766

coincide. Therefore,

e(n)

()= / “amam)= [ dBoE). (D3

—0 —0

This is an equation for ¢. The function »(5), the inte-
grated density of states, increases smoothly from 0 to 1.
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If p®(E) is continuous, (D3) determines a unique
smooth monotonic function ¢. The s®(k) given by(D1)
is then periodic in %k space and smooth although in
general not analytic: The second and higher derivatives
may be discontinuous at critical points of both p and
p®. In practice, however, it is possible to fit s (k)
by an analytic function.
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The second- and third-order elastic constants of lithium, sodium, potassium, and rubidium in the body-
centered cubic structure are calculated. The relationship between Brugger elastic constants and Fuchs
elastic constants is worked out. The Brugger elastic constants, which are defined as the derivatives of the
energy with respect to the Lagrangian strain, are widely used to express experimental results. The Fuchs
elastic constants, which are defined as the derivatives of the energy with respect to homogeneous expansion
and volume-conserving homogeneous shear, are often more convenient for calculations in terms of atomistic
considerations, and are particularly convenient for calculations with pseudopotentials. They are used here
to calculate the contribution of the band-structure energy to the elastic constants using the local pseudo-
potential proposed by Ashcroft. This pseudopotential contains the core radius as the only adjustable param-
eter. The contribution of the band-structure energy to the elastic constants is represented as a summation
of two kinds of derivatives of the wave-number characteristics over the reciprocal lattice points—those with
respect to homogeneous expansion and those with respect to volume-conserving homogeneous shear. The
core radius which gives the best fit to the experimental second-order elastic constants agrees with that
determined by Ashcroft from data on the Fermi surface or on the resistivity of liquid metals. The band-
structure energy term is found to make a small contribution to the second-order elastic constants but an
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indispensable contribution to the third-order elastic constants.

I. INTRODUCTION

HERE are two methods for calculating the second-
order elastic constants of a crystal: the method

of homogeneous deformation and the method of long
waves. One should be able to calculate the second-order
elastic constants using either of the two methods! and
the results obtained should agree with each other if the
same model of the crystal is used in both cases. Fuchs?*
calculated the second-order elastic constants of alkali
metals by the method of homogeneous deformation and
obtained a satisfactory comparison with the data avail-
able at that time. However, more recent calculations®7

* Supported by the U. S. Atomic Energy Commission under
Contract No. AT(11-1)-1198.
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of the second-order elastic constants of alkali metals
have been mostly carried out by the method of long
waves, except for the calculation of bulk moduli by
Ashcroft and Langreth.?

Ho and Ruoff® based their calculation on a quite
different model of an alkali metal which includes closed-
core interactions instead of the free-electron energy.
Therefore, their results cannot be directly compared
with the present calculation. Shyu and Gaspari® calcu-
lated the effective interatomic potential for alkali metals
from the Heine-Abarenkov model potential. They also
calculated the second-order elastic constants from the
effective interatomic potential by the method of long
waves. Their results of the second-order elastic con-
stants are not in as good agreement with the experi-
mental data as the present results, although they used
a more sophisticated pseudopotential than that used in
the present calculation. However, this is not necessarily
evidence against the Heine-Abarenkov pseudopotential,
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because questionable approximations are inevitably in-
volved in calculating phonon frequencies from the ef-
fective interatomic potential. The method of homoge-
neous deformation has the obvious disadvantage that
one cannot calculate the phonon-frequency-wave-num-
ber dispersion relationship with it. On the other hand,
the calculation of the second-order elastic constants by
the method of homogeneous deformation is performed
more simply and can be used as a check for the calcu-
lation of the dispersion relationship. Also, the calcu-
lation can be extended to higher-order elastic constants
without essential difficulty. In recent years, experi-
mental data®!! for the third-order elastic constants of
metals have started to accumulate. This is due to refine-
ments in the technique of measuring very minute
changes of sound velocities in crystals under hydro-
static or uniaxial stress. It is worthwhile, then, to try
to calculate the higher-order elastic constants of metals
as well as the ordinary elastic constants.

In the present paper, as a first step in the attempt to
calculate the higher-order elastic constants of metals,
the second- and third-order elastic constants of alkali
metals in the body-centered cubic (bcc) structure are
calculated by the method of homogeneous deformation,
neglecting the effect of lattice vibrations. Instead of the
expression for the energy given by Wigner and Seitz
which was used by Fuchs in his calculation of the second-
order elastic constants of alkali metals, we start our
calculation of elastic constants from the expression for
the energy given by Ashcroft and Langreth? in their
calculation of bulk moduli and cohesive energy for
various simple metals including alkali metals. We show
that the expression can be used for the calculation of
any kind of elastic constants. The expression for the
energy used in the present calculation consists of three

parts, the free-electron energy, the electrostatic energy,

and the band-structure energy. The band-structure en-
ergy is calculated by second-order perturbation theory
using the model local pseudopotential proposed by Ash-
croft.’? This pseudopotential contains one adjustable
parameter, the core radius. Deformation parameters
which are extensions of those originally used by Fuchs?
are found to be most convenient as independent vari-
ables for the derivatives of the band-structure energy.
In Sec. II, we discuss the relationship between two
kinds of elastic constants, Brugger'® and Fuchs elastic
constants. Brugger second- and third-order elastic con-
stants are widely used to represent experimental data,
while Fuchs elastic constants are convenient for the
theoretical calculations.
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II. RELATIONSHIP BETWEEN BRUGGER AND
FUCHS ELASTIC CONSTANTS

In the method of homogeneous deformation, the
second-order elastic constants are defined as the second
derivatives of the energy with respect to deformation
parameters, which specify homogeneous deformations
of the crystal. The higher-order elastic constants are
defined in a similar way. The first derivatives of the
energy with respect to the deformation parameters
should vanish, if the crystal under consideration is in
equilibrium.

There has been general acceptance of Brugger’s's
definition of the elastic constants as the derivatives of
the energy per unit undeformed volume with respect
to the Lagrangian strain parameter 7;;, which is defined
by
1 ax/ ax;’
=SS ma), 41,23

t Ox; 0x;

where x; and x; are the coordinates of a material particle
in the undeformed and deformed state, respectively. He
has also shown that these elastic constants are the
natural generalization of the accepted definition of
the second-order elastic constants. The second- and
third-order Brugger elastic constants are then given as

follows:
9’E
Ciji= ( ) )
074i0Mk1/ 54j=0

9:E
Ciikimn= (——————) .
07:j0M£10%mn/ yij=0

where E is the energy of the crystal per unit unde-
formed. The Voigt abbreviation is used to denote the
Brugger elastic constants, i.e.,

Cijkr...=Csp...,

where 45’s and J’s are related by 11~1, 22~2, 33~3,
23~4, 31~5, and 12~6. Thurston and Brugger!4 have
established a convenient procedure for calculating the
second- and third-order elastic constants defined above
from the experimental data of the change of the natural
sound velocity in a crystal due to hydrostatic or uniaxial
stress.

Strain parameters other than Lagrangian strain param-
eters 7,; can also be used to define homogeneous but
not necessarily infinitesimal deformations of a crystal.
The relationship between the elastic constants defined
by Wallace’® and those used here is discussed in
Appendix I.

In his calculation of the second-order elastic constants
of alkali metals based on the theory of cohesive energy
due to Wigner and Seitz, Fuchs? used three kinds of

1;65) N. Thurston and K. Brugger, Phys. Rev. 133, A1604
(
1 D. C. Wallace, Phys. Rev. 162, 776 (1967).
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deformation parameters e;, ;, and v. These deformation
parameters can be described in terms of rectangular
coordinates x, ¥, and z which are chosen in such a way
as to coincide with the cubic axes. ¢ represents an ex-
pansion of the lattice in the «x direction and contraction
in the y direction in such a way that the volume of the
crystal is strictly conserved irrespective of the magni-
tude of the deformation. The relationship between the
coordinates after the ¢ deformation, &/, 9/, and 7/, and
the coordinates before the e; deformation, x, v, and z,
is given as follows:

x’=x(1—i—e1) s
y'=y/(1+e),

2=z.

ez and ¢; are defined in a similar way.

