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coincide. Therefore, If p&e&(E) is continuous, (D3) determines a unique
smooth monotonic function ts. The s &s&(k) given by(D1)
is then periodic in is space and smooth although in

general not analytic: The second and higher derivatives

may be discontinuous at critical points of both p and
T»s is an equation for y. The function t(rt), the inte- p' &. In practice, however, it is possible to Gt sic&(k)

grated density of states, increases smoothly from 0 to 1. by an analytic function.
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The second- and third-order elastic constants of lithium, sodium, potassium, and rubidium in the body-
centered cubic structure are calculated, The relationship between Brugger elastic constants and Fuchs
elastic constants is worked out. The Brugger elastic constants, which are de6ned as the derivatives of the
energy with respect to the Lagrangia~ strain, are widely used to express experimental results. The Fuchs
elastic constants, which are denned as the derivatives of the energy with respect to homogeneous expansion
and volume-conserving homogeneous shear, are often more convenient for calculations in terms of atomistic
considerations, and are particularly convenient for calculations with pseudopotentials. They are used here
to calculate the contribution of the band-structure energy to the elastic constants using the local pseudo-

potential proposed by Ashcroft. This pseudopotential contains the core radius as the only adjustable param-
eter. The contribution of the band-structure energy to the elastic constants is represented as a summation

of two kinds of derivatives of the wave-number characteristics over the reciprocal lattice points —those with

respect to homogeneous expansion and those with respect to volume-conserving homogeneous shear. The
core radius which gives the best Gt to the experimental second-order elastic constants agrees with that
determined by Ashcroft from data on the Fermi surface or on the resistivity of liquid metals. The band-
structure energy term is found to make a small contribution to the second-order elastic constants but an
indispensable contribution to the third-order elastic constants.

I. INTRODUCTION

HERE are two methods for calculating the second-
order elastic constants of a crystal: the method

of homogeneous deformation and the method of long
waves. One shouM be able to calculate the second-order
elastic constants using either of the two methods' and
the results obtained should agree with each other if the
same model of the crystal is used in both cases. I uchs' '
calculated the second-order elastic constants of alkali
metals by the method of homogeneous deformation and

obtained a satisfactory comparison with the data avail-

able at that time. However, more recent calculations4 7
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&Besides the works which calculate the second-order elastic

constants explicitly, there are many papers on the phonon-
dispersion relationship which contain the second-order elastic
constants implicitly. As sources for reference to these works we
~ection t:he following recent articles: R. A. Cowley, A. D. B.

of the second-order elastic constants of alkali Inetals

have been mostly carried out by the method of long

waves, except for the calculation of bulk moduli by
Ashcrof t and Langreth. '

Ho and RuoP based their calculation on a quite
diferent model of an alkali metal which includes closed-

core interactions instead of the free-electron energy.
Therefore, their results cannot be directly compared
with the present calculation. Shyu and Gaspari' calcu-
lated the effective interatomic potential for alkali metals
from the Heine-Abarenkov model potential. They also

calculated the second-order elastic constants from the
effective interatomic potential by the method of long
waves. Their results of the second-order elastic con-
stants are not in as good agreement with the experi-
mental data as the present results, although they used
a more sophisticated pseudopotential than that used in
the present calculation. However, this is not necessarily
evidence against the Heine-Abarenkov pseudopotential,

Woods, and G. Dolling, Phys. Rev. 150, 487 (1966); in Ehonons
As I'erfect Xattsce and sn Lattsces msth I'osnt Imperfectsons, edited
by R. W. H. Stevenson (Plenum Press, Inc. , New York, 1966);
in Lattsce Dynamics, edited by R. F. Wallis (Pergamon Press,
Inc. , London, 1965).8¹Wt Ashcroft and P. C. Langreth, Phys. Rev. 1SS, 68$
(1967).
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because questionable approximations are inevitably in-
volved in calculating phonon frequencies from the ef-
fective interatomic potential. The method of homoge-
neous deformation has the obvious disadvantage that
one cannot calculate the phonon-frequency —wave-num-
ber dispersion relationship with it. On the other hand,
the calculation of the second-order elastic constants by
the method of homogeneous deformation is performed
more simply and can be used as a check for the calcu-
lation of the dispersion relationship. Also, the calcu-
lation can be extended to higher-order elastic constants
without essential difhculty. In recent years, experi-
mental data' "for the third-order elastic constants of
metals have started to accumulate. This is due to refine-

ments in the technique of measuring very minute
changes of sound velocities in crystals under hydro-
static or uniaxial stress. It is worthwhile, then, to try
to calculate the higher-order elastic constants of metals
as well as the ordinary elastic constants.

In the present paper, as a 6rst step in the attempt to
calculate the higher-order elastic constants of metals,
the second- and third-order elastic constants of alkali
metals in the body-centered cubic (bcc) structure are
calculated by the method of homogeneous deformation,
neglecting the eGect of lattice vibrations. Instead of the
expression for the energy given by Wigner and Seitz
which was used by Fuchs in his calculation of the second-
order elastic constants of alkali metals, we start our
calculation of elastic constants from the expression for
the energy given by Ashcroft and Langreth' in their
calculation of bulk moduli and cohesive energy for
various simple metals including alkali metals. We show
that the expression can be used for the calculation of
any kind of elastic constants. The expression for the
energy used in the present calculation consists of three
parts, the free-electron energy, the electrostatic energy,
and the band-structure energy. The band-structure en-

ergy is calculated by second-order perturbation theory
using the model local pseudopotential proposed by Ash-
croft." This pseudopotential contains one adjustable
parameter, the core radius. Deformation parameters
which are extensions of those originally used by Fuchs'
are found to be most convenient as independent vari-
ables for the derivatives of the band-structure energy.
In Sec. II, we discuss the relationship between two
kinds of elastic constants, Brugger" and Fuchs elastic
constants. Brugger second- and third-order elastic con-
stants are widely used to represent experimental data,
while Fuchs elastic constants are convenient for the
theoretical calculations.

' Y. Hiki and A. V. Granato, Phys. Rev. 144 411 (1966)."K.Salama and G. A. Alers, Phys. Rev. 16, 673 (1967)."J.F. Thomas, Jr., Phys. Rev. (to be published).
'~

¹ W. Ashcroft, Phys. Letters 23, 48 (j.966)."K.Brugger, Phys. Rev. 133, A1611 (1964).

II. RELATIONSHIP BETWEEN BRUGGER AND
FUCHS ELASTIC CONSTANTS

In the method of homogeneous deformation, the
second-order elastic constants are defined as the second
derivatives of the energy with respect to deformation
parameters, which specify homogeneous deformations
of the crystal. The higher-order elastic constants are
de6ned in a similar way. The 6rst derivatives of the
energy with respect to the deformation parameters
should vanish, if the crystal under consideration is in
equilibrium.

