Ham,
Phys. Rev. 128, 82 (1962).
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The problem may then be stated as follows: If a
particle enters channel 4 at time ¢=0, we must find the
probability that the particle is in channel 4 at = .
If we let U4 (y(0a(),t)dpacs) be the probability that
the particle will be in channel 4 (B) between ¢4(s) and
¢A(B)+d¢4(3) at time ¢ and w,= d(pA/dt= dgoB/dt be the
drift velocity of the particle on either channel, then the
following system of integro-differential equations is
obtained (for derivation see Appendix):

AU, 09Uy A
W +—=— UA/ deoS(¢B,04)
dpa Ot 0
A
+[ dopUp(eBt)S(ea,¢8), (2.4)
0
aUp dUp 4
we =_UB/ dpaS(pa,¢B) |
aqoB ot 0

A
+ / doaUsload)S(onpa). (25)

Equations (2.4) and (2.5) are to be solved with the
boundary conditions

Ua(ea0)=6(pa), Us(ez0)=0, (2.6)

where 8(x) is the Dirac & function. Letting P be the
probability that a particle will emerge in the incident
channel, we have

P=w, / ) Ua(An)dt 2.7)

and

0=w, / i Us(Af)dt=1—P, (2.8)

where Q is the probability that the particle will emerge
in the opposite channel.

The solution of (2.4) and (2.5) for P and Q for any
separable scattering function S(p,¢")=s(0)s(¢’) is
given in the Appendix. The result for the case s(¢)
=C'"?(0< < A), where C is a constant, is given by

1/ o T—Jo, 7 (1—e oo T)
P=-<1+ ); (2.9)
2 1—30, T (1—gtee T)

Q=1—P, and we have set T—'=CA? A graph of P and
Q versus w7 is shown in Fig. 3. The above formula is
discussed in more detail in the appendix. For our present
purposes it is only necessary to use the two limiting
expressions for P and Q when w.7>>1 and w,7<<1. When
w.T>1, we have P=~1— (w.7)™ and Q= (w,7)™!; when
w. 7K1, we can set P~(Q= 3. The first limit corresponds
to the case where there is a very small probability of
transfer between channels 4 and B as the particle
passes through the scattering region; the second limit
occurs when the particle is scattered many times



816

We T

F16. 3. Variation of P and Q as a function of w,T for s(p) =C2,

between channels 4 and B as it passes through the
scattering region. The above asymptotic forms for P
and Q are used in Sec. III to obtain a simple physical
interpretation of the magnetoresistance of our model.

III. SOLUTION OF BOLTZMANN’S EQUATION
A. Relaxation Time Solution

In order to determine the effects of hot-spot scattering
on the resistivity tensor we assume that the electron
distribution function f(k) satisfies the steady-state,
spatially homogeneous Boltzmann equation, which we
write as

—F L)— / [/t~ £ 100Kk, (3.1)

In (3.1) F is the external force acting on the electrons,
F= k= —|e|[E+ (v/c)XH], (3.2)

and Q(k,k’)dk’ is the transition probability per unit
time that an electron with wave vector k will scatter to
a state whose wave vector lies between k’ and k'+dk’.
Linearizing (3.1) in the electric field E and assuming
that only elastic scattering can occur yields®

dg(k
A-uto, i( ) / Le(k)—g (k) JQ(k k)", (3.3)

where A=E/|E|, u=v/vr, w.=|e||H|/m*c, ¢ is the
azimuthal angle of k about H, and 9(kk’)d®’ is the
transition probability per unit time for an electron with
wave vector k to be scattered into a solid angle 49’
about k’. The function g(k) in (3.3) is defined by

fU)=fot|el |E|[v](—0fo/08)s(k),  (3.4)

where fo is the equilibrium Fermi distribution function.
At very low temperatures (— 9 fo/ 98) =~ §(8— 8r), where
&g is the Fermi energy. Hot-spot scattering is included
in (3.3) by assuming that 9(k,k’) has the form

Qe k)= 2 ([k—k'|)+kk’), (3.5)

2 J. M. Ziman, Principles of the Theory of Solids (Cambridge
University Press, Cambndge, 1964), Chap. 7
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F16. 4. The geometry of the Fermi surface of H|[[111]. Hot-spot
scattering takes place between the 7th and —ith hot spots.

