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Single-Site Approximations in the Electronic Theory of
Simple Binary Alloys*
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A single-band model Hamiltonian is used to describe the electronic structure of a three-dimensional
disordered binary alloy. Several common theories based on the single-site approximation in a multiple-
scattering description are compared with exact results for this Hamiltonian. The coherent-potential theory
of Soven and others is shown to be the best of these. Within the appropriate limits, it exhibits dilute-alloy,
virtual-crystal, and well separated impurity-band behavior. Hubbard and Onodera's and Toyozawa's
simple model density of states is employed in numerical calculations for a wide variety of concentrations and
scattering-potential strengths. Explicit results are exhibited for the total density of states, the partial
density contributed by each component, and such k-dependent properties as the Bloch-wave spectral
density and the distribution function. These illustrate the general conclusions as well as the limitations
of the quasiparticle description,

I. DTTRODUCTION

i 'HIS pRpcr ls coDcclncd with two Rspccts of tbc
single-particle theory of the electronic structure of

disordered binary alloys. It presents a systematic deriva-
tion of the so-called coherent-potential (CP) theory' of
such systcIQs, clariGcs its meaDlng and limitations, and
discusses numerical results for a moderately realistic
single-band model corresponding to R three-dimensional
system. In addition it presents a number of exact re-
sults for this model. These are useful as a basis for
comparison with approximate calculations, Rnd also
when thc two constltucnts give risc to t%'0 well-scpa"
ra,ted. Sub-bands, R situation in which thc Quctuations
of the random potential are so large that the CP theory
is not expected to be valid.

The Cp concept has generally been developed within
the framework of the multiple scattering description2
of disordered systems. '—5 In this approach the propa-
gation of an electron or lattice wa,ve in an alloy is re-
gaxded as a succession of elementary scatterings on the
random atomic scattcrcrs& which Rlc thcD Rvcx'Rgcd ovcl
Rll con6gurations of atoms. Taylor' and Soven, ' de~.»rig
respectively with the case of the lattice vibration and
electron-cxcitation spectrum in an alloy, returned to the
Ewald-Lax theory' of multiple scattering. They viewed
a given scatterer as being embedded in an effective
medium whose choice was open and could be made
self-consistently. This choice in turn determined an ef-
fective Hamiltonian called the coherent-potential.
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Harniltonian. The physical condition corresponding to
this choice is simply that a single scatterer embedded
lD this effective IncdluIQ should ploducc Qo fux'ther SCRt-

tering on thc average. The C6ectivc Hamiltonian in
question is to be regarded as an unknown of the problem,
and in contrast to the known "unperturbed" Hamilton-
ian that forms the usual starting points for multiple
scattering theories, is not impmved further by consider-
ing scattering corrections of ever increasing order. In
this sense, the self-consistent choice of Hami1. tonian is
optimal among all single-site approximations, which
neglect the scattering from clusters of atoms. Although
the clustering effects may bc important under certain
circumstances, thc single-site Rpproxlmatlon renders the
problem tractable. It may be said to play the same role
in alloys as the molecular-6eld theory in magnetism.

McMillan and Anderson~ used a similar approachs
in their treatment of liquid iron. Crudely speaking,
their model binary alloy consisted of iron atoms and
vacancies. A quite di6erent and important application
of thc same formalism %'as xQRdc very x'cccDtly by
Onodcra and Toyozawa. 9 They described Frenkel exci-
tons m mixed lonlc crystals using a simple three-
dimensional single-exciton band model which permits a
detailed solution of the problem. In addition, quantities
other than the density of states, namely thc spectral
density describing the optical absorption, werc calcu-
lated and discussed for the Grst time. The CP approxi-
mation vras there rightly regarded as a scheme which
interpolates between properly described limits corre-
sponding to the entire range of impurity concentrations
and strong and weak scattering. A band model similar
to that used by these authors, and previously intro-
duced by Hubbard, "will also be employed here to ob-

r P. W. Anderson and W. L. McMillan, in Prozeed&sgr uf ths
Igterea&orhal School of Physics "Set'ico Fernsi, " Course 37, edited
by W. Marshall (Academic Press Inc. , New York, 1967).

8 For a different approach to dilute liquid alloys, see E. A.
Stern, Phys. Rev. 168, 730 (1968).' Y, Onodera and Y. Toyozawa, J. Phys. Soc. Japan 24, 341
(1968).

'&' J. Hubbard, Proc. Roy. Soc. (London) A276, 238 (1963).
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tain the detailed results to be discussed in connection
with Sec. IV.

The older attempts to obtain self-consistent descrip-
tion of mixed crystals dealt with phonons for low-

impurity concentrations. ""Also closely related were
efforts by Hubbard to obtain a self-consistent descrip-
tion of electron correlations in narrow' bands. In the
third of a series of papers Hubbard" introduces an
alloy analogy, and. , by finding appropriate means of
truncating coupled Green's-function equations, he ar-
rives at a self-consistent formulation of the alloy prob-
lem, which we shall show in this paper to be precisely
equivalent to the CP approximation. Indeed, the formal-
ism and its physical interpretations in this more limited
application to be presented here will be seen to be con-
siderably simpler than that of Hubbard.

Since this paper will deal with a number of di6erent
aspects of the alloy problem, a fairly detailed outline
of the various topics and principal conclusions, with
reference to the sections where these are discussed, may
bc helpful. Scctlon II plovldcs a succinct Rnd gcncral
derivation of all single-site approximations using multi-
ple-scattcring theory. This approach permits direct com-

parison of the coherent-potential approach with other
single-site approximations since these approximations
are all placed on the same footing. The principal assump-
tion underlying this treatment is that the total scatter-
ing potential may be expressed as a sum of contributions
due to single atomic scatterers. A single-site description
of the alloy problem is seen to involve the following

physical ingredients. The total scattered wave is com-

posed of contributions from each atom, while the CGec-

tive wave incident on a given atom excludes the con-
tribution of that atom. This contribution is obtained
as a product of the atomic I, matrix and the CBcctive
wave. Both quantities are con6guration dependent.
The essence of the single-site approximation (SSA) is
the assumption that these quantities are not statistically
correlated. The atomic scattered wave therefore be-
comes upon averaging a product of the configurationally
averaged $ matrix and. the averaged CGective wave.
This procedure therefore replaces the true medium sur-

rounding a given site by an CBective one.
Succeeding parts of the paper become increasingly

specialized and the results obtained correspondingly
more specific. In Sec. III a single-band model for the
alloy Hamiltonian is introduced. In terms of the Kan-
nier representation, each site is characterized by a single
orbital. It is assumed that the "hopping integrals, " de-

scribing the transfer of electrons between sites, are

"A. A. Maradudin, in J3rumkh Summer INstitute 106Z Lectures
(W. A. Benjamin, Inc. , New York, 1963), Vol. 2. For more recent
references to work on lattice vibrations in disordered systems, see
Localised Excitutions ie Solids, edited by R. F. Wallis (Plenum
Press, Inc., New York, 1968).

"A. A. Maradudin, K. W. Montroll, and. G. H. gneiss, in
SolH Stare I'hysics, edited by F. Seitz and D. Turnbull (Academic
Press Inc. , New York, 1963), Suppl. 3."J.Hubbard, Proc. Roy. Soc. (London) A281, 401 (1964).

identical to those in either perfect crystal. Accordingly,
only the diagonal elements of the alloy Hamiltonian
are random. Signihcantly, the entire behavior of the
IIamlltonlan may bc spcc16ed ln tcl Ins of just two
parameters characterizing the concentration and the
strength of the random potential. The bandwidth, which
is determined by the hopping integrals, simply scales
the energies.

The discussion of Sec. III concerns only general prop-
erties which do not involve the SSA. Exact statements
are made about the symmetries of the problem, the
localization of the spectrum (Sec.III A), and the asyrnp-
totic behavior of various quantities of interest (Sec.
III 8). The latter results for the averaged Green's
function and self-energy are important in particular be-
case they yield information about the moments of the
density of states, the spectral density for Bloch states,
and, in addition, lead to R family of sum rules involving
the self-energy (Sec. III 3). Such information is useful
in two respects: as a basis for judging the results of
approximate treatments, and also as a source of valid
statements in regimes such as that involving two well-

separated sub-bands (the "split-band limit" ) where the
strength of the random potential is suKciently large
that the SSA is likely to fail because of the prevailing
large Qucutations with respect to the CGective medium'4

(Sec. III C). In the "split-band limit" the self-energy
has a pole whose existence rejects the fact that the
sub-bands are becoming nearly independent. This is a
CRsc of physical lmpoltRncc slncc thc d bRnds arising
from the two constituents in such alloys as brass (Cu
and Zn) are well separated. Of course, the degeneracy
of bands in this case prevents immediate application of
the methods of this paper.

The final section (Sec. IV) of the paper is concerned
with the single-site approximation as applied to the
single-band model. The development previously given
in Sec II is recapitulated for this particular case in Sec.
IV A, and explicit expressions for the self-energy, the
total density of states, and the density of states associ-
ated with each type of site obtained. This leads to a
conservation condition relating the total charge density
per site to that of each of the constituents, R condition
which in Sec IV 8 is shown to be identical to thc equa-
tion de6ning the CP approximation. After an examina-
tion of the appropriate perturbation limits correspond-
ing to the dilute RQoy, '5 virtual crystal, " and atomic
limits, "the CP approximation is shown to be the best
of all single-site descriptions (Sec. IV 8).It interpolates
properly between these various limits, leading to reason-
able results for all alloy concentrations as well as a
wide range of strengths of the random scattering po-
tential. In addition, it will be shown to be better than
the perturbation theoretic results in the limiting regimes.

