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A generalization of the classical fluid dynamics which describes noninstantaneous, non-
local', and nonlinear responses of flows to the thermodynamic forces (gradients) is derived
by statistical-mechanical methods. The conservation equations determining the mass, mo-
mentum, and energy densities are unchanged in form, but new expressions are given for the
pressure tensor and heat current vector. The new expressions are specified functionals of
the temperature, flow velocity, and Helmholtz free energy density, are determined by mi-
croscopic quantities (e.g. , interparticle potential), and consist of a reversible and an ir-
reversible part. The reversible parts are the expected fluxes in a local-equilibrium en-
semble that includes nonlocal effects. The reversible contribution to the heat current is
nonvanishing for large enough gradients. The expressions for the irreversible parts are
the analog of the classical transport relations, and are linear combinations of integrals
over space and time of correlation-function kernels convoluted with the thermodynamic
forces. The kernels, which are specified functionals of the fluid densities and are a kind
of local-equilibrium correlation of subtracted fluxes, are natural generalizations of the
autocorrelation expressions for the classical transport coefficients.

I. INTRODUCTION

Fluids in bulk display a complexity of behavior
which classical fluid dynamics cannot fully de-
scribe; namely, they exhibit noninstantaneous,
nonlocal, and nonlinear responses of the flows of
momentum and energy to the thermodynamic for-
ces. Our objective here is to derive by statistical-
mechanical methods a generalization of the classi-
cal dyna. mical equations for one-component simple
fluids'~' which is capable of describing such ef-
fects. The new equations which are derived are
epact because they are essentially a transcription
of Liouville's equation, and we expect that they
are indeed sufficiently rich in content so that they
are capable of modeling the most complex behav-
ior of such fluids. The most important new result
is that the irreversible parts of the pressure ten-
sor and heat; current are linear combinations of in-
tegrals over space and time of correlation function
kernels convoluted with the thermodynamic forces.
These kernels are completely defined in terms of
microscopic quantities; they are correlations av-
eraged with a local-equilibrium distribution of sub-
tracted fluxes, which are shifted in time by a new
dynamical evolution operator. Each factor of the
viscosity kernel genera. lizes in a riatural way an
analogous factor in the classical autocorrelation
function (the space-time integral of which is the
viscosity), and similarly for the thermal conduc-
tivity kernel. This result is established only un-
der the circumstance that the fluid is initially in
constrained equilibrium.

The conservation equations of the classical the-
ory, in which the momentum and energy currents
are expressed in terms of the pressure tensor and
heat current, are generally valid; Thus the only
issue for molecular theory is the derivation of ex-
pressions for the pressure tensor and heat current
in terms of the densities of mass, momentum,
and energy. M. S. Green found the current auto-
correlation expressions for the transport coeffi-

cients appearing in the irreversible parts of the
pressure tensor and heat current in 1954.3y4 Since
then many workers have sought to improve upon
the derivation of his results; this work has been
reviewed by Zwanzig. ' All these derivations have
contained a variety of heuristic elements, howev-
er, so that improved derivations based on the me-
chanical model for an isolated system of many par-
ticles are not superfluous. Work has also been
directed toward finding more general expressions
for the irreversible currents. Some of it gives an
account of noninstantaneous and nonlocal effects,
but only near absolute equilibrium. ' ' Other
work aimed at including nonlinear effects'~ "has
considered the steady state only, and has immedi-
ately sought an expansion in powers of the thermo-
dynamic forces.

The present work is most closely related to the
general theory presented by Richardson. " The ex-
pressions for the irreversible currents given in
the present paper have precisely the structure pro-
posed by him. Although he used a statistical-me-
chanical method, Richardson gave only the struc-
ture of a general dynamical theory. It is precise-
ly our objectiv'e here to give the molecular expres-
sions for all the quantities in his theory.

Very general formalisms for nonequilibrium sta-
tistical-mechanical theory have been given by
Zwanzig" and by Robertson. ' Ou'r goals could be
achieved by a direct application of Robertson's
work and, in fact, he has already applied his meth-
od to pure energy transport. " We have considered
it a desideratum, however, to take an approach
which flows as naturally as possible from the Bogo-
lubov-Chapman-Enskog' point of view familiar
in the kinetic theory of gases while incorporating
the use of projection techniques introduced by
Zwanzig and Robertson. Therefore, while relying
heavily on the work of these authors, a modified
approach will be presented which can be viewed
as a direct extension of the work of Kirkwood,
H. S. Green, and others Our approach also
has features in common with the work of Nakajima
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and Mori. ' ~ ' Moreover, it complements McLen-
nan's work on the steady states of systems in ther-
momechanical baths. '6~"

The present work is intended to provide a natur-
al way of seeing that the pressure tensor and heat
current are approximately proportional to the gra-
dients of velocity and temperature (i.e. , of deriv-
ing the whole transport relations rather than just
deriving expressions for the coefficients). It is al-
so intended to provide a theoretical framework
within which the limits of applicability of the clas-
sical theory can be assessed. Moreover, it is felt
that the approach to be presented contributes to
our understanding of several issues, namely: Why
is there an initial value problem for the usual flu-
id densities which are known to be an incomplete
description of the microscopic state~ In what
sense (if any) do these densities have to be coarse-
grained analogs of mechanical variables~ Can
such closed irreversible equations be derived for
a completely isolated mechanical system~

The experimental motivation for this work is
based mainly on data for fluids which require
more complex microscopic models for their de-
scription than the one contemplated here. For ex-
ample, more complicated materials exhibit a non-
Newtonian dependence of the shear stress on the
velocity gradient and this can be viewed as nonlin-
ear behavior of the shear viscosity. " Although
such effects do not seem to occur in simple fluids,
the theoretical expectations have not yet been ex-
plored. It is known that the classical theory can-
not predict the frequency dependence of the veloc-
ity and absorption of sound for many gases and liq-
uids. ' In some cases, such as in glycerol, ' near

critical points, "~ and in Greenspan's experi-
ments on sound propagation in low-density gases, "
relaxation effects occur which cannot be accounted
for by the slow exchange of energy between inter-
nal and translational degrees of freedom. Near
critical points the usual equation of state for the
pressure becomes inadequate because of nonlocal
effects, and a theoretical interpretation is being
developed. ~ " There is evidence from neutron
scattering data'7 that the classical transport rela-
tions also eventually become inadequate at high
wave numbers. Also, one can argue, by suppos-
ing that length and time scales are co-determined
in simple fluids, that Greenspan's experiments ex-
hibit nonlocal effects. Although the present theory
has direct implications only for data in the rare
gases, it can serve as the first step toward simi-
lar theories for more complicated models.

This paper has the following plan: For orienta-
tion, the second section recapitulates the classical
theory and gives the structure of Richardson's pro-
posed generalization. Then molecular expressions
for the pressure tensor and heat current are de-
rived in the third section. In the fourth section
the currents are transformed so that one can iden-
tify a reversible part and an irreversible part.
The irreversible part consists of terms propor-
tional to the thermodynamic forces and a term due
to the memory of the initial distribution. The ex-
pressions for the irreversible currents are fur-
ther developed in the fifth section. There it is
shown that these expressions have a form which is
strikingly analogous to the subtracted flux autocor-
relations of classical theory. Also, it is argued
that the initial value terms should vanish.

II. THE CLASSICAL THEORY AND ITS GENERALIZATION

After a brief recapitulation of some of the classical theory of fluids, the kind of generalization which we
are seeking is displayed.

Consider only one-component fluids comprised of neutral particles in nonelectromagnetic external fields.
The classical theory of the dynamics of such fluids is embodied in a closed system of equations which de-
termine a set of variables characterizing the macroscopic fluid state conditional on the initial and bound-
ary values of these variables. '~' The macroscopic state is fully described by five variables defined as
point functions of position and time (r, t), and as usual we take these to be the momentum density j(rt), the
mass density p(rt), and the total energy density of the system e(rt). 38~~ Since only those fluids for which
internal structure of the particles plays no role will be considered, the angular momentum density is de-
termined by the momentum density j and need not be separately included. It is accepted that this set of flu-
id densities provides a complete causal description in the sense that the set of initial values determines
the values at any later time.

The classical system of equations which determines these functions consists of the conservation equa-
tions, equations of state, and a set of constitutive equations relating currents to the gradients of variables.
The conservation equations are

& j+V (vj+P)+pVV, =O, (1)

and

~ p+V j=P

& e + V (ve + q + P v) = 0. (3)

The vector v is the flow velocity defined by

v= j/p, (4)

and V is the gradient operator. The potential of the external force per unit mass is denoted by ~0. In Eqs.
(1)-(4) and in the sequel, the independent variables (r, t) are suppressed

The nonconvective parts of the currents are expressed in terms of the pressure tensor P and the heat
current q. The fluid densities are not determined by Eqs. (1)-(4) until the relationship of P and q to the
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In terms of the fluid densities, the internal energy density is given by

u —=e -&pv —IOV, .
Equations (6) and (7) mean that P' and u' are the same functions of p(rt) and P(rt) as the equilibrium pres-
sure and internal energy density are of p and P.

The classical transport relations can now be given as

&P = -2&7S[2[Vv+ (Vv) ]-sUV v] rt U-V'v= K&4&—:V-v,

where (Vv) means the transpose of Vv, and

q= -&VT-=-Vm& V lnP.

(9)

(10)

The coefficients of shear and bulk viscosity have been denoted by &7S and &Ill, and & denotes the thermal
conductivity. 4' The coefficients «& andrew ' are defined by these equations to be symmetric numeric ten-
sors, their simplicity being due to the isotropy of fluids. " The tensor w&'& is of fourth rank, while &'"
which is the unit tensor multiplied by (k&&/P) is second rank. These transport coefficients are themselves
functions of p and P which are usually determined empirically. The autocorrelation expressions for them
are well known. 4~"

If we imagine the result of eliminating P and q from the conservation equations in favor of expressions
involving j, p, and e, we can say that the classical theory represented here consists of a closed set of dif-
ferential equations which are first-order in time so that the initial values of the densities (and boundary
conditions) determine the fututevalues 'AII of .the equations are also local in sjace and time; that is,
they contain only differential operations on the densities evaluated at the same point. Finally, although the
system is nonlinear in the fluid densities, the transport relations state that the local flux of momentum P
and the local flux of energy q are linear functions of the thermodynamic forces; that is, they are propor-
tional to the negative of Vv and VlnP. Note that this system of equations may be expected to apply even
when the constituent particles have internal degrees of freedom as long as they do not possess a signifi-
cant amount of internal angular momentum. 2

Phenomenological generalizations which adequately represent various features of the data have already
been developed to a certain extent by the methods of continuum mechanics (e.g. , viscoelastic theory).
Richardson, however, has presented in a statistical-mechanical context a formal generalization which is
probably entirely adequate for all simple fluids. "

The first feature of his proposal is that the local equilibrium pressure tensor becomes a time-indepen-
dent but nonlocal functional of the fluid densities; P, depends on the time t only implicitly through the fluid
densities at t, but it depends on their values everywhere in the fluid. The caloric equation of state, Eq.
(7), is similarly generalized. In addition, an analogous local equilibrium part of the heat current appears
so that

q—= q, +&q. (11)
There is no classical analog of qo. Because neither Po nor qo contribute to the time rate of change of total
entropy, 4~ this aspect of the proposal constitutes a generalization of the perfect fluid.