71 represents a tilting of the y axis in the x-y plane
while conserving the height strictly. The relationship
between the coordinates after and before the v; de-
formation is given as follows:

&' =x+v1y,
ylzy’
'=3z.

72 and 3 are defined in a similar way.
v represents a homogeneous expansion or contraction
of the crystal, which is given as follows:

x =oll3,

g
y ——7)1’33’,
7' =913,

By taking the derivatives of the energy per unit unde-
formed volume with respect to these deformation pa-
rameters e;, v, and v, we can define the Fuchs elastic
constants. Although Fuchs himself considered only the
second derivatives of the energy with respect to the
deformation parameters e, v1, and v, it is natural to
extend his definitions for higher-order elastic constants.
We have calculated the following 3 second-order and
6 third-order Fuchs elastic constants, i.e.,

#E E OE

5’ :9—6;’ 3’)’12’

OE PE &F
w3’ owde? ddv® dedvi® deder  Vsdvadvr

3E ’E OE

This choice of the Fuchs elastic constants is not unique,
but represents all the independent second- and third-
order elastic constants of a cubic crystal. If the volume
dependence of the energy is not known but the shear
dependence is, then all but two (92E/dv? and 0°E/ %)
of these Fuchs constants can still be found.

The relationships between the Brugger and Fuchs
elastic constants are established in the following way.
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The energy per unit undeformed volume of the crystal
E is written as a function of the Lagrangian strain pa-
rameters 7;;. The Lagrangain strain parameters n;; are
given as functions of Fuchs deformation parameters v,
€;, and v; in Appendix II for those combinations which
appear in the Fuchs elastic constants just mentioned.
Then, we can express the Fuchs elastic constants, for
example 2E/dv:%, by means of the chain rule of dif-
ferentiation as follows:

0%E a (aE 912 | JoE (97]22] 0E (97721\67712

T T -
0v:12 012 \dm12 dy1  Omae Y1 O 3’)’1/371

i) /aE 012 | OE 079 1 oL 67121\31722

T T -
37722\37712 O0yr Ome 0y1 Onau 671/071
I d /E)E 61)12l OE 61]22‘ oE 37721\3?}21
T - T T -
01721\67712 0y1 Onmge 0y1 9nm 371/371

.21

Here, the first derivatives of the energy dE/d7:; should
vanish when the crystal under consideration is in equi-
librium. The second derivatives of the energy with re-
spect to ni; at ;=0 are the second-order Brugger
elastic constants. The derivatives of the Lagrangian
strain 7,; with respect to ¢ are found by differentiating
the expression given in Appendix II. Then we obtain

9?E/dv:2=Cu. (2.2)

The relationships between the other Fuchs elastic con-
stants and the Brugger elastic constants are established
according to similar procedures and are as follows:

62E/6v2= §(C11+ 2C12) ,

9’E/de%= 2(Cu—Cra),

*E/9v3=%(C111+2C123+6C112)
—3(Cu+2Cy),

AE/vde’= %(C111—‘ C123)+ (8/3) (Cu— Cm)
+4(Cu+2Cy,),

IBPE/ 9vdv12=3(Cr44+2C155)+%(C11+2C12)
+%C44 )
I E/de0v12= C155— C144+C11— C1o+2C 4,
83E/652652 =C111F2C125—3C112
+7(Cnu—Cu),

(2.3)
(2.4)

(2.5)
(2.6)

2.7
(2.8)

(2.9

03E/ 0v3072071=Cuse. (2.10)

III. EXPRESSION FOR THE ENERGY

Cohen!® has shown that the energy of a metal based
on the pseudopotential theory consists of three parts,
the free-electron energy E; which is dependent solely
on the density of electrons or the total volume of the

16 M, H. Cohen, J. Phys. Radium 23, 643 (1962),
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crystal, the electrostatic energy Es, and the perturbation
energy E; In the present calculation of the elastic
constants, we adopted the same expressions for E,;, Es,
and E; as those used by Ashcroft and Langreth?® in their
calculation of cohesive energy and bulk moduli.

E; in cgs units is given by the following:

1 {2.21 72 0.916¢2
21y
—[0.115—0.031 In](rsme?/4?) } , (B.1)

where the first term represents the free-electron Fermi
energy, the second term represents the free-electron
exchange energy, and the third term is the Pines-
Noziéres approximate expression for the correlation
energy for the free-electron gas. @ is the atomic volume
and 7, is given in terms of the electron density » by

(3.2)

In the case of alkali metals, where there is one electron
per atom, 7, is equal to the radius of an atomic sphere.

E, represents the electrostatic energy of an array of
positive point charges embedded in a uniform back-
ground of compensating negative charge. The numeri-
cal value of this term for the bcc structure was originally
calculated by Fuchs®!7 and recalculated by Coldwell-
Horsfall and Maradudin'® using a simpler method. The
value is given by :

Ea= —(1.792/r,Q)ke?.

tmry=n"t,

-(3.3)

The perturbation energy E; which represents the
deviation of the electron energy from that of free elec-
troms, is calculated by second-order perturbation theory
for the simple local pseudopotential proposed by Ash-
croft.1? This assumes perfect cancellation of the effec-
tive potential inside the closed core of the positive ion
and pure Coulombic behavior outside the core. E; is
given by

11 3a
3=5{41rr,3
1o & (frffcés|cgr°>2————1—e(G’k’)}, (3.4)
¢ 8re’Q\ G2 e(G,kr)

where the first and the second terms represent the first-
and the second-order perturbation theory results, re-
spectively, for the pseudopotential, and G is the re-
ciprocal lattice vector.!® The prime over the summation

17 K. Fuchs, Proc. Roy. Soc. (London) A151, 585 (1935).
. B8R, A, Coldwell-Horsfall and A. A. Maradudin, J. Math. Phys.
1, 395 (1960).
" 19 The reciprocal lattice vector G in the present paper is defined
y

T2 XT3 T3 X% 1 X%2
= X o TIXTE
G m121r¢l (T2 X%3) +m221r12 (vsX®1) s T3(71X72)’

where 1, m2, and m; are positive and negative integers and %,
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means that the origin of the reciprocal lattice is excluded
from the summation, 7, is the core radius of the ion,
and €(G,% r) is the Hartree dielectric function given by

149

1—9

1—92
2y

In

me?
(G,kp)= 1+-——-———-~(
2wk ph?y?

+ 1) . (3.9)

Here 7= |G|/2kr and kg is the radius of the free-
electron Fermi sphere, which is given by
k p= (3n2/Q)1/3, (3.6)
Although the first-order perturbation term, which is
dependent only on volume, can be obtained in principle
from the assumed pseudopotential, Ashcroft and Lang-
reth determined « by requiring that the lattice be in
equilibrium at the observed lattice, spacing.

The energy per unit volume E, which is the sum of the
three terms E;, Es, and E;, is the basis of our calcu-
lation of the elastic constants. After we specify the
crystal structure, which is bee in the present case, the
lattice constant and the valency, the sole adjustable
parameter is the core radius 7.. In the case of alkali
metals, the second-order perturbation of the pseudo-
potential is very small compared with other terms in
the expression for the energy. This is in agreement with
the experimentally established fact that the Fermi sur-
face of an alkali metal is very close to a perfect sphere.
As discussed in the following sections, however, this
does not imply that the contribution of the second-oredr
perturbation of the pseudopotential to the elastic con-
stants, especially to the higher-order elastic constants,
is negligible compared with the contribution of other
terms in the expression for the energy.