There has been general acceptance of Brugger's"
de6nition of the elastic constants as the derivatives of
the energy per unit undeformed volume with respect
to the Lagrangian strain parameter y;;, which is defined
by

1 t)xg t)xg

2 s r)x;ax;

where x; and x are the coordinates of a material particle
in the undeformed and deformed state, respectively. He
has also shown that these elastic constants are the
natural generalization of the accepted de6nition of
the second-order elastic constants. The second- and
third-order Brugger elastic constants are then given as
follows:

OsE
Car'st=

(

(8'lJ gj Brls[l sg~

O'8
!Cijslrns =

~

E8gij Brisl8rims~'s;g 0

where 8 is the energy of the crystal per unit unde-
formed. The Voigt abbreviation is used to denote the
Brugger elastic constants, i.e.,

where ij's and J's are related by 11 1, 22 2, 33 3,
23 4, 31 5, and 12 6. Thurston and Brugger" have
established a convenient procedure for calculating the
second- and third-order elastic constants de6ned above
from the experimental data of the change of the natural
sound velocity in a crystal due to hydrostatic or uniaxial
stress.

Strain parameters other than Lagrangian strain param-
eters y„can also be used to de6ne homogeneous but
not necessarily in6nitesimal deformations of a crystal.
The relationship between the elastic constants de6ned
by Wallace" and those used here is discussed in
Appendix I.

In his calculation of the second-order elastic constants
of alkali metals based on the theory of cohesive energy
due to Wigner and Seitz, Fuchs2 used three kinds of

'4R. N. Thurston and K. Brugger, Phys. Rev. 133, A1604
~1964)."D.C. Wallace, Phys. Rev. 162, 776 (1967).
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deformation parameters e;, y;, and v. These deformation
parameters can be described in terms of rectangular
coordinates x, y, and s which are chosen in such a way
as to coincide with the cubic axes. e1 represents an ex-
pansion of the lattice in the x direction and contraction
in the y direction in such a way that the volume of the
crystal ls stl'lctly conserved irrespective of the magni-
tude of the deformation. The relationship between the
coordinates after the ~1 deformation, x', y', and s', and
the coordinates before the e1 deformation, x, y, and s,
is given as follows:

X'= X(1+ei),
S'=y/(1+ ~i)

e2 and ea are de6ned in a similar way.
y1 represents a tilting of the y axis in the x-y plane

while conserving the height strictly. The relationship
between the coordinates after and before the y1 de-
formation is given as follows:

x = s+riy &

3' =3'~

3'=S.

p2 and p3 are de6ned in a similar way.
e represents a homogeneous expansion or contraction

of the crystal, which is given as follows:

x'= v'I'x

~~ —~1t3~

s'= v'~'s,

By taking the derivatives of the energy per unit unde-

formed volume with respect to these deformation pa-
rameters e;, y;, and v, we can de6ne the Fuchs elastic
constants. Although Fuchs himseU considered only the
second derivatives of the energy with respect to the
deformation parameters ~1, y1, and v, it is natural to
extend his de6nitions for higher-order elastic constants.
%e have calculated the foBowing 3 second-order and

6 third-order Fuchs elastic constants, i.e.,

BE BE

B5 Bc B+1

B'Z B'E B'E O'E

Bp~ BVB6i BVB'yi B&B'ri B&i B&2 B73B72BVi

B BE B$12 BE
+-

B$22 B$12 B+1
+

B$22

B71 B"Y1

BE B$12 B+ B'$22 B~ B'f21 B'f21

+ + + (2 1)
BQ22 B71 Bg» B71 B71

Here, the first derivatives of the energy BE/Bg;; should

vanish when. the crystal under consideration is in equi-
librium. The second derivatives of the energy with re-

spect to q;; at q;;=0 are the second-order Brugger
elastic constRnts. The derlvRtlves of the LagranglRn
strain g;; with respect to e1 are found by differentiating
the expression given in Appendix II. Then we obtain

'OE/ yBi=2C44. (2.2)

The relationships between the other Fuchs elastic con-
stants and the Brugger elastic constants are established
according to similar procedures and are as follows:

B2E/B'v =~s(Cii+ 2Cla),

B E/Bci —2(Cii Ci2) y

(2 3)

(2.4)

B E/B& g {C»i+2C128+6C11R)
—~(C»+2Cii), (2 ~)

O'E/»B~i' ——
a (Ciii—Cn~)+ (8/3) (Cii—Ci2)

+-:(C»+2Ci2), (2.6)

B E/B&B'yi = 3(Ci44+2Ci55)+ 3(Cii+2Ci2)
+3C44, (2&)

O'E/Be, By '= C Ci44+Cii C—i +2C«, — (2.8)

B E/BC B62= Ciii+2C123 3Cii2

+&(Cii—Ci2), (2 9)

(2.10)

The energy per unit undeformed volume of the crystal
E is written as a function of the Lagrangian strain pa-
rameters g;,. The Lagrangain strain parameters g;; are
given as functions of Fuchs deformation parameters m,

e;, and y; in Appendix II for those combinations which

appear in the Fuchs elastic constants just mentioned.
Then, we can express the Fuchs elastic constants, for
example O'E/Byin, by means of the chain rule of dif-

ferentiation as follows:

BiE B ( BE Bgii BE Bg2a BE B'62i)B'gi2
+ +

O'Q B'pig (Bfji2 B'yi BQM B71 Bgil B71/ B71

This choice of the Fuchs elastic corn.stants is not unique,
but represents all the in,dependent second- and third-

order elastic constants of a cubic crystal, If the volume

dependence of the energy is not known but the shear

dependence is, then all but two (O'E/Bs' and O'E/Bii')

of these Fuchs constants can still be found.
The relationships between the Brugger Rnd Fuchs

elastic constants are established in the fotlowing way.

III. EXPRESSION FOR THE ENERGY

Cohen" has shown that the energy of a metal based
on the pseudopotential theory consists of three parts,
the free-electron energy E1 which is dependent solely

on the density of electrons or the total volume of the

"M. H. Cohen, J. Phys. Radium 23, 643 (1962),
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crystal, the electrostatic energy E2, and the perturbation
cDcrgy EI. In the prcscnt calculation of the clastic
constants, we adopted the same expressions for E~, E~,
and E3 as those used by Ashcroft and Langrcths in their
calculation of cohesive energy and bulk Inoduli.

Ej in cgs ~ts is given by the folio@ring:

—L0.115—0.03»n)(r, ~a~/k&}, (3.1)

+herc the 6rst term represents the free-electron Fermi
energy» thc second tc~ 1cpI'cscnts. thc frcc&lcctron
cxchRngc eneI'gy, Rnd thc third tcrIQ ls the Plnes-
Nozihres approxilnate expression for the correlation
cncI'gy fol thc fl'cc-elcctx'on gas. 0 18 tlm RtoInlc volunM
RQd 'I/, 18 glvcD ln tcrIQS of thc clcctl"on density 0 by

In the case of alkali metals, @&here there is one electron
pcr atom, r, is equal to thc radius of an atomic sphere.