A second feature of his proposal is a generalization of the transport relations to forms reminiscent of
Boltzmann's elastic aftereffect principle; namely,

Ap(rt) = fdt'fdr-'[K&4&(rt; r't'):vv(r't') K+(r&st; r't') V lnp(r't')], (12)
and

t&q(rt)= fdt'fdr'-[X&@(rt;r't'):Vv(r't')+KN'(rt;r't'). V lnp(r't')]. (12)

These generalize Eqs. (9) and (10) in two ways. Clearly, the currents now depend nonlocally and non-
instantaneously on the thermodynamic forces. But also the transport kernels K( ), unlike the K( ) now
are functionals of the fluid densities and depend on the values of these densities everywhere in space and
for all times in the interval [0, t]. This implies, in fact, an additional nonlinear dependence on the ther-
modynamic forces.

Somewhat less sweeping generalizations have also been suggested in which the transport kernel (like the
classical coefficients) depends only on the local values of the densities, and is a function only of space and

variables is specified. To do this, one first separates a local-equilibrium part of the pressure tensor
by writing

P=-P +~P. (6)

Then P, is takentobethe local-equilibrium value inthe sensethat it is equal to the the~modynamic pressure
for the local state multiplied by the unit tensor U; that is,

P.(rt) = ~P'[p(rt), p(rt)], (6)

where P is the inverse temperature (kT) . The inverse temperature is defined in terms of j, p, and e by
the caloric equation of state expressing the internal energy density u(rt) as the the& &nodyna&nic internal en-
ergy for the local density and inverse temperature; that is,

u(rt) =u [p(rt), p(rt)]. (7)
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time differences. 44 Such expressions should be valid near absolute thermodynamic equilibrium. Molecu-
lar expressions for the kernels have essentially b'een given but further development is needed.

Although Richardson gives molecular expressions for Po and qo, he does not do so for the transport ker-
nels K(f). Thus, our primary objectives are to establish from first principles that &P and &q do indeed
have the form given by Eqs. ('12) and (13), and to give molecular expressions for the kernels.

III. MOLECULAR EXPRESSIONS FOR THE AVERAGE FLUXES

Although other viewpoints can be taken, it is sufficient for our purposes to consider statistical mechan-
ics as an application of probability theory to mechanical systems. The fundamental sample space is the
6N-dimensional space of phase points I", each of which is a set of one-particle phases 1X„X„... , X~),
where X;—= (R;, P;) is the position and momentum of the ith particle. A probability density over phase
points is considered to be given at some initial time. ' The quantities of interest are a set of random den-
sities A~(r; I"f) which are defined for all positions r. The phase point I'f is the mechanical state into which
a system initially at the point I' evolves in t seconds, according to the classical dynamics of an isolated
system of N point particles constrained to remain in a volume V. The Hamiltonian H(1') of the system is
considered to contain, in addition to two-particle interparticle potentials, appropriate wall potentials(cor-
responding, for example, to specular reflection) and also a scalar external potential. 4'

The densities are random variables precisely because the initial phase point of the system is random.
The basic idea for generating a correspondence with observed values -is that for appropriate variables the
values observed for a given system in a given trial are essentially the expectation values of these random
variables. 4' Thus the observed densities which are to satisfy the equations of fluid dynamics are equal to
the expectation values of the set of phase functions A ~(r, I"t); that is,

a (rt)—= Jdi"A (r; I')D(I';0), (14)

(16)

defines the mass density; and

8(r; r) =—P.H. (r)6(r-R, )

defines the energy density, where

H. (I")—= P.2/2m+m Vo(R.) + 2Q& V(R.&). (18)

All the particles have the same mass m and the prime on the summation over k indicates that one excludes
the term for which k =i The poten. tial per unit mass Vo(Rf) includes the wall potential as well as any ex-
ternal one-particle potential while V(R&~) is the interparticle potential between any two particles. The in-
terparticle distance R~~ is equal to %y-R;. Except for the definition of the energy density, which rather
arbitrarily assigns half of the potential energy of a pair of particles to each of them, the intuitive basis of
these definitions is obvious: A particle contributes to the density of the given quantity at a, point only if it
is exactly at that point. Notice that these equations define the densities for all of configuration space so
that this is also true of the expectations given by Eqs. (15)-(18). Because I'f always corresponds to the

where D(1'; 0) is the given initial probability density. To be definite, the region of integration is taken to
be all of phase space, and distributions D(l'; 0) are admitted in the theory only if they vanish for phases
such that not all the particles are in the volume. In fact, just as in the statistical-mechanical theory of
thermodynamics, one wants to consider the observed densities to be the asymptotic values of these expec-
tations when the number of particles is very large. This is not just a calculational device; real systems
of interest do contain enormous numbers of particles, and therefore exhibit small fluctuations. In the
present nonequilibrium theory there is an additional reason. While one has'every reason to expect that the
integrals over phase space which occur in the definitions of V~, q and the transport kernels are well de-
fined, one also wants the time integral of the transport kernels over the infinite interval to exist. Such an
integral (of an approximation to these kernels) will appear in deriving the Markoffian limit of these cur-
rents.

The precise nature of the limiting process depends somewhat on the use to be made of the theory. For
example, to derive the classical results one might want to let the size of the system increase with N such
that the integrals of the densities remain fixed and the gradients of the variables vanish. For other pur-
poses one might want a continuum limit similar to Grad's "Boltzmann gas" in which some approximation
to the currents becomes exact while the effect of finite numbers of finite-sized particles disappears.
While further specification of the limiting process is not given here, it will be clear if one reviews
the derivation to be given, that the stmctuxe of the results remains the same when a large-N limit of ex-
pectation values is introduced from the beginning. Therefore, in the sequel all the quantities will be con-
sidered as taken in some large-N limit.

The functions A ~(r) which we observe are the momentum, mass, and energy densities defined as func-
tions of the phase (i.e., microscopically) in the following way:

J(r; I') =—Q.P.6(r-R.) (15)

defines the momentum density;

5R(r; I') =Q.m6(r-R, .)
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(20)8 D+LD=O

where the dependence on t is suppressed. The Liouville operator I is defined by

L(1')=g.(m P. VR -[mVR Vo(R.)—
Q& F.&] V },

where the interparticle force is given by

Fu=-'R ~(Rn)=F("u).
The gradients with respect to positions and momenta are distinguished by subscripts. From Eq. (19) it
follows by using Liouville's equation for &tD and integrating by parts that

s,a„=fdrA (r)s,D(r) = fdrA' (I')D(1').

(21)

(22)

The function A ~(I') defined by

A'(r) -=L(r)A (r) (24)
is the time rate of change of A~ (its Poisson bracket with the Hamiltonian). The functions A~ correspond-
ing to the quantities given by Eqs. (15)-(17)can be given as follows:

Z= -V II-31(VV„

3g= -V' J
and

(25)

(28)

S=-v q. (27)
The total mass current J has already been defined by Eq. (15). The total momentum current II is defined
by

case where every particle is inside a given volume, however, the expectations are found to vanish outside
this vot.ume as they should.

Of course, we not only cannot measure these quantities exactly, but we cannot measure exactly these
quantities. The definitions represent idealizations of the more coarse-grained ones we actually measure
but the idealization is sufficient for our purpose. The singular character of our definition never hurts usbe-
cause we are always interested only in their expectations over smooth distributions. Moreover, to show
that the fluid-dynamic laws apply to the expectations of such variables is to show that coarse graining is
not necessary to such conclusions.

Identifying the quantities which are to correspond to measurements on a single system as the expectation
values of certain phase functions is still not a complete prescription for comparison with experiment, how-
ever, because we cannot directly prepare distributions in phase space (since this would require measure-
ments of phase). Clearly, we want to require that D(1'; 0) implies the same initial expectation values
a~(r; 0) as those imposed by the experiment. In addition, although one does not typically prepare the ini-
tial distribution of the values of the A~, there is some requirement that the initial dispersion about the
aver'age be small initially so that the predictions will be useful. It would appear, however, that the Gibbs-
ian approach does not contain any further principles bearing on the determination of the initial distribution
in phase. An heuristic choice will be made in this paper but we will defer making it until necessary so as
to increase the force of a posteriori arguments for our choice.

If we were interested only in predicting the values of the densities at time t, given particular initial val-
ues, Eqs. (14)-(18)together with a choice of D(t = 0) would be a sufficient algorithm. The computation of.
I't required by such an approach is not only difficult but would yield an enormous amount of highly special-
ized information of no intrinsic interest. More importantly, it wou1d yield no insight into the general
structure of the behavior of the densities; namely, into those aspects which are common to all systems re-
gardless of the detailed nature of intermolecular forces (e.g. , the existence of the transport relations).
Such an insight is provided by finding the differential or quasidifferential (i.e., integrodifferential with
short-ranged kernels) equations for the densities. To be sure, the parameters of such equations are ex-
pressed in terms of molecular objects like I"g. With such equations, however, one is able to determine
these parameters empirically, thereby enabling prediction in particular cases without calculating I t every
time. This suggests that we calculate instead the time rates of change of the fluid densities.

To do this recall that the densities a~(rt) can be given as the expectation of the corresponding phase func-
tions in the ensemble at time t; that is, instead of Eq. (14) we can write that"

a = fdI'A (I')D(I';t), (19)

where the independent variables are r and t. The function D(1';t) is the probability density into which
D(I'; 0) evolves in time t; that is, it is the solution of Liouville s equation:

11(r; I')= —+ P.P.5(r-R.)+—Q f'deR.~F.~&(r+ER. -R ).
2E~

The total energy current Q is the vector defined by

Q(r; I)= Q P.H. (1')5(r-R.)+ 4 Q f deR.&F.& (P. +P&) (5r +eR &-R ). .
4m

(28)
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(30)

Although these results have been derived before, '4y4' a sketch of the derivation is given in Appendix A for
completeness ". The integral terms in II and Q will not be expanded about (r-R;)49 until it becomes neces-
sary so as to preserve the possibility of a full description of nonlocal effects.