IV. DERIVATIVES OF THE VOLUME-
DEPENDENT ENERGY

The expressions for the free-electron energy and the
first-order perturbation term of the pseudopotential do
not depend on the configuration of the positive ions
but depend solely on the volume of the crystal or the
electron density. Hence, these terms do not make any
contribution to those Fuchs elastic constants which are
defined as the derivatives of the energy with respect to
volume-conserving shear parameters. Those Fuchs
elastic constants which are defined as mixed derivatives
of the energy, i.e., 3*°E/dvde;? and 93E/dvdv,2 also do
not depend on the volume-dependent energy, because
once the derivative of the energy with respect to a
volume-conserving shear is taken, that part of the
energy which is solely dependent on volume drops out
of the expression. Hence, except for 92E/dv? and BE/
dv% all other Fuchs elastic constants do not depend on
the volume-dependent energy terms.

2,and 3 are primitive lattice vectors. This definition of the recipro-
cal lattice vector is different by the factor 2 from that adopted
by Born and Huang. Harrison uses wave-number lattice instead
of reciprocal lattice for the present definitio : 4
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Tasie I. Contributions of energy term Py» to the
Brugger elastic constants of cubic crystals.

Second-order Third-order
Brugger elastic Contributions Brugger elastic Contributions

constants from Py» constants from Py
Cn Pr(n—2) Cm Pu(n—2)(n—4)
Cr2 Ppn? Cuz Pn?(n—2)
Cu —Pn Cias Ppn?
C144 — Pn?
Ciss —Pn(n—2)
Case "

However, if we calculate elastic constants according
to Brugger’s definitions, the situation is quite different.
Consider a volume-dependent term Py», where P and
n are arbitrary constants, and » designates the ratio
of the volume of the crystal after the deformation to
that before the deformation. For example, the contribu-
tion of a term of this form 92(Pv")/dv4? is zero, but the
contribution to the shear Brugger elastic constant
92(Pvr)/dneg® is not zero. The calculation is made by
using the relations?

o= (14-2I;+41,+81;3)1/2,
where

I=n11+n22+ 733,
I2= n20m33— Neanse—tnssni1— a1+ numez— N12na1,

and
N11M12713

I5=|na1ma2m2s| -

1317132733
Hence, one obtains

92(Pv™)/9naes®=—Pn.

These results might appear superficially to be in con-
tradiction with the relationships between the Brugger
and the Fuchs elastic constants described in Sec. ITI.
But this is not so, because the relationship requires that
the crystal under consideration should be in equilibrium,
and an energy term of the form Py~ alone cannot repre-
sent a crystal in equilibrium.

Any kind of volume-dependent terms can be repre-
sented as linear combinations of terms of the form Py™.
In Table I, the contribution of an energy term Pu" to
the Brugger elastic constants of a cubic crystal are

given.

V. DERIVATIVES OF THE ELECTRO-
STATIC ENERGY

The electrostatic energy is defined as the electrostatic
potential energy of the periodic array of positive ions,
which is a bce array in the present case, embedded in
the background of compensating negative charge.

2 F, D. Murnaghan, Finite Deformation of an Elastic Solid
(Dover Publications, Inc., New York, 1967), p. 36.
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Fuchs? has shown that this electrostatic potential en-
ergy per unit volume E; can be reduced to the sum of
two terms E,y and Es. The term Eo, is half the potential
energy of interaction of a single ion with the other ions,
divided by the atomic volume Q. The term Ej,, is half
the potential energy of interaction of a single ion with
the uniform background of negative charge, divided by
the atomic volume Q. The terms Eg; and E, are given
by
e2
R o
21 205 (1'12)1/2 H (5'1)

n exdr
me=— [ [ [ 25
2Q (r2)1/2

respectively, where the summation is extended over all
the lattice points except the one at the origin and simi-
larly the integration is extended over the entire volume
of the crystal. The density » of electrons is given by
n=2/a® in the present case.

The second and third derivatives of this electrostatic
energy with respect to volume-conserving shear-strain
parameters were calculated by Fuchs? and Cousins,?
respectively. The second and third derivatives of this
electrostatic energy with respect to the Lagrangian
strain parameters 7;; were calculated independently by
the present authors?? by using the following procedure.
The change of the square of the length of a vector
r, which connects two material particles in a homoge-
neoulsy deformed solid, is given in terms of the Lagran-
gian strain parameter 5,;; and the components of the
vector before the deformation x; as?

and

(5.2)

Ar?=2 Z N$j%XiXj . (53)

Using Eq. (5.3), one obtains the derivatives of the elec-
trostatic energy with respect to 7;; as

2E, 3e? < , Friutn
OMionp  2Q (xs2)52
XiXiX KXy
—n dl‘) (5.4
(r2)5/2
and
02E, 15¢2 / , BN LX UL in

Oi0Mdnn 20\ (r2)7/2

xix,-xkxzx,,.xn>d <

We define the following lattice sums, extending the

21 C, S. G. Cousins, Proc. Phys. Soc. (London) 91, 235 (1967).

22T, Suzuki and A. V. Granato, Bull. Am. Phys. Soc. 12, 305
(1967).

231, D. Landau and E. M. Lifshitz, Theory of Elasticity (Perga-
mon Press, Inc., London, 1959), p. 1.
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original definitions by Misra,?

2m
8, (m = /,____ll___
(21212
u2"durdusdus
- / / f (5.6)
(w2 ug?us?)™ f
< am 1,21,2m
" (2124122
u12uo?mduydu.du
__[//‘12 123(5.7)
(u12+u22+u32)”/2
i JRORURLS
Splblm =3
(2L 122
1 w12 g™ durdusdus
)
4 (u?+usus?)n?

where I, Iy, and /3 are integers which specify the bcc
lattice point and the u; are defined by x;=2%au,, the
quantity e being the lattice parameter. Without the
integrals, the 8,%%™ become the usual lattice sums
Sa®tm These lattice sums must by their definitions
satisfy the relationships

810 =385 4-68;51:1 s
8§10 =38;® 4188, 2V 468, 11D,

(5.9
(5.10)

These relationships were used to check our calculations
of the lattice sums. The same relationships are given by
Ghate? for the lattice sums pertinent to lonic crystals.
The lattice sums which are necessary for the second-
and the third-order elastic constants of a metal with bce
structure are calculated by a method described in
Appendix IIT, which is an extension of the technique
used by Coldwell-Horsfall and Maradudin'® in their
calculation for 8,©®. The results including 8, are

8,0 =—1.819629,
85® = —0.44965
85D =—0.078447,

8;®¥=—0.3078,
8,2V =—0.07090, (5.11)
8§11 =140.06336.
The contribution of the electrostatic energy to the

various Brugger elastic constants for cubic lattices are
given in terms of these lattice sums as

82E2 462 3
=—=8%, (5.12)
Mmudnn  a* 2
I*E, E, 4e23
= =— -840, (5.13)
On110n2e  Onadns  a* 2

24 R. D. Misra, Proc. Cambridge Phil. Soc. 36, 173 (1940).
25 P, B. Ghate, Phys. Rev. 139, A1666 (1965).
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O3E, 4e? 15
S RE—— YO (5.14)
911107119711 at 2
63E2 63E2 4:82 15
= =———8;&D  (5.15)
01110711022 911101310731 at
and
93E, 03E,
011101220733 O1110M230M23
33E2 462 15
== e —§; (LD (5,16)
012391310112 at 2

The contribution of the electrostatic energy E, to the
Fuchs- elastic constants cannot be found by simply
inserting these electrostatic components of the Brugger
elastic constants into the right-hand sides of Egs. (2.2)-
(2.10) in Sec. II. These equations give the relationships
between Fuchs and Brugger elastic constants of the
crystal under equilibrium, but cannot give the relation-
ships between the components of two kinds of elastic
constants. The components, or contributions, from dif-
ferent terms in the energy are different in the Fuchs
and Brugger schemes. The contribution to the elastic
constant from a given term in the energy thus has no
absolute significance. However, the total elastic con-
stant for a crystal in equilibrium is the same. For this
comparison, the proper linear combination, as specified
by Egs. (2.2)—(2.10), has to be used.