where 9:(|k—k’|) is a small-angle isotropic scattering
function and Q.(kk’) accounts for the anisotropic
scattering of the hot spots. If we approximate the effect

of 9:(lk—k’|) by a relaxation time 7, then (3.3)
becomes

ag(k)  g(k)
A-utw, =—

do T

+ f [e(k)—g ()12 (kK)d.  (3.6)

For computational convenience we deform the boun-
daries of the hot-spot regions on the Fermi surface to
resemble squares (Fig. 4). Using these new boundaries,
we write 92(k,k’) in the separable form

ukk)=B ¥ LEKWLK k), (3.7)

where K_;=—K; (Fig. 3). In (3.7), L(K;k)=1 if k lies
within the solid angle  about K; and 0 if k lies outside
Q. B is a positive arbitrary constant.

The solution of (3.6) using (3.7) assumes the following

forms in the different regions of the Fermi surface
shown in Fig. 4. For k lying outside of the hot-spot bands

[werd,— A4 2]

g(k)=g.(k)= sind cose
14 (w,7)?
rlwerd+4,]
———————sinf sing— 74, cosf, (3.8)
14 (wer)?
for k lying in the hot-spot bands but not in a hot spot
g(k)=g.(k)+Ci;8) exp(—¢/wcr), (3.9)
and for k lying in the sth hot spot we have
8(k,1)=1*BG_i+g.+(k)+C:i(6) exp(— ¢/wer*), (3.10)
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Fi16. 5. The Fermi surface and Brillouin zone of a s.c. metal.
The_anisotropic part of the electron scattering function is a
maximum for k parallel and antiparallel to the ky’s.

where
1/7*=1/7+BQ,,

Gim / ¢(k)d. (.11
o

The unknown functions C;(f) and C;;(0) together with
the unknown constants G; are determined by demanding
that g(k) be continuous and periodic in ¢.

Using the above solution for g(k) we determine the
resistivity tensor from the expression

0= (c)_l )
— 300
OaB= _[ u"(k)gﬂ(k)dﬂ (CY, B=x,3, Z) ) (3'12)
drr Jar :
ne*r
g0=—""",
m*

where gg(k) is the solution of (3.6) when the electric
field is in the B direction and # is the number density of
conduction electrons.

The parameters B, Qo, and 7 introduced in the above
calculation are easily related to experimental data. If
we write the zero-magnetic-field dc resistivity as

(3.13)

Pexpt (H = 0) = m*/ nez‘rexpt ’

0 30 60 90 120 150 180°
®

F16. 6. The anisotropic component of the electron scattering
function used in the calculation of the magnetoresistance by the
method of JS.

We Teff

Fi1c. 7. The average transverse magnetoresistance as a function of
worest for H||[0017]. The parameter 7= 7o1=1.4X 1071 sec.

then in the case where QX1 it can be shown that
T= Texpte 1f, on the other hand, € is not much less
than 1, we can calculate an effective relaxation time
et (B,Q0,7) which gives the proper theoretical resistivity
and a relationship among B, Qo, and 7 is determined by
requiring that

(3.14)

In interpreting the results given in Sec. IV it is to be
understood that B, Qo, and 7 are always related to the
zero-field resistivity by means of (3.14).

Teff (B,QO;T) = Texpt-

B. Exact Solution for Large Solid Angle

We expect that as Qo increases the approximation of
replacing 9:(|k—k’|) by a form involving a relaxation
time tends to lose much of its validity. That this is
true is seen from the fact that as Qo increases, so does
the possibility that an electron whose k vector lies out-
side a hot-spot region may be scattered into a hot-spot
region. Thus although 9:(|k—k’|) is assumed to give
rise only to small-angle scattering, it can cause con-
siderable scattering from regions outside the hot spots
to regions inside the hot spots and thus generate large-
angle scattering as Qo increases. It is just such two-
region scattering that is ignored in the relaxation time

2.5k
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2.0} ~
o
h
Q
Y
O 1.5 o g
t X ’\1~\0
] @ &
” 0 \
1.0 Q° ’\*\
Qo
05
ot 1xi0™" B=1x10”7
o ! 1 | { |

1 1
0 25 50 75 100 25 150 175
We Tets

F1c. 8. The average transverse magnetoresistance for H||[[1107.
The parameter 7~ retr=1.4X 1072 sec,
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F1. 9. The average transverse magnetoresistance for Hf[111].
The parameter 7= ress=1.4X 1071 sec.

approximation, and the neglect of such scattering could
easily affect the quantitative and even the qualitative
behavior of the magnetoresistance tensor.