$2 lepl'cscDts thc clectI'ostatlc energy of RQ RrrRy of
positive point. charges embedded in a uniform back-
ground of coIIlpensatlng negatlvc chRI'gc. Thc QUIncl 1"

cal value of this texm fox the bcc structure vras originally
calculated by Fuchs'" and recalculated, by ColdvreB-
Horsfall and Maradudin'8 using R simpler method. The
value is given by

Eg= —(1.792/r, Q)-,'c'. (3.3)

The perturbation energy Eg, which represents the
deviation of the electron energy from that of free elec-
trons, is calculated by second-order pextuxbation theory
for the simple local pseudopotential proposed by Ash-
croft. This ass~es pcx'fcct canccHRtlon of the cGcc-
t1vc potcntlal Ulsldc thc closed cox'c of thc posltlvc 1on
and pure Coulombic behavior outside the core. EI is
glVCQ by

3c

9 4m', e

6~ (4sc': )~1-e(G,kg)+g' — ~-- co [GJ"I-, (34)
o see'Q 6' e(G,k1)

%herc thc Grst Rnd the Second texms I'cpI'csent thc 6rst"
and the second-oxdcr perturbation theory results, re-
spectively, for the pseudopotential, and 6 is the re-
Ciprocal lattice vector. "The prime over the su1nrnation

"K.Fnchs, Proc. Roy. Soc. (London) A151, 585 (1955).
. :~il R. A. Cold@sell-Horsf& and A.A. Maradudin, J.Math. Phys.
I, 395 (I9%)."The reciprocal lattice vector 6 in the present paper is deaned
by

~~X~3 ~3X~& ~1X~e6 8421K
( ~ ")+1lfg2Ã

( ~ ")+f5/2K
( ~ )p

%here tÃg~ fÃgs anB flag are posltlve and negative mtegers anB %ps

means. that the origin of the reciprocal lattice is excluded
from. the summation, r. is the core radius of the ion,
and o(G,kg) is the Hartree dielectric function given by

me' /1 —v' 1+y
e(G,k1)= 1+ — -j ln

2~kgb'g'( 2g 1-1l

Here 11= (6(/2k' and k1 is the radius of the free-
electron Fermi sphere, which is given by

k1 = (Bs'/Q)'"

Although thc 6I'St-order perturbRtlon terTIl, welch is.
dependent only on volume, can be obtained in principle
from the assumed pseudopotential, Ashcroft and Lang-
1'cth determined 0! by requiring that the IRttlcc be ln
equilibrium at the obsex'ved lattice, spacing.

The energy pcl unit volume E) Which 18 the suIQ of thc
three terms B~,. Z~, and E3, is the basis of our calcu-
lation of the elastic constants. After we. specify the
crystal structure, which is bcc in the present case, the
lattice constant and the valency, the sole adjustabIc
parameter is the core radius r,. In the case of alkali
IQctals, thc second-order perturbation of thc pseudo"
potential 18 vcx'y SIQK coInparcd %1th other' terms ln
thc expxession for the energy. This is in Rgx'cement saith
the experimentally established fact that the Ferlni sur-
face of an alkali metal is very close to a perfect sphere.
As discussed in the following sections, however, this
does not imply that the contribution of the second-orcdr
perturbation of the pscudopotentia3. to the elastic con-
stants, especially to the higher-oxder elastic constants,
ls negligible compared Kith the contribution of othcx'
terms in the expression for the energy.

Thc cxp1'css1011s fol thc free-electron energy and the
6rst-order perturbation terID of the pseudopotential do
Qot depend oD thc con6guration of the posltlve lons
but depend solely on the volume of the crystal or the
electron density. Hence, these terms do not make any
contribution to those Fuchs clastic constRnts which Rrc
de6ned as the derivatives of the energy arith respect to
volulnc-conserving shear paralneters. Those Fuchs
elastic constants %'hlch RI'c dc6ncd as IMxcd dcrlvatlvc8
of the energy, i.e., O'E/8c8eP and O'E//8o87P also do
not depend on the volume-dependent energy, because
Once thc dcllvatlvc of thc cncx'gy %1th respect to 8,
volMIlc-conserv1ng she al 18 taken~ that pRrf. of
energy %'hich ls solely dcpcndent on voluQlc dl'ops out
of the expression. Hence, except for O'E/Bo' and 83E/
9e, Rll othex' Fuchs clastic con8tRQts do Qot depend on
the volulnc-dependent cDcI'gy terlns

g&, and ga are pximitive lattice vectors. This de6nition of the recipxo-
ca1 lattice vector is di8erent by the factox 2~ from that aCoptefI
by Som and Huang. Harrison uses wave-number iattice instead
of reciprocal lattice fox the present definition.
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Tzax,z I. Contributions of energy term Ee" to the
Brugger elastic constants of cubic crystals.

Second-order Third-order
Brugger elastic Contributions Brugger elastic Contributions

constants: from Es" constants from Ee"

C11
C12
C44

C111
C112
C123
C144
C1N
C456

I1 rjll+ rj22+ R)33 y

IR rj22'988 rj28'982+'988'V&1 '9312)18+'9113/22 rj12rj21 y

Hence~ one obt, Mns

I8 '$21 $22/28 ~

g 81/82/38

These results might appear super6cially to be in con-

tradiction with the relationships between the Brugger

and the Fuchs elastic constants described in Sec. III.
3ut this is not so, because the relationship requires that
the crystal under consideration shouM be in equilibrium,

and an energy term of the form I'v" alone cannot repre-

sent a crystal in equilibrium.

Any kind of volume-dependent terms can be repre-

sented as linear combinations of terms of the form I'v".

In Table I, the contribution of an energy term I'v" to
the Brugger elastic constants of a cubic crystal are

given.

However, if we calculate elastic constants according
to Brugger s de6nitions, the situation is quite diBerent.
Consider a volume-dependent term I'e", where I' and

g are arbitrary constants, and e designates the ratio
of the volume of the crystal after the deformation to
that before the deformation. For example, the contribu-
tion of a term of this form BR(Pe")/By12 is zero, but the
contribution to the shear Brugger elastic constant
BR(PR")/Brj282 is not zero. The calculation is made by
using the relations"

3= (1+2IR+4IR+SIR)"2,

n 82dl'

~22
20 (r')'»

(5.2)

respectively, where the summation is extended over all
the lattice points except the one at the origin and simi-
larly the integration is extended over the entire volume
of the crystal. The density n of electrons is given by
28= 2/u8 in the present case.

The second and third derivatives of this electrostatic
energy with respect to volume-conserving shear-strain
parameters were calculated by Puchs2 and Cousins"
respectively. The second and third derivatives of this
electrostatic energy with respect to the Lagrangian
strain parameters q;; were calculated independently by
the present authors" by using the fgoowing procedure.
The change of the square of the length of a vector
r, which connects two material particles in a homoge-
neoulsy deformed solid, is given in terms of the Lagran-
gian strain parameter g;; and the components of the
vector before the deformation x; as"

+r =2 Q rjex;joj

Using Eq. (53), one obtains the derivatives of the elec-
trostatic energy with respect to g;; as

&sP'&~&&aw
Pl

Brj;;Brj31 2Q (r )'3312

—dr 54

~gij ~'f/IIj;l ~gmn

~58 $)sag jX)A,X))X)~X)ssPl
20 (r 2)1/2

Fuchs' has shown that this electrostatic potential en-

ergy per unit volume E2 can be reduced to the sum of
two terms 821 and E22. The term E21 is half the potential
energy of interaction of a single ion with the other ions,
divided by the atomic volume Q. The term E22 is half
the potential energy of interaction of a single ion with
the uniform background of negative charge, divided by
the atomic volume Q. The terms E21 and 822 are given
by

8

20 3 (r32)'»

V. DEMVATIVES OF THE ELECTRO-
STATIC ENERGY

The electrostatic energy is de6ned as the electrostatic

potentia, l energy of the periodic array of positive ions,

which is a bcc array in the present case, embedded in

the background of compensating negative charge.

oop D. M11311eghe11, polojo Doformojjol of ooo Zlosjoo SoME

(Do„er p11bheet1e113, Ine. , New York, 195'j), p. 36.