The relationships between the two types of com-
ponents of the elastic constants can be established in the
following way. Consider a fictitious solid which is in
equilibrium under the influence of electrostatic energy
and a term Py, where P is a constant. Because this
fictitious solid is in equilibrium, we should be able to
establish the relationship between the total Brugger and
Fuchs elastic constants of this solid. If we choose #=—2
our fictitious solid reduces to a jellium model26 Y of a
metal.

All the shear Fuchs elastic constants of this solid do
not depend on the term Py* and consequently the total
Fuchs elastic constants are equal to the expression for
the electrostatic contribution given by Fuchs? and
Cousins.? On the other hand, in the Brugger definition
of elastic constants, we have to calculate the contribu-
tion from the electrostatic energy as well as the volume-
dependent term Pv». The constant P must satisfy the
equilibrium condition dE/dv=0, i.e.,

nP—(e2/3a)8$; =0 .17

Inserting this value of P in the expression given in

8 C. Kittel, Introduction to Solid State Physics (John Wiley &
Sons, Inc. New York, 1966) 3rd ed., p. 244.

o Because Fuchs did not take into account the band-structure
energy in his calculation of shear elastic constants, he effectively
calculated the shear elastic constants of a jellium model.
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Table I, we obtain the contribution of the term Py»
to the elastic constants. Adding the electrostatic con-
tribution and the contribution from Pv", we obtain the
Brugger constants of our fictitious solid as

Cuu=(46"/a%)38: D+ (4e*/a*)48: 0 (n—2), (5.18)
Cur= (4e%/ )85+ (4e/a)381 O, (5.19)
Cu=(42/a")38:00— (4604138, , (5.20)
Ciun= — (4¢%/a*)3E$; D+ (4¢%/a4) 38, @
Xn(n—2)(n—4), (5.21)

Cria= — (4€2/a*)3E$; @+ (46%/a%)§8: On*(n—12) , (5.22)

Cuus= — (4et/aHE$,010+ (et a0, (5.29)
Cra= — (4e2/a%)3E8; 110 — (4¢%/a*)§8:1Vn?, (5.24)

Crss= — (4€2/a*) 3£ 8; 3D — (4¢%/a*)§8$, On(n—2), (5.25)
Cas6=— (462/(14)“155'87(1’1'1>+(432/0'4)%51(0)” . (5.26)

When we combine these total Brugger elastic constants
according to Egs. (2.2)-(2.10) of Sec. II,- we ‘ﬁnd Fhat
the expression for the electrostatic contrll?utlon given
by Fuchs? and Cousins? is in agreement with the com-
binations [Egs. (2.2)-(2.10)] of the Brugger elastic
constants. )
The term Pv* can be interpreted as the Lagrangian
undetermined multiplier which represents volume-con-
serving constraints. The fictitious volum.e-c}ependent
term Py or Lagrangain undetermined multiplier always
serves to convert the combinations of derivatives w}th
respect to 7:; to those with respect to voh_lme_-conservmg
shear parameters. Hence, the contrlbutlor.i of the elec-
trostatic energy to the elastic constants given b'y Egs.
(5.18)-(5.26) should be used in combination }mth t‘he
Fuchs elastic constants, but not in combination th.h
the contribution of other terms to the Brugger elastic

constants.

VI. DERIVATIVES OF THE BAND-
STRUCTURE ENERGY

The band-structure energy is given by the secpnd
term of Eq. (3.4). The second-order Rerturbatlon-
theory term is represented as the summation over the
reciprocal lattice points of the er.lerg.y—wave-number
characteristic F(G,k )/, where F is given by

2 rAre? *1- G(Gﬁk )
G (If—cos[Glrc> —— (6.1)
8re2Q\ G2 e(Gik F )

Because the energy-wave-number character%stic con-
tains only the magnitude of the rec'iproca.l lattice vector
G, it may be represented as a function 'of'n and 7,. .
When a homogeneous deformation is introduced into
the lattice in order to calculate the elastic constants,
the reciprocal lattice is also homogeneously defm:me.d
and the band-structure energy of the deformed lattice is

F (G,k F) =
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represented as the summation of the same energy—
wave-number characteristic F(y,r;) over the homoge-
neously deformed reciprocal lattice points. Hence, the
contribution of the band-structure energy to the elastic
constants is calculated®® as the summation of the de-
rivatives. of the energy-wave-number characteristics
with respect to the deformation parameter over the
reciprocal lattice points.

It is relevant here to note that the variable 4 does not
change for a homogeneous dilatation of the lattice,
because both the distance between the reciprocal lattice
points and the radius of the Fermi sphere change in
inverse proportion to the lattice parameter. On the
other hand, the variable 7, does not change for a volume-
conserving pure shear. For these reasons, the Fuchs
deformation parameters are especially well suited for
psuedopotential calculations.

Accordingly, if we take the derivatives of the band-
structure energy with respect to », which designates
homogeneous dilatation of the lattice, in order to calcu-
late the Fuchs elastic constants 92E/dv? and 9°E/dv%,
we have to calculate the derivatives of the energy—
wave-number characteristics solely with respect to 7,,
because

dn/d=0.

Hence, the derivatives of the wave-number character-
istics with respect to v are given as follows:

OF(nr) re OF
=, (6.2)
v 3 07,
9% (nyrs) 1 0%°F 2 OF
=—p,2 —r—, (6.3)
Jv? 9 9r2 9 9r,
and
OF(ny) 1 OF 2 &F 10 oF
=—7,% - —. (6.4)

8 8 T +""’:
dv® 27 9r® 9 92 27 or,

‘The second derivative of the energy-wave-number

characteristics with respect to the volume-conserving
shear, for example 1y, is calculated in the following way.
Applying the chain rule of differentiation, we obtain

9% (qrs) O%F /0n\? OF 9%
——~=—(——) ——, 69
0712 972\9v1 an 871_2
where 7 is given by the definition
1=|G|/2%kr. (6.6)

G is given in terms of the primitive reciprocal lattice
vectors g, g5, and g; of the simple cubic lattice

G=m1g1+magst+msgs. 6.7)

The reciprocal lattice points of the bcc structure can

2V, Heine and D. Weaire, Phys. Rev. 152, 603 (1966).
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be obtained by choosing the integers mi, mq, and ms
according to the rule

my+ms+mz=even,
i.e., the fcc lattice rule. Hence

6] = (S T mamgg)™.

=1 j=1

(6.8)

The primitive reciprocal lattice vectors of the simple
cubic lattice are given in terms of the primitive lattice
vector %y, 2, and =3 of the simple cubic lattice:

w3 X T1

T——_—’
(X %1)

T X 73
gi=2r——, go=2
©1(r2X73)
and
nX1e
g3= 27!'

—_— 6.9
z3(m1X72) (©9)

where =1, 72, and <3 are given by

= (07010) y T (O:G,O) )

These primitive lattice vectors 73, 73, and =3 are deformed
to =/, =2/, and =3 by the v; deformation, the transfor-
mation matrix of which is given in Appendix II:

/= (07070) ]

and =3=(0,0,a).

='= (1,a,0), (6.10)
‘!31= (0,0,(1) .
Hence,
2’ X 23'=2mwa?(1, — 1, 0),
<’ X2/ =2ma%(0,1,0), (6.11)

<’ X 7' =2ax2(0,0,1).