"L M. Liftshiz, Usp. Fiz. Nauk 85, 617 (1964} )English
transl. :Soviet Phys. —Usp. 7, 549 (1965}g.

"G.F. Koster and J. C. Sister, Phys. Rev. 96, 1208 (1954)."L.Nordheim, Ann. Physik 9, 60'I (1951).



The considerations are made even more speci6c in
Sec. IV C, where a particular form of the single-band
density of states is introduced, which is suKciently
simple as to permit detailed numerical calculations of
some single-particle quantities that are discussed in the
last two subsections. In addition, some further CP re-
sults, not previously given, are introduced as they are
needed for the discussion. Section IV D deals vrith the
purely energy-dependent properties of the alloy, as
described in the CP approximation, namely the self-
energy, the density of states, and the local-state den-
sities associated with each kind of site. Section IV E
discusses the k dependent properties. The averaged
Green's function in the Bloch representation is used
to obtain speci6c results for the spectral density as vrell.

as the electron-distribution function in k space. The
discussion of Secs. IV D and IV E is illuminated by
fairly elaborate graphical displays which exhibit the
variation of the quantities of physical interest for a
vride range of parameters.

II. MULTIPLE-SCATTERING THEORY AND
SINGLE-SITE APPROXIMATIONS

This section develops the formalism underlying the
single-site approximation and derives results that are
valid for any single-particle Hamiltonian which can be
decomposed into a sum of contributions associated vrith
each site.

%e begin vrith the crystallographic description of the
simple binary alloy to be considered: A strictly periodic
lattice containing S equivalent sites is occupied by
atoms of two kinds, A and 8, in a random way. The
respective concentrations per unit ceQ are x and y= 1—x, both varying from 0 to 1. These conditions de6ne
a vrhole ensemble of possible arrays of atoms. %e are
interested only in the physical characteristics of the
alloy averaged over this ensemble. The average of a
quantity A will be denoted (A}.

The electrons are described in the single-particle ap-
proximation. The one-election Hamlltonlan correspond-
ing to a given con6guration is denoted by B.This paper
concerns only the single-particle properties, which are
derived from the one particle Green's function

G(»)=(»—H) ' (20
In particular, (G(»)) determines all macroscopic quanti-
ties of interest. In contrast to G, the averaged (G) has
the full symmetry of the empty lattice. The efI'ective
Hamiltonian characterizing the average crystal is de-
6ned by the equation

If there is available some approximation E=Z(») to
the exact e6ective Hamiltonian vrhich may be regarded
as the starting approximation and vrhich has the same
analytic properties as II,« the following identity may
serve as an equation for (G):

Hei eq

(G)=R+R(H, ff—E)(G).

E.= (» I )-—'

(2.4)

(2 5)

is the unperturbed Green's function.
In multiple-scattering theory an equivalent equation

involving the T matrix replaces (2.4). The T matrix
may be defined by the equation

(2 6)

On averaging, the relation

(G)=R+R(T)E (2 7)

between (G) and (T) is obtained. From (2.4) and (2.7),
vre obtain

H =Z+(T)(1+X(T))—' (2 8)

This equation can be used in two ways. Either the
(TLIf.f) corresponding to a given E can be inserted in
Eq. (2.8), or the equation

(2.9)

may be used to determine E. Equation (2.8) then
guarantees that the solution of (2.9) so obtained is just
E=B,«. These two possibilities de6ne tvro di6erent
classes of approximate calculations of H,«. The former,
which may be termed non-self-consistent, is usually
applicable only if there is available some small param-
eter like the concentration in a dilute alloy. As we shall
see in Sec. IV B, this approach may lead to diKculties
concerned with properly keeping terms to a given order
in the small parameter used. By contrast, the latter self-
consistent point of vievr resolves these A@culties and
furthermore gives rise to an interpolation scheme which
is valid over wide ranges of the parameters, like the con-
centration, characterizing the system. This approach,
hovrever, is less simple from the mathematice, l point of
view.

The multiple-scattering method is applicable if vre
can decompose the random-perturbing potential II—E
into a sum of contributions of single scatterers associ-
ated with each site a» i.e.,

(G(»))= (»—&.«) '. (2.2) (2.10)

IIsH(» )=II sff(»} ~ (2.3)

H,«also has the full crystal symmetry, but is non-
Hermitian and energy-dependent. It may be seen
directly that H,« is analytic in both complex half-planes
and that

This condition is sufliciently general to be applicable
to several cases of interest, such as the mufFin-tin ap-
proximation and the single-band model to be described
in the next section. V„ is not necessarily related directly
to an atomic potential.
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Combination of (2.6) and the identity

6=E+R(H—E)G (2.11)

sents our 6nal result. On the other hand, the self-con-
sistency requirement (2.9) simpli6es to

(T.fÃj&=0 (2.23)

T„=(1—V R) 'V„,

the T matrix associated with site I, we obtain

(2.14)

Q„=T„(1+EQ~„e ). (2.15)

Equation (2.15) expresses the strength of a scatterer
in the alloy as a product of the strength of an isolated
scatterer and a factor describing the transformation of
an unpel turbed-wave incident on site s into an effective
wave because of the multiple scattering in the alloy.
The preceding equations represent a closed form of
multiple-scattering theory. Inserting (2.15) into (2.13)
and iterating we obtain the standard series'

T=g„T +Q T„RP„g„T„+ . (2.16)

Relations (2.11)-(2.15) are exact. They lead to the
exact averaged equations

(T&=Z- (Q-&, (2.1"/)

&Q.)=(T.(1+~2.'e.)&.

Equation (2.18) can be rewritten as

(Q-)=&T-&(1+~K~-&e-&)
+&T.~ &- -(Q-—&Q-))& (2 19)

The 6rst term in this equation describes the eGect of
the averaged eBective wave seen by the eth atom, and
the second term corresponds to Quctuations of the
eGective wave, Our basic approximation is to neglect
this dificult term. %e then obtain a closed set of
equations,

&e.)=&T.&(1+~v -&e-&),

for the averaged quantities. Using the fact that P ~ Q
= T Q„, we obtain—

(Q-&=(1+&T &~) '&T-&(1+&&T&). (2 21)

Substitution into (2.8) then yields the effective Hamil-
tonian

H, fg ——K++ (T )(1+2(T )) '. (2.22)

The quantity (T )(1+2(T )) ' is simply the effective
scattering potential corresponding to the average scat-
tering arising from the eth scatterer. Equation (2.22)
replaces (2.8) in the single-site approximation and, the
discussion following (2.8) applies here as well without
alterations. If some reasonable E is known, the single-
scatterer T matrices can be obtained and (2.22) repre-

T=(H—K)(1+ET). (2.12)

Inserting (2.10) yields

T=Q„V„(1+ET)=Q„e—, (2.13)

which expresses the T matrix as a sum of contributions
arising from the individual scatterers. Introducing

for all n. Because of the periodicity of the averaged
quantities, it is suQicient to consider only one, say the
zeroth site. It should be mentioned that Eq. (2.23) ls
precisely identical with the conditions imposed by
Soven' and Anderson and McMillan~ to determine B,gf.

The meaning of the single-site approximation may be
understood by comparing Eqs. (2.15) and (2.20) which
are seen to have identical structure. The decoupling
of the two factors in Eq. (2.20) resulting from the neglect
of the last term in (2.19) corresponds to the replace-
ment of the factor describing the con6guration depen-
dent eGeetive wave by a corresponding factor describing
the surrounding alloy in an averaged way. The validity
of the assumption that

&T.~ r...(e.-&e.&))=0

depends on the neglect of all statistical correlations be-
tween e and aQ other sites ns. These correlations are of
two kinds resulting respectively from short range order
and multiple scattering. The 6rst of these has been
eliminated by hypothesis. The other correlations, on the
other hand, are always present. Their neglect is the
fundamental assumption of a "molecular 6eld" kind of
theory involving only a single site surrounded by an
averaged medium. In this connection it is to be em-
phasized that the character of the present approxima-
tion closely resembles that of the molecular-6eld theory
of magnetism which also is valid for a wide range of
parameters charaeterinng that particular problem. Of
course the success of approximation (2.24) depends in
practice on the choice of E. Of all choices the self-con-
sistent solution E=B,g is to be preferred for several
reasons which will be examined in detail later.

IIL SINGLE-SAND MODEL: GENERAL
PROPERTIES

This section discusses a single-band model which is
closely related to the tight-binding approximation. Its
main advantage is that it is quite tractable in the CP
approximation. All matters relating to this approxima-
tion will be discussed in Sec. IV. The present section
will develop the general properties of the model, which
were already outlined in the Introduction.

A. Characterization of the Model

Although the model in question. may be introduced
purely formally, we prefer to motivate its de6nition
physically. The ensuing discussion, however, will be
less concerned with the physical realizability of the
systems resulting when certain parameters are varied
over wide ranges than with the general resulting be-
havior of various properties.



THEORY OF SIMPLE BINARY ALLOYS

Consider an alloy described in the tight-binding ap-
proximation. A single atomic orbital

~ e) is associated
with each site e. A single band would result in the case
of a pure crystal, Accordingly, the term "single-band
model" is used despite the fact that two sub-bands
may occur in the alloy under certain conditions.

The one-electron Hamiltonian is

(3 1)

(3.2)

The second line defines the decomposition of H into a
diagonal part D and an oQ-diagonal part TV with re-
spect to the Kannier representation. The matrix ele-
ments of H depend in general on the con6guration of
A and 8 atoms in the crystal.

