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A single-band model Hamiltonian is used to describe the electronic structure of a three-dimensional
disordered binary alloy. Several common theories based on the single-site approximation in a multiple-
scattering description are compared with exact results for this Hamiltonian. The coherent-potential theory
of Soven and others is shown to be the best of these. Within the appropriate limits, it exhibits dilute-alloy,
virtual-crystal, and well separated impurity-band behavior. Hubbard and Onodera’s and Toyozawa’s
simple model density of states is employed in numerical calculations for a wide variety of concentrations and
scattering-potential strengths. Explicit results are exhibited for the total density of states, the partial
density contributed by each component, and such k-dependent properties as the Bloch-wave spectral
density and the distribution function. These illustrate the general conclusions as well as the limitations

of the quasiparticle description.

I. INTRODUCTION

HIS paper is concerned with two aspects of the
single-particle theory of the electronic structure of
disordered binary alloys. It presents a systematic deriva-
tion of the so-called coherent-potential (CP) theory?! of
such systems, clarifies its meaning and limitations, and
discusses numerical results for a moderately realistic
single-band model corresponding to a three-dimensional
system. In addition it presents a number of exact re-
sults for this model. These are useful as a basis for
comparison with approximate calculations, and also
when the two constituents give rise to two well-sepa-
rated sub-bands, a situation in which the fluctuations
of the random potential are so large that the CP theory
is not expected to be valid.

The CP concept has generally been developed within
the framework of the multiple scattering description?
of disordered systems.’>~% In this approach the propa-
gation of an electron or lattice wave in an alloy is re-
garded as a succession of elementary scatterings on the
random atomic scatterers, which are then averaged over
all configurations of atoms. Taylor® and Soven,! dealing
respectively with the case of the lattice vibration and
electron-excitation spectrum in an alloy, returned to the
Ewald-Lax theory? of multiple scattering. They viewed
a given scatterer as being embedded in an effective
medium whose choice was open and could be made
self-consistently. This choice in turn determined an ef-
fective Hamiltonian called the coherent-potential
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Hamiltonian. The physical condition corresponding to
this choice is simply that a single scatterer embedded
in this effective medium should produce no further scat-
tering on the average. The effective Hamiltonian in
question is to be regarded as an unknown of the problem,
and in contrast to the known “unperturbed” Hamilton-
ian that forms the usual starting points for multiple
scattering theories, is not improved further by consider-
ing scattering corrections of ever increasing order. In
this sense, the self-consistent choice of Hamiltonian is
optimal among all single-site approximations, which
neglect the scattering from clusters of atoms. Although
the clustering effects may be important under certain
circumstances, the single-site approximation renders the
problem tractable. It may be said to play the same role
in alloys as the molecular-field theory in magnetism.
McMillan and Anderson? used a similar approach®
in their treatment of liquid iron. Crudely speaking,
their model binary alloy consisted of iron atoms and
vacancies. A quite different and important application
of the same formalism was made very recently by
Onodera and Toyozawa.? They described Frenkel exci-
tons in mixed ionic crystals using a simple three-
dimensional single-exciton band model which permits a
detailed solution of the problem. In addition, quantities
other than the density of states, namely the spectral
density describing the optical absorption, were calcu-
lated and discussed for the first time. The CP approxi-
mation was there rightly regarded as a scheme which
interpolates between properly described limits corre-
sponding to the entire range of impurity concentrations
and strong and weak scattering. A band model similar
to that used by these authors, and previously intro-
duced by Hubbard,!* will also be employed here to ob-
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tain the detailed results to be discussed in connection
with Sec. IV.

The older attempts to obtain self-consistent descrip-
tion of mixed crystals dealt with phonons for low-
impurity concentrations.!!? Also closely related were
efforts by Hubbard to obtain a self-consistent descrip-
tion of electron correlations in narrow bands. In the
third of a series of papers Hubbard!?® introduces an
alloy analogy, and, by finding appropriate means of
truncating coupled Green’s-function equations, he ar-
rives at a self-consistent formulation of the alloy prob-
lem, which we shall show in this paper to be precisely
equivalent to the CP approximation. Indeed, the formal-
ism and its physical interpretations in this more limited
application to be presented here will be seen to be con-
siderably simpler than that of Hubbard.

Since this paper will deal with a number of different
aspects of the alloy problem, a fairly detailed outline
of the various topics and principal conclusions, with
reference to the sections where these are discussed, may
be helpful. Section II provides a succinct and general
derivation of all single-site approximations using multi-
ple-scattering theory. This approach permits direct com-
parison of the coherent-potential approach with other
single-site approximations since these approximations
are all placed on the same footing. The principal assump-
tion underlying this treatment is that the total scatter-
ing potential may be expressed as a sum of contributions
due to single atomic scatterers. A single-site description
of the alloy problem is seen to involve the following
physical ingredients. The total scattered wave is com-
posed of contributions from each atom, while the effec-
tive wave incident on a given atom excludes the con-
tribution of that atom. This contribution is obtained
as a product of the atomic ¢ matrix and the effective
wave. Both quantities are configuration dependent.
The essence of the single-site approximation (SSA) is
the assumption that these quantities are not statistically
correlated. The atomic scattered wave therefore be-
comes upon averaging a product of the configurationally
averaged ¢ matrix and the averaged effective wave.
This procedure therefore replaces the true medium sur-
rounding a given site by an effective one.

Succeeding parts of the paper become increasingly
specialized and the results obtained correspondingly
more specific. In Sec. III a single-band model for the
alloy Hamiltonian is introduced. In terms of the Wan-
nier representation, each site is characterized by a single
orbital. It is assumed that the “hopping integrals,” de-
scribing the transfer of electrons between sites, are

U A, A. Maradudin, in Brandeis Summer Institute 1962 Lectures
(W. A. Benjamin, Inc., New York, 1963), Vol. 2. For more recent
references to work on lattice vibrations in disordered systems, see
Localized Excitations in Solids, edited by R. F. Wallis (Plenum
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Press Inc., New York, 1963), Suppl. 3.
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identical to those in either perfect crystal. Accordingly,
only the diagonal elements of the alloy Hamiltonian
are random. Significantly, the entire behavior of the
Hamiltonian may be specified in terms of just two
parameters characterizing the concentration and the
strength of the random potential. The bandwidth, which
is determined by the hopping integrals, simply scales
the energies.

The discussion of Sec. III concerns only general prop-
erties which do not involve the SSA. Exact statements
are made about the symmetries of the problem, the
localization of the spectrum (Sec. ITI A), and the asymp-
totic behavior of various quantities of interest (Sec.
IIT B). The latter results for the averaged Green’s
function and self-energy are important in particular be-
case they yield information about the moments of the
density of states, the spectral density for Bloch states,
and, in addition, lead to a family of sum rules involving
the self-energy (Sec. ITII B). Such information is useful
in two respects: as a basis for judging the results of
approximate treatments, and also as a source of valid
statements in regimes such as that involving two well-
separated sub-bands (the “split-band limit”’) where the
strength of the random potential is sufficiently large
that the SSA is likely to fail because of the prevailing
large flucutations with respect to the effective medium?
(Sec. III C). In the “split-band limit” the self-energy
has a pole whose existence reflects the fact that the
sub-bands are becoming nearly independent. This is a
case of physical importance since the d bands arising
from the two constituents in such alloys as brass (Cu
and Zn) are well separated. Of course, the degeneracy
of bands in this case prevents immediate application of
the methods of this paper.