Notice that these terms do not vanish for points r lying outside the system but on the line joining R~ and
Ry. Although this becomes important only near walls, expressions which do vanish whenever r is outside
are given in Appendix A.

According to Eq. (23), if we average the microscopic conservation equations [Eqs. (25)—(27)] at time f,
we have derived the macroscopic conservation laws in the form given by Eqs. (1)-(3)and we can identify
explicit molecular expressions for the currents. " One finds that

fdI'II(I')D(I') = v j +P,

fdI" Q(I')D(I') =v&. +q+P v, (31)

where the suppressed independent variables are r and t.~ These equations give us molecular expressions
for the total currents rather than directly for P and q alone.

To obtain expressions for P and q themselves, one has to extract the convective part of II and Q by re-
ferring the momentum of a particle to the local velocity at the position of the particle. Thus, we want to
express Il and gin terms of the phase point I"+ that is the set of N local one-particle points (R;, P;+). The
local mpmenta P&+ are defined by

P.+-=P.-mv(R. , f). (32)

It is not difficult to verify by substitution of the definition of Pi that

~ = vJ+ Jv —vv% +0
where II+(I")-=Il(I+),

and also that"
Q=2v2J-~v vSR+vS+Q++II+ v,

where

Q'(I') -=Q(1') +Q.(I').
As indicated in Appendix A, the additional part of the heat current Qo is defined by

Q,(r; I')=- ,fdRf d—e—fde'RR Vv(r e'R) F(R—)at&»(r-eR;R; I'),

where

(33)

(34)

(35)

(35)

(37)

K&"(r„r„;I')= Q 5(r, -R,.)5(r, +r,n-R~)
i&k

defines the densiiy in pair space. Substituting these expressions for II and Q into Eqs. (30) and (31), one
immediately sees that

P(rt) = fdI'll+(r; I')D(I' f)

and q(rt)= fdl" Q+(r; I')D(I" f).

(38)

(39)

(40)

These are the molecular expressions for the pressure tensor and heat flux which we have been seeking.
Our view is that these fluxes are the appropriate objects for calculation rather than the densities them-
selves.

In parallel to Eq. (19) for the densities, these expressions are algorithms for the calculation of P and q
for the initial-value problem. Because D(I";0) must be some functional of the initial fluid densities, how-
ever, these expressions give the fluxes as functionals of the initial densities. What we really want is to
eliminate this dependence on the initial values in favor of a dependence on the values of the densities at
time f, or at least near it. This is just what the phenomenological laws (i.e. , the transport relations)
achieve, and therefore by this process we expect to arrive at molecular expressions for the transport co-
efficients. Since the microscopic fluxes have no dependence on the a~, we now want to find a way of ex-
pressing D(I'; t) itself as a functional of the a~.

IV. EXPRESSIONS FOR THE FLUXES IN TERMS OF FLUID DENSITIES

If we succeed in finding expressions for the pressure tensor and heat current which are functionals only
of the densities at and near t and not depending explicitly on the initial values, we will have arrived at a
set of equations for the densities which is closed, that is, not involving any arbitrary functions (such as
the initial probability density). Such closure means that one has achieved in common with classical theory
a "contraction of the description" for which the initial values of the densities suffice to determine the fu-
ture values, but for which, unlike classical theory, the description is not local in time (i.e., not all terms
in the equations of the theory involve the densities only at time f).

It seems natural to try to achieve our goal along lines suggested by the Bogolubov and Ghapman-Enskog
(B-C-E) procedure for solving the Bo1tzmann equation which determines the one-particle probability den-
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D(I'; t) = D (I' la(t))+AD(I"; t), (4l)
where D,(I'la(t)) denotes a time-independent i'unctional of the densities alone; it depends on the fluid den-
sities a& only at a single time I' while it depends on their values at every point in space. This equation is
intended as a definition of the deviation &D consequent upon explicit definition of D, .' The analogy clearly
suggests that we take for D, a generalized local-equilibrium probability density, the parameters of which
are so determined as to yield the expected fluid densities at time t. Then we can expect to be able to show
that ~D is at least first order in the gradients so that D, in fact corresponds to the zero-order approxima-
tion to Bogolubov's asymptotic functional.

A. The Local-Equilibrium Distribution

Thus it is proposed that

Do(I' Ia(t)) —= exp(-fdr P(r)[8(r)-v(r)'$(r) —$(r)3R(r)]}, (42)

which is an explicit functional of the quantities v, (I), and P. The integral here is over all space; and v,
Q, and P are defined by the requirement that Do yield the correct densities:

a (r) = fdr A (r; I")exp[-fdr P(r)[&(r)-v(r)'X(r)-(t)(r)%(r)]}, (43)

sity in dilute gases. ' The essential idea of this method'8-'0 is that asymptotically for long times the solu-
tions of this equation approach "normal" solutions; that is, solutions which are time-independent function
als of special variables which are slow in the sense that they have rates proportional to some small param-
eter. In this case the slow variables are the fluid densities and the small parameter is the uniformity pa-
rameter; i.e., the size of the corresponding gradients. This functional is determined by a functional dif-
ferential equation, which is the equation a time-independent functional must satisfy in order that it be a
solution of Boltzmann s equation. " A further essential feature is that the local-equilibrium probability
density, with its parameters determined so as to yield the correct expected densities, is the first approx-
imation to the functional. In fact, if one expresses the one-particle density as the sum of the local-equi-
librium density plus a deviation, one can prove that the deviation is at least first order in the gradients.
A third feature of the method is that this deviation is determined as a power series in the uniformity pa-
rameter (or a functional power series in the gradients).

A treatment analogous to this might be attempted for the solutions of the Liouville equation. '8 But, since
the methodassumes the existence of the time-independent functional and then proceeds to determine it, it
does not provide any insight into the aPPxoach to the normal solution, that is, into relaxation effects.

This can be achieved (at least for the linearized equation) with a somewhat more general method essen-
tially given by McLennan. ' Suppose one preserves the idea that the solution is a functional of the densi-
ties but that it is a tinge-indePendent functional only in lowest order. Then one can still show from the
Boltzmann equation itself that the deviations from the appropriate local-equilibrium distribution are at
least first order in the gradients. Thus one. should again take the lowest-order term in the functional to
be the appropriate local-equilibrium distribution. Now (at least for the linear equation) one can proceed
to determine formally the deviation from this using the Boltzmann equation itself but without assuming that
this deviation is a time-independent functional and without immediately developing it as a series.

To have a suggestive context which provides motivation, we will proceed by analogy to the B-C-E meth-
od. For our purposes, however, one must use the generalization of this method just described. Thus we
will write for D

where all quantities are taken at time t. Equation (43) determines the quantities v, Q, and P to be time-
independent functionals of the densities a~; that is, they depend on time only implicitly through the a)d(t).

To elucidate this definition of D, we will first give it a more familiar form and then discuss the interpre-
tation of the quantities v, P, and P.

The distribution Do can be given a more useful form by introducing local values of the momenta defined
by Eq. (32). As shown in Appendix B, one has that

Do(I'la(t)) = exp&-fdr P(r)[S (r) f(r)3R (r)]}=Do (I' If(t), P(t)),

where @+(r;I') = 8 (r; I ),

and SR (r; I')—= 'K(r; I"
) =K(r; I').

We have also introduced

f= &t +2v'. -

(44)

(46)

(46)

(47)

Other workers have introduced this distribution in related contexts "y~~~'2y' ~~~~~~

Second, in Eq. (43) which determines the quantities v, (t), and P, the momentum integrals can be per-
formed if one uses Eq. (44) for Do. As shown in Appendix B, one finds that j is equal to pv so that the
quantity v appearing in Do is indeed the flow velocity. Furthermore, one finds that

p(r) = (iV'/pp, '"(r lf, p)
-=Og)+, (4

rrrd rr(r)= —
( ) r~ ) fdR V(R)d 'r(r; Rtf()). (49)
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Equation (48) defines p, '" while p, is defined by

po"'(r; r, lfP) —= fdl K'"(r, r~2; I')D (I'IfP). (50)

Thus po"' and p, ~ 'are the generic probability densities marginal to Do+(I'IfP) and both are time-indepen-
dent functionals of f and P. It is worth observing that Eqs. (48) and (49) imply that f and P are functionals
of j, p, and e only through p and u (which is therefore not true of P). Eliminating f from Eq. (49) yields the
analog of the classical caloric equation of state, Eq. (7).

Third, consider the dimensionless functional defined by

S'(a(t)j= fdI'D—(I' la(t)) ln[D (I' la(t))/r, ], (51)

where I', is the unit volume in phase space. It is not difficult to see that this quantity is the inverse of
Boltzmann's constant 4g ' times the maximum value of the Gibbs definition. of the entropy, subject to the
constraints that the distribution gives the correct averages, that is, subject to Eq. (43).6' The idea that
the distribution which maximizes the Gibbs entropy for fixed constraints plays a central role in a theory
for the dynamics of macroscopic variables has been realized and pursued by others. s'~6'y~~~' The present
work, while consistent with this, follows the spirit of the B-C-E method and also considers the deviation
AD.

Using the form for Do given by Eq. (44) to evaluate this functional, one finds that

S'Ia(t)j = fdr P[u (f Vo)—p]+—lnl" . (52)

It is natural to try to interpret S'(a(t)) (times kB ') as the entropy of arbitrary nonequilibrium states spec-
ified by the au, and the integrand of Eq. (52) as the corresponding density. Others have already made and
supported this point. '4~'~~'7~83 Clearly, with this interpretation the formal structure of the relations be-
tween the pair (p, u) and the pair ( f, P) embodied in Eqs. (48), (49), and (52) is the same as in equilibrium
thermodynamics.

The formal similarity to the usual equilibrium theory has been put sufficiently in evidence to suggest the
conclusion that p should be interpreted as the local inverse temperature (multiplied by kB) and f as the lo-
cal Helmholtz free energy per unit mass. Both of these are defined as nonlocal functionals of p and u (and
therefore of j, p, and e) by Eqs. (48) and (49). A full demonstration that p(rt) and f(rt) (related in this non-
local way to the densities) are what would be measured by appropriate test probes, however, requires an
analysis of how such test probes interact with a fluid system.