In order to determine just how critical the relaxation-
time approximation is to the behavior of the resistivity
tensor we have used the method of JS to obtain an
exact solution of the Boltzmann equation when we have
large anisotropic scattering regions. It is sufficient for
our purposes to consider a metal with cubic symmetry
and a minimum number of hot-spot regions. For this
reason we assume that we have a spherical Fermi
surface enclosed by a simple-cubic (s.c.) Brillouin zone
(Fig. 5). Although this model does not correspond to
our previous one, its resemblance is close enough so
that any qualitative difference in the magnetoresistance
obtained with the relaxation-time approximation will
be evident upon comparison with the exact results
obtained with our simpler model. We begin the calcu-
lation by rewriting (2.2) of JS in the form

c')g1
We +g1(k)/ Qo(k’,k)dﬂl
dp
——uw At / Ak e, (3.15)

where the solution of the Boltzmann equation is given

We Teff

Fic. 10. The average transverse magnetoresistance for H|[[111]
and Q=~w/3, B=1X10% 7=1X10"% and resr=1.4X10"19 sec.
The behavior is typical for H in the other two symmetry directions.
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F1c. 11. The average transverse magnetoresistance for a s.c.
metal as determined by the method of JS. For curve I the isotropic
part of the electron scattering function is zero. For curve II the iso-
tropic part of the scattering function is given by 400(1-+k-k’/k#%).
For both curves the anisotropic part of the scattering function is
that shown in Fig. 6.

by (3.4) and the following notation has been used:
g1(k)=3{g(k)—g(—k)],

(k) =1[QMK)+20k—K)],  (3.16)
91l k') =3[ K) — 9(k, —K')].
We choose the following form for 9(k,k’):
@(k,k'>=z>o<|k—k'l>+§{Pi<k'>Pi<—k>
+PMOPA(—K)), (3.17)
where
P(,(lk—k'l)écftn(k)-n(k’)]f, (3 18)
PW=X dfa®) T, (.19)

n(k) is the unit vector in the k direction, k;i=1, 2, 3 are
the vectors shown in Fig. 5, and the ¢/’s are constants.
The angular variation of Po(|k—k’|) is shown in Fig. 6

1.03[
Q,-8x10°% B=5x10'"

1.02

Lol Qo= 1x107%, 8=1x10"®

Qo=1x107%,8=1x10"7

1.0 1 L 1 I 1
0O 25 50 75 100 125 150 175

‘We Teff

F16. 12. The variation of N= (n,+n1)/ (n.—ns) for H||[0017]. The
behavior is similar for H in the other symmetry directions.
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Fic. 13. Projection onto the k:ky
plane of the electron orbits which pass
through hot spots. For H||[001] orbits

of type b occur, for H||[[110] orbits of Ky

types a and b occur, for HJ|[111]
orbits of type c occur, and for H in
a nonsymmetry direction orbits of
types a and d can occur. The hot spots
are indicated by dots.

1!&

a

for a particular set of ¢;’s. This set is chosen so as to
generate the most sharply peaked function of the form
(3.18). These same values can be taken for the d;’s to
obtain the greatest possible anisotropy in 9(kk’). The
importance of minimizing the number of hot-spot
regions is evident from Fig. 6 since the fewer hot spots
the less overlap there is between the functions P;(k)
centered at different k;. The exact solution of (3.15)
using (3.17)-(3.19) is obtained by the method described
in Sec. II of JS. The results of this calculation as well
as those obtained using the relaxation-time approxima-
tion are discussed in Sec. IV.

IV. RESULTS AND DISCUSSION

In Figs. 7-9 we show the results obtained for the
transverse magnetoresistance of our bcc model as a
function of w,Tes for various orientations of H. Figure
10 displays the results for the same model in the case of
large Q. Figure 11 shows the results obtained for the
simple cubic model using the method of JS and the
scattering functions (3.18) and (3.19). In all these
figures the value of the ordinate is given by.