The model is defined by the following assumptions,
which are physically realizable when the orbitals are
suSciently localized and the atomic potentials are not
too different.

(1) In the diagonal elements e„, the crystal field terms
are assumed independent of the composition and the
atomic condguration. Accordingly, these elements may
be regarded as atomic levels which assume one of two
possible values e" and e~ depending on whether an atom
A or 8 occupies e.

(2) The hopping integrals t„„are assumed to be com-
pletely independent of alloy composition. The operator
F may therefore be interpreted as the Hamiltonian of a
pure crystal for which e"= en=0. Similarly e"+W and
es+W, respectively, are the Hamiltonians for the pure
A and 8 crystals.

In short, the elements of D are diagonal but random,
whereas those of S are oG-diagonal but translationally
invariant.

The operator 8' is diagonal in the 31och representa-
tion:

(R(k E)=—w 'Imp(k, E+i0),
because the integral representation,

(3.10)

00

8(k,s) = e(k,E),„s—E
is valid.

The (average) density of states per atom,

p(E) =E' Tr(5(E——H) ),

(3.11)

(3.12)

may be expressed in terms of the Green's function as

p(E) = —(eÃ) ' Im Tr(G(E+i0)). (3.13)

The following explicit forms of (3.12), expressed re-
spectively in the Kannier and Bloch representations, are
also useful:

For a given operator 8' the ensemble of Hamiltonians
is completely specified in terms of two dimensionless
parameters x and 8, respectively characterizing the
concentration and the separation between atomic levels.
The energy m simply scales the entire Hamiltonian.
Kith some exceptions which will be explicitly indicated,
we use energy units for which m = j..

Some convenient notation and formal relations will
now be introduced. ' Since B,«(s) has the full crystal
symmetry', both it and (G(s))= (s—H, tr) ' are diagonal
in the k representation:

(k~ B «(s)
~

k')= Ps(k)+Z(k, s))Spy. . (3.8)

Equation (3.7) deanes the quantity Z(k,s) which con-
tains full information about the scattering corrections
to the effective Hamiltonian. It is the self-energy with
respect to the perfect crystal having Hamiltonian 5'.
We also de6ne

g(k, s)—=«k
~
G(s)

~
k))= Ls—$(k) —Z(k,s)] ', (3.9)

which is fully specified. by the spectral density

where
)k)=E '"p„eo'a"(I& (3.4)

(k
~
W

~

4')= 8pp Q„ tp„e'"'"—= 8pp. ws(k), (3.3) p(E) = —w ' Im(~=01(G(E+p0)&In=0& (3.14)

=E 'gp e(k,E). (3.15)

maxs(k) —mins(k) =2. (3.5)

It is also convenient to use the same energy units to
express e~ and c~, and to de6ne the energy zero such
that

e = ~%8, P= —zK5. (3.6)

Equation (3.6) de6nes the dimensionless parameter

relates the Bloch and Kannier bases and m is one-half
the bandwidth. The quantity s(k), which describes the
k dependence of the band energy, is dimensionless. In
simple cases, such as nearest neighbor tight-binding
bands in cubic lattices, —1(s(k)(+1. All that can
be said for general bands, however, is that maxs(k) &0
&mins(k) and 00

F()= .(E).
— 8—E

(3.18)

As already mentioned, for given 8', the alloy eftec-
tive Hamiltonian is speci6ed by x and b. Here x ranges
between 0 and 1, whereas 8 can assume any (positive
or negative) value. Any possible situation corresponds

Finally, we introduce the important auxiliary quantity"

F(s)=Itr ' Tr(G(z)) =—(0~ (G(s))
~ 0&, (3.16)

which, in view of (3.14), has the property

p(E) = —s ' ImF(E+i0), (3.17}
so that

b=(e"—e )jw (3.7)
'7 Our definitions are similar to those of Ref. 3.
'P From now on, ) I=0) will be denoted Iol.
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GENERAL SYNNETRY

to a point in Fig. 1. The number of diferent cases that
needs to be considered can be reduced by taking account
of symmetry properties which g{k,s) satisfies. For pur-

poses of the following discussion it is convenient to in-
dicate the dependence on x and. 8 explicitly.

For any pure-crystal dispersion law s(k)

g(k,.l*,B) = g(k,.l1—*, —B), (3.19)

p(Zl ~,B)=p(Zl1 *, —B), — (3.20)

and similarly for Z(k,s). The point (x,8)=(—„0) in Fig.
1 is therefore a center of symmetry about which points
in opposite quadrants are equivalent. Points in the
neighboring quadrants can be related to each other
when the pure-crystal band is symmetrical (like the
nearest-neighbor tight-binding band in the bcc lattice).
The additional symmetry obeyed by the density of
states is"

p(Elg, b)=p( —Zl1 —x, 8)=p(—El', 8). (3.21)—
The case of symmetrical bands is discussed more fully

in Appendix A.
As a result of these symmetry arguments, only the

quadrant 0&x&~, h&0 needs to be considered. The
following physical limits can be identi6ed:

(1) The line @=0 corresponds to the pure B crystal
and its neighborhood. to the dilute aHoy case with A

atoms playing the role of impurities.

(2) The line B=O corresponds to the pure crystal
described by the Hamiltonian 8', Its vicinity is the
virtual-crystal region, characterized by a single band
which deviates but little from that of the pure
crystal.

'9 Note that for the symmetrical band the density of states is an
even function of E, which is consistent with (3.21) when 8 =0.This
symmetry of p is preserved for BWO if x=)l, again confirming
(321).

-2.0

Fro. 1. Symmetries and limiting cases for the dfective Hamil-
tonian as the parameters 8 and x are varied. Arrows connect
points equivalent under general and special symmetries. The line
along which the band splits has been drawn for illustration only.
For a specific case, see Fig. 4.

Practical methods for calculating the exact (G), even
for the simple Hamiltonian under consideration here,
are not readily available. It is, however, possible to
study the exact asymptotic behavior of (G) as s-+~,
and hence to obtain information about moments and
sum rules of various quantities. The results and con-
sequences of this kind. of analysis will be explored in
this and the foHowing subsection, which are devoted
respectively to general. properties and those dealing with
the split-band limit.

According to the localization theorem, the spectrum
of the model Hamiltonian is bounded. Therefore (G)
may be expanded in the form

for suQiciently large s. A similar expansion of Kqs.
(3.11) and (3.18) yields

g(ks) x r ,f=ds A'"S(k',k''), (8.28)

&(~)=E.-"~ 'j &ss'p(s). (3.24)

"A. B. Harris and R. V. Lange LPhys. Rev. 157, 295 (196'F)j
were the 6rst to make a distinction between these limits, for the
Hubbard Hamiltonian for interacting electrons in narrow bands.

"We have not found an adequate single reference for this
well-known theorem. Useful discussions occur in Refs. 12 and 14,
as well as on p. 'l128 of A. Messiah, QNontr(ra 3fschoaks {lohn
Wiley R Sons, Inc. , New York, 1962).

(3) The case 8= (e~—ei))/tt) —+co may be obtained in
two physicaHy different ways. In the erst, so-called
atomic limit, the bandwidth m ~ 0 and e"—P remains
6nite. On the other hand, m may be kept axed and the
level separation allowed to increase without limit. The
latter case wiH be called the split-band limit. The atomic
limit is simple because the spectrum consists of two
atomic levels e~ and P. Sy contrast the split-band limit
is never simple, for no matter how far the sub-bands
are separated, there are always clusters of like atoms
which produce molecular or bandlike splittings in the
energy spectrum'4 which are of the order of m20

The virtual crystal and split-band regimes may be
dered more precisely in terms of 8 with the help of a
theorem concerning the localization of the spectrum. 2'

For the present Hamiltonian H, it states the following:

(1) For given W and 8 and for any x the entire spec-
trum of H is contained in the union of the regions
(e"+mins(k), e"+maxs) and (es+mins, c +maxs).
(2) If the two regions do not intersect, there are just
xN levels in the former and (1—x)E in the latter.

Since maxs —mins= 2, the two intervals do not over-

lap «r IBI» A««dingly IBI«2 and IBI»2 corre-
spond respectively to the virtual crystal and split-band
limits.

S. Moments
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On the other hand, expansions of {)(k,s) and F(s) can be
obtained by inserting (3.22) into their definitions (3.9)
and (3.16). A comparison of the two expansions yields

M, (k) =fde—e'a(k, e) (k ~
(e=') ~k), (3.25)

(G) (s H ff) ', for H, «and substituting (3.22) yields

. = L1—(1+(H)s-'+(H')s-'+ )
—'j (3.31)

so that, in view of (3.29),

H,&{=e+W+Q„={ h~". (3.32)

p„=— dE E"p E =X i Tl H" . (3.26)

The operators A„are determined most simply by sub-
stituting (3.22) and (3.32) into (2.2) and comparing
equal powers of s '. The final result is

The preceding equations serve to dehne the moments
M„and p„of the spectral density and the density of
states respectively. As a special case of (3.26), we de6ne
the moments p„(') of the pure crystal band (8=0) as

H,,{{(s)=e+W+xyl)'Ls '—es '+(e'+@2('))s '
+(pe(()) —ea —e~e(()))g 4j+. . . (3 33)

Surprisingly, the operators A„ turn out to be numbers
at least to order s e. Using (3.8), we find

p (o)= djv E p(o) E —g—& Trg'u (3.27)
Z(k, s) = e+my()'/s —'—es '+(e'+pe(")s—'

+(pe&"—e' —ep2&'&)s ']+ . (3.34)

e=xe +ye

and other previously defined quantities:

(3.28)

(H') = 1,
(H')= e+W,
(H') = -'5'+ 2eW+ W'

(II3) 1e82+ (1{)2+e2) W+ 3eW2+ W3

(H4) 1 $4+gybe' +e{)'eW+ (3ye+ 3ee)W2

+4eW'+W',
(II')=—,'e eI)e+xye{)'pe( )+xyb'pe( &

+$(3/16) {)'+-'e'{)e+ 2syP){(e(')jW

+pe'+ (9/4) eP)P"+ (()e+6e')W'+5eW4+ W'
po= 1,
py= t!,

X{)2+p (0)

p()= ee~ +3eljs +IJe

p =—'P+ (g'+2e') p (')y4epe("+pe("

pe —
) e e()4+ (5/2) e{)2p {0 +k(5/4){)2+5e2]y (0)

+5e~ (0)+p (0)

(3.30)

(H") is seen to be a, polynomial of degree p in W. The
moments 3II~(k) of the spectral density have the same
structure as the expressions in Eq. (3.29). They are
obtained from (3.29) by replacing W)' by s)'(k).