From these results, it is clear that Do is a generalized local-equilibrium distribution for a system of
particles which is microcanonical in the number of particles but is canonical in the total momentum fdr j(rt),
and in the total energy fdr e(rt) (i.e. , both of these have a dispersion). It is clear from Eq. (42) that
this distribution corresponds to a local equilibrium in small cells moving with the local flow velocity. ~

This choice of D, will be justified by its consequences. In the following we will show that its contribution
to the expected current yields a natural generalization of the perfect fluid and, more importantly, that it
implies that the deviation &D is at least of first order in the gradients of v and. P (i.e., the thermodynamic
forces). The basic physical idea underlying the choice of zero-order solution for solving the Boltzmann
equation" remains relevant: One expects that a system equilibrates very rapidly in little cells moving
with the flow velocity and that then the differences between the equilibrium parameters f and P for each
cell slowly approach final values. " Although this remark is probably more relevant for the limiting forms
of the marginal probability densities for large N, it indicates that the present choice of D, is a sensible
zero -order approximation. '

B. Local-Equilibrium Contribution to Currents and Change of Entropy

The separation of the distribution D into a local-equilibrium part and the deviation implies a correspond-
ing separation for all averages. Thus if Z (r) is any phase function and e is its expectation taken over the
distribution D, then

Z —= Zo+hz,

where the local-equilibrium part zo is defined by

e,-=fdr Z(r)D, (r) -=(Z),.

(53)

(54)

Thus the deviation is
hz —= fd I"Z(r)ED(r). (55)

We see, referring to definitions of P and q [Eqs. (39) and (40)], that the local-equilibrium part of the
pressure tensor P,. is equal to (II )0 while qo is equal to (Q+)0. Just as we did to compute p and u in terms
of the marginal densities, we perform the momentum integrals by transforming the integration variables
to r which is determined by the local momenta [see Eq. (32)]. For the pressure tensor, one finds direct-
ly that

P,(r) = U(p/IP)+(N(N 1)/~] fdRf de R-F(R)p, '"(r-eR, R IfP), (58)

where po'@ is defined by Eq. (50). Because of the nonlocal terms this is not proportional to the unit tensor
U. For the heat current there is no contribution from the term Q(I'+) which is odd in momenta, and the re-
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maining contribution (Q, ), is given by

q, (r) = [-N(N 1-)/2U'] fdRf de'f de'RR Vv(r-&'R) F(R)p, (')(r-eR, R If p). (57)

Both of these expressions which were already given by Richardson" are time-independent but nonlocal
functions of v, f, and P (and therefore of the fluid densities).

There is a strong similarity between Eq. (56) and the expression for the classical local-equilibrium pres-
sure. In fact, it can be shown" that the classical expression is the leading term in an expansion of Eq. (56)
in powers of the gradients. The present expression should be sufficient for arbitrary gradients and there-
fore useful for interpreting neutron scattering, for example. For later use, one shouM observe that P, is
independent of v because it depends on j, p, and e only through f and (8. The expression for the heat cur-
rent q, is perhaps more surprising. Notice that it is already first order in the thermodynamic force (-Vv)
and that this dependence on v which is explicit is the only dependence on it.

In spite of the more complicated dependence of Po on the variables and the nonvanishing of the analogous
current qo, these local-equilibrium currents are like the classical quantity UP in that, along with the con-
vective terms in the total current, they do not contribute to the time rate of change of the total entropy.
In Appendix C it is shown that, in fact, for the entropy defined by Eq. (51), one has that

dS'/dt = fdr-P[(b P):Vv + Aq V inP], (58)

where (AP) is the trans~se of the deviation of P from P, and &q is the deviation of q from q, . From this
result we can identify -Vv and -V lnP as the thermodynamic forces, just as they are in the classical case,
and justify calling 4P and &q the irreversible momentum and energy currents or the irreversible parts of
the pressure tensor and heat current.

C. Irreversible Currents in Terms of Fluid Densities

The central problem is to obtain expressions for the irreversible currents in terms of the fluid densities.
To do this we want to find such expressions for the deviation AD defined by Eq. (41).

Because D obeys Liouville's equation, the equation for the deviation is clearly

(st+ L)»(t) = -(st+ L)Do(t) (59)

(61)

The matrix 6' in phase space is defined by

r(r r')ia, )—= —D, (r)fdfdr'A( r) (, A(p; r') (62)
5a r'

We shall refer to it as the projector because, as the second equality in Eq. (61) (implied by Liouville s
equation) indicates, one of its roles is precisely to project the time rate of change of D onto the time rate
of change of Do. Since it is a time-independent functional of Do (and therefore of a or b), it is completely
defined by Eq. (62).'~

Instead of pausing to examine other properties of this projector (see Appendix D) let us continue to eval-
uate AD. Using the expression for &tD, given by Eq. (61) in Eq. (59) yields an exact equation for the deter-
mination of &D:

Although Do is only implicitly dependent on time, the symbol Do(t) is used for brevity here and in the follow-
ing. Just as in the B-C-E procedure, one wants to evaluate the time derivative of D, by using the equations
of motion. To do this we follow other workers, " "and use the fact that D, is a time-independent function-
al of the conjugate variables (-Pv), (-PP), and P. Let vv denote the vth component of the velocity v. Then
consider for convenience (-Pvv), ( prf&), and P as the elements bv of a row matrix b, and also consider the

A& as the elements of a corresponding column matrix'. " With this notation, the exponent of D, is ex-
pressed as b*A(I'), the asterisk denoting the matrix product. Now we simply use the chain rule for func-
tional differentiation of a time-independent functional to obtain

& D = — drdr'D A(r)* * dI"A(r';I')D(I''). (60)

The factor DOA, is the negative of the functional derivative of D, with respect to b(r), while the integral
over phase space, according to Eq. . (23), is just the time derivative of a(r')

The contribution of the local-equilibrium part of D to this expression is the contribution of the reversible
part of the currents. If we were interested only in terms of first order in the gradients, we could follow
others by retaining only these terms in the sequel. v' This approximation is not, however, sufficient for
all purposes. More importantly, it is not at all clear at this point why the contribution of the deviation &D
should be neglected in using this expression for &tD, to determine &D while other similar terms in Eq. (59)
are kept.

Fortunately, it is not necessary to neglect this term in order to proceed. For, if an integration by parts
is performed in the integral over phase space, one can re-express Eq. (60) as

atD = -fdl"6'(I'; I" ID )L(I")[D (I")+AD(1")]= 86D.

[st+ (1-6')L]AD = -(1—(P)LDO, (63)

where 6' operating on a phase function Z(I") means to multiply it by +(I'; I"') and integrate over I", and
where time dependence has been suppressed. " From this equation we see that the order in the gradients
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in which the surface is to be taken at infinity, n is the outward unit normal vector, and rz denotes a point
on the surface. One sees that the surface term vanishes by recalling that D,(I') vanishes (because of the
wall potential) except for phases corresponding to all particles being contained in the volume V. For such
phases, however, II, J, and Q vanish unless r is also contained in the volume, '~ and none of the points rs
are so contained.

The external force term in Eq. (65) does not vanish in general, but we notice that it is proportional to 5R.
To find hD, however, the object we want to compute is not LDD but (1-6')LD0. Now, as is shown in Appen-
dix D, precisely because the operator 6' is the projector for the densities A~, one has that

(I-(P)A D0=0. (66)

of 5D is determined by the order of the inhomogeneous term. The inhomogeneous term of Eq. (63) can im-
mediately be evaluated from the definition of DD, and the result is that

LD0= D-fdrb(r)+A(r) =+D fdr[vT II (-pv)-ppf' J+pf'Q-pv'(&V0) %], (64)

the more explicit form being obtained by writing out the matrix product and using Eqs. (25)-(27). Integrat-
ing by parts yields that

LDD= D-,fdr [Ii:V( p-v)+ J &'( p-p)+ Q V'p+pv (&'V )05tt]+ (surface term), (65)

where II is the transpose of lI. The integrand of the surface term is just

-n [11 (r&) ' v(rS) + J(rS)P(r&) —Q(r&)]P(r&)

Since %(r) is one of the A~(r), this external force term does not contribute to (1-6')LDD. For the same
reason, the term proportional to J does not contribute, so that one has for the inhomogeneous term of Eq.
(63) that

(I-(P)LD0= (1 6')Da-fdr-[II:V( pv)+Q V-p], (67)

which is of first order in the gradients of the conjugate variables —Pv and P. We conclude that the devia-
tion ~D is also at least of first order in the gradients. This property, which is expected physically, is
seen to be a direct consequence of the choice of DD. Other normalized functions of the same linear com-
bination of the A~(r) as appears in D, will lead to the same result, of course, so that taken by itself this
result is not a sufficient reason for our choice.

To express DD in a form which is almost closed, we formally solve Eq. (63) by introducing the Green
function X(t;f') defined as a solution of

1st+[I-(P(t)]L]x(rf; r f ) = 5(r-r )5(f f ). (68)

(72)

In particular, it is that solution which vanishes when t &f' and has the value 5(r-I") at t=i'. Notice that
the operator [1-6'(f)] is time dependent so th-at this Green function is more complicated than that for Liou-
ville's equation. In terms of X, a formal solution of Eq. (63) is that

~D(r;t)= fdr X(r, f; r, O)~D(r';0) f'df'fdr'X-(rf; r f )[1 tP(f )]ID,(r ia(t)). (69)

With this expression for the deviation, the irreversible parts of the expected pressure tensor and heat
current defined by Eqs. (39) and (40) can be expressed in a suggestive form: Introduce, for convenience,
for any matrix O(I'; I") in phase space and any two phase functions V and W, a kind of matrix element de-
fined by

(Vio i W)=- fdl" dI' V(I', )O(I'„ I' ) W(1 ). (70)

Then the irreversible momentum current which is the expectation of II+ with &D can be written according
to Eq. (69) as

AP(rt) = fdt'(3+-(r) I X(t; t')[I-(P (t')]!LD0(t')) + R.(rt),

where D, (t) denotes only implicit time dependence. The remainder R&, which is a second-rank tensor, is
defined by

R .(rt I AD(0)) —= ( 11+(r) I x(t; 0) I AD(0)).
j

Similarly, the irreversible energy current, which is the expectation of Q with AD, can be given as

Aq(rt)= fdt'(Q+-(r) IX(t;f')[l-6'(f')] ILD, (t'))+R (rt),

where the remainder Re is defined

R (rt) = (Q+(r) iX(t; 0) ihD(0)).