The final section (Sec. IV) of the paper is concerned
with the single-site approximation as applied to the
single-band model. The development previously given
in Sec II is recapitulated for this particular case in Sec.
IV A, and explicit expressions for the self-energy, the
total density of states, and the density of states associ-
ated with each type of site obtained. This leads to a
conservation condition relating the total charge density
per site to that of each of the constituents, a condition
which in Sec IV B is shown to be identical to the equa-
tion defining the CP approximation. After an examina-
tion of the appropriate perturbation limits correspond-
ing to the dilute alloy,'s virtual crystal,’ and atomic
limits,!® the CP approximation is shown to be the best
of all single-site descriptions (Sec. IV B). It interpolates
properly between these various limits, leading to reason-
able results for all alloy concentrations as well as a
wide range of strengths of the random scattering po-
tential. In addition, it will be shown to be better than
the perturbation theoretic results in the limiting regimes.

4], M. Liftshiz, Usp. Fiz. Nauk 83, 617 (1964) [English
transl.: Soviet Phys.—Usp. 7, 549 (1965)].

15 G, F. Koster and J. C. Slater, Phys. Rev. 96, 1208 (1954).

16T,, Nordheim, Ann. Physik 9, 607 (1931).
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The considerations are made even more specific in
Sec. IV C, where a particular form of the single-band
density of states is introduced, which is sufficiently
simple as to permit detailed numerical calculations of
some single-particle quantities that are discussed in the
last two subsections. In addition, some further CP re-
sults, not previously given, are introduced as they are
needed for the discussion. Section IV D deals with the
purely energy-dependent properties of the alloy, as
described in the CP approximation, namely the self-
energy, the density of states, and the local-state den-
sities associated with each kind of site. Section IV E
discusses the % dependent properties. The averaged
Green’s function in the Bloch representation is used
to obtain specific results for the spectral density as well
as the electron-distribution function in % space. The
discussion of Secs. IV D and IV E is illuminated by
fairly elaborate graphical displays which exhibit the
variation of the quantities of physical interest for a
wide range of parameters.

II. MULTIPLE-SCATTERING THEORY AND
SINGLE-SITE APPROXIMATIONS

This section develops the formalism underlying the
single-site approximation and derives results that are
valid for any single-particle Hamiltonian which can be
decomposed into a sum of contributions associated with
each site.

We begin with the crystallographic description of the
simple binary alloy to be considered: A strictly periodic
lattice containing N equivalent sites is occupied by
atoms of two kinds, 4 and B, in a random way. The
respective concentrations per unit cell are # and y=1
—x, both varying from 0 to 1. These conditions define
a whole ensemble of possible arrays of atoms. We are
interested only in the physical characteristics of the
alloy averaged over this ensemble. The average of a
quantity 4 will be denoted (4).

The electrons are described in the single-particle ap-
proximation. The one-electron Hamiltonian correspond-
ing to a given configuration is denoted by H. This paper
concerns only the single-particle properties, which are
derived from the one particle Green’s function

G(R)=(—H). (2.1)

In particular, (G(z)) determines all macroscopic quanti-
ties of interest. In contrast to G, the averaged (G) has
the full symmetry of the empty lattice. The effective
Hamiltonian characterizing the average crystal is de-
fined by the equation

(G(2))=(3— Hets) ™. (2.2)

Hess also has the full crystal symmetry, but is non-
Hermitian and energy-dependent. It may be seen
directly that H.s is analytic in both complex half-planes
and that

H eff (Z*) = H“ eff (Z) . ( 2.3)
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If there is available some approximation K=K(g) to
the exact effective Hamiltonian which may be regarded
as the starting approximation and which has the same
analytic properties as Heg the following identity may
serve as an equation for (G):
(G)=R+R(He:— K)(G). (24
Here,
R=(z—K)™1 (2.5)
is the unperturbed Green’s function.
In multiple-scattering theory an equivalent equation
involving the T matrix replaces (2.4). The T matrix
may be defined by the equation

G=R-+RTR. (2.6)
On averaging, the relation
(G)=R+R(T)R (2.7)

between (G) and (T') is obtained. From (2.4) and (2.7),
we obtain

Heosp=K+(T)(1+R(T))~" (2.8)
This equation can be used in two ways. Either the
(T[K7]) corresponding to a given K can be inserted in
Eq. (2.8), or the equation

(TCK])=0 (2.9)

may be used to determine K. Equation (2.8) then
guarantees that the solution of (2.9) so obtained is just
K=H;. These two possibilities define two different
classes of approximate calculations of Hss. The former,
which may be termed non-self-consistent, is usually
applicable only if there is available some small param-
eter like the concentration in a dilute alloy. As we shall
see in Sec. IV B, this approach may lead to difficulties
concerned with properly keeping terms to a given order
in the small parameter used. By contrast, the latter self-
consistent point of view resolves these difficulties and
furthermore gives rise to an interpolation scheme which
is valid over wide ranges of the parameters, like the con-
centration, characterizing the system. This approach,
however, is less simple from the mathematical point of
view.

The multiple-scattering method is applicable if we
can decompose the random-perturbing potential H—K
into a sum of contributions of single scatterers associ-
ated with each site a,, i.e.,

H—K=Y,V,. (2.10)
This condition is sufficiently general to be applicable
to several cases of interest, such as the muffin-tin ap-
proximation and the single-band model to be described
in the next section. V, is not necessarily related directly
to an atomic potential.
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Combination of (2.6) and the identity

G=R+R(H—-K)G (2.11)
yields
T=(H—K)(1+RT). (2.12)
Inserting (2.10) yields
T=3 0 Va(l4+RT)=31 0n, (2.13)

which expresses the 7" matrix as a sum of contributions
arising from the individual scatterers. Introducing

To=(1—V.R)V,, (2.14)
the T matrix associated with site #, we obtain
Q":: Tﬂ(1+R me#n Qm) . (2.15)

Equation (2.15) expresses the strength of a scatterer
in the alloy as a product of the strength of an isolated
scatterer and a factor describing the transformation of
an unperturbed-wave incident on site # into an effective
wave because of the multiple scattering in the alloy.
The preceding equations represent a closed form of
multiple-scattering theory. Inserting (2.15) into (2.13)
and iterating we obtain the standard series?®

T=Zn Tn"l'z'n TnR Zm#n Tm+ ctt. (2-16)

Relations (2.11)-(2.15) are exact. They lead to the
exact averaged equations

(T)=2n{0n), (2.17)
(0)=(Tn(14+-R X stn Qm))- (2.18)
Equation (2.18) can be rewritten as
(0n)=ATu)(1+R Zntn(Qm))
+ (TnR Zm#n(Qm'— (Qm»> . (2~19)

The first term in this equation describes the effect of
the averaged effective wave seen by the nth atom, and
the second term corresponds to fluctuations of the
effective wave. Our basic approximation is to neglect
this difficult term. We then obtain a closed set of

equations,
(0n)=(Tu)(1+R X nn(Qm)) ,

for the averaged quantities. Using the fact that 3_m=nQm
=T—(,, we obtain

(On)y=(A+(T)R)(T)(I+R(T)). (2.21)

Substitution into (2.8) then yields the effective Hamil-
tonian

(2.20)

Heff= K+Zn <Tﬂ>(1+R<Tn>)—1- (2-22)

The quantity (T»)(14+R(T»))"! is simply the effective
scattering potential corresponding to the average scat-
tering arising from the nth scatterer. Equation (2.22)
replaces (2.8) in the single-site approximation and the
discussion following (2.8) applies here as well without
alterations. If some reasonable K is known, the single-
scatterer 7" matrices can be obtained and (2.22) repre-
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sents our final result. On the other hand, the self-con-
sistency requirement (2.9) simplifies to