Ap_3lpex(H)+pu(H) 1= (0)
Po p(0) .

In Fig. 12 we show the behavior of the Hall coefficient
for the case H parallel to the [001] direction. For this
curve the ordinate N is given by

N [—pey (H)pya(H) 12
P (O)wa'reff

(4.1)

, (4.2)

which is proportional to the magnitude of the Hall
“constant” R.

The most important result of this calculation is the
linear magnetoresistance shown in Figs. 7-9. The physi-
cal origin of this effect can be seen by considering the
following simple model. We assume that for Qe<1 we
can neglect the dynamics of the electrons inside the hot
spots and use instead the approximation that an electron
has a probability P of passing undisturbed through the
hot spot and a probability Q of suffering umklapp
scattering and emerging from the hot spot on the oppo-
site side of the Fermi surface. The probabilities P and
Q are magnetic-field dependent (see Appendix). Because
we are concerned only with a qualitative explanation
of the transverse magnetoresistance, we make the ap-

b c d

proximation that we can neglect the change of the k.
component of k due to hot-spot scattering and that the
resultant planar scattering in the k,%k, plane may be
approximated by the two-dimensional models shown in
Fig. 13. The conductivity tensor for a group of electrons
with hot-spot locations as shown for instance in Fig.
13(b) is easily calculated by the method of Falicov and
Sievert.22 Assuming that a fraction #; of the electrons
have hot-spot orbits, we then add the conductivity
tensor of the fraction 1—7; of electrons which experience
only a relaxation time scattering over their orbits. The
resulting two-dimensional conductivity tensor for large
values of w.7 is given by

o= u'norm‘*‘ Ghot spot

_ ((1+mX)/(wc‘r)2 —(1+Ym)/wa7> )
N+Tn)for  Q+nX)/ (@)
where
Pl 2P~ (140]
(P (P

If we assume that although w,~>1 we still have
P=% Q=1 and invert (4.3), we then get

Ap/po o« QollzwcT . (4.4)

Equation (4.4) not only yields a linear transverse
magnetoresistance but it also predicts that the slope
should vary as Q!/2 when Q1. This is very close to
the dependence found in Figs. 7-9. Using the above
model as a guide we can divide the range of magnetic
field strengths into three regions as follows: Region 1 is
given by 0<w,r<1. In this region there is little chance
that an electron will be able to traverse the distance
separating two successive hot spots without first being
scattered back into the equilibrium Fermi sea. Thus, the
effect of the hot spots is negligible, and the transverse
magnetoresistance increases as |H|2. Region 2 occurs
when w,7>>1 while P~(Q=1}. For this range of magnetic
fields the electron is able to pass through many hot
spots before being scattered into the equilibrium Fermi
sea. In this region we obtain the linear behavior given
by (4.4). Region 3 occurs when w~>1, and P ap-
proaches 1 while Q approaches 0. For this range of
magnetic field we can set

Q=1-P=(w. 7)™,

2 1,. M. Falicov and P. R. Sievert, Phvs. Rev. 138, 88 (1965).
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where
T=1/BQA,

and A is a typical range of the azimuthal angle ¢ sub-
tended by a hot spot. The insertion of these values into
(4.3) yields the saturation of Ap/pe. The saturation
value is proportional to Qor/7*, where 7* is given by
Eq. (3.11). The results shown in Figs. 7-9 agree remark-
ably well with the results obtained by the approximate
analysis given above. The transition between regions 2
and 3 can be estimated from the formula

w.(transition) T~ 4
if BQ,>>1.

A further test of the validity of the physical process
which gives rise to the linear magnetoresistance can be
obtained by considering the behavior of the Hall
coefficient as w,7 increases. The above analysis predicts
that in region 2 the Hall coefficient’ would reach a
maximum since | R| = (|#.—n| |e|c)~* and the hot-spot
scattering generates holelike orbits. From Fig. 12 we
see that this increase in R occurs in region 2 as predicted.
Since in the intermediate regions, when both hole and
electron orbits are present, it is possible to obtain
extended orbits or, in the limit, open orbits, the con-
clusion reached from the above analysis is that these
holelike, extended, and open orbits generated by the
hot-spot scattering are responsible for the linear
magnetoresistance.