One should also recall that the factor (1-(P)LD, in these equations has the expression given in Eq. (67).
Since X and (P depend on DD in a well-defined way and on no other arbitrary functions (such as initial val-
ues), these expressions are almost closed; that is, they are composed of a term determined entirely by
the fluid densities and the remainder terms Rj and Re which contain all the dependence on the initial val-
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ues. The first terms in Eqs. (71) and (73) are memory terms which in fact depend on the value of the fluid
densities for positions near r and for times near t." Since we know empirically that initial conditions are
forgotten, we expect either that &D(t = 0) vanishes identically or else the remainder terms become negligi-
ble very rapidly. Then Eqs. (71) and (73) would be fully closed expressions for the irreversible currents.

Since these almost closed expressions for the irreversible currents are central to the present work, the
following remarks should be made. The expressions are almost closed only because we have assumed that
D(i', f) is split into a differentiable time-independent functional D, of the densities and a remainder and not
because of the particular form of D, . The forms given in Eqs. (71) and (73) where LD, is left unevaluated
can be obtained without any other assumptions on D,. To see this, one has only to notice that simply as-
suming Do to be a time-independent functional of the densities immediately yields that the time rate of
change of Do is a projection of the time rate of change of D as in Eq. (61), but now with tP defined only as

tp(z, z„ii~ ) fd-„&a„(riaj~o'~(p z„~ (75)
r. '

Thus one can proceed to Eqs. (71) and (73) as before. Of course, when D, is the local-equilibrium distri-
bution, the projector defined by Eq. (75) is the same as that defined by Eq. (62).

From this point of view, our choice of D, would appear to be arbitrary; any of a whole class of choices
will yield almost closed expressions for the currents. One should notice concerning this point: First, that
a certain arbitrariness over various generalized equilibrium distributions is desirable to reflect differ-
ences in experimental circumstances. It will be argued in the concluding section that the final results are
invariant to such choices. Second, we have just seen that the use of generalized equilibrium distributions
for Do introduces the conjugate variables and their gradients in a very natural way. As will emerge pres-
ently, this yields a structural form of the equations which has a very strong and complete analogy to the
classical ones which must be their limiting form. Finally, there is no reason to expect that arbitrary
choices of Do will lead by any route to the classical limit, and in particular, one cannot expect the initial
value terms to have the proper behavior for arbitrary choices of D, which may not correspond to physical-
ly realizable initial preparations (see Sec. V.C).

The present derivation intends to emphasize the similarities to the B-C-E procedure and to focus on the
expectation value of the currents as the objects of calculation. ' But consider the logical status of Eqs.
(71)-(74). In spite of the references to the B-C-E procedure which are intended to motivate our procedure,
no assumptions of a physical nature have been made other than a particular choice of variables and the ba-
sic one of statistical mechanics. A number of definitions have been stated and subsequently some exact
manipulations have been made. It is by now no longer surprising that with no assumptions one can derive
equations for averages which are closed except for initial value terms, but we believe that it is useful to
develop the theory this way so that the assumptions which do have physical content are made to stand out.

V. FURTHER EVALUATION OF THE IRREVERSIBLE CURRENTS

The analogy between the expressions given in Eqs. (71) and (73) and the well-known expressions corre-
sponding to the classical transport relations can be made much more obvious. In particular, we will see
that analogs of the subtracted fluxes arise naturally. Also, we will argue that the remainder terms vanish
for physically interesting circumstances so that one indeed gets fully closed expressions for the currents.

A. The Transport Kernels

(78)

First notice that (I-P)LDO can be written as a linear combination of the thermodynamic forces -Vv and
-V lnP. From Eq. (67) one obtains by calculating the gradients that

(1-(P)LDO = (1 6')Dofdr'p[II V-v+ (Q-v'3) ~ V lnp], (76)

where the independent variables r', t', and I"' are suppressed. Using this result to evaluate 4P and &q
given in Eqs. (71) and (73), one obtains

AP(].)= fi dt f-dr2[X ~(1;2):Vv(2)+K '(1;2) V InP(2)]+R~(1), (77)

and hq(1) = f' dt2f-dr~[K' '(1;2) Vv(2)+K' '(1; 2)'V lnp(2)]+R (1),

where for brevity the index i used as the argument of a, quantity means xi—= (ri, t&). The remainder terms
are as defined by Eqs. (71) and (73), while the transport kernels are defined in the notation of Eq. (70) as
follows:

K'@(1;2) = (Tf (r|) IX(t» tm) (1-(P) I II(r2)DO(t~))p(2), (79)
K' (1;2)—= (Tf (r,) IX(t„t,)(1—(P) l[Q(r, )-v(2)'Ii(r, )]D,(t,))p(2), (80)

K'+(1; 2) —= (Q (r, ) IX(ti; tm)(l-6') I71(r,)DO(t, ))p(2), (81)

2'@(1;2) =—(Q (r|) IX(t|;t~)(1-(P) I [Q(r2)-v(2) g(r2)]Do(t, ))p(2). (82)

The superscript denotes the tensorial rank, and in all of these expressions (P is taken at time f,. Notice
that X +, K~' and g' have obvious symmetry properties because the tensor 5 is symmetric. " It will
emerge that g'S is in an obvious sense the transpose. of K'@. Except for the initial value terms, the form
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announced in the introduction for the irreversible parts of the pressure tensor and heat current has been
achieved. The first term of Eq. (77) leads to a generalization of Newton's law of viscosity so that K'+ is
the viscosity keme/ while the last term of Eq. (78) generalizes Fourier's law so that K' ' is the thermal
conductivity kernel. The second term of Eq. (77) and first term of Eq. (78) are cross-effect terms which
are not present in the classical theory. These kernels are all functionals of Do and therefore of either the
densities or the conjugate variables.

The important observation can be made that in Eqs. (77) and (78) no term appears convoluting a kernel
with VQ. This means that the gradient of P (and therefore Vp) contributes to the irreversible currents on-
ly in higher orders in the gradients of the conjugate variables (e.g. , in terms proportional to VQVv). This
is to be expected in the present case of a one-component fluid, and it has emerged as a general result pre-
cisely because the (P projects out .he corresponding current J.'

At this stage the primary objective of giving molecular expressions for Richardson's kernels has been
achieved. As they are presented in Eqs. (79)-(82), however, the kernels have an awkward form and in
particular K' ' and X ' are not autocorrelations T.o derive improved forms we want to make the opera-
tion by (1-6') more explicit.

B. Subtracted Fluxes

The relationship of these kernels to the correlation expressions, the space-time integrals of which are
the classical coefficients, can be made even more apparent. %hen M. S. Green first derived the autocor-
relation expressions for the classical transport coefficients, he found that they involved not autocorrela-
tions just of II and Q but of the fluctuations of these fluxes in a microcanonical ensemble. It was later
realized that, for any ensemble, a transport coefficient is an integral of an autocorrelation of a "subtract-
ed flux"; namely, the flux minus a certain linear combination of the fluctuations of the densities of mass,
momentum, and energy. '» '

We want to show that (1-5')IIDo and (I-+)(Q-v'II)D, are natural generalizations of these subtracted flux-
es appropriate to the present theory.

In Appendix D it is shown that for any phase function Z(r; &) which is independent of j, p, and e:
~+

(1—(P)Z(r)DO= AZ(r)-fdr' —~&+bK+5 +h%L+~ (Z)0 D .

The argument of quantities in the integrand is r' and (Z)0 is to be considered as a function of v, p, and u.
The fluctuation &Z of Z is defined by

~z=- z-(z)„
where (Z), is given in Eq. (54). The fluctuations in the local frame are defined by

~+(I') = &(I'),
a&+-=8+-V,K+-u,

and 6% —= % -p.

(83)

(84)

(85)

(86)

(87)

(92)

Observe that according to Eq. (83) the integral of (1-6')ZD, over phase space vanishes by definition of the
fluctuations.

To use this result for the case where Z is identical with II, notice that

(11),= pvv+ P„ (88)

which is, in fact, all of the reversible momentum current. 'This equation fo1lows immediately from the
definition of P, as the expectation of II over D, [see Eqs. (39) and (54)j and Eq. (33), if one observes that ~

Do gives the exact expectations for the A„. From Eq. (88) the derivatives appearing in Eq. (8+3 can be com-
puted, and one should recall that P, is independent of v. If one then expresses II in terms of II+ and the A~+
by using Eq. (33) and the equations relating A v and A~ (given in Appendix 8), one obtains

(I-(P)II (r; I')D (I') =I.(r; I'+)D (I"), (89)

where I"+ is again the phase in terms of the local momenta. The subtracted momentum flux I&(r; I ) is the
transpose of

(90)

and this quantity evaluated at I is what appears in Eq. (89).
In a similar way, one can calculate the effect of (1-6') operating on (Q-v Il)DD. One computes the func-

tional derivatives of the expectation of Q over Do from the equation

(Q)0 ve +Po' v+ qo~ (91)
+ +which is, in fact, all of the reversible heat current. Also, one re-expresses Q in terms of Q. , II, and

the A ~+. In the calculation of (1-5')QD„one must recognize the terms belonging to (1-6'.)v ~ fi'D, by refer-
ring to Eq. (89). Then one derives that

(1—(P)[Q(r; I)-v(r) II(r;1)]DO(I') =I (r; I'+)Do(I'),
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(94)

(98)

where the subtracted heat flux is defined by

I (r; r)=-Q(r)- IP. +U(u+ PV,))+Q.(r)-q.-)dr' -'-. +A3II(r') '- +t&&(r') '- . (93)

The subtracted fluxes I j and Ie are natural generalizations of their classical counterparts which appear
in the autocorrelation expressions for the viscosity and heat conductivity. The classical subtracted flux-
es'&27&~ are the integral over all space of the near-equilibrium local approximations to Eqs. (90) and (93).
In this approximation Il(r) and Q(r) are replaced by their corresponding expressions in which the nonlocal
contributions from the terms proportional to the forces are dropped. The functional derivatives of Po be-
come 5-functions multiplied by the ordinary thermodynamic derivatives of the pressure P' defined by Eq.
(6). The tensor enthalpy density P, +Uu is replaced by the unit tensor times ho=PO+u, and all terms in Qo
or q, are neglected because they are proportional to gradients. Just as the equilibrium average of the clas-
sical subtracted fluxes vanishes, so7& and Is have vanishing averages over the distribution Do.

It is noteworthy that the subtracted Eluxes remain linear combinations of the fluctuations even when non-
local and nonlinear effects may be important. Moreover, we want to remark that it has been verified that
the same form for the subtracted flux is valid when a Do of grand canonical type is used. " This supports
the idea that, like the result for the classical limiting case, this form of the flux is covariant for all en-
sembles which are appropriate generalizations of the usual equilibrium ones.