Ã3$jXRX1$~$o)
(5.5)

~ ~

~

(rR) 712

%e de6ne the following lattice sums, extending the

"C.S. G. Cousins, Proc, Phys. Soc. (London) 91, 235 (19@').
"T.Suzuki and A. V. Granato, Bull. Am. Phys. Soc. 12, 305

(1967)."L. D. Landau and E.M. Lifshitz, Theory of E/estk@y (Perga-
mon Press, Inc., London, 1959),p. 1.
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Table I, we obtain the contribution of the term gp"
to the elastic constants. Adding the electrostatic con-
tribution and the contribution from Ee", we obtain thc
Brugger constants of our 6ctitious solid as

C„=(4em/a4)ag, (e&+(4e2/a4)-,'»«&(n —2), (5.1g)

C = (4e'/a')3g ""+(4e'/a')~»('&n (5 19)

C„=(4e'/a4) a235("&—(4e'/a')-', »(", (s.20)

C»~= —(«'/a') V»"'+ (4e'/a')e3i"'
Xn(n —2)(n —4), (5.21)

C»g ———(4e'/a')~s»(2 "+(4e'/a') 6»('&n'{n —2), (5.22)

(4 s/a4)~13 (1,(,1)+(4e2/a4)~»(0)n3 (5 23)

C = —(4e'/a')~S (""—(4e'ja')-'»("n' (5 24)

{4e'ja')~~, g "'& —(«'ja')zg ('&n( —2), (5.25)

«so= —(4e'/a')V»"' "+(4e'/a')e»"!n. (5.26)

hcn we combine these total Brugger elastic constants

according to Eqs. (2.2)—(2.10) «Sec. &I, we find that

thc cxplcsslon for the electrostatic contllbutloQ glveQ

by Fuchs' and Cousins" is in agreement with the com-

binations t'Eqs, (2.2)—(2.10)j of the Brugger elastic

constants.
The term I'e" can be interpreted as the Lagrangian.

undetermined multiplier which represents volume-con-

serving coQstl alQts. The 6ctltlous voluIQC-dependent

term pn" or Lagrangain undetermined multiplier always

serves to convert the combinations of derivatives with

respect to g;~ to those with I'cspcct to volume, -conserving

shear parameters. Hence, the contribution of the elec-

trostatic energy to the elastic constants giver by Zqs.

(5.18)—(5.26) should be used ln combination with the

Fuchs elastic constants, but not in combination with

thc contrjbution of other terms to the Brugger elastic

con.stants.

VI. DEMVATIVES OF THE SA5D-
STRUCTURE ENERGY

"fhe hand-structure energy is given by the secoQd

term of Eq. (3.4). The second-order perturbation-

theory term is represented as the summation over thc

J'cclpl'ocal lattlcc poDlts of thc encl gy —wRvc-QUIQber

characteristic F(G„kr)/Q, where F is given by

G' /4~e', ' 1—e(G,k p)

F{G,kr)= I
-cos fG/r, . (6.1}

Ss e'0 E G' e(G,kr)

energy-wave-number characteristic con-

ns Ogy the magnitude of thc reciprocal lattice vector

G it may be represented as a function of 'g and rs.

~hen R homogeneous deformation is introduced into

thc lattice in order to calculate the elastic constants

the 'reciprocal lattice is also homogeneously deformed

Rnd the band-structure energy of the deformed 1attice is

represented as the sumroation of thc sainc cncrgy-
wave-number characteristic F(r(,r,) over the homoge-
neously deformed reciprocal lattice points. Hence, the
contribution of the band-structure energy to the elastic
constants is calculated" as the summation of the de-
rivatives. of the energy —wave-number characteristics

I'cspcct to thc dao'I'Inatlon pRrRIQc tel ovcl' the
reciprocal lattice points.

It is relevant here to note that the variable g does not
change for a homogeneous dilatation of the lattice,
because both the distance between the reciprocal lattice
points and the radius of the Fermi sphere change in
lIlvel sc pI'opoI'tion to thc 1Rttlcc pRl amctcr. On the
other hand, the variable r, does not change for a volume-
coQscrving puI'c shear. Fol' these rcRsons, the Fuchs
deformation parameters are especially well suited for'

psucdopotcntlRl calcUlRtlons.
Accordingly, if we take the derivatives of the band-

structure energy with respect to e, which designates
homogeneous dilatation of the 1attice, in order to calcu-
late the Fuchs elastic constants O'E/Be' and O'F/Bv',
we have to calculate the derivatives of the energy-
wave-number characteristics solely with respect to r„
because

O'F(q,r,) 1 O'F 2 OF
=—r ' —-r

8e' 9 Br,' 9 8r,

O'F {g,r.) 1 O'F 2 O'F 10 BF
(6.4)

8e' 27 Br,' 9 Br,' 27 Br,

Thc second derivative of the energy-wave-number
characteristics with respect to the volume-conserving
shear, for example yi, is calculated in the following way.
Applying the chain rule of differentiation, we obtain

O'F(ggr, ) OIF (Bg )2 OF B2~

I+
Vl OO 48 Yj/ &g Byr

where q is given by the de6nition

g= iGi/2k'.

(6.s)

(6.6)

6 is given in terms of thc primitive reciprocal lattice
vectors g&, g&, and gi of the simple cubic lattice

(6./)

The reciprocal lattice 'points of the bcc structure can.

'8 V. Heine and 0.%'eaire, Phys. Rev. 152, Qg ($966).

Hence, the derivatives of thc wave-number charactcr-
lstlcs with lcspcct to 0 arc glvcn Rs follows:

BF(g,r,) r, BF

t9v 3 Bfg
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be obtained by choosing the integers ml, ms, and ms We note here that the denominators of Eq. (6.9) and
according to the rule also the radius of the Fermi sphere kg do not change

for volume-conserving shear deformations such as the
ml ms ms = even,

y1 deformation. Consequently, we obtain
i.e., the fcc lattice rule. Hence

]G( =(P P m,~;g;g;)'/2.
i~1 j~l

2/= I sr/(62r')'"j(ml pl +mss+mss 2—ylmlms) "2 (.6.12)

(6 g) By differentiating this expression with respect to 71, we
obtain the derivatives which are needed in Eq. (6.5):

The primitive reciprocal lattice vectors of the simple Bg 1
cubic lattice are given in terms of the primitive lattice = &(mlms),

vector ~1, c2, and g3 of the simple cubic lattice:
8 g m1'm2'

~2X&3

(6.13)

and

gl= 22r gs 2(i,

«(~2X ~s) ~2(~3X«)
&1X&2

gs= 22r

~s(«X~2)
(6.9)

Oils (6~2)1/3 .
(m 2+m 2+m 2)3/2

m1
(6.14)

(m12+m 2+m 2)1/2

where ~1, ~2, and ~3 are given by

«= (/2, 0,0), ~2= (0,/2, 0), and «= (0,0,/2) .
These primitive lattice vectors ~1, c2, and ~3 are deformed
to c1', c2', and z&' by the p1 deformation, the transfor-
mation matrix of which is given in Appendix II:

O'F (r/, r.) O'F (r/, r,) sr' ml'ms'

12 Or/2 (6 sr2) 2/3 m 2+m22+m 2

OF( 2r/, ) m1'm2'

Combining (6.5), (6.13), and (6.14), we obtain

Hence,

«'= (o,o,o),
~2' (y, /2, 0)——,.,'= (o,o,a) .