ELASTIC CONSTANTS OF ALKALI

METALS 773

We note here that the denominators of Eq. (6.9) and
also the radius of the Fermi sphere & r do not change
for volume-conserving shear deformations such as the
1 deformation. Consequently, we obtain

n= [/ (672 3] (mr v 12+ mo?+msd— 2y ymyms) 2. (6.12)

By differentiating this expression with respect to vi, we
obtain the derivatives which are needed in Eq. (6.5):

o 1 ‘ 1

= = -7 (WL1M2) ) (6.13)
a’yl (61r2)1/3 (m12+mz2+m32)1/2
9%y T { m1mo?
a2 (6| (matmat+ma?)d2
m12
f . (6.14)
(m1®+ma?+ms?) V2
Combining (6.5), (6.13), and (6.14), we obtain
0*F(n,rs) O (nyrs) w? mma?
3712 an2 (67r2)2/3 M12+M22+m:32
dF(nyrs) 7w { mama?
e —_
an  (6m)13|  (mattmams2)s2
M12
+ } . (6.15)
(m12+m22+m32)”2

The other derivatives of the energy—wave-number
characteristics with respect to volume-conserving shear
deformation parameters are obtained following similar
procedures. They are

3 (n,rs) O*F(nyrs) w2 (my2—m,?)? l(‘)F(n,m) T
der gt (6m)Bmitmtm® 9y (6m2)0
(ma2—m12)? 3ma2+m.?
X 1— : } (6.16)
(ma®F-ma?+ms®)32  (mi2+mo+ms?)t/2

O°F (nyrs) 0°F(nre) m? (—7'112‘1"”122)2(—mz”-m#)J ?F (n,rs) w2

Jde120¢s 6173 (67|.2)3/3 (m12+1n22+m32)3/2

am?  (6m2)3

{ 2(—m12+¢%22)2(—m22‘f‘m:~12)i(3m12+m¥)(—7%22‘1'1”32)—47%22(—mxz'f-m'f)}J OF(nrs)
-3 +

(m1®+mo?+-ms?)* m®+mo?~+ma? an  (6w2)L/3
[3(—-m12+m22)2(—m22+m32) (3124 m9%) (— ma2+m 5%) — Ao (— mr+mo?) 2mo? l 6.17)
(mi®+moP+ms?)* (M +ma+ms?)*/2 (m+m+mg?)iz)
3F (n,7s) B PF(nrs) 7 (mamg)?(— mf—{-mf)i A F(n,rs) w? [ 3 2m12m22(— ma2+ms?)
de20v1? o (67%)%% (miP+moP+ms)*? an*  (6w%)%3 (ma®+mao>+ms?)?

T
mi+mo+ms? dn

mi(—mo+ms?)— 2mi’m o , OF(n,rs) 1 {1m12m22(—m22+m32) ma?(—ma+ms?) — 2myma?
]

J
(m12+m22+m32)5/2

(6r2)113

] , (6.18)

(ma?+-ma-my?)si2
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83F(7])7«) 33F(n,n) ? mymema? mamadm
== 1
ot (6w (my+matt-ma2)32

. aF(n,r.) 1

an (612)1/3{—u(m12+m22+m32)5/2 " (it mamgd)

I62F(17,7,) w2 {2 madmg® }
673872671" a? (6723 (mn®FmoP+ms®)?  ma+-ma+-ms?

maPmems? Mo 3?

} . (6.19)

The contribution of the energy—wave-number characteristics to the two kinds of Fuchs elastic constants 93E/dvde;?
and 83E/dvdv:%, which involve both the volume-conserving shear parameters ¢; or v; and the uniform dilatation
parameter v, are simply the derivatives of the two second-order Fuchs elastic constants 92E/de,? and 92E/dv,2.
In these expressions, all factors except the derivatives of energy-wave-number characteristics F(n,7,) with respect

to 5 do not depend on v. Hence, we find

BF(n,rs) 75 03F(nyrs) wt (mo2—my?)?

T F(nrs) T

- ]
0006 3 Arednt (613 mldmedtmsd 3 Ordn (62U

asF(ﬂyr:) ¥s aaF(TI,T.) T MaZmo?

(ma?—m?)? 3ma+mq?

{_—(m12+m22+m32)312 ' (M12+7n22+7ﬂ32)”2

} , (6.20)

T *F(nrs) T

= +
09712 3 rdn? (67D m+mi+tms: 3 Ordn (672U

The derivatives of the energy—wave-number charac-
teristics with respect to 7, and n are concerned with
different aspects of the wave-number characteristics.
When we take the derivatives of the energy—wave-
number characteristics with respect to », the derivative
brings out the logarithmic singularity® of the Hartree
dielectric function e(n,7.). If some of the reciprocal
lattice points are not too far from the surface of t}3e
sphere with radius 2k, where the Hartree dielectric
function shows its singularity, the higher-order deriva-
tives of the band-structure energy with respect to %
tend to give the more significant contribution to the
elastic constants. On the other hand, the derivatives
with respect to 7, are not concerned with the'logarithmic
singularity of the Hartree dielectric function but are
concerned mainly with the oscillation of the wave-
number characteristics in the reciprocal lattice space.

Although we are able to get a reasonable estimate of
the two Fuchs elastic constants 92E/dv? and 93E/dv%,
these Fuchs elastic constants are less accurate than the
others for two reasons. The first is that, while the other
Fuchs elastic constants do not depend on the volume-
dependent terms of the energy, these two Fuchs elastic
constants do and the volume dependence is known less
accurately than the shear dependence at constant
volume. The volume dependence is less well known
because the expression for the correlation energy is not
an exact one but an interpolation formula from the

29 le, see J. S. Langer and S. H. Vosko, J. Phys.
Cheml.r%iﬂgg: ri] X 196 (1%59); w. i Harrison, Pseudopotentials in
the Theory of Metals (W. A. Benjamin, Inc,, New York, 1966),

p. 51

{ myPme? My
— ]

-
(m12+m22+m32) 3/2 (mlz+m22+m32)112

} . (6.21)

high and low electron-density limit where exact expres-
sions have been obtained and also because the first-order
perturbation term is not calculated from the pseudo-
potential but was determined empirically by Ashcroft
and Langreth using an equilibrium condition. The
second reason is that, in order to calculate the contribu-
tion of the band-structure energy to the Fuchs elastic
constants 92E/dv? and 83E/dv3, one has to know in
detail the oscillatory behavior of the energy-wave-
number characteristics in the region far from the origin
of the reciprocal lattice (approximately 3%k p<k<5kr),
where the pseudopotential is least well known. As we
try to obtain higher-order derivatives with respect to
the v deformation parameter, the contribution from the
oscillatory behavior of the energy-wave-number char-
acteristic becomes more important, and the conver-
gence of the sum of the derivatives of the energy—wave-
number characteristics is slower.