Even using Eqs. (89) and (92) to express the transport kernels K(l) does not yet give+ &'& and K&'& the
autocorrelation form. This would be so, however, if we could legitimately replace 5+ by I~I(r+) and Q+ by
Ie(I'+). To see that this can indeed be done, notice that" &"

x(1-&1')= (I-&P)x(1-6')
One can also easily verify that for any phase functions V and W

jdr v(r)(1 6')w(r)= fdr[(1 d')v(r)]w(r), (95)

where t is the transpose of 6'. (An explicit form is given in Appendix D. ) Moreover, it can be seen that

(1 6')ll'(r) =1-.(r; r') = I-.'(r; r), (96)

and (I-&P)Q+(r) = I (r; I'+) = I +(r; I'). (97)

To verify these equations, first express II+ and Q+ in terms of the Il, Q, and the A, then make use of the
fact that (1-6')A vanishes (as indicated in Appendix D), and finally apply the relation that (1-6')Z is equal
to the bracketed expression of Eq. (83) [see Eq. (D.17) of Appendix D].

The autocorrelation form emerges using these results; for example, one has for K&4&, that

K&4&(1; 2) = (dr,dr I . (1; I',+)x(I' t„.I" t ) I-. (2; I;+)D (I",t, )P(2)

= fdr, dr, i.(].; r,)x(r,t„I' t,) I.(2; I', )D +(I',t )P(2),

(100)

(102)

(104)

where we have defined

x(r,t„.r,t,)=x(r, t„r, t, ). (99)

The subscript on the phase point I'—indicates the time with which the point is associated, while the super-
script minus sign indicates that P& is obtained from the component momenta P . by subtracting mv rather
than adding it as with the P; previously defined; that is,

P . —= P . +&nv(R ., t ).
~Q)

Clearly all the kernels K& & can now be expressed in an analogous way, so that using the notation intro-
duced by Eq. (70), we can write

K&4&(1; 2 I vfP) = (I.(1) IX(t„t2) I I . (2)DO+(t, ))P(2), (101)

K'"(I; 2 I vfP) = (I-.(1) I X(t„t.) II (2)D.'(t.))P(2),

K' (1;2 I fp) = (I (1) Ix(t„t ) Il. (2)D, (t ))P(2), (103)

and K"'(1;2lvfP)=(I (1) IX(t„t,) II (2)DO+(t, ))P(2).

These expressions are the central result of this Paper
Observe first that the viscosity kernel %&4& and the heat conductivity kernel X'2& are autocorrelations,

and that R&" is in an obvious sense the transpose of the coupling kernel K'". Also notice that since D,+ is
independent of the velocity v, all the dependence on v (except for the explicit linear dependence of heat
fluxes on &v) is contained in the dynamical kernel X(t„'t,). The kernels for the classical theory (the inte-
grals of which over all space and time are the transport coefficients) of course do not depend on velocity
at all.

These results differ from the.kernels of the classical theory in other ways: Classically K'" and K'I do
not appear at all and the factor P is taken at the space-time point (r,t, ) instead of (r,t, ). Also, in Eqs.
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(101)-(104),D, replaces the usual canonical distribution (containing no nonlocal effects), and the subtract-
ed fluxes7& and Ie replace the near-equilibrium, long-wavelength forms, which have just been described.
But the most important difference is the appearance here of the time-evolution kernel X instead of the usu-
al one which is the Green function corresponding to Liouville's operator. Not only does X depend on v as
well as on f and P, but it is a time-dependent nonlocal functional of all three of these variables.

C. The Initial Value Terms

The preceding discussion has led to expressions for the pressure tensor, namely Eqs. (77) and (72), and
the heat current, namely Eqs. (78) and (74). Moreover, even though these expressions are exact, the lo-
cal-equilibrium terms and the terms proportional to the thermodynamic forces have been shown to be na-
tural generalizations of the expressions appropriate to the classical theory. All the effects of the initial
distribution are embodied in the initial value terms R& and Re defined by Eqs. (72) and (74). To proceed
further, a physical assumption is required so that the terms vanish identically or at least become small.

Two remarks will be made. " First, if one wants to use this formal expression for the currents to dis-
cuss the approach to a Markoffian limit and thereby the approach to equilibrium, one can hope to show
that for a sufficiently large class of initial distributions this term vanishes quickly enough. This conjec-
ture is supported a posteriori. Suppose one accepts on the basis of the very strong similarities between
the present currents and the currents in the Markoff limit that this classical Markoff limit follows asymp-
totically in the time for the reversible and irreversible parts of the current for sufficiently small gradients.
(This can be shown. ) Then one can conclude from the fact that this Markoffian limit is supported by experi-
ment that the initial value term vanishes for experimentally attained initial distributions. More than that,
it must vanish at least as rapidly as the small wave-number limit of the transport kernels. If this conjec-
ture can be validated it would provide a theory of the approach to equilibrium.

This argument gives no indication, however, that the initial value terms vanish any faster than the trans-
port kernels. Indeed, since both terms involve the same time-evolution function X, it is difficult to see
any way for the initial-value term and the term linear in the thermodynamic forces belonging to the same
current to decay at radically different rates. Thus, the second point is the following: If one wants to have
a valid theory for very high frequencies and wave numbers (so that essentially the full generality of the
thermodynamic force term in the currents is required), then one must either include the initial-value
terms or consider only cases for which they vanish identically; namely, those cases for which &D(t =0)
vanishes.

The difficulties of the first alternative are obvious, especially since we do notin general determine ini-
tial distributions. Thus we adopt the second alternative and consider only cases fox sohich AD(f = 0) vanish-
es; namely, those for which D(f = 0) is equal to the initial value D,(t = 0) of the distribution defined by Eq.
(42). In principle, one can set up many past histories all of which will arrive at the desired distribution
D,(t=0) at t=0, but we cannot do this in practice. In practice, probably the only experimental circum-
stances for which we can argue that we know D(t = 0) are those in which we prepare states of constrained
equilibrium corresponding to the initial expectation values a~(r; 0).'8 In such experiments the system is in
an equilibrium with the expectation values of the a~ fixed in some way for at least a relaxation time before
t =0. The appropriate distribution in phase space is the one which maximizes the Gibbs entropy [given in
Eq. (51)] under these constraints. Operationally, the idea is to randomly take samples from an equilibrium
ensemble by a particular prescription which is kept fixed in the sampling.

By adopting this alternative, one is giving up other initial conditions (for example, catching the system
during the course of relaxation from some constrained equilibrium), but this does not appear to be an im-
portant restriction from an experimental point of view. In fact, as a third point one can argue that the
choice of Do(t = 0) as the initial value of D should be made precisely because it corresponds to possible lab-
oratory practice. "~"~"

Perhaps, for emphasis, one should point out that the present assumption is wholly different from assum-
ing that D(t) is equal to Do(t) for times t later than the initial time. This equality cannot be true and indeed
we have just calculated the difference AD(t). What is true as has been shown is that b D(t) is first order in
the gradients and may therefore be small in physically interesting cases.

VI. CONCLUSIONS AND DISCUSSIONS

The expectation values of a set of mechanical quantities A~ corresponding to mass, momentum, and en-
ergy density have been shown to satisfy the usual conservation laws. For the given mechanical model ini-
tially in constrained equilibrium corresponding to given initial densities a~(r; 0), it has been shown that the
pressure tensor is given by

P (P;t,) = P,(P; ~ f(t,)P(t,))-J dt2 fdic'2[K '4'(1; 2 IvfP): Vv(2) + K "'(1;2 lv fP) ~ V inP(2)], (105)

while the heat current is given by

q(r, t ) =q, (r, lv(t )f(t, )P(t ))-f 'dt2 fdrm[K '(1; 2 IvfP): Vv(2) + K ~'(1; 2 IvfP). V lnP(2)].

The local-equilibrium values P, and q, of the pressure tensor and heat current are the expectations in a
local-equilibrium ensemble Do for appropriate phase functions defined by Eqs. (34) and (36). In the expres-
sions for P, and q, given in Eqs. (56) and (57), all orders in gradients are included so as to account for non-
local effects. The local-equilibrium ensemble D, is defined to be the exponential function of a linear com-
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bination of the mechanical quantities corresponding to the observed densities [Eq. (42)). The coefficients. of
this linear combination -+, —pQ, and p, called conjugate variables, are entirely determined as function-
als of these densities. Averaging with such a distribution has the effect that there are contributions from
terms of all orders in the gradients of both the Helmholtz free energy density f and the inverse tempera
ture P. While Po generalizes the classical local-equilibrium pressure, q, which is linear in the velocity
gradient, has no classical counterpart. " Such expressions are not new, but they do not seem to have been
fully exploited, for example, in discussing nonlocal effects near the critical point or neutron scattering.

The molecular expressions for the transport kernels K(l) secre the main goal and are the fundamental re-
sults of this paper. These are explicitly given by Eqs. (101)-+04), by Eqs. (90) and (93), which define the
subtracted fluxes I& and Ie, by Eq. (68), which defines the time-evolution operator X, and by Eq. (44),
which defines the local-equilibrium ensemble in the local frame. Each factor in the viscosity kernel K &4&

and the thermal conductivity kernel K "' generalizes an analogous factor in the corresponding autocorrela-
tion function of the classical theory. It is noteworthy that the subtracted fluxes remain linear combinations
of the fluctuations. In addition to the fact that the subtracted fluxes and the distribution over which the cor-
relations are averaged are time-independent but nonlocal functionals of the velocity, Helmholtz free energy
density, and the inverse temperature, the time-evolution operator X is the one appropriate not to the Liou-
ville operator but to (1 e)L.

The projector 6' is the operator which projects the time rate of change of the solution of Liouville s equa-
tion into the time rate of change of the generalized canonical ensemble, and is defined in terms of D, by
Eq. (62). Because e is itself a time-independent but nonlocal functional of v, f, and P, the Green function
X is a time depende-nt as well as nonlocal functional of these variables [i.e. , the corresponding operator is
not just the exponential function of the negative of (t-t')(1M)L].

It was also shown that the free energy f and inverse temperature P are determined as nonlocal function-
als of the mass density and internal energy density by equations of state which are nonlocal generalizations
of the usual ones.

Thus, we conclude that the conservation equations, the molecular expressions for P and q, and these
equations of state achieve the goal of a closed integrodifferential description of the fluid variables for
zehich initial values determine the future ones.