The anisotropy of the magnetoresistance shown in
Figs. 7-9 is due both to the change in the geometry of
the hot-spot orbits (Fig. 13) and the change in the
number of electrons undergoing hot-spot scattering as
the direction of H is varied. For H in a nonsymmetry
direction it is possible to obtain two different types of
hot-spot configurations. One configuration is obtained
when H is directed so that at least one plane perpen-
dicular to H contains more than one hot spot. This
arrangement of hot spots can give rise to extended
orbits, and we would expect a linear magnetoresistance
for these orientations of H. A second configuration is
obtained when H is oriented so that no plane per-
pendicular to H contains more than one hot spot. In this
case it is impossible to obtain open orbits [Fig. 13(d)],
and we would expect no linear magnetoresistance.

Finally we note that by letting the value of Qo
increase up to values =~0.1 we can achieve values of
Ap/po==30 for w,Tert~150. It is thus possible to obtain
a large variation in the slope of the magnetoresistance
by varying Qo.

The absence of any linear magnetoresistance at high
fields for Qo=~3r (Figs. 10 and 11) can also be qualita-
tively explained using the above model. Since the linear
effect is due to the presence of extended and holelike
orbits we may expect a linear dependence as long as
P=% and Q=~%. The results of Sec. II show that this
implies

QAB/w>1, (4.5)
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A is a typical angle that the electron passes through
when traversing a hot-spot region, and B is a transition
probability per unit time per unit solid angle. Now for
large hot spots we can take QoA=1, so that (4.5)
becomes B/w->1. But when the hot-spot region is large,
the hot-spot scattering dominates the relaxation time,
and we expect that ‘=B if B>1/7 and (4.5)
finally becomes

1/(dc7eff>>1 . (4.6)

It is clear that (4.6) cannot be satisfied for w,rese>1
and that the linear effect disappears for large Qo as
shown in Figs. 10 and 11.

These results dramatically illustrate the inadequacy
of any relaxation time approximation when umklapp
scattering is not negligible. It is also apparent that
such scattering can cause significant deviations from
the high-magnetic-field behavior predicted by the LAK
theory.

The direct applicability of the above results to any
real metal is rather limited due to the ideal model used
in studying the problem. Potassium, however, does
conform well to the model used in the calculation and,
as we have seen, does exhibit the effect of linear mag-
netoresistance at high fields. The values that the
parameters B,Qo, and 7 must assume in order to obtain
a slope similar to the experimental value (=~107%) are
B=5X10", Qy=1X1075 and 7=~1.4X107%,

- It is difficult to attach much physical significance to
such a small value of Qo and a large value of B. However,
recent experiments by Babiskin® show a saturation of
the transverse magnetoresistance of polycrystalline
potassium for magnetic field strengths between 6 and
15 kG, whereas Penz finds no saturation for field
strengths as large as 60 kG. The linear magnetore-
sistance at very high fields does not appear to be a bulk
property of potassium. These results tend to modify the
extreme values which @, and B must assume to fit
Penz’s data, but the values are such as to make it
appear unlikely that hot-spot scattering is totally
responsible for the anomalous behavior of potassium.
There does exist, however, at least one possible mecha-
nism in potassium which can give rise to sharply
localized umklapp scattering and which may also be
experimentally observable. It is well known? that for
transverse phonons with wave vector q in the [110]
direction there exists a minimum in the sound velocity.
Furthermore, the measurements of MacDonald ef al.?5
show that the resistivity of potassium obeys a T® law
for temperatures as high as 8°K. The 7' dependence
indicates that the umklapp scattering due to phonons
is frozen out over most of the Fermi surface. However,
the velocity minimum in the [110] direction could

2 J, Babiskin (private communication).

% See e.g., C. Kittel, Introduction to Solid State Physics (John
Wiley & Sons, Inc., New York, 1966), 3rd ed., Chap. 4.

2% D, K. C. MacDonald, G. K. White, and S. B. Woods, Proc.
Roy. Soc. (London) A235, 358 (1956).
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cause a sharp increase in the possibility of umklapp
scattering as the electron wave vector k approaches the
[110] direction.