(T.[K])=0 (2.23)

for all #. Because of the periodicity of the averaged
quantities, it is sufficient to consider only one, say the
zeroth site. It should be mentioned that Eq. (2.23) is
precisely identical with the conditions imposed by
Soven! and Anderson and McMillan? to determine H es.
The meaning of the single-site approximation may be
understood by comparing Egs. (2.15) and (2.20) which
are seen to have identical structure. The decoupling
of the two factors in Eq. (2.20) resulting from the neglect
of the last term in (2.19) corresponds to the replace-
ment of the factor describing the configuration depen-
dent effective wave by a corresponding factor describing
the surrounding alloy in an averaged way. The validity
of the assumption that

(TnR Zm#n(Qm_ <Qm>)>= 0

depends on the neglect of all statistical correlations be-
tween # and all other sites . These correlations are of
two kinds resulting respectively from short range order
and multiple scattering. The first of these has been
eliminated by hypothesis. The other correlations, on the
other hand, are always present. Their neglect is the
fundamental assumption of a “molecular field” kind of
theory involving only a single site surrounded by an
averaged medium. In this connection it is to be em-
phasized that the character of the present approxima-
tion closely resembles that of the molecular-field theory
of magnetism which also is valid for a wide range of
parameters characterizing that particular problem. Of
course the success of approximation (2.24) depends in
practice on the choice of K. Of all choices the self-con-
sistent solution K =H is to be preferred for several
reasons which will be examined in detail later.

(2.24)

III. SINGLE-BAND MODEL: GENERAL
PROPERTIES

This section discusses a single-band model which is
closely related to the tight-binding approximation. Its
main advantage is that it is quite tractable in the CP
approximation. All matters relating to this approxima-
tion will be discussed in Sec. IV. The present section
will develop the general properties of the model, which
were already outlined in the Introduction.

A. Characterization of the Model

Although the model in question may be introduced
purely formally, we prefer to motivate its definition
physically. The ensuing discussion, however, will be
less concerned with the physical realizability of the
systems resulting when certain parameters are varied
over wide ranges than with the general resulting be-
havior of various properties.
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Consider an alloy described in the tight-binding ap-
proximation. A single atomic orbital |#) is associated
with each site #. A single band would result in the case
of a pure crystal. Accordingly, the term “single-band
model” is used despite the fact that two sub-bands
may occur in the alloy under certain conditions.

The one-electron Hamiltonian is

H= Z'ﬂ | ”>€”<n| +Zn7‘mln>tmn<m|
=D+W.

(3.1)
(3.2)

The second line defines the decomposition of H into a
diagonal part D and an off-diagonal part W with re-
spect to the Wannier representation. The matrix ele-
ments of H depend in general on the configuration of
A and B atoms in the crystal.

The model is defined by the following assumptions,
which are physically realizable when the orbitals are
sufficiently localized and the atomic potentials are not
too different.

(1) In the diagonal elements e,, the crystal field terms
are assumed independent of the composition and the
atomic configuration. Accordingly, these elements may
be regarded as atomic levels which assume one of two
possible values e4 and ¢ depending on whether an atom
A or B occupies #.

(2) The hopping integrals ,., are assumed to be com-
pletely independent of alloy composition. The operator
W may therefore be interpreted as the Hamiltonian of a
pure crystal for which e4=¢F=0. Similarly ¢4+ and
eB-+W, respectively, are the Hamiltonians for the pure
A and B crystals.

In short, the elements of D are diagonal but random,
whereas those of W are off-diagonal but translationally
invariant.

The operator W is diagonal in the Bloch representa-
tion:

(k I W|k'>= Oukr On tone™ on=dppws(k), (3.3)
where

|ky=N-1/23", e-an|y) (3.4)

relates the Bloch and Wannier bases and w is one-half
the bandwidth. The quantity s(£), which describes the
k dependence of the band energy, is dimensionless. In
simple cases, such as nearest neighbor tight-binding
bands in cubic lattices, —1<s(k)<-1. All that can
be said for general bands, however, is that maxs(k)>0
>mins(k) and

(3.5)

It is also convenient to use the same energy units to
express €4 and €, and to define the energy zero such
that

maxs(k)—mins(k)=2.

et=1wd, eB=—1wsd. (3.6)
Equation (3.6) defines the dimensionless parameter

0= (e4—eB)/w. 3.7
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For a given operator W the ensemble of Hamiltonians
is completely specified in terms of two dimensionless
parameters & and &, respectively characterizing the
concentration and the separation between atomic levels.
The energy w simply scales the entire Hamiltonian.
With some exceptions which will be explicitly indicated,
we use energy units for which w=1.

Some convenient notation and formal relations will
now be introduced.'? Since Hess(z) has the full crystal
symmetry, both it and (G(2))= (z— Hesr)~! are diagonal
in the % representation:

(k| Hots(2) | F')=[s(R)+2(k,2) 0w (3.8)

Equation (3.7) defines the quantity 2(%,z) which con-
tains full information about the scattering corrections
to the effective Hamiltonian. It is the self-energy with
respect to the perfect crystal having Hamiltonian W.
We also define

G(k2)=<k|G(z) | I>=[2—sk)—Z(k,2) T, (3.9)
which is fully specified by the spectral density
Q(k,E)=—7n"1ImG(k, E+10), (3.10)
because the integral representation,
© dE
—w?2—E
is valid.
The (average) density of states per atom,
p(E)=N"1Tr(8(E—H)), (3.12)

may be expressed in terms of the Green’s function as
p(E)=—(xN)"'Im Tr(G(E+i0)). (3.13)

The following explicit forms of (3.12), expressed re-
spectively in the Wannier and Bloch representations, are
also useful:

p(E)=—n~1 Im{n=0|(G(E+i0))|n=0) (3.14)
=N-1Y, @(k,E). (3.15)

Finally, we introduce the important auxiliary quantity!8

F(z)=N-'Tr(G(2))=(0(G(2))|0),  (3.16)
which, in view of (3.14), has the property
p(E)=—7"1ImF(E+10), (3.17)
so that .
F(Z) = . Ep(E) . (318)

As already mentioned, for given W, the alloy effec-
tive Hamiltonian is specified by x and é. Here x ranges
between 0 and 1, whereas 6 can assume any (positive
or negative) value. Any possible situation corresponds

17 Qur definitions are similar to those of Ref. 3.
18 From now on, |#=0) will be denoted |0).



752
20 ¥
o ATOMIC LIMIT: €"- € fixed, w0
} 152 SPLIT BAND: €A~ €B~>00, ¥ fixed
8 okz BAND SPLITS x>1-x
S SYMMETRICAL BAND
/= yj
0.5 —Lr—>o
VIRTUAL CRYSTAL
1 1 1 1
0.1 02 03 o4 X— 10
- T x=1-x
SYMMETRICAL BAND | 5> -5
GENERAL SYMMETRY
20

F16. 1. Symmetries and limiting cases for the effective Hamil-
tonian as the parameters 8 and x are varied. Arrows connect
points equivalent under general and special symmetries. The line
along which the band splits has been drawn for illustration only.
For a specific case, see Fig. 4.

to a point in Fig. 1. The number of different cases that
needs to be considered can be reduced by taking account
of symmetry properties which G(%,2) satisfies. For pur-
poses of the following discussion it is convenient to in-
dicate the dependence on x and § explicitly.

For any pure-crystal dispersion law s(k)

Gkyz|,0)=G(kz| 1—x, —9), (3.19)
p(El x:‘s) =p(El l_x: - 8)7 (3‘20)

and similarly for =(k,z). The point (x,8)=(3,0) in Fig.
1 is therefore a center of symmetry about which points
in opposite quadrants are equivalent. Points in the
neighboring quadrants can be related to each other
when the pure-crystal band is symmetrical (like the
nearest-neighbor tight-binding band in the bec lattice).
The additional symmetry obeyed by the density of
states is!®

The case of symmetrical bands is discussed more fully
in Appendix A.