VII. RESULTS AND DISCUSSION

In Secs. IV, V, and VI we have discussed procedures
for differentiating each of the three energy terms Fj,
E,, and E;3 with respect to Fuchs deformation param-
eters. The summation of the derivatives of the energy—
wave-number characteristics over the reciprocal lattice
points has been carried out to the 76th neighbors of the
origin by a computer. But it has been found that the
results of the summation do not vary appreciably for
the shear constants after the summation is carried out
to about 6th neighbors. Because the expression for the
energy, which forms the basis of our calculation of
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Taste II. Elastic constants (10! dyn/cm?) and pressure derivatives of Li as a function of core radii (a.u.).
Core
radii Cu Ciz Cu Cin Cue Cizs (om Ciss Cuse aC’/ap 8C/op oB/op
0.96 1.220 1.265 0.521 —10.42 —3.53 -2.15 —2.59 —2.95 —-3.90 0.109 1.127 3.194
1.06 1.261 1.230 0.691 —11.27 -3.23 —2.71 —3.26 —3.04 —4.17 0.146 1.324 3.232
1.16 1.307 1.210 0.855 —12.16 -2.98 -3.30 —-3.91 -3.11 —4.42 0.174 1.487 3.279
1.26 1.381 1.216 1.013 —13.48 —-291 —3.96 —4.56 —3.23 —4.66 0.226 1.621 3.398
1.36 1.495 1.257 1.164 —14.89 —-297 —4.66 -5.15 —-3.31 —4.84 0.247 1.646 3.497
1.46 1.622 1.324 1.291 —16.14 -3.11 —5.35 —5.65 —-3.33 —4.97 0.228 1.579 3.554
1.56 1.770 1.423 1.396 —17.87 —3.47 —6.08 —6.10 -3.40 —5.08 0.240 1.491 3.672
Tasie IT1. Elastic constants (10*! dyn/cm?) and pressure derivatives of Na as a function of core radii (a.u.).
Core
radii Cn Cie Cy Cm1 Cue Cizs (™ Ciss Cuse aC’/ep aC/ep 9B/op
1.39 0.623 0.597 0.365 —5.67 —1.57 —1.45 —1.74 —1.52 —2.01 0.156 1.425 3.299
1.49 0.651 0.597 0.435 —6.23 —1.52 —1.73 —2.03 —~1.57 —2.12 0.203 1.568 3.400
1.59 0.696 0.610 0.505 —6.89 —1.54 —2.04 —2.30 —1.63 —2.21 0.242 1.643 3.513
1.69 0.751 0.635 0.569 —7.47 —1.58 —2.35 —2.55 —1.66 —2.28 0.238 1.625 3.571
1.79 0.808 0.668 0.624 —8.06 —1.66 —2.66 —2.78 —1.68 —2.34 0.226 1.567 3.629
1.89 0.877 0.715 0.673 —8.90 —1.84 —2.99 -2.99 —1.72 —2.40 0.244 1.497 3.742
1.99 0.996 0.777 0.715 —9.83 —2.08 -3.33 —-3.17 —1.76 —243 0.253 1.368 3.832

elastic constants, contains only the core radius 7. as an
adjustable parameter, the results are obtained as a func-
tion of 7, for various alkali metals. The Fuchs elastic
constants thus obtained are converted to the Brugger
elastic constants by means of Egs. (2.2)~(2.10). The
values of the second-order elastic constants, their pres-
sure derivatives and the third-order elastic constants
of Li, Na, K, and Rb are given as a function of the core
radius 7, in Tables II-V.

It is interesting to note that the predicted sets of the
third-order elastic constants of alkali metals have the
common features that Ciy; is negative and its absolute
magnitude is appreciably larger than that of the other
third-order elastic constants. However, there are no

experimental data available for individual third-order
elastic constants. Our knowledge about the volume-
dependent terms of energy is less reliable than the
knowledge about the electrostatic energy and the band-
structure energy. Consequently, the Fuchs elastic con-
stants 92E/dv? and 93E/9v3 are less accurate than the
other Fuchs elastic constants. If more reliable informa-
tion about the volume-dependent term of the energy
becomes available, these two Fuchs elastic constants
will be modified while other Fuchs elastic constants are
not affected. The elastic constants shown in Tables
II-V are the Brugger elastic constants obtained from
the Fuchs elastic constants by means of Eqs. (2.2)-
(2.10). Therefore, any new information on the volume-

Taste 1V. Elastic constants (101! dyn/cm?) and pressure derivatives of K as a function of core radii (a.u.).

Core

radii Cn Cr2 Cu Cin Cuz Cras (om Cus Case aC’/ep 8C/ap oB/ap
194 0208 0271 0203 —-2935 —0.723 —0.832 0956 —0.734 —0927 0235 1.651 3.544
204 0320 0.280 0.230 —3.185 —0.739 —-0.956 —1.061 —0.757 —0959  0.245 1.667 3.611
214 0342 0292 0.255 —3.409 ~0.760 —1.081 —1.158 —0.767 —0.984  0.230 1.633 3.648
224 0366 0307 0.277 —3.678  —0.802 —-1.210 —1.252 —0.782 —1.009 0.230 1591  2.713
234 0395 0326 0298 —4.041 —0.878 —1.347 —1.343 —0.807 —1.034 0.253 1.539  3.819
244 0431 0351 0317 —4.441 —0.975 —1.488 —1.424 —0.829 —1.051 0268 1.441 3.904
254 0472 0380 0.333 —4.779 —1.074 —1.620 —1.488 —0.828 —1.056 0246 1.284 3.917

Tasie V. Elastic constants (10! dyn/cm?) and pressure derivatives of Rb as a function of core radii (a.u.).

Core

radii Cu Ciz Cu Cin Cuz Cias Ciu Ciss Cuse aC'/ap aC/ap aB/op
2.29  0.265 0.228 0.197 —2.647 —0.601 —0.837 —0.898 —0.603 —0.755 0.230 1.647 3.667
239 0283 0.239 0.214 —2.851 —0.633 —0.934 —0.969 —0.615 —=0.775  0.230 1.609 3.729
249 0305 0.253  0.230 —3.123 —0.688 —1.038 —1.039 —0.636 - —0.794 0.253 1565 3.832
259 0332 0271  0.245 —-3.430 —0.760 —1.145 —1.104 —0.655 —0.809 0272  1.481 3.920
269 0362 0.293 0.258 —3.702 —0.835 —1.248 —1.157  —0.659 —0.815 0.259 1.342 3.945
279 0392 0316 0.268 —3.921 —0.908 —1.342 —1.197 —0.649 —0.814  0.221 1174 3.923
289 0422 0341 0274 —4.148 —-0.991 —1.432 —1.228 —0.637 —0.812 = 0.194 1.020 3.915
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NASH AND SMITH

N F16. 1. Second-order elastic con-~
stants of lithium. The solid lines
7 in the left half of the figure show
- the results of the calculation as a
function of the core radius 7..
Dotted lines show the data which
7 are obtained from the linear ex-
trapolation of the experimental
data shown in the right half of the
figure. Dashed lines indicate the
] electrostatic contributions to the
4 shear elastic constants. B and
C’ stand for 3(Cu+2Ci2) and
$(Cui—Chra), respectively.
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dependent term of the energy would inevitably affect
almost all values of the Brugger elastic constants shown
in the tables even though only two of the Fuchs elastic
constants would be changed.

Before we compare the results of the calculation with
the experimental data, we recall that our calculation
does not include the effect of the lattice vibrations.
Consequently, the data which are compared with the
present calculations should be obtained by a linear
extrapolation® of the experimental data as shown on the

100 200
TEMPERATURE(°K)

right-hand sides of Figs. 1-4. The lattice parameter ¢
is also obtained from a linear extrapolation of the tem-
perature dependence of the lattice parameter.! The
values used were 3.485, 4.215, 5.124, and 5.5715 A for
Li, Na, K, and Rb, respectively.

The temperature-dependent second-order elastic con-
stants of alkali metals are taken from the work of Nash
and Smith,3 Diederich and Trivisonno,**Marquardtand
Trivisonno,* and Guttman and Trivisonno.? We notice -
that a value of the adjustable parameter », which is
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— Fi6 2. Second-order elastic con-
stants of sodium. Notations are
the same as Fig. 1.
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% G, Leibfried and W. Ludwig, in Solid State Physics, edited by F. Seitz and D, Turnbull (Academic Press Inc., New York, 1963)

Vol. XTI
31 C, S. Barrett, Acta Cryst. 9, 67 (1956).