The asymptotic behavior of H,«can be obtained
from that of (G) given in (3.22). Solving Eq. (2.2),

where p(') is the appropriate density of states. Since 8'
has no diagonal elements, p~(') =0 in general. Further-
more, @2~i(')=0 for a symmetrical band since, in that
case, p"'(E) =p"'(—E)

The average (EP) for small p and the resulting
moments can be evaluated in straightforward fashion,
as indicated in Appendix B. The results are given in
Eqs. (3.29) and (3.30) in terms of the mean-atomic
energy,

(3.36)

dE E ImZ(k, E+i0)=sxyeP (3.37)

As will be seen in the next subsection, these relations
provide useful physical insight concerning the lifetime
of states

~
k) in the alloy.

C. Split-Band Limit

As an application of the results obtained so far,
several properties of the system in the split-band limit
will be derived. The localization theorem together with
Eq. (3.5) imply that in this case the entire spectrum
is con6ned to two well-separated regions, one centered
around e~ and the other around e~. The two portions
of the spectrum will be termed "sub-bands" even though
they may not consist of a simple continuum of levels.
The sub-bands centered around e" and P will be de-
noted, respectively, by {)( and P. For {)—+~ sub-band
n is associated entirely with A atoms and similarly for
(9 with B.This correspondence is only approximate for
8 large but finite.

Our first task will be to obtain some information
concerning the moments

p aP gE E,~a Pp~P E (3.38)

It is seen that Z(k,s) is independent of k to the same
order. Because of the analyticity of H,« in both half
planes, Eq. (2.3), and the asymptotic form (3.34), the
following dispersion relation for Z(k, s) can be derived:

dE
Z(k, s) = e+s=' ImZ(k, E+i0) . (3.35)„E—s

Expanding the right-hand side and comparing with
(3.34) yields a family of sum rules of which the lowest
are
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of the sub-band densities of states p" and pt' which
satisfy

1(~)= I 4)+c'(E) (3 39)

The origins of energy here are shifted to the positions
that are natural in the limit of vrell separated sub-bands.

The moments p„are easily expressed in terms of the
p~~, )M~s. Using Eqs. (3.2()) and (3.39), we write

~A ~A @pa g

impurity level. " The third line of (3.43), involving

p2 &, is connected vrith the e6ective widths of the sub-
bands. The widths are seen to approach 6nite values as

More important for apphcations to actual solids is
the variation of the width as a function of concentration
x for 6xed but large 8. Consider the n band and assume
its variation vrith x can be described by a simple alone
transformation:

)
.(Z—."

~
x) = Xu

.&(E—.")/X,
~

x= 1). (3.45)

+f do(E—2+8)"p~(E)

=Z)-o"l L(o")') ) +(o')'~' )).
t

(3.40)
X),——Xo=gx. (3.46)

We assume () so large that the shifts (3.44) may be
neglected. It is readily seen from (3.38) that pp and

p2 are obtained correctly only if

This inhnite set of equations can be solved in practice
only by truncation. However, if the lowest e equations
are considered by themselves, there are twice as many
p, ~ » as p,„.This difhculty is not present in the split-
band limit, since for large 8 only the highest povrers of

8 are important. The simplest example of this
truncation procedure corresponds to n=2. The Grst
two equations of (3.40) are

go=)((o +goo=1,

p).=o po +o @os+@) +pp=o.

(3.41a)

(3.41b}

Since aQ moments p & are of order unity, the terms

pr and pP in (3.41b) are one order higher in ()
—' than

the other terms and may be neglected. The resulting
system of two equations novr involves only two un-
knowns and may be solved to yield

, ~o =x+0(& '), lo'=y+0(t '). (3.42)

These results could have been predicted from the locali-
zation theorem since the moments po and p,ot' simply
correspond to the vreights of the sub-bands.

By systematically neglecting terms of order 8 ' and

higher, the six equations expressing po ~ p~ in terms of

po &. ~ p,q» mav be solved in analogous fashion vrith

the result

po =x+0(8 '), )((o~=y+0(h '),
xyp, (o)/I)+0(k-o), p,s xyp, (o)/iI+0(I)-o)

) o =x') o")+0(&'), uo'=y') o&"+0(b ') (3 43)

The 6rst line of (3.43) again yields the result expected
from the localization theorem. The second line involving

p,g» describes the mean shift from the atomic levels.
This shift,

w /uo =y) o")/&, uP/@os= —xpo&o)/8, (3.44)

increases the gap between n and p and is consistent with
the repulsion of levels familiar from perturbation theory.
For x-+ 0, pq~/go~ approaches po(o)/b, which is easily
identi6ed vrith the result for a single deep Roster-Slater

Even when the simple assumption (3.45) is not precisely
valid one might still expect the effective height and
width of the n sub-band to vary roughly as gx. The
results for the P sub-band are analogous.

The sub-band moments of the spectral density,

M ~(k) f do=—(o c" ~)'6—."~(k &) (3.47)

can be treated in the same manner as those of the
density of states. The results for the e sub-band are

Mo (k) =x+2xys(k)/&) —3xy(x—y) $s'(k) —po&o))

/2+0(B '),
Mp(k) =x's(k)+ L3x'y(s'(k) —po&o) )+xylo& ))

/I)+0(()-'), (3.48)

Mol(k) =x'ypo(o)+x's'(k)+0(8 ').
The corresponding results for the P sub-bands can be
obtained by the transformations 8~ —8 and a~ y.
The relationships p N»=E 'PoM ~»(k) are easily
verihed.

Ke first discuss the spectral density function in the
limiting case when 5 is so large that the dependence of
(3.48) on it may be neglected. The 6rst line states that
an electron in state k spends a fraction x of its time on A

sites. The second line indicates that the center of gravity
of the spectral function 0', (k,E) lies at

8= o"+My (k)/Mo"(k) = o "+xs(k) . (3.49}

The effective linewidth with respect to (3.49) is given

approximately by

(Mo (k)/Mo (k)—LMg"(k)/Mo (k))'}'"
= (xyp &'))'" (3 50)

The linevridth is seen to be independent of the state
~k} and, generally speaking, has the same magnitude
as the shift xs(k). However, for x-+ 1, xs(k) —+ s(k) but
(xyMo"))'~'~ 0. In this case the sharp Bloch eigen-

states of the A crystal are obtained. On the other hand,
for x-+ 0 both xs(k) and (xyMo&»))(o tend to zero and
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a sharp isolated impurity line centered at e" results.
Again, the results for the p sub-band are symmetrical.

The preceding results concerning the 3f„ihave been
developed primarily in order to show that Z(k, s) has a
pole in the split-band limit. This is accomplished most
directly by finding the zeroes of g(k,s). We begin by
expressing 8(k,s) in terms of the M~~ ~. Outside the
sub-bands g(k, s) is analytic. Equation (3.11) can then
be written

dE
g(k, s) = e.(k,E)

— (s—~")—(E—~")

become

dE r~(k, E+iO)+ dE ImZ(k, E+io)
(a) (P)

p, (0) (3 56)

dE ImZ(k, E+i0)+P dE ImZ(k, E+i0)
(e) (P) = s'epq(oi, (3.52)

where the integration over the sub-bands is indicated
symbolically by (a) and (p). The contribution of the
individual sub-bands to (3.56),

dE
es(k,E)

-- (»—")—(E—")
=Z.=o"E~. (k)/(s —~")~'

(3.58)

+M ~(k)/(s —P) i'+'j. (3.51)

The fact that 8= g~+ Qs has been used. A few terms
of the series (3.51) suffice for energies far removed from
both sub-bands. However, when b is large this applies
even to the region between the sub-bands on the real axis.
In this case, we have already seen in the results of
Eq. (3.48) that the moments appearing in (3.51) are
readily calculable. Accordingly, g(k,s) can be obtained
to order 8 ' under these circumstances.

The zeroes of g(k, s) for finite s coincide with poles of
Z(k, s) according to (3.9). Because there are just two
sub-bands, there is at most one such point on the real
axis located between the sub-bands. It is easily proved

is obtained by solving the simultaneous equations. The
results are seen to be independent of 5 for large 5,
which corresponds to the intuitive feeling that the sub-
bands should become independent in this limit. Equa-
tion (3.58) show that the damping in the P sub-band
and x decrease together, and similarly for the 0. sub-
band. Although this behavior is expected to hold as
x —+ 0, the derivation fails when x is too small. In this
case —e-+ e~ and g(k, —e) can no longer be described
using a few terms of (3.51).