A much more detailed study of the scattering process
must be made before one can determine the quantitative
effects of scattering by these low-velociy transverse
phonons, and the above discussion serves only to indi-
cate that the possibility of highly localized umklapp
scattering does exist in potassium.? We might also
mention that if phonon-generated umklapp processes
are responsible for ‘the linear magnetoresistance one
should observe a variation in the slope of the magneto-
resistance as a function of temperature. On the basis of
the above model one would expect that as 7'— 0 the
effect would disappear and as T increases from zero the
slope should reach a maximum and then disappear as
T — ©@p where Op is the Debye temperature for the
low-velocity transverse phonons.

Another metal where the above calculation may be
qualitatively applicable is aluminum. Although there is
new experimental evidence* which suggests that much
of the anomalous behavior of the magnetoresistance of
aluminum is due to magnetic breakdown,?% it is pos-
sible that hot-spot scattering at the tips of the arms of
the second band hole sheet® could enhance the anoma-
lousbehavior of the magnetoresistance for field strengths
| H| where the magnetic breakdown probability is small.

Finally, -we consider the case of cadmium where
recent experiments by Gerritsen and Katyal®® indicate
that hot-spot scattering plays an important role in
determining the sign of the Hall resistivity. These
experiments confirm that the sign of the Hall resistivity
(H||[0001]) is negative for very low temperatures
(T=14°K, H~20kG) while for higher temperatures
(T>4°K, H=~20 kG) the Hall resistivity becomes posi-
tive. In addition, the temperature at which the Hall
resistivity becomes positive is found to increase as the
concentration of impurities is increased. This behavior
may be qualitatively explained by assuming that the
impurities generate hot-spot scattering between adja-
cent cusps on the “belly” of the second band hole
sheet.® Such scattering generates electronlike orbits,
and the Hall coefficient is negative since the compensa-
tion between holes and electrons is thus destroyed. As
the temperature increases the increased phonon scatter-
ing? tends to diminish the effect of this hot-spot
scattering and compensation is restored. The geometry
of the Fermi surface then causes the Hall coefficient to

26 The presence of a charge density wave has also been proposed
as an explanation of the linear magnetoresistance of potassium by
{. R. )Reitz and A. W. Overhauser, Bull. Am. Phys. Soc. 13, 42

1968).

27 R. J. Balcombe (private communication).

28 N. W. Ashcroft, Phil. Mag. 8, 2055 (1963).

® V. G. Peschanskii, Zh. Eksperim. i Teor. Fiz. 52, 1312 (1967)
[English transl.: Soviet Phys.—JETP 25, 872 (19673].

% In aluminum such hot-spot scattering can also cause scattering.

from the second band hole sheet to the third band electron sheet.
3 A. N. Gerritsen and O. P. Katyal (private communication).
2D, C. Tsui and R. W. Stark, Phys. Rev. Letters 16,19 (1966).
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become positive. A more detailed calculation of the
above effect is the subject of other papers.®

The metals discussed above serve only to indicate a
few of the possibilities for the application of the present
theory. In cases where the geometry is simple (potas-
sium) it should be possible to obtain from experimental
results the values of the parameters B, Qy, and 7. In
cases of more complicated geometry (cadmium) the
effects of hot-spot scattering may be determined by
localizing the scattering to a single point® and using the
method of Falicov and Sievert® together with the
expressions for P and Q (see Appendix) to determine
the resistivity tensor. In conclusion, it appears that
hot-spot scattering does occur in metals and in order
to observe its influence on the galvanomagnetic pro-
perties one must perform experiments which emphasize
scattering and minimize geometric effects, which can
often swamp the scattering effects.
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APPENDIX
A. Derivation of Eqgs. (2.4) and (2.5)

We begin by dividing time into small intervals § and
letting ¢,=n6. Assuming that the probability per unit
time of scattering a particle from ¢4,i=wd; to op,;
=wcd; is 9(¢p.iea,;), we find that the probability of
scattering out of a state ¢4,; to any state ¢p,; during
the interval of time é is given by

2 9(en.j, 04,:)8.

[2:38)

(A1)

Thus the probability that during:the time interval
t;1—t; the particle will propagate to ¢4,:41 at time #;,1 is

Pai=1=3 Qes., ¢a.8. (A2)
¢B.j
Similarly we have for channel B
(A3)

Ppi=1—3% Q(¢a.j ¢5,:)8.