We emphasize that the only assumptions necessary for the validity of this system of equations within the
context of the statistical-mechanical method are the choice of a particular set of variables and the special
initial distribution in phase space. Furthermore, since this system of equations is an exact consequence
of Liouville's equation for the initial condition chosen, one expects them to give a complete theory of the
expected dynamical behavior of isolated simple fluids for all experiments corresponding to such an initial
condition. The theory is complete because the equations are a closed system for a finite number of vari-
ables: There is no infinite hierarchy which must be truncated by uncontrolled approximations. The vari-
ables themselves are also complete in the sense that for small enough gradients they are determined by a
description which is local in both space and time (i.e. , the classical theory). If our variables did not have
this property we could not expect the kernels to be quasilocal (i.e. , short ranged) in space and time.

The present derivation of these results, however, is based on a formal solution of the initial value prob-
lem for an isolated system while the classical-fluid dynamic equations are known to apply for subsystems
of thermomechanical baths. McLennan has developed a theory for the steady states of such systems. 2' In
the present context, one would want to deduce the behavior of a small subsystem of a large system to which
the present theory applies. But McLennan's work strongly suggests that such a study will yield essentially
the same set of equations with the same molecular expressions. The only difference will be the presence
of source terms to be taken as given. In other words, the equations and parameters are characteristic of
the given system and not of its surroundings. This would be in complete analogy. to the situation for the
classical dynamics linearized about absolute equilibrium: The same Green function which determines the
solution to the initial-value problem for the source-free equations also determines the solution in the pres-
ence of sources at the boundaries. Therefore, our opinion is that the present theory provides exactly the
appropriate system of equations and molecular expressions for open systems if one simply introduces the
given sources in the usual way.

We have already noted that our choice of the local-equilibrium distribution D, is not unique; there are
other possible ones which are appropriate to different experimental situations. Although it has not been
shown, one expects that the molecular expressions are invariant to such choices. The expected reversible
part of the stress and heat current would be the same even though the fluctuations of them would be differ-
ent. Also, although the transport kernels are fluctuations, they should remain invariant in the way found
by M. S. Green" for the correlations of the classical theory; namely, the subtracted fluxes change ealuein
just such a way as to compensate for the change in the distribution. The form of the subtracted fluxes,
however, would remain the same just as it does in the classical case (i.e. , they are covariant). If one as-
sumes the validity of this invariance property, the nonuniqueness to which we have referred is an asset of
the theory.

The fact that the present expressions for the expected fluxes are in close formal analogy to the classical
forms and to the molecular expressions of them is in itself noteworthy. Within a statistical-mechanical
context, such a form for general fluid dynamics was first given by Richardson. " Our primary result is to
have completed his work by exhibiting the detailed molecular expressions for the transport kernels in the
general case. We can display the connection with Richardson s work in a very direct way. If one takes
Eq. (69) for M) and evaluates (1-P)LDo with the first equality of Eq. (64), one derives exactly his nonlin-
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ear, quasidifferential equation [Eq. (25) in Ref. 14], but now with the kernel

(A(1') tX(t; f')(1-8) lA(f")D, (t'))
where X and d' are again defined by Eqs. (68) and (62). Notice that it is not necessary to specify the func-
tions A~ in order to arrive at this result. "

The present results also extend and complement other work. For example, it goes further than Mori's
generalized Langevin-equation approach' in that it is not limited to near-equilibrium situations and it in-
troduces the conjugate variables in a natural way. In another place, we hope to show how such a small
fluctuation theory can be elaborated from the present structure. In his earlier work on deriving the molec-
ular expressions for the classical equationsl' Mori uses the same D,(t) used here. The expected currents
are calculated, however, by use of a successive coarse-graining in which D(t) is repeatedly set equal to
D,(&) after each small interval of time. The present theory relieves us of the necessity of this assumption.
We have already remarked that the present work complements McLennan's for the steady state. Moreover,
for the problem it treats, the present work includes not only the nonlinear effects arising from evaluating
the autocorrelation with the local-equilibrium distribution, but includes the contributions from all higher
powers of the thermodynamic forces in a way quite different from his.

The theory embodies a number of concepts in common with other work. The primary one which origi-
nates from the Chapman-Enskog solution of Boltzmann's equation and Bogolubov's work is that, at least
for special initial conditions, distribution functions are in some sense functionals of certain kinds of vari-
ables. Here, for a special initial condition, we have expressed D(t) exactly as a functional of the fluid den-
sities. This functional is not Bogolubov s time-independent functional for. our problem, however, and the
expression given in Eq. (69) allows the possibility of studying the approach to the time-independent form
(if one exists in general). The other feature of this idea is that the variables should be in some sense spe-
cial; for example, that they be approximate integrals of the motion. This is embodied in somewhat dis-
guised form by the fact that the present choice of D, is physically sensible. This property will be strongly
used, however, only when one continues the theory by investigating approximations for small departures
from equilibrium. Another broad feature in common with other work is the existence for special initial
conditions of closed exact equations which are in a sense projections of Liouville's equation. "y' ~'3

The method we have used is suggested by the Bogolubov-Chapman-Enskog technique for solving the Boltz-
mann equation. Among the advantages of this approach are: the possibility of making the assumptions fully
explicit; the possibility of framing the problem as the calculation of the mean currents; the lack of neces-
sity for introducing fictitious forces in the Hamiltonian; the natural occurrence of the subtracted fluxes;
and the lack of necessity for any coarse-graining.

Because of this method, the present work is most closely related in spirit to that of Kirkwood and Fitts, 22

and H. S. Green. " Because they neglected certain terms in the evaluation of D, at an early stage, however
they became committed to a sequential approach to higher-order effects. But more importantly, this had
the effect that some general features of the theory were obscured. For example, one does not easily see
by their method that the appropriate subtracted fluxes can arise in complete generality because of the oc-
cu»ence of a projector, or that one still gets an autocorrelation of these exact subtracted fluxes. Thus the
introduction of the projector 6', which projects the time rate of change of D onto that of the time rate of
change of D„has extended and clarified this work.

Of course, the present results are not directly useful as they stand. One might say that they have only
transformed the full mathematical problem into a form which is exact but for which physical insight imme-
diately suggests a number of approximation schemes corresponding to various limiting cases. Because of
this, these results are particularly suitable as starting points for further approximations. For example,
we know physically that the densities will change more slowly as the departures either from absolute equi-
librium or from some local equilibrium become smaller. In the first case, the departbre of the conjugate
variables b~ from the equilibrium values is small for all points at any time and therefore these departures
may be suitable expansion parameters. The second case may be of more fundamental interest. Here al-
though the departures from absolute equilibrium may be very large, the gradients of the conjugate vari-
ables at any time are small everywhere, so that in the neighborhood of any given point the deviations from
the value appropriate to the point are small. ' Thus the gradients of the conjugate variables which are a
linear combination of the thermodynamic forces may be useful expansion parameters inthis case. " Notice,
however, that neither one of these expansions demands that ]Ve go to the low-frequency, long-wavelength
limit.
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APPENDIX A. DERIVATION OF CURRENTS

Our purpose is to describe the calculation leading to Eqs. (25)-(27). First notice that all the densities
A ~(r) are a sum over all particles of a coefficient A»(I') depending on 1 but not on r, multiplied by 6(r-R;).
Since the Liouville operator is a partial-differential operator, LA ~ will be the sum over particles of
A»L&(r-R&) added to &(r —R&)LA»(&). But by evaluating derivatives we see that

L5(r R )= -V (P./m)-6(r. -R.), (A. 1)
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and also that

LP =.-mV- V,(R.) +Q~F.~,

and LH. =(2m) 'Q~F.~ (P.+P~),

where the symbols are defined in the text. Thus since we assume Fik = -Fk; we find that

P.P.
J= -V Q 5(r-R.)+2 Q F. [5(r-R.)-5(r —R )]-5RVV/m,

nz i . . ik i kl+8

(A.2)

(A.3)

(A.4)

P..

8 = -V'Q —H.5(r-R.)+ Q F. (P.+P )[5(r-R.)-5(r-R )].m i i 4m.
k

ik i k i k
2 s&k

(A. 5)

(A. 7)

The only trick necessary is to express the second sum as a divergence of a quantity which preserves the
property of the original expression of vanishing for r outside the volume (for all I' of interest). We accom-
plish this (not uniquely) by using the identity

5(r-R.)-5(r-R&) = -T f del'(e, R., R. )5[r+l(e, R., R. )-R&] —= -f f deR &5(r+eR. -R ). (A.6)

The vector 1(e, R;Rg) is defined in the following way: It vanishes when e = 0, it equals Rg when e = 1, and
otherwise it lies on the shortest line between Rz and Rk which lies entirely inside the system. The quantity
I'(e, R;, Rg, ) is the derivative with respect to e of 1(e,R;, Ry). Except in the unusual circumstance, when
R; and Ry are on opposite sides of a small inward protrusion of the surface, 1(e, R~, Rll, ) equals Rg, and
one has the second equality in Eq. (A.6). For large systems, this second form suffices for most purposes,
and we adhere to it in the text. For the discussion about surface terms in LD„however, one uses the ex-
act form which vanishes as it should.

For the heat-current expression of the text, the transformation to the local frame gives rise to the term

Q, 2f, d=e fdRRF(R) Q [v(R.)-v(r)]5(R.~
—R)5(r+ eR,.~-R~)

as well as to terms in which v can be taken at r because of the factor 5(r-R;). Because of the 5 functions
in Eq. (A.7), however, the sum over particle pairs is equal to

jv[r-(I-e)R] —v(r)} Q 5[r-(l-e)R-R.]5(r+ eR-R ),
'4k i k '

and this yields the expression for Q, in the text. If one starts with the more exact heat current derived by
using the first equality of Eq. (A. 6), one can still derive an expression in terms of 3I@'; namely,

Qo = 2fdRd-R' f de/de'1''(e, r —R', R)R' Vv(r-eR') F(R)X+'(r-R', r-R'+R; I')5[R'-R+ l(e, r —R', R)]. (A. 8)

APPENDIX B, FORM OF Do AND CALCULATION OF THE CON JUGATE VARIABLES

To exhibit Do in the more familiar form given in Eq. (44) and to advance the calculation of the conjugate
variables by deriving Eqs. (48) and (49), one wants to convert the momentum integrals to Gaussian form.

One can easily verify by substituting the definition of I that

J(r) = J'(r) +v(r)II+(r), (B.1)

(B.2)

and &(r)=& (r)+v(r) J (r)+2v(r) v(r)% (r), (B.3)

where SR+ and @+ are defined by Eqs. (45) and (46) and J+ is similarly defined. It is clear by substituting
these expressions that Eq. (42) is equivalent to the more familiar form in Eq. (44).