3 H, C. Nash and C. S. Smith, J. Phys. Chem. Solids 9, 113 (1959).

3 M. E. Diederich and J. Trivisonno, J. Phys. Chem. Solids 27, 637 (1966).
3¢ W, R. Marquardt and J. Trivisonno, J. Phys. Chem. Solids 26, 273 (1965),
% E, J. Gutman and J. Trivisonno, J. Phys. Chem. Solids 28, 805 (1967).
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reasonably consistent with the two shear elastic con-
stants can be determined only after a linear extrapola-
tion of the experimental data. The values of the core
radii 7, thus determined are shown in Table VI together
with the core radii determined by Ashcroft and Lang-
reth® from the data on the Fermi surface or on the
liquid-metal resistivity. The values of ionic radii com-
piled by Pauling3® are also shown in Table VI. The
reasonable agreement between the core radii determined
from the different kinds of experimental data supports
the validity of the model pseudopotential proposed by
Ashcroft.!?

Dashed lines in Figs. 1-4 indicate the electrostatic

contribution to the shear elastic constants. Because the

1
22 23 5
R, CORE RADIUS(atomic units)

1
24 2. 100 200
TEMPERATURE (°K)

volume-dependent terms of the energy do not contribute
to the shear elastic constants, the difference between
the calculated curves for the two shear elastic constants
and the dashed lines indicates the contribution from
the band-structure energy. The contribution from the
band-structure energy to the two shear elastic constants
is not a major contribution to the shear elastic constants
of alkali metals. This explains why the calculation of
the second-order shear elastic constant of alkali metals
by Fuchs is qualitatively satisfactory. Because the con-
tribution from the band-structure energy is small, it is
found essential to use the linear extrapolation of the
experimental value for determining the core radius
which in turn determines the contribution of the band-
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Fic. 4. Second-order elastic con-
stants of rubidium. Notations are
the same as Fig. 1.
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36 1, Pauling, Nature of Chemical Bond (Cornell University Press, Ithaca, N. Y., 1945), p. 326.
¥ M. Born and R. D. Misra, Proc. Cambridge Phil. Soc. 36, 466 (1940).
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TasLe VI. Core radii (a.u.).
Shear Resistivity
elastic Fermi of® liquid Tonic
constants®  surface® metal radii®
Li 1.36 1.06 1,13
Na 1.79 . 1.67 1.79
K 2.34 2.14 oo 2.51
Rb 2.49 2.61 2.79

a Present authors. b Reference 8, ¢ Reference 36,
structure energy. When we compare the results in Figs.
1-4, we notice a systematic increase of the contribution
of the band-structure energy to the shear elastic con-
stants as we go from Li to Rb. As the contribution of the
band-structure energy to the shear elastic constants
increases, a small difference between the core radii de-
termined from the two values of the linear extrapolations
of the shear elastic constants becomes noticeable in K
and Rb.

Although the difference is small, the calculated curves
of the bulk moduli do not cross over the experimental
data exactly at the value of 7. shown in Table VI. This
is not surprising for the reasons already given about
the volume dependence of the energy.

However, we believe that the present scheme gives
a fairly accurate account of the second-order elastic
constants of alkali metals. Once the core radius is de-
termined from the data of the second-order elastic con-
stants, we are able to predict the values of the third-
order elastic constants which are consistent with our
choice of 7., by use of Tables II-V. The values of the
third-order elastic constants thus determined should be
compared to the linearly extrapolated values of the
third-order elastic constants. However, neither the tem-
perature dependence nor the values of the third-order
elastic constants of alkali metals are available at present.
The pressure dependence of the second-order elastic
constants of Li, Na, and K at room temperature has
been measured by Jain3® Daniels,® and Smith and

TasLE VII. Pressure derivatives of second-order
elastic constants of alkali metals.
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Core radii
(am.) 9C'/ap oC/ap 0B/op
Calculation 092  0.085 1.034  3.173
Li Calculation 1.36  0.247 1.646  3.497
Experiment a 0.081 1.01 oo
Na Calculation 1.79  0.226 1.567 3.629
Experiment b 0.226  1.63 3.60
K Calculation 2.34 0.253 1.539 3.819
Experiment c 0.281 1.88 3.97
Rb Calculation 2.49 0.253 1.565 3.832
Experiment ees I

s A, L. Jain, Phys. Rev. 123, 1234 (1961).

b W, B. Daniels, Phys. Rev. 119, 1246 (1960).
o P, A. Smith and C. S. Smith, J. Phys. Chem. Solids 26, 279 (1965).

3 A, L. Jain, Phys. Rev. 123, 1234 (1961).

# W, B. Daniels, Phys. Rev. 119, 1246 (1960).
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Smith,® respectively. The predicted values of these
quantities are in good agreement with the experimental
data for Na and K as shown in Table VII. If we excluded
band-structure energy in the calculation of C/dp and
aC’/dp of Na, K, and Rb, we would obtain values
smaller by about 409, than the values shown in Tables
III-V. This shows that although the band-structure
energy contributes a small correction to the second-
order elastic constants, the same energy makes an in-
dispensable contribution to the third-order -elastic
constants.

There are appreciable differences between the calcu-
lated values and the experimental values of C/dp and
dC’/dp of Li. At the present time, we do not know
whether this is due to the temperature dependence of
the pressure derivatives of the second-order elastic con-
stants or due to the failure of the pseudopotential
theory for Li. However, comparing the curves of Fig. 1
to those of Figs. 24, it is clear that Li is quite different
from the other alkali metals. The band-structure energy
always gives a positive contribution to the shear elastic
constants for the alkali metals except for Li. The band-
structure energy makes a very small positive contribu-
tion to C and a negative contribution to C’, in the case
of Li. The calculated values of the pressure derivatives
of the second-order elastic constants of all alkali metals
except for Li do not depend critically on the choice of
7.. In the case of Li, if we choose the value r.=0.92 a.u.,
we can obtain good agreement between the calculated
pressure derivatives and the experimental data, but at
the same time, the agreement with the second-order
elastic constants is reduced. The value of the core
radius determined by Ashcroft and Langreth from the
data of the resistivity of the liquid metal, 7.=1.06 a.u.,
is a good compromise for the second-order elastic con-
stants of Li and their pressure derivatives.

By this comparison with the limited amount of data
available so far, it is apparent that the band-structure
energy makes a small but important contribution to the
second-order elastic constants, and has a major impact
on the third-order elastic constants. By the use of the
psuedopotential, the mechanical and electrical proper-
ties have become closely related.
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APPENDIX I

Different strain parameters as independent variables
lead to different kinds of elastic constants. The litera-

( 40615’5 A. Smith and C. S. Smith, J. Phys. Chem. Solids 26, 279
1965).
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ture on this subject is large and confused. Recently,
Wallace!® has given a general theory of thermoelasticity
in which he reviews and clarifies this subject. Wallace
defines five different sets of thermoelastic coefficients.
These are all equivalent when the reference state is the
unstressed state, but are all different when the reference
state is a stressed state. The five different sets include
(1) the second-order elastic constants C,s, which con-
tain the rotational invariance conditions and always
have Voigt symmetry, and (2) the Fuchs coefficients
Fqp for which the independent variables are quantities
which are convenient for calculations of elastic proper-
ties from atomic considerations.

Wallace refers to the Cqs coefficients as elastic con-
stants and the other four sets of coefficients as elastic
coefficients. To distinguish the general case from the un-
stressed reference state case, the latter are designated
by barred symbols, e.g., Cop. In the present paper, all
elastic constants are referred to the unstressed state,
and we wish to emphasize a somewhat different dis-
tinction between the different elastic constants. For
this purpose we would propose two changes in notation
and nomenclature which we believe would still preserve
the useful distinctions made by Wallace. The first is to
drop the bar notation for the unstressed case, as this
notation becomes clumsy in cases, such as the present
one, for which only such quantities are considered. Also
this is a unique state, depending only on the crystal
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forces, and not on external stresses. A possibility for the
stressed-state coefficients might be to simply indicate
explicitly the stress dependence, for example Cag(p).
The second is to refer to elastic coefficients in all cases
where the reference state is stressed and elastic con-
stants in all cases where the reference state is unstressed.
Then the Cop of Wallace become the Brugger elastic
constants Cg.