IV. SINGLE-BAND MODEL: SINGLE-SITE
APPROXIMATIONS

Furthermore,

In the vicinity of —t.,

that provided 8&)1,xb»1, y5&)1, the zero of g(k, s) exists In this section the formalism of Sec. II is apphed to
and is located at —e, i.e., the single-band model introduced in Sec. III. The 6rst

two subsections deal with general equations for the
8(k —e) =0+0(b—'). (3 52) self-energy and compare several single-site approxima-

tions (SSA). Then a specific model density of states is
introduced which is easily handled in computations.

(~/~s)b(k &) (xy~ ) [~+P2 '/xys'+0(o ')j The last two subsections present numerical examples
=(xyP —p, (»)—i. (3.53) of some single-particle properties in the CP approxima-

tion for a wide range of concentrations and scattering
potential strengths.

b(k s) (xyy p, (o))-i(s+,) (3.54)
A. Basic Relations

Comparison with Eq. (3.9) shows that

Z(k s) =(xyP —p~('i)(s+e) '+regular part, (3.55)

and that, accordingly, Z(k, s) has a pole at —e for any k.
Such a pole will contribute signi6cantly to the sum

rules (3.36) and (3.32). However, its entire contribu-
tion falls into the region of zero spectral density, and
therefore is not by itself physically signi6cant. Instead,
we wish to know the contribution of the individual
sub-bands to the sum rules to order 8 '. After subtrac-
tion of the contribution of the pole, the sum rules

In this subsection the general derivation of the ef-
fective-wave approximation given in Sec. II will be
specialized to the single-band Hamiltonian discussed
in Sec. III. At the outset it is necessary to make a
reasonable and speci6c choice of the unperturbed
Hamiltonian E which has so far not been explicitly
de6ned. This choice must be both physically meaningful
and tractable enough to be applicable to numerical
calculations.

%e define

K=W+P ~n)g(z)(n( =W+n(s) I, (4.1)
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where u(s) and, hence, K is analytic everywhere except
on the real axis and satis6es (2.3). It is seen from Eq.
(4.1) that the term involving u(s) is independent of k
in Hloch representation, so that the entire k dependence
is contained in W, or equivalently the functions(k). This
class of operators E is suKciently broad to include the
important dilute alloy, virtual crystal, and atomic limits.
In addition, it includes the coherent potential, i.e.,
self-consistent single-site, eRective Hamiltonian, which
is of primary concern here.

In the ensuing discussion quantities related to the
pure crystal having the Hamiltonian 5" for which 8=0
wiH appear frequently. Although some of them have
appeared previously ['cf. (3.27)], we list them here for
convenience:

&o le(s) I o)=F( ) {s—u(s))=F(s) . (4.4)

Matrix elements of E and related quantities are thus
simply expressed in terms of the unperturbed quantities
(4.2).

For EE and E given by (3.1) and (4.1), respectively,

a Z=g-. ln)[.„.{.)]&.-l,
so tllat Eq. {2.10) Is sRtlsflc(i by thc choice

v„= In)[e.—u(z)]&nl = In)I).{nl .

(4.5)

(4.6)

According to Eq. (2.14), and with the help of (4.4),

2' (s) = In)s [1—s F(s)]-'{nl. (4.7)

This expression is seen to be just the $ matrix corre-
sponding to a Slater-Koster impurity embedded at site
e of a medium described by the Hamiltonian E.

The configurational average of (4.7) is

x[a~—u] y[P—u]
+

1—[E' —u] P 1—PP u]P-

G(')(s) = (s—W)—' g(')(k s) = [s—s(k)] '

e(0)(k,E)= —Ir-I Imp('I(k, E+io)= ()[E—s(k)], (4.2)

p(')(E)=N-'P 8('){kE)=E 'P f)[E s{k)]—

&l "&(«) fdE=(s 8) 'p&'&(Z)—-
=X-' P [s-s(k)]-'.

For the E de6ned by (4.1), the unperturbed Green's
function (2.5),

Z(s) = (s—Z)-I
= [s—u(s) —W] '= G(')[s—u(s)], (4.3)

can be expressed simply in terms of G&'). The function
corresponding to (3.16) is then

The approximate effective Hamiltonian (2.22) is then

a.«=W+g. In)[u+.(1+.F) ]-{nl . (4.9)

Inserting (4.9) into (3.8) we obtain

Z(k, s) —=Z(s) =u(s)+.(s)[1+.(s)F(s)]-1, (4.1O)

where Z is now k independent, a result which follows
from (4.1) and the single-site approximation. The lack
of k dependence may also be ascribed to this approxi-
mation.

The function F(s) defined in Eq. (3.16) may now be
simply expressed in terms of F( ' as de6ned in Eq. (4.2)
by the same procedure as that used to arrive at Kq.
(4.4),

F(s) =F(')[s—Z(s)]. (4.11)

The preceding expression leads immediately to the
density of states p(E) as de6ned by Eq. (3.17).

The SSA provides a means of studying the contribu-
tion of sites A and 8 to the total density of states. For
the present simple model it is possible to give a precise,
unambiguous dehnition of the average component den-
sity of states:

p~ a(E) = —Ir-I Im(0
I ((E+I'0—H" a)-I)

I 0), (4.12)

where H~ ~ is the Hamiltonian corresponding to a given
alloy coniguration with atoms A, 8, respectively,
located at the site us=0. These component densities are
to be distinguished from the previously introduced
p» which referred to the density of states of the sub-
bands n, p 111 thc 11nlltlIlg spht-band 1'cgllllc. When
h~~, p» approaches xp",yp~.

Since the entire ensemble of Hamiltonians II consists
of two sub-ensembles composed of B" and /I~, with
weights x and y,

p(E) =*p"{E)+yp'{E), (4 13)

as may be seen explicitly by comparing (3.17) and (4.12).
This condition can be given a very simple physical in-
terpretation. By integrating (4.13) over an arbitrary
occupied portion of the band or sub-bands, the resulting
condition c=xc~+ycs states that the total charge den-

sity per atom is the sum of the densities due to A and
8 constituents properly weighted.

The eRective wave approximation permits the ex-
plicit calculation of p" ~ because the ensemble averaging
in this case results in the replacement of c„by Z{s)
everywhere except at the zeroth site where co=a" ~.
This is consistent with the single-site character of the
approximation, i.e., that A, 8 are to be regarded as
embedded in an eRective crystal with Hamiltonian II,ff.
Accordingly,

&ol((s—fI"') ') Io)=&oils —ff «(s)
—

I o)I:"'—&(s)](ol 1 'I o) (4 14)
and, therefore,

= ln)&xr"+y~aII&nI =- ln)r&nl. (4.8) p" a(E)= —Ir 'Im&F[1—(c"a—Z)F] I).=g+;0. (41S)
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/. Dilute All'oy, g« l
The unperturbed Hamiltonian E corresponds to the

pure B crystal, i.e., u(s) = eB= —st(). Only linear terms
in x are retained in the expression (4.10). We obtain

Z(s) = eB+xr"(s) (4.17)

0+x(12P(0)(s 0B)[1 hP(0)(s eB)]—1 (4 l8)

where 0= st (x—y) 5 according to (3.28). Equation (4.17)
describes the effect on the self-energy Z(s) of xllt' inde-
pendent A impurities in the host 8 crystal. "

Z. Virtual Crystal, 8«1
If results correct to 6rst order in 8 are sufFicient, K

may be taken to be TV. In this case

Z(s)= 0, (4.19)

which is simply the rigid-band approximation" corre-
sponding to an undistorted shift of the band upon alloy-
ing. To order P, u(s) should be taken to be 0 instead of
zero. In this case we obtain

Z(s) = e+xyh'F(0)(s 0), —(4.20)

a result familiar from the weak. -coupling theory of
Edwards. ' The dependence on ryan' is to be particularly
noted as a characteristic of such theories. "

3. Split Bands, i)))1

We recall that 8 may be made large either by de-
creasing the bandwidth or increasing the separation of
the atomic levels. A suitable E in the former case may
by obtained, following Hubbard, ' by setting

u(s) = 0+xyP(s+0) —'.
~2 S. F. Edwards, Proc. Roy. Soc. (London) A267, 518 (1962).
23N. F. Mott and H. Jones, Theory of the Properties of Metals

ant Alloys (Dover Pnblications, Inc. , New York, 1958),

As a result, Kq. (4.13) is seen to become the following
condition for Z(s):

x[1—(0~—Z)p]—'+y[1—(0B—Z)p] '= 1, (4.16)

where F itself depends on Z(s) because of Eq. (4.11).

B. Limiting Cases and CP Approximation

In this subsection we shall exhibit how nearly all
common descriptions of alloys in various limiting cases,
with the notable exception of effects connected with
clustering, follow from the results in the SSA. In ad-
dition, we shall show that the CP approximation is
simply the single-site approximation treated self-con-
sistently. By explicit comparison of various aspects it
will be seen that the CP approximation is the most
satisfactory presently available for describing alloys for
a wide range of parameters.