As a result of these symmetry arguments, only the
quadrant 0<x<3%, >0 needs to be considered. The
following physical limits can be identified:

(1) The line x=0 corresponds to the pure B crystal
and its neighborhood to the dilute alloy case with 4
atoms playing the role of impurities.

(2) The line =0 corresponds to the pure crystal
described by the Hamiltonian W, Its vicinity is the
virtual-crystal region, characterized by a single band
which deviates but little from that of the pure
crystal.

19 Note that for the symmetrical band the density of states is an
even function of E, which is consistent with (3.21) when §=0. This
symmetry of p is preserved for 870 if x=3, again confirming
G21).

VELICKY, KIRKPATRICK, AND EHRENREICH

175

(3) The case 6=(ea— es)/w —> may be obtained in
two physically different ways. In the first, so-called
atomic limit, the bandwidth w — 0 and e4— ¢® remains
finite. On the other hand, w may be kept fixed and the
level separation allowed to increase without limit. The
latter case will be called the split-band limit. The atomic
limit is simple because the spectrum consists of two
atomic levels ¢4 and €. By contrast the split-band limit
is never simple, for no matter how far the sub-bands
are separated, there are always clusters of like atoms
which produce molecular or bandlike splittings in the
energy spectrum!* which are of the order of .2

The virtual crystal and split-band regimes may be
defined more precisely in terms of § with the help of a
theorem concerning the localization of the spectrum.?
For the present Hamiltonian H, it states the following:
(1) For given W and & and for any % the entire spec-
trum of H is contained in the union of the regions
(e4+mins(k), eA+maxs) and (eB+mins, eP+maxs).
(2) If the two regions do not intersect, there are just
#N levels in the former and (1—x)N in the latter.

Since maxs—mins= 2, the two intervals do not over-
lap for |8|>2. Accordingly |8|<2 and |8]>>2 corre-
spond respectively to the virtual crystal and split-band
limits.

B. Moments

Practical methods for calculating the exact (G), even
for the simple Hamiltonian under consideration here,
are not readily available. It is, however, possible to
study the exact asymptotic behavior of (G) as z—,
and hence to obtain information about moments and
sum rules of various quantities. The results and con-
sequences of this kind of analysis will be explored in
this and the following subsection, which are devoted
respectively to general properties and those dealing with
the split-band limit.

According to the localization theorem, the spectrum
of the model Hamiltonian is bounded. Therefore (G)
may be expanded in the form

(G)=((—H) )= L =™ (H")/27!

for sufficiently large z. A similar expansion of Egs.
(3.11) and (3.18) yields

(3.22)

0

G(k,2) =3 pui 57 f JEE?*@(LE), (3.23)

—0

F(2)=Y pus® 571 i dEErp(E).  (3.24)

-0

20 A, B. Harris and R. V. Lange [Phys. Rev. 157, 295 (1967)]
were the first to make a distinction between these limits, for the
Hubbard Hamiltonian for interacting electrons in narrow bands.

2t We have not found an adequate single reference for this
well-known theorem. Useful discussions occur in Refs. 12 and 14,
as well as on p. 712ff of A. Messiah, Quantum Mechanics (John
Wiley & Sons, Inc., New York, 1962).
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On the other hand, expansions of G(%,2) and F(z) can be
obtained by inserting (3.22) into their definitions (3.9)
and (3.16). A comparison of the two expansions yields

M (B)= / dE E»Q(k,E)= (k| (H?)| k), (3.25)

= / dE Erp(E)=N-1Tr(H?).  (3.26)

The preceding equations serve to define the moments
M, and u, of the spectral density and the density of
states respectively. As a special case of (3.26), we define
the moments u,® of the pure crystal band (6=0) as

”p(O)E/dE ErpO(E)=N-1TtW>, (3.27)

where p® is the appropriate density of states. Since W
has no diagonal elements, u1”=0 in general. Further-
more, pep+1® =0 for a symmetrical band since, in that
case, p(E)=p®(—E).

The average (H?) for small p and the resulting
moments can be evaluated in straightforward fashion,
as indicated in Appendix B. The results are given in
Egs. (3.29) and (3.30) in terms of the mean-atomic

energy,

e=xed4-yeP, (3.28)

and other previously defined quantities:

(H°)=1,

(HY)=et+W,

(HY)=31842eW+W?2,

(H?)=1ed+ (38 )W +3W 2+ W?,

(H*)= 156"+ xyd%us @+ e82W + (38°+ 3e) W

+4eWs+WH4,

(H?)= {5 ed*+2yedus )+ xyb%us
+-[(3/16)8*+3 €262+ 20y 8%u, O W
+[e4-(9/4) ed®JW - (82462 W3- 5eW 4+ W'5;

wo=1 )

(3.29)

K1=€,

pe=18"+us,

pa= 1€+ 3eus O+pus®,

,u4=ﬁ54+ (52+ 262)#2(0)_*.46“3(0)_}_#4(0) s

us=7ge0*+(5/2) ed%u2 O+ [ (5/4) 67+ 5 Jus

+Seus 45

(H?) is seen to be a polynomial of degree p in W. The
moments M ,(k) of the spectral density have the same
structure as the expressions in Eq. (3.29). They are
obtained from (3.29) by replacing W by s»(k).

The asymptotic behavior of Hey can be obtained
from that of (G) given in (3.22). Solving Eq. (2.2),

(3.30)
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(G)= (z— Hegs)™Y, for Hegr and substituting (3.22) yields
Hegg=2[1— (14 (H)r (B4 - - 1], (3.31)

so that, in view of (3.29), '
Het=et+WHD pe1® Apz?. (3.32)

The operators A, are determined most simply by sub-
stituting (3.22) and (3.32) into (2.2) and comparing
equal powers of z~1. The final result is

Hoti(3) = e+ W+2y8 21— ez 2+ (242 )73
+ (3O — & — euas @)z 4]+ - - -, (3.33)

Surprisingly, the operators A, turn out to be numbers
at least to order z~% Using (3.8), we find

S(k,2) = e+ 298 71— ez 24 (24 s )23
+(ﬂ3(0)_‘63_€ﬂ2(0))z_4]+ —_— (3.34)

It is seen that 2(k,2) is independent of % to the same
order. Because of the analyticity of Hes in both half
planes, Eq. (2.3), and the asymptotic form (3.34), the
following dispersion relation for =(%,2) can be derived:

0

S(k,5)= et /

—w E—3z

Im=(k, E+i0). (3.35)

Expanding the right-hand side and comparing with
(3.34) yields a family of sum rules of which the lowest
are

/ dE Im=(k, E4+i0)= —rays?,  (3.36)

/ dE E Im3(k, E+i0)=mxyes®.  (3.37)
As will be seen in the next subsection, these relations
provide useful physical insight concerning the lifetime
of states |£) in the alloy.

C. Split-Band Limit

As an application of the results obtained so far,
several properties of the system in the split-band limit
will be derived. The localization theorem together with
Eq. (3.5) imply that in this case the entire spectrum
is confined to two well-separated regions, one centered
around e4 and the other around . The two portions
of the spectrum will be termed “sub-bands’ even though
they may not consist of a simple continuum of levels.
The sub-bands centered around e4 and €3 will be de-
noted, respectively, by « and 8. For § —« sub-band
« is associated entirely with 4 atoms and similarly for
B with B. This correspondence is only approximate for
4 large but finite.