~2'X gs' ——22r/2'(1, —yl, 0),
~3'X «'= 22ras(0, 1,0),
«'X ~2'= 2a2rs(0, 0,1) .

(6.10)

(6.11)

(62r2)I/3 (m12+m22+m 2)3/2

m1
(6.15)

(mls+m '+m ')'/'

The other derivatives of the energy —wave-number
characteristics with respect to volume-conserving shear
deformation parameters are obtained following similar
procedures. They are

(mys mls)' —OF( r2/, )

O2/ (62r2) '"
O'F(r/, r,) O'F(2/, r,)

Osl O2/2 (62r )2/ ml +ms +ms

(m22 m12) 2 3mls+m22
(6.16)

(mls+m22+mss)3/2 (m 2+m 2+m 2)1/2

O'F(2/, r,) O'F(2/, r,) sr' ( m+l—m)'s( ms'+m—s') O F(r/, r,)

Bt.'1 Be2 O2/3 (62rs)3/3 (m '+ms'+m ')"' O2/2 (62rs) 2/3

2m22

(6.17)
(m12+m 2+m 2)1/2

O'F(r/, r,) O'F(r/, r,) 2rs (mlms)'( ms'+mss) —O2F(2/, r,) m. mlsm22( m22+m —2)—3
32Oy12 Or/3 (6%.2) 33/(mls+m22+mss)3/2 Or/2 ( 622r)

23/(m12+m 2+m 2)2

( ml'+m—s')'( ms'+m—s') (3m +m1)( 2ms'+ms—') 4m 2'( m—l'+ms—2) OF(r/, r,) sr
X —3 +

(ml'+ms'+ms')' ml'+ m 2'+ m 3' O1/ (62r2) "'
(—mls+m22)2( —m22+mss) (3mls+m22)( —m22+mss) —4ms'( —mls+m22)

X
(mls+m22+mss) 5/2 (gsls+m22+mss) "'

mls( —m22+mss) —2masm22 OF(2/, r5) 1 ml'ms'( —m22+mss) ml'( —m22+ms )—2mlsm22
+ '

3
ml +ms +ms ( 622r)1/3 (m12+m 2+m 2)5/2 (m 2+m22+m 2)3/2

(6.18)
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88F(„,r,) 88F'(y, r.) fÃg SSQ @$3

Oy' (6sr2)"8 (mr'+m2'+m8')"'

mg'm2'mg, 'O'F(y,r,) sr2
— 3

By' (62r2)2/8 (m82+m22+m82)2 m22+m22+m8'

OF(y, r.) I

By (62r2)'/8

ISED f@p 5$Q
3 . (6.I9)

(m12+m22+m82)5/2 (ml +m22+m82)8/2

O'F(y, r,) r, O'F(y,r,) sr (m2' —m2') r, 82F(y,r,)+—'
Bn8822 3 Br,By' (6sr2)2/8 m22+m22+m82 3 Or, Oy (62r2) &/8

(m2 m2 ) 3m2 +m22
, (6.20)

(mr +m2 2+m82)'/2 (m2'+m22+m82)&/2]

O'F(y,r,) r, O'F(y,r.) sr m22m22 r, O'F(y,r,)-+-
888y22 3 Br.By' (6sr2)2/8 m22+m22+m82 3 Br,Oy (62r2)»8

my'nag'

+ . (6.2l)
m22

(m22+m22+m82)8/2 (m22+m22+m82)»21

The contribution of the energy-wave-number characteristics to the two kinds of Fuchs elastic constants 8 F/88882
and 88&/888y22, which involve both the volume-conserving shear parameters 8; or y; and the uniform dilatation
parameter 8, are simply the derivatives of the two second-order Fuchs elastic constants O'F/8822 and O'E/By22.
In these expressions, all factors except the derivatives of energy-wave-number characteristics F(y,r,) with respect
to q do not depend on e. Hence, we 6nd

The derivatives of the energy-wave-number charac-

teristics with respect to r, and g are concerned with

different aspects of the wave-number characteristics.

%hen we take the derivatives of the energy —wave-

number characteristics with respect to q, the derivative

brings out the logarithmic singularity29 of the Hartree
dielectric function (8yr, ). If some of the reciprocal

lattice points are not too far from the surface of the

sphere with radius 2k', where the Hartree dielectric

function shows its singularity, the higher-order deriva-

tives of the band-structure energy with respect. to g

tend to give the more signi6cant contribution to the

elastic constants. On the other hand, the derivatives

with respect to r, are not concerned with the logarithmic

singularity of the Hartree dielectric function but are

concerned mainly with the oscillation of the wave-

number characteristics in the reciprocal lattice space.

Although we are able to get a reasonable estimate of

the two Fuchs elastic constants 82F/882 and 888/Os/8,

these Fuchs elastic constants are less accurate than the

others for two reasons. The 6rst is that, while the other
I'uchs elastic constants do not depend on the volume-

dependent terms of the energy, these two Fuchs elastic

constants do and the volume dependence is known less

accurately than the shear dependence at constant

volume. The volume dependence is less well known

because the expression for the correlation energy is not

an exact one but an interpolation formula from the

For example, see J. S. Langer and S. H. Vosko, J. Phys.
Chem. Solids 12, 196 I', 1959);%.A. Harrison, Psemkpotenfialsie
/he Theory of Metals (W. A. Benjamin, Inc., ¹wYork, 1966),
p. 51.

high and low electron-density limit where exact expres-
sions have been obtained and also because the Grst-order
perturbation term is not calculated from the pseudo-
potential but was determined empirically by Ashcroft
and Langreth using an equilibrium condition. The
second reason is that, in order to calculate the contribu-
tion of the band-structure energy to the Fuchs elastic
constants 8E2/882and 888/Br/8, one has to know in
detail the oscillatory behavior of the energy-wave-
number characteristics in the region far from the origin
of the reciprocal lattice (approximately 3k/ (k(5k/),
where the pseudopotential is least well known. As we
try to obtain higher-order derivatives with respect to
the e deformation parameter, the contribution from the
oscillatory behavior of the energy-wave-number char-
acteristic becomes more important, and the conver-
gence of the sum of the derivatives of the energy-wave-
number characteristics is slower.

In Secs. IV, V, and VI we have discussed procedures
for diGerentiating each of the th~ee energy terms Ej,
E~, and. E3 with respect to Fuchs deformation param-
eters. The summation of the derivatives of the energy-
wave-number characteristics over the reciprocal lattice
points has been carried out to the 76th neighbors of the
origin by a computer. But it has been found that the
results of the summation do not vary appreciably for
the shear constants after the summation is carried out
to about 6th neighbors. Because the expression for the
energy, which forms the basis of our calculation of



TABLE II. Elastic constants (10"dyn/cm') and pressure derivatives of I i as a function of core radii (a.u.).