[2: %)

# 0, P. Katyal, A. N. Gerritsen, J. Ruvalds, Richard A. Young,
and L. M. Falicov, Phys. Rev. Letters 21, 694 (1968) ; Richard A.
Young, J. Ruvalds and L. M. Falicov (to be published). -

3 In this approximation the parameters B and Q¢ no longer have
any physical significance. The only significant parameter is 7’
(see Appendix).
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If we now let W(pu,t) be the probability that the
particle will be between p4and p4+Aps(Aps=wb)ata
time between ¢ and {44, the following equations must
be satisfied by W(pa4,t) and W (eg,t):

W (pa,ki, tiv) =W (eakli)Pasi
+ 2 W(es,:t)2(0a,k41,05.5)9,

B,

(A4)
W (s, ki1tir) =W (08,1,l:) P,
+ 2 W4 it)2(0B,k+1,045)8.
od.i
We now let
Wleaerntir)=Uloarntin)de, (A5)

W (e kr1tir) =U(ep,pn,tir) AP,

Inserting (A2), (A3), and (AS) into (A4), setting
Ulpaprrtir)— U(oa,mti)= (08U 4/d¢)Ap+ (9U 4/81)3,
and taking the limit as § — 0, yields

Uy oUy4

WA ——=—=Us 3 90z j04)
4 ¢ o8

+ 2 Us(es,it)2(e4a,e8.:),

¢B.j
(A6)
oUg dUpg

+——=—Usr 2 9(¢4.;,¢8)
don ot PA

+ 2 Ualea,it)2(¢n,04,5)-

QAL

Finally, we insert Q(¢',¢)=S((p’,<p)d<p'. in (A6). The
resulting equations are identical to (2.4) and (2.5).

We

B. Derivation of Eq. (2.9)
We add and subtract Eqgs. (2.4) and (2.5) to get

BW oW

—W/ do'S(¢',0)

arp
A
+ / de'W (¢'1)S(e,¢"), (AT)
. ,
aw dw A
—_—= f ng/S(ﬂa,,(P)
ago ot 0 ‘

A

- / dow(e')S(ee), (A8)
0

where we have set
W(ﬁ";t) Us (907t)+ UB(?’J), w= UA(ﬁ”J) Usp (QO,t)

and we have dropped the indices 4 and’ B on the.
variable ¢. Eq. (2.7) and (2.8) show that we need not

solve (A7) and (A8) directly for W and w but we can

integrate (A7) and (A8) over all time and solve the
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resulting equations in order to determine P and Q. This
integration yields
wcd¥/do+{W (¢, )—W (¢,0)}

A

—v / do'S(¢ o)+ / do'S(p,0)¥(¢), (A9)

wcdr/d¢+ {‘ZU(Q&, ®© )—W((p,())}

A
-r f do'S (s 0)— / d¢'S(o0)T(e"), (A10)
0 0
where we have set

¥(p)= / W (o),

I(p)= [ w(e)dl.

Using these definitions the expressions for P and Q are
given by
P=%wc[‘I’(A)+I‘(A)] ’
Q=3w[¥(A)-T(4)].

Since the particle must get through the channel as
I— o we can set W(p,o)=w(p,0)=0; also the
boundary conditions (2.6) imply W(e,0)=w(e,0)
=§(®). Since the particle enters channel 4 at {=0, the
boundary conditions on ¥ and I are

(A11)

¥ (0)=1/w,,
0)=1/w (A12)
T'0)=1/w,;
thus we must solve the following equations:
A
do
A A
=¥ [ deSigort [ deStoere), (319
0 0
ar
wc——6(¢’)
de

A

——r [ d¢'S(¢/,0)— f d'S(o,0 )T (), (A1)

subject to the boundary conditions (A12). These
equations are readily solved by standard techniques
when S (¢,0) is separable [i.e., S(¢’,0)=s5(¢’)s(0)].
The solution of (A13) for any scattering function is a
step function of height 1/w.; the step occurs at ¢=0.
The solution of (A14) for any separable scattering
function is given by

I'(¢)=D{e T — (1/ 20 F)[ ¢ T —eTu® ]}, (A15)
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D={w[e O — (1/2wF?) (e FvO— ¢ Fu®) -1,
(A16)
S(e,e)=s(o)s(¢"),

u(¢)=/ s(e)de,

and

F=(1/wo)[u(A)—u(0)].