Our first task will be to obtain some information
concerning the moments

= / AE(E—eAB)ope(E)  (3.38)
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of the sub-band densities of states p* and pf which
satisfy
p(E)=p*(E)+pf(E). (3.39)

The origins of energy here are shifted to the positions
that are natural in the limit of well separated sub-bands.

The moments u, are easily expressed in terms of the
k% uyf. Using Egs. (3.26) and (3.39), we write

Hp= / dE(E—eA+-e4)7p*(E)
+/ dE(E— 8+ €B)7pf(E)

=Zl=o"(Pl Y (- (3.40)

This infinite set of equations can be solved in practice
only by truncation. However, if the lowest # equations
are considered by themselves, there are twice as many
up*f as u,. This difficulty is not present in the split-
band limit, since for large & only the highest powers of
€4, 8~ are important. The simplest example of this
truncation procedure corresponds to #=2. The first
two equations of (3.40) are

(3.41a)
(3.41b)

po=po%uef=1,
p1= edpo®+ Euft+u1*+tuf=e.

Since all moments u,*# are of order unity, the terms
1% and p1# in (3.41b) are one order higher in 6~ than
the other terms and may be neglected. The resulting
system of two equations now involves only two un-
knowns and may be solved to yield

 wet=x+0(7Y), pf=y+0(7).

These results could have been predicted from the locali-
zation theorem since the moments u¢® and u¢f simply
correspond to the weights of the sub-bands.

By systematically neglecting terms of order 6% and
higher, the six equations expressing uo- * *us in terms of
o®B+ + - ue®f may be solved in analogous fashion with
the result

uo*=x+0(57%), uf=y+0(8%),
u1t=xyus@/8+0(87%), uif=—ayus0/6+0(679,
pe®=x2u(04-0(871), pf=92u04-0(571). (3.43)
The first line of (3.43) again yields the result expected
from the localization theorem. The second line involving

u1%# describes the mean shift from the atomic levels.
This shift,

1%/ mo®=yue®/8,  ui/uef=—aus /8, (3.44)

increases the gap between a and 8 and is consistent with
the repulsion of levels familiar from perturbation theory.
For x— 0, u1%/ue® approaches us(®/8, which is easily
identified with the result for a single deep Koster-Slater

(3.42)
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impurity level.’® The third line of (3.43), involving
ue®8, is connected with the effective widths of the sub-
bands. The widths are seen to approach finite values as
§—o0,

More important for applications to actual solids is
the variation of the width as a function of concentration
x for fixed but large 8. Consider the « band and assume
its variation with x can be described by a simple affine
transformation:

pH(E— et 0) =Mp°[(E—e*)/No|w=1]. (3.45)

We assume 8 so large that the shifts (3.44) may be
neglected. It is readily seen from (3.38) that ue* and
uz® are obtained correctly only if

A= Ae=/x%. (3.46)

Even when the simple assumption (3.45) is not precisely
valid one might still expect the effective height and
width of the a sub-band to vary roughly as 4/x. The
results for the 3 sub-band are analogous.

The sub-band moments of the spectral density,

dE(E— AB)ra(k,E) ,

-0

M 28(k)= (3.47)

can be treated in the same manner as those of the
density of states. The results for the o sub-band are

M (k) =x+4-2xys(k)/6— 3xy(x— y)[s2(k) —p2 ]
/8+0(879),
My (k) = 225 (k) +-[ 362y (s2(k) — p2®) +syp2 ]
/8+0(572),
Mo (k)= wyus O+ 5352(R)+0(57Y)..

The corresponding results for the 8 sub-bands can be
obtained by the transformations 6 — —é and x <> y.
The relationships u,*f=N-13; M ,*8(k) are easily
verified.

We first discuss the spectral density function in the
limiting case when & is so large that the dependence of
(3.48) on it may be neglected. The first line states that
an electron in state % spends a fraction x of its time on 4
sites. The second line indicates that the center of gravity
of the spectral function @(k,E) lies at

E=eA++M2(k)/M (k)= eA+as(k). (3.49)

The effective linewidth with respect to (3.49) is given
approximately by

{Mo2(k)/ M (k) — [M1>(k) /M o*(k) 7} /2
= (wyu )12, (3.50)

The linewidth is seen to be independent of the state
|k) and, generally speaking, has the same magnitude
as the shift xs(k). However, for x — 1, xs(k) — s(k) but
(xyM;®)1/2— 0. In this case the sharp Bloch eigen-
states of the 4 crystal are obtained. On the other hand,
for — 0 both wxs(k) and (xyM2®)1/2 tend to zero and

(3.48)
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a sharp isolated impurity line centered at e4 results.
Again, the results for the 8 sub-band are symmetrical.

The preceding results concerning the M ,*-# have been
developed primarily in order to show that =(k,2) has a
pole in the split-band limit. This is accomplished most
directly by finding the zeroes of G(%,2). We begin by
expressing G(k,2) in terms of the M,*#f. Outside the
sub-bands G(%,2) is analytic. Equation (3.11) can then
be written

00

G(k,z)= a(k,E)

—w (z—et)—(E—e4)
© dE
+ -
./—m (z— &) —(E—¢P)
= S LM (8 (e )
+M F(k)/(z—B)PH1].

@#(k,E)

(3.51)

The fact that @= @2+ @8 has been used. A few terms
of the series (3.51) suffice for energies far removed from
both sub-bands. However, when § is large this applies
even to the region between the sub-bands on thereal axis.
In this case, we have already seen in the results of
Eq. (3.48) that the moments appearing in (3.51) are
readily calculable. Accordingly, G(%,2) can be obtained
to order 62 under these circumstances.

The zeroes of G(k,2) for finite 2z coincide with poles of
3(k,z) according to (3.9). Because there are just two
sub-bands, there is at most one such point on the real
axis located between the sub-bands. It is easily proved
that provided 8>1, 8>1, y5>>1, the zero of G(k,2) exists
and is located at —g, i.e.,

Gk, —e)=0+0(579). (3.52)
Furthermore,

—(9/92)G(k, — &)= (xy8?)~"[1+u2®/xy#+0(67%)]
=~ (xyd2—u @)1, (3.53)
In the vicinity of —e,

G(k,2) ~ — (wy82—pa ")z +-e). (3.54)

Comparison with Eq. (3.9) shows that
3(k,2) = (xy62—u2®)(z+ €)'+ regular part, (3.55)

and that, accordingly, Z(%,2) has a pole at — e for any k.

Such a pole will contribute significantly to the sum
rules (3.36) and (3.37). However, its entire contribu-
tion falls into the region of zero spectral density, and
therefore is not by itself physically significant. Instead,
we wish to know the contribution of the individual
sub-bands to the sum rules to order 2. After subtrac-
tion of the contribution of the pole, the sum rules
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become
/ dE ImZ(k, E+i0)+ | dE ImZ(k, E+10)
(@) ® — e ®, (3.56)
et f dE ImZ(k, E-+40)-+ €8 f dE Im=(k, E+10)
() ®) =meus®, (3.57)

where the integration over the sub-bands is indicated
symbolically by (a) and (8). The contribution of the
individual sub-bands to (3.56),

/ dEImZ(k, E+10)= —myu,

@ (3.58)
f dE ImZ(k, E410)= — mxu,® ,

®

is obtained by solving the simultaneous equations. The
results are seen to be independent of & for large 4,
which corresponds to the intuitive feeling that the sub-
bands should become independent in this limit. Equa-
tion (3.58) show that the damping in the 8 sub-band
and x decrease together, and similarly for the a sub-
band. Although this behavior is expected to hold as
x— 0, the derivation fails when % is too small. In this
case —e— ¢4 and G(k, —¢) can no longer be described
using a few terms of (3.51).