As we still find it useful to distinguish between the
Brugger and Fuchs schemes for calculating elastic con-
stants from atomic considerations, we should like to use
these terms to distinguish different combinations of
elastic constants for the unstressed state. That is, just
as the 4, B, C constants of Fuchs [4=F—Fy,,
B=%F44, and C= %(F11+2F12)], or the C/, C, B con-
stants of Zener [C'=%(Cy— Ci2), C=Cy, and B=3(Cny
+2C12)] are preferred linear combinations for physical
reasons in second-order, so also are certain linear com-
binations of third-order elastic constants preferred.
These are given in the text as extensions of Fuchs
definitions. We believe that reference to these useful
combinations as Fuchs elastic constants will not violate
Wallace’s scheme, particularly if the independent vari-
ables are explicitly indicated, for example F,, instead
of the Wallace-Fuchs constants F,g. In fact, in the pres-
ent paper, the distinction is made even more explicit
by writing the Fuchs elastic constants explicitly as
second derivatives.

APPENDIX II

(1) v deformation:

pt/3—1 0 0
(uap)= 0 v!8—1 0 } )
0 0 p1/3—1

(o1/3— 1)+ w1/s—1)?
0

(naﬂ) = {

0
(2) & deformation:
€ 0 0
(#ap)= [0 —e/(14e) O] s (nap)= {
0 0 0

(3) v1 deformation:

0 Y1 0
(#ap)=10 0 O],
0 0 0
(4) vey deformation:
(1+e)13—1 0 0
(ap)= 0 pM3/(14-¢)—1 0 )
0 0 p1/3—1

(14 )ot3—14-3{ (14 13— 1)2
0
0

("Iaﬁ) = [

(43— 1) (1= 1)2
0

0 0

J

0
(@—1)+3-1)

eLe? 0 0
0 b 61/(1+€1)+%€12/(1+€1)2 0] .
0 0 0
0 %71 0
(1ag)= [%71 $v:? 0} .
0 0 0
0 0
23/ (14 €)— 143 {013/ (14 €)— 1) 0 ] .
1)2

0 23— 1L (p1/3—



780 SUZUKI, GRANATO, AND THOMAS 175
(5) vy1 deformation:
pi3—1  ypl/3 0
(a.,,g>=[ 0 w1 o |
0 0 pl3—1
vl/a__ 1+%(v1/3__ 1)2 %71}1/3_'_%71)1/3(.”1/3_ 1) 0
(Mag) = |20 34 2y013(01/3—1) 913 — 141y 2g2/84- (p1/3—1)2 0 J .
0 0 (@B3—1)+L(/3—1)2
(6) erez deformation:
(€1 0 0 b r€1-|- 261 0 0 b
1+e 1+e 1+e 2
(%ag) =10 —1 0 ) (7),,,9) = 0 1+%< 1) 0 ) 5
14€ 146 14+¢
0 0 1 1 1 2
—1 0 0 l—l-l( 1)
. 1+ €2 / . L 1+ €2 ? 1+ €2 P,
(7) ery1 deformation:
0 0 0
(#ap)= |11(1+€) e 0 ,
0 0 1/(1+e)—1
37 (1+e)? (l+e)+ivi(l+ea)e 0
(nep)= [371(1+e)+311(1+e)e er+3e? 0 .
0 0 1/(+e)—1+3[1/(1+e)—1]
(8) vsy2y1 deformation:
Y1IY2Ys Y2Y3 Vs Yrveys+H3(ivavat vt viye?) (12) (13)
(nap) 71 0 0], (map)=| 3(vatvevs)+3lyrvadysHrve?)  3(ve™va®+ve?) 372 ).
yrve  va O 3(vstryrye)+i(yeyeys?) 372 vs?

APPENDIX III

Because all the lattice sums are calculated by similar
procedures, we show in detail the calculation only for
the following typical sum:

/f/ u14du1du2du3
(l12+122+132)5/ 2 (u12+u22+u32)5/ 2’

By means of a Laplace transformation

/ 24t
Z’“ (%)

the lattice sum can be rewritten as follows:

(A2)

{Z/ t3/2l1 exp[ (l12+ l22+l32)t]dt

Aff o

X exp[ - (M12+ uz2+u32)t:|du1duzdu3dt } .

I'@)

The restriction on the integers J, J, 4 can be removed

by rewriting the first term as a sum of two terms:

Z/w t312114 exp[-—— (l12+ l22+l32)l]dt

[l
f

3/2{ £ exl—s0-11]

Z exp[ — 412t:|} {;‘:: exp[—4lﬁt]rdt

012 —0

xA{ izw exp[—4(—1)%]}y2de. (A3)

On the right-hand side, Z runs all over the integers — o
to 4 <o. The integration is split up into two parts, i.e.,
0 to € and e to o where ¢ is a positive constant chosen
in a way discussed shortly. The integrations e to « are
simple and given in terms of integrals defined by

bm(x)= f * pmestdy (A4)
1
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as follows: By means of the following formulas
o 0’
/ tm[— > exp(_4l2t)} {3 exp(—412)}2dt o A2 a?
¢ o > exp(—i)= (—) > exp(-—-—-P) ,
= H1[32¢hg a(4€)+ 128¢3/2(8€)+ 128632(12¢) b= A !

+512¢3/2(16€)+ M :l y
0 62
[ o= s espi-s0-10)
c ar?

X {5 expl—4(—})¥]ydi Xexp(—;:—l“’),
14

= 6H1[8¢3/2(36)+66.4:¢3/2(116)+ 1296¢3/2(196)+ v ]
(AS)  the integrals from 0 to € are converted as follows:

© N2
5 exp[—4(l—%>2jz=-;-(—) 2 (1)
l=—x 2 l=—c0

€ 82 €
[ :3/2{6—22exp<—4m>}<>: exp(—412))2di+ f P expl— A~ DUT(E expl—4(—3) s
0 /4 0
€32 3 1 2mr? 472 6 1 22 472
[ Do Lol
0o 24 24 ¢ 4e 4e 25 € 4e 4e

1 1 27?2 4%
+—1r1”2—[8¢2<—~)+32¢2<———)+- . ] (A6)
26 €3 4e 4e

-1 f / / / £3121* exp[ — (w12 w2+ us?)t Jdusdusdusdt= — (7%/2/24)3 / 1%t (A7)
0 0

The second term of the lattice sum is integrated as follows

We notice that the divergent integrals in Egs. (A6) and (A7) cancel each other. The positive constant e is chosen
in such a way that the series in Egs. (AS) and (A6) converges at approximately the same speed. On our calculation
we used e=3m; however, the results of the calculation are not critically dependent on the choice of ¢, as long as a
sufficient number of terms are summed in the calculation of the series in Egs. (AS5) and (A6).

Finally, adding (AS5) ,(A6), and (A7), we obtain the expression for the lattice sum

65/2[32¢3/z(46)+ 128¢3/2(8€>+ 128(1)3/2(126)+512¢3/2(166)+ .. ]

2

: 3 1 2m? 42
+ 55/2[8¢3/2(3€)+664¢3/2(11€)+ 1296¢3/2(19€)+ e ]+—2—47r3/2—l:12¢0(—4-—>+6¢0<-4—)+ b ']
€ € €

6 1 2mr? 42 1 1 22 42 0 18/2
“_W7/2—[8¢1<‘—‘>+8¢1<_“>+‘ . ‘:|+—7Tm2—‘[8¢2<—-—>+32¢2<-*>+' : ']‘{‘ —St‘zdt} .
26 €2 4e 4e 26 € 4e 4e e 24

Using the table for the integral ¢.(x) provided by Misra and Born® we obtain the result for 8;® given in Eq.(5.11).