In the simplest case, where s(p)=C2, 0< <A, we
find using (A11) that

1 e HoeT 10, T'(1—¢ 1w T)
P=—(1+ )

2 1—Lw, T (1—e Lo T) (A17)
Q= 1-p ’

in agreement with Eq. (29).
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The fact that P<} as w,7— 0 can be explained as
follows. In the case where C— o« (i.e., w,T— 0) the
particle is uniformly scattered over a region of width
A in channel B as soon as it enters the scattering region
at t=0. During the next increment of time a fraction of
this uniform probability density flows out of channel B,
the remainder of the density being uniformly scattered
back into channel 4. During the next increment of time
the same process described above occurs in channel 4;
however, the amount of probability density that flows
out of channel 4 during this second increment of time
is less than that which originally flowed out of channel
B an instant before. This same periodic process con-
tinues as {— . If we now subtract the probability
density emerging in channel 4 from that emerging in
channel B in a pairwise fashion it is obvious that
Q—P>0, and thus that P<3% as w7 — 0.
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Electron-Hole Recombination in Bismuth*
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We have measured the electron-hole recombination time 7z in bismuth at temperatures from 2 to 50°K
for two single-crystal samples with residual resistivity ratios, psso°x/ps.2°x, of 260 and 560. Above ~6°K,
the value of 7x is the same for both samples and decreases rapidly as the temperature increases from
~1078 sec at 6°K. We postulate a model in which the absorption or emission of a single phonon provides
for momentum conservation in the recombination of electrons and holes. The data above ~6°K can be
fitted with two phonons, one of energy (434-4)°K, the other (1304-15)°K. We have determined, by group-
theoretical methods, the selection rules for the phonons involved, and have shown our data to be consistent
with them. At lower temperatures, 7z becomes a function of sample purity. Below ~3°K, the value of 7r
was found to be temperature-independent for both samples and equal to 1.3X1078 and 2.5)X107® sec,
respectively, the ratio of which equals the ratio of the residual resistivities. The results were obtained from
measurements of the acoustomagnetoelectric effect (AME) at frequencies ranging from 6 to 35 MHz, in
which high-frequency ultrasound sent longitudinally along a sample in a transverse magnetic field generates
a dc electric field normal to both the magnetic field and the sound-propagation direction. The dependence of
the AME on frequency and on the magnitude and direction of the magnetic field was measured and compared
with the theory of Yamada. The temperature dependence of the ultrasonic attenuation coefficient o was
also obtained. For T<20°K, the attenuation is mainly due to the interaction of the sound wave with
carriers via the deformation potential, which interaction also produces the AME. For large magnetic fields,
quantum oscillations similar to the de Haas—van Alphen effect are observed in both @ and the AME voltage.
Electron periods in the trigonal plane are identified. Finally, a lower bound for the deformation potential
that describes the change of overlap of the electron and hole bands due to a trigonal compression is obtained :
|En—Ep| 21.5€V.
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I. INTRODUCTION

HE crystal structure of bismuth, a group-V
semimetal, is a slight distortion from a simple-

cubic Bravais lattice, with two atoms per unit cell.!
The 10 electrons per unit cell would fill the fifth Bril-

* Submitted in Eartial fulfillment of the requirements for a
%’hDh degree at the Swiss Federal Polytechnic Institute (ETH),
urich.

1 H. Jones, Proc. Roy. Soc. (London) Al47, 396 (1934).

louin zone were it not for a 0.036-eV overlap? with the
sixth zone produced by the distortion. The result is a
material which, at low temperatures, has 3X10Y7
electrons/cc equally distributed among the geometric-

2 D. Weiner, Phys. Rev. 125, 1226 (1962); N. B. Brandt, T. F.
Dolgolenko, and N. N. Stupochenko, Zh. Eksperim. i Teor. Fiz.
45, 1319 (1963) [English transl.: Soviet Phys.—JETP 18, 908
(1964)]; G. E. Smith, G. A. Baraff, and I. M. Rowell, Phys. Rev.
135, A1118 (1964) ; L. Esaki and P. J. Stiles, Phys. Rev. Letters
14, 902 (1965); G. A. Williams, Phys. Rev, 139, A771 (1965);
R. N. Bhargava, sbid. 156, 785 (1967). See also Ref. 3.