IV. SINGLE-BAND MODEL: SINGLE-SITE
APPROXIMATIONS

In this section the formalism of Sec. II is applied to
the single-band model introduced in Sec. III. The first
two subsections deal with general equations for the
self-energy and compare several single-site approxima-
tions (SSA). Then a specific model density of states is
introduced which is easily handled in computations.
The last two subsections present numerical examples
of some single-particle properties in the CP approxima-
tion for a wide range of concentrations and scattering
potential strengths.

A. Basic Relations

In this subsection the general derivation of the ef-
fective-wave approximation given in Sec. II will be
specialized to the single-band Hamiltonian discussed
in Sec. ITI. At the outset it is necessary to make a
reasonable and specific choice of the unperturbed
Hamiltonian K which has so far not been explicitly
defined. This choice must be both physically meaningful
and tractable enough to be applicable to numerical
calculations.

We define

K=W+Za|nu@E)n|=W+u@1, (41
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where #(z) and, hence, K is analytic everywhere except
on the real axis and satisfies (2.3). It is seen from Eq.
(4.1) that the term involving #(z) is independent of %
in Bloch representation, so that the entire £ dependence
is contained in W, or equivalently the function s(%). This
class of operators K is sufficiently broad to include the
important dilute alloy, virtual crystal, and atomic limits.
In addition, it includes the coherent potential, i.e.,
self-consistent single-site, effective Hamiltonian, which
is of primary concern here.

In the ensuing discussion quantities related to the
pure crystal having the Hamiltonian W for which §=0
will appear frequently. Although some of them have
appeared previously [cf. (3.27)], we list them here for
convenience:

GOR)=E—W)", GO(kz)=[z—sk)]?,
QO (k,E) = — 11 InGO(k, E+i0)= o[ E—s(k)], (4.2)
pO(E)=N-13; QO (k,E)=N"13; s[E—s(k)],

00

dE(z— E)~1p O (E)
- =N-1 Yu[s—s(B) T

For the K defined by (4.1), the unperturbed Green’s
function (2.5),

R(z)=(z—K)!
=[z—u(z) —WI'=GOz—u(z)],

can be expressed simply in terms of G®. The function
corresponding to (3.16) is then

(0| R(z)|0)=F© (s—u(2))=F(z).

F(O)(z) =

(4.3)

(4.4)

Matrix elements of K and related quantities are thus
simply expressed in terms of the unperturbed quantities
(4.12“2)'1' H and K given by (3.1) and (4.1), respectively,
H—K=Ya|n)en—u(z)Ln], (4.5)
so that Eq. (2.10) is satisfied by the choice
Va=|m)lea—u(@) | = |n)oa(n] . (4.6)
According to Eq. (2.14), and with the help of (4.4),
To(@) = |nyo.[1=0.0(@) T n] . (4.7)

This expression is seen to be just the f matrix corre-
sponding to a Slater-Koster impurity embedded at site
n of a medium described by the Hamiltonian K.

The configurational average of (4.7) is

afed—u] ] Y[ eB—u ]
{Tw)= l">[1—[54—u]p' I—EeB—u]F:l<nl

=|[n){writyr®}n| = |n)r(n|.

(4.8)
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The approximate effective Hamiltonian (2.22) is then
Hor=W+ | n)ut+r(14+rB)"n|.  (4.9)
Inserting (4.9) into (3.8) we obtain
3(k2)=2(z)=u(z)+r(@)[1+ () )T, (4.10)

where 2 is now % independent, a result which follows
from (4.1) and the single-site approximation. The lack
of k£ dependence may also be ascribed to this approxi-
mation.

The function F(z) defined in Eq. (3.16) may now be
simply expressed in terms of F(® as defined in Eq. (4.2)
by the same procedure as that used to arrive at Eq.
(4.4),

F(z)=FO[3—2(z)]. (4.11)

The preceding expression leads immediately to the
density of states p(E) as defined by Eq. (3.17).

The SSA provides a means of studying the contribu-
tion of sites 4 and B to the total density of states. For
the present simple model it is possible to give a precise,
unambiguous definition of the average component den-
sity of states:

pAB(E) = — =1 Tm(0| ((E++i0— HAE)-1)|0), (4.12)

where H4'B is the Hamiltonian corresponding to a given
alloy configuration with atoms 4, B, respectively,
located at the site #=0. These component densities are
to be distinguished from the previously introduced
p*8 which referred to the density of states of the sub-
bands ¢, 8 in the limiting split-band regime. When
d— 0, p%f approaches xp4,yp®.

Since the entire ensemble of Hamiltonians H consists
of two sub-ensembles composed of H4 and H%, with
weights «x and ¥,

p(E)=2p*(E)+yp"(E),

as may be seen explicitly by comparing (3.17) and (4.12).
This condition can be given a very simple physical in-
terpretation. By integrating (4.13) over an arbitrary
occupied portion of the band or sub-bands, the resulting
condition ¢=uxc4-+ycP states that the total charge den-
sity per atom is the sum of the densities due to 4 and
B constituents properly weighted.

The effective wave approximation permits the ex-
plicit calculation of p4+Z because the ensemble averaging
in this case results in the replacement of ¢, by =(z)
everywhere except at the zeroth site where ey=e4-B.
This is consistent with the single-site character of the
approximation, i.e., that 4, B are to be regarded as
embedded in an effective crystal with Hamiltonian Hes.
Accordingly,

O[{(z—H45)~1)[0)= (0| [s— Hets(2)
— [0)[e*P—2(z) 10| 1]0),

(4.13)

(4.14)

and, therefore,

pAB(E)=—71 Tm{F[1— (eAB—2)F ]}, pyi0. (4.15)
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As a result, Eq. (4.13) is seen to become the following
condition for 2(z):

i 1—(eA—2)F I 4y[1—(B—Z)F =1, (4.16)
where F itself depends on Z(z) because of Eq. (4.11).

B. Limiting Cases and CP Approximation

In this subsection we shall exhibit how nearly all
common descriptions of alloys in various limiting cases,
with the notable exception of effects connected with
clustering, follow from the results in the SSA. In ad-
dition, we shall show that the CP approximation is
simply the single-site approximation treated self-con-
sistently. By explicit comparison of various aspects it
will be seen that the CP approximation is the most
satisfactory presently available for describing alloys for
a wide range of parameters.

1. Dilute Alloy, x<1

The unperturbed Hamiltonian K corresponds to the
pure B crystal, i.e., %(z)=€e#=—34. Only linear terms
in x are retained in the expression (4.10). We obtain

2(z) = B+x74(2) (4.17)
= e+ 202F O (53— B)[1— 0F O (z— €B) ]!, (4.18)

where e=%(x—%)é according to (3.28). Equation (4.17)
describes the effect on the self-energy 2(z) of NV inde-
pendent 4 impurities in the host B crystal.??

2. Virtual Crystal, 61

If results correct to first order in & are sufficient, K
may be taken to be W. In this case

Z(z)=¢, (4.19)

which is simply the rigid-band approximation? corre-
sponding to an undistorted shift of the band upon alloy-
ing. To order 62, #(z) should be taken to be e instead of
zero. In this case we obtain

2(2)=e+xyd?F O (z—e), (4.20)

a result familiar from the weak-coupling theory of
Edwards.® The dependence on xyé? is to be particularly
noted as a characteristic of such theories.!6

3. Split Bands, $>>1

We recall that 6 may be made large either by de-
creasing the bandwidth or increasing the separation of
the atomic levels. A suitable K in the former case may
by obtained, following Hubbard, by setting

u(2) = e+xy82(z+¢)L. (4.21)
22S. F. Edwards, Proc. Roy. Soc. (London) A267, 518 (1962).