Moreover, the expected densities according to Eqs. (B.I)-(B.3) are a linear combination of the expecta-
tions computed with D,+. For, if we define

Q)+= fdi"~(r)D, +(r), (B.4)

then by taking the expectation of Eqs. (B.1)-(B.3) over D, (I'), we find that

j = &J)++v)+, (B.5)

p = O)I)+ = OR)„ (B.6)

and e=&h)++v &J&++2v'&+. (B 7)

To obtain Eqs. (B.5)—(B.7), we replaced Do with D, according to Eq. (44) and then transformed the vari-
ables of integration to ~+. One can verify that although this transformation is not canonical it nevertheless
has unit Jacobian. Clearly, &J+) vanishes.

The expected energy can be written, by noticing that the term in e(r; I') due to the external potential is
just K(r; I') V, (r), as
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e(r) = l2/2p+ p V, + «(r))++[N(N I-)/2V4] fdR V(R)p, &'&(r; R lf, p). (B.8)

The quantity SA(r; I') is the kinetic-energy term in e(r; I') [see Eqs. (17) and (18)], and the two-particle
probability density po+'(r; R) is defined by Eq. (50). Now the momentum integrals can be done explicitly
with the result that

«~(-.))'= —.'(p/ tj). (B.9)

Equations (B.8) and (B.S) together imply Eq. (49).

APPENDIX C. TIME RATE OF CHANGE OF TOTAL ENTROPY

We will show here that the time rate of change of total entropy defined by Eq. (51) is equal to a linear
combination of the irreversible currents &P and &q times the corresponding thermodynamic forces. Thus,
using the notation described in the text that the exponent of D, is equal to b +A, one can write

dS'/dt = fdrb +& a+ fdr(s b)+a. (C.1)

The second term vanishes because it is just equal to the negative of the time rate of change of the integral
over all ~ space of Do, and this vanishes because normalization is a constant. Thus one finds, by rewrit-
ing the first term according to Eq. (23), that

dS'/dt = fdr b +fdI'A (I")D(I"). (C.2)

APPENDIX D. PROPERTIES OF THE PROJECTOR

Some relations used in the text involving the projector (P(I"; I") are proved.
First, notice that the negative of the functional derivative of the conjugate variables with respect to the

fluid densities is the matrix inverse to the autocorrelation matrix of the densities over D, . The autocorre-
lation G is defined by

G (r'; r) =- (A (r')A (r)), . (D. 1)

The contribution of D, to this, however, is just equal to the negative of the integral over I' space of I.DO

which vanishes. The remaining contribution from ~D can be written

dS'/dt= fdr[V -h(P (-Pv)+Pf (bq+LP'v)], (C 3)

where Eqs. (25)-(27) have been used to express the A~ and the matrix product has been made explicit. As
they appear here, ~P and hq are simply defined by

fdrnt D-=~P, (C.4)

and fdI" QbD= nq+AP v— (C 5)

No term in J or K appears in Eq. (C.3) because its expectation over &D vanishes. Now if one integrates
by parts and writes the result in terms of Vv instead of VPv, one finds Eq. (58). The form of Eq. (58) sug-
gests that it is appropriate to identify the integrand with the entropy production. One should also observe
that this result depends only on the definition of the entropy functional and on the form of Do. Thus Eq. (58)
is generally valid without any assumption concerning the initial distribution D(t = 0).

If we also define a matrix g by
5b (r)

g r; r'
5a~(r')

then fdr "[g(r; r")*G(r";r')] =5 5(r-r').
pv pv

(D.2)

(D.3)

The proof is simply to observe that the negative of the autocorrelation matrix is the functional derivative
of the densities with respect to the conjugate variables, and that this derivative is by definition the inverse
of the negative of g. Also observe that

g (r; r') =g (r'; f'), (D.4)

because G has just such a symmetry property.
Second, + is the projector of theA&, which means that

+A (f')D, =A (r)D, .

Furthermore the transpose of +, given by

g(r; r ) = fdrdr'A(r; 1)*g*A(r'; I"')D (I"),
also proj ects out the A ~, so that

6'A (r)=A (r).

(D.5)

(D.7)
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Both of these equations are easily established from the definitions of tP [see Eq. (62)j and 6' by using Eq. (D.3).
Third, t is idempotent and one can directly verify from its definition, Eq. (62), that

6'(t, )d'(t, ) =(P(t, ), (D.8)

where t, and t, are any pair of finite times.
Fourth, 6' projects D, from the distribution D; that is,

t'D =Do =O'Do. (D.9)

Thus, although it is not so important here, this projector has the same property as the time-independent
ones used by Zwanzig. To prove Eq. (D.9), one begins with the fact that D, is a homogeneous functional of
first degree of j, p, and e. This fact has been established by Robertson" for the quantum analog of D, and
an analogous proof works here. This means that"

D,(I" I ~a(t)) = eD,(I' I a(t)). (D.10)

If we compute the partial derivative of D,(F I ea(t)) with respect to e from Eq. (D.10) and evaluate it at a =1,
we find

fdF: ' '

*a(F)=D,(I' la(t)).
6D,(r l a(t)), ,

(D.11)

(D.15)

(D. 17)

Since a& is the expectation of A& over either D or D„Eq. (D.ll) implies both equalities in Eq. (D.9).
Fifth, if we use the chain rule to express the functional derivative in Eq. (D. 11), we immediately see that

fdF'dF'A(F')*g(r'; F")*a(F")= 1, (D. i2)
which will. be useful in the following.

The sixth property of 4' we wish to establish is the expression for (1-8)ZD, given as Eq. (83) in the text.
%e clearly have that

(1~)Z(F)D.=(1~)~Z(F)D. (D.i3)
just because of the second equality in Eq. (D.Q). From the definition of (P we see that

6'&ZD =D fdF'dF"A(F')+g(F'; F")*(A(F')bZ), =D fdF 'dF"&.A(F')*g(F", F")*(A(F")Z),. (D.14)
The second equality follows because Eq. (D. 12) is valid. Now one notices that the factor (A(F")Z)o is just
the negative of the functional derivative of (Z), with respect to b(F"). Furthermore, because of the symme-
try of g displayed in Eq. (D.4), the integral over F" of the matrix product of g(r', r") with this derivative is
identical with the derivative of (Z), with respect to a(F ). Thus, by rewriting Eq. (D. 14) in terms of this
functional derivative of (Z)0 with respect to a(F ) and using it to express the right-hand side of Eq. (D.13),
we arrive at

(I-e)Z(F)D, ={tZ fdF'4A-(F')» ( )' )D, .
6a(r ')

One can now consider (Z), to be a functional not of j, p. and e, but of v, , and u. But if this functional is,
say, z,{iF,p, u), it must be such that Q'), is equal to zo{j/p, p, e ——,

' Pp-pF, . From this one can relate the
functional derivatives with respect to j, p, and e to those with respect to v, jo, and u, and find that

If one re-expresses this with the quantities J'+, %+, and 8 defined by Eqs. (B.15), one arrives at the de-
sired relation, namely Eq. (83).

By a procedure similar to that just used to establish Eq. (83), we can derive for the transpose of 6' that

(1M)Z(F) = &Z(F)-fdF' = &+ A%+—+ a++—(Z), .

Just as Eqs. (89) and (92) are established by using Eq. (D.16), so Eqs. (96) and (9t) are established by us-
ing Eq. (D.17).
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Metastable Atoms and Molecules. III.
Metastable Impacts on Surfaces with Various Work Functions*
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Surfaces of atomically clean tungsten, with work function 4. 5 eV, tungsten oxidized with
a monolayer of oxide and having a work function 6.6 eV, and tungsten coated with BaO with
a work function probably under 2 eV were hit by metastable atoms or molecules of Ar, Xe,
N2, and H2. The emission of secondary electrons by metastable atoms and the surface
ionization of the atomic metastables were shown to follow the expected dependency on the
work function. The N2 molecular metastables were weakly surface ionized as N2+ on the
oxidized tungsten but not on the surfaces of lower work function. Secondary electron emis-
sion either did not occur at all or was obscured by the large emission of CN negative ions.
No CN emission nor electron emission was observed on the W-0 surface. Metastables of
H2 dissociated on the clean and the oxidized surfaces. On the clean surface, one atom
became H(2P) and gave out Lyman alpha radiation. On the W-O surface, one of the H atoms
became a proton and no Lyman alpha radiation was produced. No other ion emission than
H occurred.

I. INTRODUCTION

The procedure described in Paper I of this se-
quence' has been used to produce beams of excited
neutral particles of Ar, Xe, H„and N, with kinetic
energies in the range of 25 to 200 eV. Their inter-
actions with surfaces have been examined as de-
scribed in Paper II.' The primary change in ap-
paratus structure relative to the earlier work has
been to replace the molyMenum target with. a tung-
sten ribbon approximately 0.000 75-in. thick and
connected so that it could be heated to high temper-
ature by an electric current. This target was used
in various states including coated with BaO to pro-
vide a low work-function surface, flash cleaned to
give a normal work function for heterogeneous tung-
sten, and oxidized with approximately a monomo-
lecular layer of oxide to give an elevated wor-k
function. In addition, studies were made of the be-
havior of the target under "dirty" conditions, ob-
tained simply by letting the target stand at room
temperature for hours or days in either a con-
trolled, low pressure of oxygen or in the residual
gases of a high-vacuum system.

II. PREPARATION OF TARGET SURFACE

The tungsten ribbon could be flash heated by the
conduction current for purposes of cleaning. Flash
temperatures were not measured, but the heating

current which was around 25 A, was closely ob-
served, and ultimately every target was burned out
by only a slight excess of current above the normal
flash-current used. Hence, it is believed that
flashing was surely at temperatures above 2000'C
and probably above 2500'C. On flash heating of a
new target, or of an old target after several days
of idleness even in the vacuum of 10-' Torr or
better, a burst of emitted gas was observable on
ionization gauges. After several successive flash-
es, the gas evolution was negligible. In ensuing
work, it is assumed without further measurement
that the work function of the surface was then 4. 5
eV.

For lowered work-function studies, the target
was coated with BaCO, which i:n turn was reduced
by heating the target to approximately 950'C in
high vacuum until gas evolution was negligible. It
is assumed that the work function was then of the
order of 1.6 eV, but no results are presented
which depend on any assumption other than that the
work function was lower than for the clean tung-
sten. This surface was essentially a dirty one by
contrast with others of the present paper so that
only minor observations about its behavior are of-

feredd.

To oxidize the surface, oxygen was admitted to
the closed-off system at 0. 5x10 '-Torr pressure,
and the freshly cleaned tungsten was then heated
to 900 C until the pressure dropped to 0.4x10 '