This choice is exact in the limit 8 —+ when 8' ~ 0
and hence G=(s—D) '. Using the scaling argument
following Kq. (3.7), one might expect the preceding
u(s) to be valid in the split-band limit as well. However,
it should be remembered from the discussion of Sec.
III A that Eq. (4.21) neglects terms of order w which

are unity in the split-band case and do not vanish as
8 ~o) . Inserting (4.21) into (4.10) yields an expression
for Z(s) which may be shown to be identical to that
called the "scattering correction" by Hubbard. " Ac-

cordingly, Hubbard's truncation of his coupled Green's-
function equations is equivalent to the SSA. Instead of
discussing these results, however, we prefer, as Hubbard
did, to deal more extensively with their self-consistent
counterparts.

r(s) =0. (4.22)

Equation (4.22) may then be cast into the form

F«) [s—Z(s)]
Z(s) =.+ xy82 (4.23)

1y [a(s)+.]F(»[s—Z(s)]

which is identical to that given by Onodera and Toyo-
zawa. 0 Alternatively, using (4.11), it can be cast into
the form previously obtained by Soven, '

Z(s) = 0—[0"—Z(s)]p(s) [0 —Z(s)] (4 24)

Consequently, Z(s) is to be identified with Soven's
Hamiltonian in the CP approximation. The equivalence
of (4.24) to the self-consistent version of Hubbard's
theory" is discussed in Appendix C. Equation. (4.24),
or its more convenient equivalent, (4.23), determines
the CP Hamiltonian and is of central importance in the
discussion to follow.

The rest of the subsection will be devoted to a com-
parison of the CP approximation with other single-site
approximations. This discussion is intended to show
that the CP approximation is preferable in many re-
spects. For example, the simple physical condition of
charge conservation (4.13) assumes the form (4.16) in
the SSA. This is directly seen to be Eq. (4.24) slightly
rearranged. The CP Hamiltonian is, therefore, the only
one among all SSA Hamiltonians obeying the condition
(4.13).

4. Coherent Potential 2pproxirnation:
Self Consisten-t Solution

So far we have used the first of the two approaches
discussed after Eq. (2.8) to determine H, tt. Now we

turn to the second approach of determining K= II,ff on
the basis of the self-consistency condition (2.9), which,
in the effective wave approximation, reduces to (2.23),
T„[E]=0.For the present model T„ is given by (4.8)
and therefore the self-consistency condition determining

u(s) =Z(s), the only unknown part of K, is, according
to (4.10),
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FIG. 2. Density of states near the lower band edge compared
when coherent potential (CP) and virtual-crystal (VC) approxi-
mations are applied to a simple unperturbed density of states,
with 8=0.75, x=0.j,5. The location of the band edge in the self-
consistent virtual crystal approximation (SCVC) is also indicated.

TABLE I. Number of exact moments of the total
density of states in various approximations

Approximation

Rigid-band, Kq. (4.I9}
Non-self-consistent virtual crystal, Eq. (4.20}
Self-consistent virtual crystal, Eq, (4.26)
Coherent potential, Eq. (4.23}

Number of
exact moments

It is of interest to compare the limiting behavior cor-
responding to the dilute alloy, virtual crystal, and
atomic limit obtained from Eq. (4.23) with the results
given in (4.18)—(4.21). For the dilute alloy, ag(1, Eq.
(4.23) becomes

Z(s) = e+xPE(o)(s—Z)(1—bF(o)(s—Z)g
—' (4.25)

to lowest order in x. Similarly in the virtual crystal,
8&pi, and

(4.26)

to second order in b. Finally, in the atomic limit,
w~G, F(e)(s) s-'. Substitution in (4.23) leads to a
result identical to (4.21). Equations (4.25) and (4.26)
are seen to be self-consistent versions of (4.18) and

(4.20) in the sense that es and. e, respectively, in the
arguments E&'&, are replaced by Z. An iterative solution
of (4.25) and (4.26) yields (4.18) and (4.20) in lowest
order. Therefore, the coherent potential approximation
represents an interpolation scheme that reduces prop-
erly to the exact solutions in very diverse limiting cases.
These correspond to the 1abelled boundaries of the x—8

plot in Fig. 1. It should be noted that we have no cor-

responding exact solution for the split-band limit. In
fact the interpolation scheme is less suitable in the
regime corresponding to 8&&i and m 6nite. We shall

return to this point later.
When the coherent potential approximation is em-

ployed, the description is better than the non-self-con-
sistent results for the limiting cases in question. This

can be seen by comparing the approximate moments of
the density of states p~ with their exact counterparts
derived in Sec. III B.The results are shown in Table I,
which shows the number of lowest moments that are
given correctly in various approximations. The details
of the calculation are unimportant for the present pur-
poses. Only the coherent potential case presents any
diRiculty and this will be discussed in Sec. IV D. In the
Grst case the band is shifted rigidly and accordingly
only its weight is correctly given. By contrast in the
remaining cases the band is allowed to deform. This
deformation becomes Inore precise as the approximation
is re6ned and results in the fact that more moments are
given correctly.

The self-consistency improves not only the general

shape of the density of states which is refIected in the
lowest moments, but also fine structural details. This
is illustrated in Fig. 2 which compares p(E) in the
vicinity of the lower band edge for the last three cases
listed in Table I.It is seen that in the non-self-consistent
case there is parasitic structure in p at the rigid-band

edge due to the fact that quasiparticles decay into bare
particle states. By contrast in the self-consistent model
both the band edge and the decay threshoMs coincide
because quasiparticles decay into other quasiparticle
states. "The same is true for the self-consistent virtual-
crystal model, only the edge is shifted slightly.

We now turn to a numerical comparison of three
approximations, the self-consistent virtual crystal, the
coherent potential, and the limit described by Eq.
(4.21), which Soven' has called. "the average t matrix"
approximation. 4 A simple symmetrical single-band

model, to be described explicitly in Sec. IV C is used
here for illustrative purposes. The details of the model
are unimportant in the present discussion since its only
purpose is to characterize the general features of the
three approximations. It should be emphasized that
since the energy scale is such that m= 1, the regime of
large 8 corresponds to the split-band limit.

The results for the density of states in the three cases
are given in Figs. 3(a), 3(b), and 3(c), respectively. We
shall describe the figure in two stages, comparing 6rst
the self-consistent virtual crystal (SCVC) and subse-

quently the average ]-matrix approximation to the full

self-consistent solution. Whereas the last exhibits the
development, for increasing 8, of the band from the
virtual crystal regime, through a stage where the single
band is distorted at its upper edge, until it splits, the
SCVC behavior is characterized by a band that is
always symmetrical, never splits, but only broadens as
8 increases. For 1.arge 8 this approximation violates the
localization theorem of Sec. III A.

The corresponding. comparison of the averaged f

matrix approximation is more interesting. Figure 3(c)
shows that the bands always split. The reason for this

~4 The analogous situation in polaron theory has been discussed
by G. Whittleld snd R, D. Puff, Phys. Rev. 139, A338 (19()5).



can be inferred from Eq. (4.21), which shows that Z(s)
always has a pole at s= —e no matter how small 8
becomes. Such a pole implies that p vanishes in its
vicinity. By contrast in the CP case Sec. Dt D will show
that a pole in Z{s) appears only if (6 is su%ciently large.
The fact that the results of the averaged t-matrix ap-
proximation should be incorrect for smaH 8 is not sur-
prising in view of its breakdown. For intermediate
values of 8, both approximations are qualitatively simi-
lar. However, a detailed comparison shows that the
weights of the sub-bands are correctly given only in the
CP approximation. As @re approach the split-band limit,
the weights of the sub-bands in the averaged t-matrix
approximation become asymptotically correct, but the
higher moments of the sub-bands remain incorrect. By
contrast, the 6rst and second moments in the CP ap-
proximation are exact. In particular) the shapes of the
sub-bands satisfy the X~=X2=+x relations of Eqs.
(3.45) and (3.46). In 'the other approximation Xg= 1
and P 2= x, as was 6rst inferred by Hubbard. "Of course
even the CP approximation neglecting, as it does, mo-
lecular clustering, is not expected to be correct in the
split-band limit. However, the preceding arguments
should sufBce to show that it is certainly better as an
interpolation scheme than any other approximation
presently available.

Because of the many advantages of the CP approxi-
mation given in this section, we shaH present the dis-
cussion of the single-particle properties of our model
aHoy within its frameworIt;. The following three sub-
sections will be devoted to these matters.
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p(0) (E)=p(0){ E)—(4.28)

and has R simple shape against which all distortions due
to alloying are clearly revealed. Because of (4.28), all
symmetries discussed in Sec. III A apply, and we need
only consider one quadrant of Fig. i. In the numerical
examples below, the parameters are restricted to 0&@
&~~ and 0&8. Vhth these restrictions, the A atoms are
impurities in a host 8 lattice and the most important
sects associated with the impurities wltH appear at the
top of the host band or above it.

In this subsection we introduce a specific model for
which the numerical examples presented in the rest of
the paper are computed. Equations (4.23) and (4.2)
show that a, (6, and p&')(E) completely determine Z(s).
This permits us to start with a simple form for p&')(E),
rather than explicit s(k), which would amount to com-
plete speci6cation of S'. %e assume for p(') the form
suggested by Hubbard"

p&')(E)=(2/xw')(w' —E')'", iEi &m

p(0)(E) =0 [E()w
(4.27)

which is symmetric,
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FIG. 3. Comparison of the density of states as calculated in (a)
self-consistent virtual-crystal approximation, (4) coherent-po-
tential approximation, and (c) average t-matrix approximation.
In each case, @=0.15; the values of 8 are 0.4, 1.0, and 2,0.

F&') (s)= (2/w') ['s—(s'—m') '"j. {4.29)

P(0& is analytic everywhere in a s-plane cut from —m

to+t(), and vanishes as s ' when ~s~~a(). Substituting

It should also be noted, as shown in Appendix D, that
one can always fmd a dispersion law s(k) which yields
the model density of states p(0)(E) to arbitrary pre-
cision, despite the fact that p(" has no critical points
except at the band edges.

The function F&0)(s) yielding the form (4.27) for
p«')(E) Lvia (3.1'/)$ is seen to be
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by numerical examples in which we specialize to the
model density of states introduced in Sec. IV C. The
simpler k-independent quantities, Z(s), &t&(Z), and
p" s(E), are discussed in this subsection; the k depen-
dent properties, all developed from 0',(k,s), are reserved
for Sec. IV K.