2 N. F. Mott and H. Jones, Theory of the Properties of Metals
and Alloys (Dover Publications, Inc., New York, 1958),

THEORY OF SIMPLE BINARY ALLOYS

757

This choice is exact in the limit § — when W — 0
and hence G=(z—D)~ .. Using the scaling argument
following Eq. (3.7), one might expect the preceding
u(2) to be valid in the split-band limit as well. However,
it should be remembered from the discussion of Sec.
III A that Eq. (4.21) neglects terms of order w which
are unity in the split-band case and do not vanish as
8 —oo. Inserting (4.21) into (4.10) yields an expression
for Z(z) which may be shown to be identical to that
called the ‘“scattering correction” by Hubbard.!® Ac-
cordingly, Hubbard’s truncation of his coupled Green’s-
function equations is equivalent to the SSA. Instead of
discussing these results, however, we prefer, as Hubbard
did, to deal more extensively with their self-consistent
counterparts.

4. Coherent Potential Approximation:
Self-Consistent Solution

So far we have used the first of the two approaches
discussed after Eq. (2.8) to determine H.y. Now we
turn to the second approach of determining K= H s on
the basis of the self-consistency condition (2.9), which,
in the effective wave approximation, reduces to (2.23),
T.[K]=0. For the present model T, is given by (4.8)
and therefore the self-consistency condition determining
u(2)=2(2), the only unknown part of K, is, according
to (4.10),

7(z)=0. (4.22)
Equation (4.22) may then be cast into the form
FO[z—2(z)]
2(z) = e+wxyé? (4.23)

14+ [2(2)+ ] FOLz—2(2)]

which is identical to that given by Onodera and Toyo-
zawa.? Alternatively, using (4.11), it can be cast into
the form previously obtained by Soven,?

3(z)=e—[e4—Z() JF(z)[—2(2)].

Consequently, 2(z) is to be identified with Soven’s
Hamiltonian in the CP approximation. The equivalence
of (4.24) to the self-consistent version of Hubbard’s
theory®® is discussed in Appendix C. Equation (4.24),
or its more convenient equivalent, (4.23), determines
the CP Hamiltonian and is of central importance in the
discussion to follow.

The rest of the subsection will be devoted to a com-
parison of the CP approximation with other single-site
approximations. This discussion is intended to show
that the CP approximation is preferable in many re-
spects. For example, the simple physical condition of
charge conservation (4.13) assumes the form (4.16) in
the SSA. This is directly seen to be Eq. (4.24) slightly
rearranged. The CP Hamiltonian is, therefore, the only
one among all SSA Hamiltonians obeying the condition
(4.13),

(4.24)
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Fic. 2. Density of states near the lower band edge compared
when coherent potential (CP) and virtual-crystal (VC) approxi-
mations are applied to a simple unperturbed density of states,
with §=0.75, x=0.15. The location of the band edge in the seli-
consistent virtual crystal approximation (SCVC) is also indicated.

It is of interest to compare the limiting behavior cor-
responding to the dilute alloy, virtual crystal, and
atomic limit obtained from Eq. (4.23) with the results
given in (4.18)-(4.21). For the dilute alloy, <1, Eq.
(4.23) becomes

3(5) = e+ w8 F O (z—Z)[1— SF O (z—Z) T (4.25)

to lowest order in x. Similarly in the virtual crystal,
8«1, and

3(z) = e+xyRF®(3—32) (4.26)

to second order in 4. Finally, in the atomic limit,
w— 0, FO(zg)~z"1. Substitution in (4.23) leads to a
result identical to (4.21). Equations (4.25) and (4.26)
are seen to be self-consistent versions of (4.18) and
(4.20) in the sense that €® and e, respectively, in the
arguments F©, are replaced by 2. An iterative solution
of (4.25) and (4.26) yields (4.18) and (4.20) in lowest
order. Therefore, the coherent potential approximation
represents an interpolation scheme that reduces prop-
erly to the exact solutions in very diverse limiting cases.
These correspond to the labelled boundaries of the x—é
plot in Fig. 1. It should be noted that we have no cor-
responding exact solution for the split-band limit. In
fact the interpolation scheme is less suitable in the
regime corresponding to 5>1 and w finite. We shall
return to this point later.

When the coherent potential approximation is em-
ployed, the description is better than the non-self-con-
sistent results for the limiting cases in question. This

TasLe I. Number of exact moments of the total
density of states in various approximations

Number of

Approximation exact moments

Rigid-band, Eq. (4.19)

Non-self-consistent virtual crystal, Eq. (4.20) 3
Self-consistent virtual crystal, Eq. (4.26) 3
Coherent potential, Eq. (4.23) >6
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can be seen by comparing the approximate moments of
the density of states u, with their exact counterparts
derived in Sec. III B. The results are shown in Table I,
which shows the number of lowest moments that are
given correctly in various approximations. The details
of the calculation are unimportant for the present pur-
poses. Only the coherent potential case presents any
difficulty and this will be discussed in Sec. IV D. In the
first case the band is shifted rigidly and accordingly
only its weight is correctly given. By contrast in the
remaining cases the band is allowed to deform. This
deformation becomes more precise as the approximation
is refined and results in the fact that more moments are
given correctly.

The self-consistency improves not only the general
shape of the density of states which is reflected in the
lowest moments, but also fine structural details. This
is illustrated in Fig. 2 which compares p(E) in the
vicinity of the lower band edge for the last three cases
listed in Table I. It is seen that in the non-self-consistent
case there is parasitic structure in p at the rigid-band
edge due to the fact that quasiparticles decay into bare
particle states. By contrast in the self-consistent model
both the band edge and the decay thresholds coincide
because quasiparticles decay into other quasiparticle
states.24 The same is true for the self-consistent virtual-
crystal model, only the edge is shifted slightly.

We now turn to a numerical comparison of three
approximations, the self-consistent virtual crystal, the
coherent potential, and the limit described by Eq.
(4.21), which Soven! has called ‘“‘the average ¢ matrix”
approximation.* A simple symmetrical single-band
model, to be described explicitly in Sec. IV C is used
here for illustrative purposes. The details of the model
are unimportant in the present discussion since its only
purpose is to characterize the general features of the
three approximations. It should be emphasized that
since the energy scale is such that w=1, the regime of
large & corresponds to the split-band limit.

The results for the density of states in the three cases
are given in Figs. 3(a), 3(b), and 3(c), respectively. We
shall describe the figure in two stages, comparing first
the self-consistent virtual crystal (SCVC) and subse-
quently the average {-matrix approximation to the full
self-consistent solution. Whereas the last exhibits the
development, for increasing 8, of the band from the
virtual crystal regime, through a stage where the single
band is distorted at its upper edge, until it splits, the
SCVC behavior is characterized by a band that is
always symmetrical, never splits, but only broadens as
8 increases. For large § this approximation violates the
localization theorem of Sec. III A.