CONC

radll

6.96
%.06
1.16
X.26
1.36'
1.46
1.56

1.220 1.265 0.521
1.261 1.230 0.691
1.307 1.210 0.855
1.381 1.216 1.013
1.495 1.257 1.164
1.622 1.324 1.291
1,/70 1.423 1.396

—10.42—11.27—12.16—13.48—14.89—16.14—17.87

C11 C1% C44 Cl11

-3.53
3023—2.98—2.91—2.97—3.11—3.47

Cits

2%15
2%71-3.30—3.96-4.66—5.35—6.08

C144

—2.59-3.26—3.91—4.56—5.15—5.65—6.10

—2.95—3.04—3.11
3023
3031
3033—3.40

—3;90—4.17

—4.66—4.84—4.97-5.08

BC'/Bp

0.109
0.146
0,1/4
0.226
0.247
0.228
0.240

BC/Bp

1.127
1.324
1.487
1.621
1.646
1.579
1.491

88/Bp

3.194
3.232
3.279
3.398
3.497
3.554
3.672

Tanzx IIL Elastic constants (10"dyn/cm') and pressure derivatives of Na as a function of core radii (a.u.).

Core
radii C11 CxN C44 C111

1.39 0.623 0.597 0.365 -5.67
1.49 0.651 0.597 0.435 —6.23
1.59 0.696 0.610 0.505 —6.89
1.69 0.751 0.635 0.569 —7.47
1.79 0.808 0.668 0.624 —8.06
1.89 0.877 0.715 0.673 —8.90
1.99 0.996 0.777 0.715 —9.83

C1N

—1.57—1.52—1.54—1.58-1.66—1.84—2.08

—1.45
I473-2.04
2035—2.66
2 99
3%33

-1.74—2.03—2,30—2.55—2.78—2.99
3117

1$52
1\57—1.63-1.66—1.68—1,72—1.76

C45B

-2.01—2.12
2421—2.28—2.34

-2.40—2.43

eC'/Bp

0.156
0.203
0.242
0.238
0.226
0.244
0.253

8C/8p

1.425
1.568
1.643
1.625
1.567
1.497
1.368

8J3/sp

3.299
3.400
3.513
3.571
3.629
3.742
3.832

elastic constants, contains only the core radius r, as an
adjustable parameter, the results are obtained as a func-
tion of r, for various alkali metals. The Fuchs clastic
constants thus obtained are converted to the Brugger
elastic constants by means of Eqs. (2.2)-(2.10). The
values of the second-order elastic constants, their pres-
sure derivatives and the third-order. Clastic constants
of Li, Na, K, and Rb are given as a function of the core
radius r, in Tables II-V.

It is interesting to note that the predicted sets of the
third-order elastic constants of alkali metals have the
common features that Cl~j is negative and its absolute
magnitude is appreciably larger than that of the other
third-order elastic constants. However, there are no

experimental dRtR RVR11Rblc for' lndlvldual thlld-order
clastic constRnts. Our knowledge. Rbout, the voluDlc-
dependent terms of energy is less reliaMC than the
knowledge about the electrostatic energy and the band-
structurc cncIgy. CoQscqUcntly, thc FUchs clastic con-
stants O'E/Bvs and O'E/Bv' are less accurate than the
othcl Fuchs clRstlc constRDts. If xQorc rcllablc informa-
tion about the volume-dependent term of the energy
becomes RvaBRMc, these two Fuchs elastic constants
will bc modi6ed while other Fuchs elastic constants are
not RGected. The clastic constants shown in Tables
II-V are the Srugger elastic constants obtained from
the Fuchs elastic constants by means of Eqs. (2.2)-
(2.10). Therefore, any new information on the volume-

Tazzz IV. Elastic constants (10u dyn/cms) and pressure derivatives of K as a function of core radii (a.u.).

Core
radii

1.94 0,298 0.271 0.203
2.04 0.320 0.280 0.230
2.14 0.342 0.292 0.255
2.24 0.366 0;307 0.277
2.34 0.395 0.326 0.298
2.44 0.431 0351 0.317
2.54 0.472 0.380 0.333

—2.935—3.185-3.409-3.678
-4.041—4.441—4.779

C1g C1~ C44 C1)1

-0./23—0.739-0./60-0.802
-0.878—0.975-1.074

—0.832-0.956—1.081—1.210—1.347—1.488—1.620

-0.956—1.061—1.158—1.252—1.343—1.424—1.488

--0./34-0.757-0.767-0.782-0.807—0.829-0.828

-0.927—0.959-0.984-1.009—1.034-1.051-1.056

sC'/ap

0.235
0.245
0.230
0.230
0.253
0.268
0.246

BC/Bp

1.651
1.667
1.633
1.591
1.539
1.441
1.284

88/8p

3.544
3.611
3.648
2.713
3.819
3.904
3.917

Twnx, z V. Elastic constants (10"dyn/cm') and pressure derivatives of Rb as a function of core radii (a.u.).

Core
radii C11 C&g C44

2.29 0.265 0.228 0.197
2.39 0.283 0.239 0.214
2.49 0.305 0.253 0.230
2.59 0.332 0.271 0.245
2.69 0.362 0.293 0.258
2.79 0.392 0.316 0.268
2.89 0,422 0.341 0.274

—2.647—2.851—3.123—3.430—3.702—3.921—4.148

-0.601—0.633-0.688—0.760—0.835—0.908-0.991

—0.837—0.934—1.038—1.145—1.248—1.342—1.432

—0.898—0.969—1.039—1.104—1.157—1.197—1.228

—0,603-0.615-0.636—0.655-0.659—0.649—0.637

—0.755-0.775—0.794-0.809-0.815—0.814—0.812

BC'/Bp

0.230
0.230
0.253
0.272
0.259
0.221
0,19$

BC/ap

1.647
1.609
1.565
1.481
1.342
1.174
1.020

88/Bp

3.667
3.729
3.832
3.920
3.945
3.923
3.915
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FIG. 2. Second-order elastic con-
stants of lithium. The solid lines
in the left half of the 6gure show
the results of the calculation as a
function of the core radius r, .
Dotted lines show the data which
are obtained from the linear ex-
trapolation of the experimental
data shown in the right half of the
6gure. Dashed lines indicate the
electrostatic contributions to the
shear elastic constants. 8 and
C' Stand for g(C11+2C1g} and
s (Cn —C~s), respectively.

dependent term of the energy would inevitably aBect
almost all values of the Brugger elastic constants shown
in the tables even though only two of the Fuchs elastic
constants would be changed.

Before we compare the results of the calculation with
the experimental data, we recall that our calculation
does not include the effect of the lattice vibrations.
Consequently, the data which are compared with the
present calculations should be obtained by a linear
extrapolatione' of the experimental data as shown on the

right-hand sides of Figs. j.-4. The lattice parameter u
is also obtained from a linear extrapolation of the tem-
perature dependence of the lattice parameter. " The
values used were 3.485, 4.215, 5.124, and 5.5715 A, for
Li, Na, K, and Rb, respectively.

The temperature-dependent second-order elastic con-
stants of alkali metals are taken from the work of Nash
and Smith, "Diederich and Trivisonno, "Marquardt and
Trivisonno, '4 and Guttman and Trivisonno. "We notice
that a value of the adjustable parameter r, which is
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7.0--

g S.O-
Q

6.0-

Fxo 2. Second-order elastic con-
stants of sodium. Notations are
the same as Fig. 2.