Sy developing the asymptotic properties of the self-

energy using Eq. (4.23), we may compare the results
of the CP approximation with the exact results given
in Sec. III B. Because Z(s) ~ e as Is I~ a~,

I
»—&(z) I

~~, and F(s) =—F"&(s—2) may be expanded
in powers of (»—Z) ' in that limit. This expansion may
be written with the help of (3.24) and (3.27) in terms of
the moments of the pure-crystal band in the form

F(s) =Z.=o"Ls—&(s)] 's."' (4 33)

If we substitute (4.33) into (4.23), and expand Z(s) as

Z(s)=a+ops '+02s-'+nas '+04s 4+0(s '), (4.34)
Fxo. 4. Regimes of the coherent potential approximation for the

model density of states (4.27). In the shaded region, the band is
unsplit. Above the upper dashed line, a pole in the self-energy
appears between the two sub-bands. The heavy dots indicate the
values of x and b at which the numerical results in Figs. 5—7 were
obtained.

(4.29) into (4.23) yields a cubic equation for Z(s),

(s+e)Z' —L«+-,'(a' —1)]Z'+L-.'a'(s+.)+-,'e]Z
+lL&'(«+-'&')+ "1=0, (43o)

expressed in units for which m= 1. Alternately, we may
invert (4.29) to obtain Z(s) as a function of
F~'&Ls —Z(s)]

the o„may be determined by matching coeKcients of
s & on both sides of Eq. (4.23). The resulting expansion
of the self-energy,

Z(s) =e+zyPLs '—ss '+(e'+@2&")» '
+(u3"'—~'—~~~'")s ']+ (4 35)

is identical to order s ' with the exact result (334).
This procedure also yields the related entries of Table I.

The pole in Z(s) which appears near s= —e in the
split-band limit, as found in (3.52), is also present in the
coherent potential approximation. To show this, we

express Z(s) in the form

&(s)=s—LF(s)l '—kF(s), (431) Z(s)=A(s —a) ' (4.36)

and then substitute (4.31) into (4.23). The result is a
cubic equation for F(s),

—',F'—-'sF'+Ls' ——,'(P—1)]F—(s+e) =0 (4.32).
Equations (4.30) and (4.32) may now be solved for

real s, yielding for both either three real roots or one
real root and a complex pair. When (4.30) or (4.32) has
a complex pair of roots, the one in the lower half-plane
is the physical one, since it will yield a non-negative
density of states. %hen the roots are all real, the
physical branch must be identihed from its asymptotic
behavior. The correct F(s) will tend to zero, and the
correct Z(s) to e, as s —+ &~. In a gap between split
bands, continuity conditions isolate the correct root.

In practice, it is most convenient to solve Eq. (4.32)
for F(s), since F(s) never has a pole. Equation (4.31)
may then be used to obtain Z(s).

D. k-Indeyendent Proyerties of the CP Ayyroximation

This subsection and the next wiB consider the prop-
erties of the coherent-potential approximation. The gen-
eral properties of our single-band model, all derived
from (4.23), will be examined 6rst, and then illustrated

ryan'& p2(') (4.38)

for the existence of the pole.
For numerical examples, we now specialize to the

model F&'& given in (4.29) and present the results of
solving (4.30) and (4.32) for Z(s) and F(s). The values
of x and 5 for which we exhibit calculations are indicated

by heavy dots in Fig. 4, which is just the upper left
quadrant of Fig. 1, enlarged.

Figures 5(a)—5(c) show the self-energy Z(s) calculated
for x=0.1 and three values of b. These cases, on the
vertical line in Fig. 4, exhibit all the varieties of be-

appropriate near 2'=u vrhen the pole is present and
located at a. Since Is—Z(s) I~~ near the pole, we may
use expansion (4.33) for F&'&Ls—Z(s)] near s=a. Sub-
stitution of Eq. (4.36) and the 6rst three terms of Eq.
(4.33) into Eq. (4.23) determines A and a. We 6nd

Z(s) = (zyP —p2~'&) (s+e)-', (4.N)

which is identical with the result, exact to order 8

already given as (3.55). In the CP approximation, there-

fore, the pole appears at 's= —e, if at all, and does not
shift with z or i&. The requirement that ImZ(E+ i0) &0
provides a (necessary) con.dition
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havior tobe found in Z(z) for general z and 8. Figure 4 is
divided by dashed lines into three regions, each typi6ed
by one of the Figs. 5. In the lowest, shaded region,
Z(z) has a single cut along the real axis, and an unsplit
band results. "In the middle region there are two cuts
(a split band), while in the top region a pole separates
the two cuts. One can show from (4.32) that, for this
choice of E&s'(z), the condition (4.38) is also sufficient
for the appearance of the pole in Z(z). Since ps&s&=st

for the model density of states (4.27), the upper dotted
line lI1 Flg. 4 1s given by SQP= 4.

The simplest case is Fig. (5a}, in which 5= 0.5 and the
band is not split. In the lower part of the band ImZ is
relatively small and ReZ nearly constant, although not
quite equal to a=0.2. This behavior is characteristic of
the virtual crystal limit. At the higher energies, the
impurities produce a rapidly varying ReZ and large
values of ImZ. The increase in. IrnZ, indicating that
states near the top of the band are preferentially damped
by the impurities, is observed for the smallest values of
b studied. Increasing 8 to 1.02, in Fig. 5(b), splits off a
sub-band, and the strongest damping occurs near the
gap edge of that impurity sub-band. The majority sub-
band for the most part displays the "virtual-crystal"
behavior already noted in Fig. 5(a). For the largest 8
considered, namely, 6= 2.0 in Fig. 5(c), Z(c) has a pole
at —e=0.8. Although the lower sub-band in Fig. 5(c)
is not very diferent from that of Fig. 5(b), ImZ in the
impurity sub-band has increased by a factor of roughly
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The relation between Figs. 5(b) and 5(c)maybeunder-
stood in terms of the sum rules involving ImZ. %hen
p's& is given by (4.27), the sum rule (3.58) for the lower
sub-band, which is exactly valid only for large split-
tings, is nevertheless satisded in the CP approximation
as soon as the impurity sub-band has split off. Thus
ImZ in the majority sub-band cannot difI'er markedly
in the two cases. Because the appearance of the pole
causes the integral of ImZ over the two bands to satu-
rate at the value —mp, 2&0& which is independent of b

$cf. (3.56)j, ImZ in the impurity sub-band increases
rapidly with 8 only in the middle region of Fig. 4. For
the 8=2.0 characterizing Fig. 5(c), this saturation has
occurred, and the sum rule (3.58a} for the a sub-band
is satisded as well.

We now turn to a discussion of the total and com-
ponent densities of states, p(E}, p~(E}, and ps(E), as
defined by (3.17) and (4.15). These quantities are
plotted" as Figs. 6 and 7, respectively, for three values
of 8, all less than 1. For each b, results for a set of con-
centrations are given, with values of x spaced logarith-
mically to emphasize the transition from the dilute to
the nondilute alloy region.

' This region was previously identi6ed in Ref. 9.
~OThe "three-dimensional" graphs of Figs. 3, 6, and 'l are

tracings of machine output prepared with remarkably little effort
or expense on an IBM 7094 computer with Calcomp plotting
accessories,
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The restriction to small 8 was motivated by the fact
that the SSA is likely to be best when the two types of
atoms present do not differ too greatly. Under these
circumstances, the Quctuations due to the nearby en-

(c)

Fro. 5. The. real (solid line) and the absolute value of the
imaginary (dashed 1inel parts of the self-energy in the coherent-
potential approximation calculated for x=O.I and (a) 8=0.5,
(b) 8 =1.02, (c) 8=2.0. These correspond to points on the vertical
line in Fig. 4 and typify the three regimes. Note the changes of
scale in these three 6gures.
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parameters used in these graphs 8,1'e shown by dots on
the bottom horizontal line in Fig. 4. The only visible
e6'ects of alloying are a concentration-dependent broad-
ening and shift of the band center of gravity given by
e= (x—y)S/2. In Fig. 6(b), 6=0.5, and some distortion
of the band shape is evident. This distortion is localized
near the upper edge for small x and spreads over larger
portions of the band with increasing concentration. It
is most evident in the curves for x=0.05 and 0.16.

%hen ts is increased to 0.75, then, as shown in Fig. 4,
an i~purity band splits oQ the upper edge of the host
band. This is the situation considered in Fig. 6(c). The
width and height of the impurity sub-band are pro-
portional to gx for small a, and remain approximately
so until the bands merge. The integrated density in the
impurity sub-band is x within numerical accuracy in
the split-band region.