O
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ss G. Leibfried and W. Ludwig, in Solid /take physsos, edited by F. Seitz and D, Turnbull (Academic Press Inc. , New York, 1963)
Vol. XQ.

+ C. S. Barrett, Acta Cryst. 9, O'I (19M},
» H. C. Nash and C. S. Smith, J. Phys. Chem. Solids 9, 223 (2959).
» M. E. Diederich and J. Triv'isonno, J. Phys. Chem. Solids 27, 537 (1966).
34%. R. Marquardt and J. Trivisonno, J. Phys. Chem. Solids 26, 2Q (29&5),"E, J, Qutmyn and J. Trlvlsomro, J. Phys. Chem, Solids 28, 80$ (196'I).
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Fxo. 3. Second-order elastic con-
stants of potassium. Notations are
the same as Fig. j..
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reasonably consistent with the tv' shear elastic con-
stants can be determined only after a linear extrapola-
tion of the experimental data. The values of the core
radii r, thus determined are shovrn in Table VI together
arith the core radii determined by Ashcroft and Lang-
rcths from the data on the Fermi surface or on the
llquld-metal rcslstlvlty. Thc values of lonlc radll com-

piled by Pauling" are also shovrn in Table VI. The
reasonable agreement between the core radii determined
from the different kinds of experimental data supports
the validity of the model pseudopotential proposed by
Ashcroft. "

Dashed Hnes in Figs. 1-4 indicate the electrostatic
contribution to the shear elastic constants. Because the

volume-dependent terms of the energy do not contribute
to the shear elastic constants, the difference betvreen

the calculated curves for the tv' shear elastic constants
and the dashed lines indicates the contribution from
the band™structure energy. The contribution from the
band-structure energy to the taro shear elastic constants
is not a major contribution to the shear elastic constants
of alkali metals. This explains why the calculation of
the second-order shear elastic constant of alkali metals

by Fuchs is qualitatively satisfactory. Because the con-
tribution from the band-structure energy is small, it is
found essential to usc the linear extrapolation of the
experimental value for determining the core radius
vrhich in turn determines the contribution of the band-

Fxo. 4. Second-order elastic con-
stants of rubidimn. Notations are
the same as Fig. j..
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Tmx, E VI, Core radii (a.u.).

Il
Na
K
Rb

Shear
elastic

constants'

1.36
1.79
2.34
2.49

Fermi
surfaceb

2,14
2.61

Resistivity
ofb liquid

metal

1.06
1.67

Ionic
radii'

1.13
j.79
2.51
2.79

a Present authors. b Reference 8. Reference 36.

TABLE VD. Pressure derivatives of second-order
elastic constants of alkali metals.

Core radii
ia.u.) sc'/sp sc/sp BB/sp

structure energy. When we compare the results in Figs.
j.—4, we notice a systematic increase of the contribution
of the band-structure energy to the shear elastic con-
stants as we go from Li to Rb. As the contribution of the
band-structure energy to the shear elastic constants
increases, a small difference between the core radii de-
termined from the two values of the linear extrapolations
of the shear elastic constants becomes noticeable in K
and Rb.

Although the difference is small, the calculated curves
of the bulk moduli do not cross over the experimental
data exactly at the value of r, shown in Table VI. This
is not surprising for the reasons already given about
the volume dependence of the energy.

However, we believe that the present scheme gives
a fairly accurate account of the second-order elastic
constants of alkali metals. Once the core radius is de-
termined from the data of the second-order elastic coa-
stants, we are able to predict the values of the third-
order elastic constants which are consistent with our
choice of r„by use of Tables II—V. The va1ues of the
third-order elastic constants thus determined should be
compared to the linearly extrapolated values of the
third-order elastic constants. However, neither the tem-
perature dependence nor the values of the third-order
elastic constants of alkali metals are available at present.
The pressure dependence of the second-order elastic
constants of Li, Na, and K at room temperature has
been measured by Jain, ~' Daniels, @ and Smith and

Smith, 40 respectively. The predicted values of these
quantities are in good agreement with the experimental
data for Na and K as shown in Table VII. If we excluded
band-structure energy in the calculation of BC/BP and
BC'/BP of Na, K, and Rb, we would obtain values
smaller by about 40% than the values shown in Tables
III—V. This shows that although the band-structure

energy contributes a small correction to the second-
order elastic constants, the same energy makes an in.-

dispensable contribution to the third-order elastic
constants.

There are appreciable differences between the calcu-
lated values and the experimental values of BC/BP and
BC'/BP of Li. At the present time, we do not know
whether this is due to the temperature dependence of
the pressure derivatives of the second-order elastic con-
stants or due to the failure of the pseudopotential
theory for Li. However, comparing the curves of Fig. 1
to those of Figs. 2-4, it is clear that Li is quite different
from the other alkali metals. The band-structure energy
always gives a positive contribution to the shear elastic
constants for the alkali metals except for Li. The band-
structure energy makes a very small positive contribu-
tion to C and a negative contribution to C', in the case
of Li. The calculated values of the pressure derivatives
of the second-order elastic constants of a1l alkali metals

except for Li do not depend critically on the choice of
r, . In the case of Li, if we choose the value r,=0.92 a.u. ,
we can obtain good Rgreement between the calculated
pressure derivatives and the experimental data, but at
the same time, the agreement with the second-order
elastic constants is reduced. The value of the core
radius determined by Ashcroft and Langreth from the
data of the resistivity of the liquid metal, r,= 1.06 a.u. ,
is a good compromise for the second. -order elastic con-

stants of Li and their pressure derivatives.

By this comparison with the limited amount of data
available so far, it is apparent that the band-structure

energy makes a small but important contribution to the
second-order elastic constants, and has a major impact
on the third-order elastic constants. By the use of the
psuedopotential, the mechanical and electrical proper-
ties have become closely related.

Calculation
Calculation
Experiment

Calculation
Experiment

Calculation
Experiment

0.92 0.085
1.36 0.247

a 0.081

1.79 0.226
b 0.226

2.34 0.253
c 0.281

1.034
1.646
1.01

1.567
1.63

1.539
1.88

3.173
3.497

3.629
3.60

3.819
3.97
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ture on this subject is large and confused. Recently,
KRHace'~ has given a general theory of thermoelasticity
in which he reviews and clarifies this subject. %allacc
de6nes 6ve diKerent sets of' thermoelastic cocfBcients.
These are all equivalent when the reference state is the
unstressed state, but are all different when the reference
state 18 R stIcsscd stRtc. Thc 6vc dlHcrcnt sets 1ncludc
(1) the second-order elastic constants C s, which con-
tain the rotational invariance conditions and always
have Voigt symmetry, and (2) the Fuchs coeKcients
F p for which the independent variables are quantities
which are convenient for calculations of elastic proper-
ties from atomic considerations.

Wallace IcfcIS to thc C p cocKcients as clRst1c con-
stants and the other four sets of coeScients as elastic
coefIicients. To distinguish the general case from the un-
stressed reference state case, the latter are designated
by barred symbols, e.g., C p. In the present paper, all
elastic constants are referred to the unstressed state,
Rnd we wish to emphasize a somewhat diferent dis-
tinction between the different elastic constants. For
this purpose wc would ploposc two changes in notRtion
and nomendature which we believe would still preserve
the useful distinctions made by Wallace. The 6rst is to
drop the bar notation for the unstressed case, as this
notation becomes clumsy in cases, such as the present
one, for which only such quantities are considered. Also
this is a unique state, depending only on the crystal

forces, and not on external stresses. A possibility for the
stressed-state coefFicients might be to simply indicate
explicitly the stress dependence, for example C s(p}.
The second is to refer to elastic coegckN/s in all cases
where the reference state is stressed and clastic coN-

sIunts in all cases where the reference state is unstressed.
Then the |.p of wallace become the Brugger elastic
constants C p.

As we still 6nd it useful to distinguish between the
Brugger and Fuchs schemes for calculating elastic con-
stants from atomic considerations, we should like to use
th t t diti g

'h de t bi ti f
elastic constants for the unstressed state. That is, just
as the 2, 8, C constants of Fuchs LA=FII—FII,
8= ,',F44, an-d C=-,'(FII+2FII)j, or the C', C, 8 con-
stants of Zener LC'=-', (CII CIQ) C C44 and 8 g(CII
+2CII)j are preferred linear combinations for physical
reasons in second-order, so also are certain linear com-
binations of third-order elastic constants preferred.
These are given in the text as extensions of Fuchs
de6nitions. Kc beHeve that reference to these useful
combinations as Fuchs elastic constants will not violate
wallace's scheme, particular1y if the independent vari-
ables are explicitly indicated, for example Ii,„ instead
of the %allace-Fuchs constants F p. In fact, in the pres-
ent paper, the distinction is made even more explicit
by writing the Fuchs elastic constants expHcitly as
second dcI'1VRtlvcs.

(1) s deformation:
'~l/3

(I s)=
0

0
~l/3

0

0
0

~1/3

APPENDIX II

(2) eI deformation:

(I,I/I 1)+L(Itl/I 1)I
0
0

0
(~'"—1)+2(~"'—1)'

0

0
0

(~'"—1)+2(~'"—1)'.

0 0
(I-n) = o —~I/(1+~1) o,.0 0 0.

~I+2 ~I

(~-s) =
0

0 0'
—~I/(1+ ~1)+~2eI'/(1+ ~1)'

0 0.

(3} qI deformation:

(4) MI deformatlon:

(1+e)e'/' —1
0
0

0 y& 0
(Ns)= 0 0 0.0 0 0.

'

s'"/(1+ ~)—1
0

(I/ P)=,yI, yI' 0
. 0 0 0.



780

(5) 371 deformation:

~l/3 f ~~1/3

(u.,)= o
0 0

21/3 1+I (I/I/3 1)2 2781/3+17PI/3(81/3 1 )
(I/ p)

— 171jl/3+ 27pl/3(81/3 1) ~I/3 1+27232/8+(I/I/O 1)2
0 0

(6) 6132 defoITllatlon:

0
0

(31/3 1)+1( pl 3/1)2

31+281

(u.p)= 0 (n-p) = /1+82—1+-;]
1+61

0 j
1+82 1+32

'
E1+.2 i .

(7) 8272 deformatlon

0 0 0
(u~p) = VI(1+82) 32 0

0 0 1/(1+ 82)—1.

27 (1+&2) 271(1+82)+ 271(1+&2) &2

('Qap) = 271(1+82)+271(1+82)82 &2+2&2

0 0

(8) 737271 deformation:

V&7273 7&73 73
( p)= 7 o

0.

717273+2(VI'72'73'+VI'+VI'72') (12) (13)
( t&P) 2(71+7273)+2(7172 73 +7172 ) 2(72 73 +72 ) 272 ~

2(73+7172)+2(717273') 272 73'.

APPENDIX III by rewriting the 6rst term as a sum of two terms:

Because all the lattice sums are calculated by similar
procedures, we show in detail the calculation only for ~ "/3/2t 4 „L- (»+t 2+t 2)t~dt
the following typical sum:

/I

(t 2+ t 2+$ 2)4/2 4
(A1)

(u12+ u2'+ u3')'"
+DO 2"

t3/2 2 expL 4Pt] 2 exp' 4l't j dt—

By means of a Laplace transformation

I
Z2 F(k)

t 'e "dt,

the lattice sum can be rewritten as follows:

(A2)

+oo

+ t"' —Z exPL —4(t—2)'t1
@2 QQ

&&( 2 expL —4(t—2)'6)'«(A3)

j.
t3/2114 expL —(t12+l22+ t32) tjCt

1'(2)

&& expL —(u12+ u22+u32) t]duldu2du3dt

The restriction on the integers lj l2 l3 can be removed

On the right-hand side, / runs all over the integers —~
to +~. The integration is split up into two parts, i.e.,
0 to e and e to ~ where ~ is a positive constant chosen
in a way discussed shortly. The integrations ~ to ~ are
simple and given in terms of integrals de6ned by

(A4)
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as follows:

P~' —P exp( —4Pt) (Q exp,
8 x, 4P—t) }'dt

= c~+il 32&3@(4e)+128$gtg(8e)+ 128$3tmi e

+512&}}p(166)+ j,
ha" —P expL —4(t——',)'tj

at2

By means of the following formulas

2 p( Ph)
l

—
l 2 p

E expL —4(t——.) 3h=-. -)2 1 P ( 1) t

)&expl ——P l,
4t )

&&(2 expL —4(t—l)'hj}'ch

= ~~'[atm(3~)+
l . o o

ohio

AS) the integra s rom.

p(
0

6 1 -
t 2~' (4~')

-3 'd +—' — 12$o l+6$o
2& 2' e 4e) e

i+32/ + . (A6)
2n-' 4m'

+—x'"'—8&2

rated as followsThe second term o t e af h lattice sum is integrated

—4Pt) }'dh+ t'"&Z expl —4(t——.) hj}(Z ex—4Pt mdt — —-' 't expL —4(l——',)mt'}'chha&2 —p ex 4Ph)—(p exp( —4Ph 'dh
Bt2

= —vraI' 24)3t3"ug' exp —ui NgL ( '+ '+I ')tjdg~demdgach= —(vr' 'j ' (A2)
0

s
'

7 cancel each other. The positive constant e is chosenr ent integrals in Eqs. (A6) and (A7) cancel each other. e pos' '
chosenWe notice that the divergent rntegr s . 7 cancel each oth

the series ln Eqs. (AS
results of the calculation are not cri

'
y t e c oiceused e=-', 7r, however, the resu ts o e t cri ywe u

t number of terms arc suirlIllcd in c ca
e lattice sum

p2$3t2(4e)+ 128/3 p(8 e)+ 128$3t22(12m)+S12&gt2(16&)+ j
3 1 2~') t 4~P+—m'"- 12K I+64pl )I+ "+ e L8$3}2(3e 66 3~2 e66M (ll }+12M& ) (19 }+. $+— —,(

4~'y

k4. )) .,)2' e' 4e 4e

c obtain the rcsu t or 5 ge ob
'

l f 3 &'} givenin Eq.(S.11).l 'd d b M'sra and Born we obUsingt e ath tablefor the integral&„(x) prove e y i