The results of these calculations diBer from those of
the rigid-band model for alloys. This model has been
questioned on grounds that sects associated with

changes in the average crystal potential and broadening
due to fluctuations should alter the shape of the band
in the alloy. ' " In addition, the rigid-band. model as-
sumes that all sites are equivalent, as in a perfect crystal.
Its limited empirical successes" do not Dnply unique-
ness. In fact, a "minimum polarity" model which de-

stroys site equivalence by insisting on local charge
neutrality has proven successful in predicting several
electronic properties of NiCu alloys. 'r

The first objection to the rigid-band model, that p(E)
is distorted, is clearly sustained by Figs. 6(a)-6(c). To
explore the inequivalence of the A and 8 sites, we must
calculate the component densities of states, p~(E) and

ps(E), given for the CP model by (4.15). These are

plotted in Figs. /(a)-/(c), for the same values of 6

and a as in Figs. 6(a)—6(c). The total density of states
is obtained from p" and p~ by

m

1,50-

.(~)=" (~)+y"(». (4.13)
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Pro. 6. Density of states calculated with the model p&0) (8) given
by (4.2/) in the coherent-potential approximation, for a variety
of concentrations alon the lines (a), (b), anti (c) of constant 4

in Fig. 4; (a) 8=0.25, ) B=O.S, and (c) 8=0.75.

vironment, neglected in (2.19) to yield (2.20) and (2.23),
are most likely to be small. %e show results for various
values of the parameter x because this corresponds to
the experimental possibility of making samples with

different concentration ratios.
Figure 6(a) corresponds to 6=0.25 and reflects be-

havior characteristic of the virtual crystal limit. The

Only p, represented by solid lines in Fig. 7, contains

any sharp structure. By contrast, the behavior of p~

arising from the host atoms is much more like that in a
virtual crystal, particularly for small x. Accordingly,
the structure seen in the corresponding p is due to the
2 sites. Even in the virtual crystal limit, Fig. '/(a), p

is distorted, peaking at the higher energies. This be-
havior contradicts the rigid-band assumption that sites

are equivalent.
The quantities p~ and p~ also provide insight into

the dilute alloy limit. Kithin the coherent potential
approximation it is true in general, according to (4.23),
that as a —+ 0, Z(s) + e. Thus (4.15) leads to the limiting

"N. D. Lang and H. Ehreneich, Phys. Rev. I68, 605
(1968).

28D. H. Seib and K. E. Spicer, Phys. Rev. Letters 20, j.44k
(&968}.

2' J. Friedel, Nuovo Cimento Suppl. 7, 287 (1958).
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from falling o8 abruptly. As an aid in visualizing the
degree of broadcIllng, tlm I'cslllts colTcspoIldlllg to tlic
pure-crystal limit have been sketched in the inset. In
this limit

&I)0&=1, S(k) &EI
&e0)=0, s(k))EI . (4.44)

The localized impurity state clearly visible in Fig. 8(b)
near the top of the band produces only extra broadening
of the distribution function near the top of the band.
Tlic wl(ltll of &s0) obtained 111Fig. 9 lllcl'cRscs fl'Gill Rl)ollt

5% of the bandwidth near the lower-band edge, where
the peaks in S(k,E) are quite narrow, to about 30%
near the upper edge.

The Wannier representation is used:

(&D'))-=(0-'&6-= {I 06'I)-,
((D'W)) = (0 '&/„„= (0P()O'W).

(&DWDW&) „„=P,„„(0„0,&/, t,
= (0'W')

((DW'D)) „„=(0 8„&(W')
= (0'W'+ ryan'jM0(0)1)

Averages appearing in (A4) for any p less than 7 may
be determined in the indicated way. For higher p cor-
relation of several sites becomes important and the
results are not obtained in the simple way shown above.

APPENDIX A' PROPERTIES AND EXAMPLES
OF SYMMETRIC BANDS

Ke de6ne symmetric bands as those for which a
vector ~ exists such that

s(k) = —s(k+((), for all k. (A1)

A direct consequence of {A1) is that the crystal density
of states is symmetric,

p(0) (E) p(0) ( E) (A2)

The symmetry of (I implied by (A1} is

g(k, stx, r)= —b*(k—~, —s'(~, —S). (A3)

From this equation together with (3.19), Eqs. {3.20)
and (3.21) are obtained.

From (A1), it follows s(k+2)() =s(k) so that )( is half
of a reciprocal-lattice vector. Although symmetric
bands are rare in nature, they appear in the simplest
cases of nearest-neighbor tight-binding approximation.

For example, in the simple cubic lattice, "
s(k) =-', (cosk,a+cosk„a+cosk, a}

and )(= ()rja) (1,1,1). In the bcc lattice,

s(k) = cos0Ik,a cos-', k„a cos0Ik, a

and )(= (2n./a) (1,0,0).

APPENDIX 3 COMPUTATION OF (H0&

Using (3.2), we write

&fI")=&(D+W) )=&D &+(DW- &+ +&W.&. (EI)
Each of the 2& averages is performed separately. This
can be done for small p. The following examples, relating
to p=4, illustrate the procedure used. Properties of D
and W'. described in Sec. III A, in particular, (3.1) and
(3.6), are employed as well as definitions (3.2'/), (3.28) „
and the useful identity

(32)

tA 1th these ldentlGcatlons, lt ls straightforward to show
that Hubbard's Eq. (38) is identical to our Eq. (4.24).

APPENDIX D: CONSTRUCTION OF A SAND
CORRESPONDING To A GIVEN ~«~

The dispersion law s(0)(k) corresponding to a given
p(') is not determined uniquely. The function s(0)(k)
shouM be analytic and periodic in k space. %e try to
obtain s(0)(k) by deforming an arbitrarily chosen single
band appropriate to a given crystal structure. Its dis-
persion law and density of states are denoted by s(k)
and p(E) respectively. The correspondence of s(0) and
s is assumed to have the form

s(0) {k)= (()Ls(k)]. (D1)

The lsoenelgetlc surfaces in k space are not deformed
by (D1):The two surfaces

s(k) = g = const,

.I'0) {k)= (p{v) = const

APPENDIX C: IDENTIFICATION OF EQ. {4.24)
WITH HUBBARD'S THEORY

The third of Hubbard's papers on electron correla-
tion in narrow bands deals with the so-called alloy
analogy: If one regards the down-spin electrons as
fixed to randomly distributed sites, the motion of the
up-spin electrons is identical to the motion of electrons
in a model alloy system equivalent to that treated in
the present paper. Part 4 of Ref. I3 deals with the
"scattering correction, " i.e., with the related alloy
problem. Hubbard's approximate solution is given in
Eqs. (3/) —{40). Here, the dictionary is given which
translates Hubbard's notation into that used in our
paper.

G„'(E)-+ (27r) '8(k,s), 0,—T0 —+ s(k),
G;; (E) -+F{s) 'I Ir ~$~ ~ +6

P;(E)~s—Z(s), I . ~y, 0 —)e',
I~ b.
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coincide. Therefore, If p&e&(E) is continuous, (D3) determines a unique
smooth monotonic function ts. The s &s&(k) given by(D1)
is then periodic in is space and smooth although in

general not analytic: The second and higher derivatives

may be discontinuous at critical points of both p and
T»s is an equation for y. The function t(rt), the inte- p' &. In practice, however, it is possible to Gt sic&(k)

grated density of states, increases smoothly from 0 to 1. by an analytic function.
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Second- and Third-Order Elastic Constants of Alkali Metals*
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The second- and third-order elastic constants of lithium, sodium, potassium, and rubidium in the body-
centered cubic structure are calculated, The relationship between Brugger elastic constants and Fuchs
elastic constants is worked out. The Brugger elastic constants, which are de6ned as the derivatives of the
energy with respect to the Lagrangia~ strain, are widely used to express experimental results. The Fuchs
elastic constants, which are denned as the derivatives of the energy with respect to homogeneous expansion
and volume-conserving homogeneous shear, are often more convenient for calculations in terms of atomistic
considerations, and are particularly convenient for calculations with pseudopotentials. They are used here
to calculate the contribution of the band-structure energy to the elastic constants using the local pseudo-

potential proposed by Ashcroft. This pseudopotential contains the core radius as the only adjustable param-
eter. The contribution of the band-structure energy to the elastic constants is represented as a summation

of two kinds of derivatives of the wave-number characteristics over the reciprocal lattice points —those with

respect to homogeneous expansion and those with respect to volume-conserving homogeneous shear. The
core radius which gives the best Gt to the experimental second-order elastic constants agrees with that
determined by Ashcroft from data on the Fermi surface or on the resistivity of liquid metals. The band-
structure energy term is found to make a small contribution to the second-order elastic constants but an
indispensable contribution to the third-order elastic constants.

I. INTRODUCTION

HERE are two methods for calculating the second-
order elastic constants of a crystal: the method

of homogeneous deformation and the method of long
waves. One shouM be able to calculate the second-order
elastic constants using either of the two methods' and
the results obtained should agree with each other if the
same model of the crystal is used in both cases. I uchs' '
calculated the second-order elastic constants of alkali
metals by the method of homogeneous deformation and

obtained a satisfactory comparison with the data avail-

able at that time. However, more recent calculations4 7
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Contract No. AT(11-1)-1198.
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of the second-order elastic constants of alkali Inetals

have been mostly carried out by the method of long

waves, except for the calculation of bulk moduli by
Ashcrof t and Langreth. '

Ho and RuoP based their calculation on a quite
diferent model of an alkali metal which includes closed-

core interactions instead of the free-electron energy.
Therefore, their results cannot be directly compared
with the present calculation. Shyu and Gaspari' calcu-
lated the effective interatomic potential for alkali metals
from the Heine-Abarenkov model potential. They also

calculated the second-order elastic constants from the
effective interatomic potential by the method of long
waves. Their results of the second-order elastic con-
stants are not in as good agreement with the experi-
mental data as the present results, although they used
a more sophisticated pseudopotential than that used in
the present calculation. However, this is not necessarily
evidence against the Heine-Abarenkov pseudopotential,

Woods, and G. Dolling, Phys. Rev. 150, 487 (1966); in Ehonons
As I'erfect Xattsce and sn Lattsces msth I'osnt Imperfectsons, edited
by R. W. H. Stevenson (Plenum Press, Inc. , New York, 1966);
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Inc. , London, 1965).8¹Wt Ashcroft and P. C. Langreth, Phys. Rev. 1SS, 68$
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