The corresponding comparison of the averaged ¢
matrix approximation is more interesting. Figure 3(c)
shows that the bands always split. The reason for this

2 The analogous situation in polaron theory has been discussed
by G. Whitfield and R, D. Puff, Phys. Rev. 139, A338 (1965).
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can be inferred from Eq. (4.21), which shows that =(2)
always has a pole at z=—e no matter how small é
becomes. Such a pole implies that p vanishes in its
vicinity. By contrast in the CP case Sec. IV D will show
that a pole in Z(z) appears only if ¢ is sufficiently large.
The fact that the results of the averaged f-matrix ap-
proximation should be incorrect for small 6 is not sur-
prising in view of its breakdown. For intermediate
values of 8, both approximations are qualitatively simi-
lar. However, a detailed comparison shows that the
weights of the sub-bands are correctly given only in the
CP approximation. As we approach the split-band limit,
the weights of the sub-bands in the averaged #-matrix
approximation become asymptotically correct, but the
higher moments of the sub-bands remain incorrect. By
contrast, the first and second moments in the CP ap-
proximation are exact. In particular, the shapes of the
sub-bands satisfy the A;=Xs=+/% relations of Eqgs.
(3.45) and (3.46). In the other approximation, A;=1
and \o==, as was first inferred by Hubbard.!® Of course
even the CP approximation neglecting, as it does, mo-
lecular clustering, is not expected to be correct in the
split-band limit. However, the preceding arguments
should suffice to show that it is certainly better as an
interpolation scheme than any other approximation
presently available.

Because of the many advantages of the CP approxi-
mation given in this section, we shall present the dis-
cussion of the single-particle properties of our model
alloy within its framework. The following three sub-
sections will be devoted to these matters.

C. Model Density of States

In this subsection we introduce a specific model for
which the numerical examples presented in the rest of
the paper are computed. Equations (4.23) and (4.2)
show that #, §, and p@(E) completely determine Z(z).
This permits us to start with a simple form for p®(E),
rather than explicit s(k), which would amount to com-
plete specification of W. We assume for p® the form
suggested by Hubbard!?:

pO(E)=(2/mw?)(w?— EA'2, |E|<w
pO(E)=0, El>w 427
which is symmetric,
pO(E)=pO(~E), (4.28)

and has a simple shape against which all distortions due
to alloying are clearly revealed. Because of (4.28), all
symmetries discussed in Sec. III A apply, and we need
only consider one quadrant of Fig. 1. In the numerical
examples below, the parameters are restricted to 0<%
<% and 0<4. With these restrictions, the 4 atoms are
impurities in a host B lattice and the most important
effects associated with the impurities will appear at the
top of the host band or above it.
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F1c. 3. Comparison of the density of states as calculated in (a)
self-consistent virtual-crystal approximation, (b) coherent-po-
tential approximation, and (c) average f-matrix approximation.
In each case, x=0.15; the values of & are 0.4, 1.0, and 2.0.

It should also be noted, as shown in Appendix D, that
one can always find a dispersion law s(k) which yields
the model density of states p®(E) to arbitrary pre-
cision, despite the fact that p(® has no critical points
except at the band edges.

The function F©(z) yielding the form (4.27) for
pO(E) [via (3.17)] is seen to be

FO(g)=(2/w?)[z— (22— w?)1/2]. (4.29)
F© ig analytic everywhere in a z-plane cut from —w
to 4w, and vanishes as 27! when |z|—c0. Substituting
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X .5
CONCENTRATION

Fi16. 4. Regimes of the coherent potential approximation for the
model density of states (4.27). In the shaded region, the band is
unsplit. Above the upper dashed line, a pole in the self-energy
appears between the two sub-bands. The heavy dots indicate the
v]z;lugs (::lf « and & at which the numerical results in Figs. 5-7 were
obtained.

(4.29) into (4.23) yields a cubic equation for 2(z),

(z+€)2— e+ 1(2— 1) |24 [26%(z+ €)+ 3=
+1[0%(ze+16%)+€2]=0,

expressed in units for which w=1. Alternately, we may
invert (4.29) to obtain Z(z) as a function of
F(O)EZ"E(Z)];

2(z)=2—[F(a) '—iF(3), (4.31)

and then substitute (4.31) into (4.23). The result is a
cubic equation for F(z),

P — 3P4 [2— 33— 1) ]F— (¢ =0. (4.32)

Equations (4.30) and (4.32) may now be solved for
real 2, yielding for both either three real roots or one
real root and a complex pair. When (4.30) or (4.32) has
a complex pair of roots, the one in the lower half-plane
is the physical one, since it will yield a non-negative
density of states. When the roots are all real, the
physical branch must be identified from its asymptotic
behavior. The correct F(z) will tend to zero, and the
correct Z(2) to €, as z— Z=. In a gap between split
bands, continuity conditions isolate the correct root.

In practice, it is most convenient to solve Eq. (4.32)
for F(g), since F(z) never has a pole. Equation (4.31)
may then be used to obtain 2(z).

(4.30)

D. k-Independent Properties of the CP Approximation

This subsection and the next will consider the prop-
erties of the coherent-potential approximation. The gen-
eral properties of our single-band model, all derived
from (4.23), will be examined first, and then illustrated

VELICKY, KIRKPATRICK, AND EHRENREICH

175

by numerical examples in which we specialize to the
model density of states introduced in Sec. IV C. The
simpler k-independent quantities, 2(z), p(E), and
p4-B(E), are discussed in this subsection; the & depen-
dent properties, all developed from ®(k,2), are reserved
for Sec. IV E.

By developing the asymptotic properties of the self-
energy using Eq. (4.23), we may compare the results
of the CP approximation with the exact results given
in Sec. III B. Because Z(z)—e as |z|—o o,
|2—2(z) | >0, and F(z)=F©(3—2) may be expanded
in powers of (z—2)~! in that limit. This expansion may
be written with the help of (3.24) and (3.27) in terms of
the moments of the pure-crystal band in the form

F@) =Y po[2—2(@) T 7 k. (4.33)
If we substitute (4.33) into (4.23), and expand 2=(z) as
2(3)=etoz oo tor 0z, (4.34)

the ¢, may be determined by matching coefficients of
277 on both sides of Eq. (4.23). The resulting expansion
of the self-energy,

3(3) = et ay8? 51— ex 2+ (4 pa @)z
F (uz O — S—eua @)z 4]+ -+, (4.35)

is identical to order s~ with the exact result (3.34).
This procedure also yields the related entries of Table I.

The pole in 3(z) which appears near = —e in the
split-band limit, as found in (3.52), is also present in the
coherent potential approximation. To show this, we
express 2(z) in the form

2(z)=A(z—a)™? (4.36)

appropriate near z=¢ when the pole is present and
located at a. Since |3—2(z)|— near the pole, we may
use expansion (4.33) for F©@[z—Z2(z)] near z=a. Sub-
stitution of Eq. (4.36) and the first three terms of Eq.
(4.33) into Eq. (4.23) determines 4 and a. We find

2(z) = (xy8®—ps M) (z+€) 71, (4.37)

which is identical with the result, exact to order 62,
already given as (3.55). In the CP approximation, there-
fore, the pole appears at 'z=—¢, if at all, and does not
shift with « or 8. The requirement that Im=(£+10)<0
provides a (necessary) condition

2y82> 11 ® (4.38)

for the existence of the pole.

For numerical examples, we now specialize to the
model F©® given in (4.29) and present the results of
solving (4.30) and (4.32) for =(2) and F(3). The values
of x and & for which we exhibit calculations are indicated
by heavy dots in Fig. 4, which is just the upper left
quadrant of Fig. 1, enlarged.

Figures 5(a)-5(c) show the seli-energy 2(z) calculated
for #=0.1 and three values of 8. These cases, on the
vertical line in Fig. 4, exhibit all the varieties of be-
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havior to be found in 2(z) for general x and é. Figure 4 is
divided by dashed lines into three regions, each typified
by one of the Figs. 5. In the lowest, shaded region,
2(2) has a single cut along the real axis, and an unsplit
band results.?® In the middle region there are two cuts
(a split band), while in the top region a pole separates
the two cuts. One can show from (4.32) that, for this
choice of F((z), the condition (4.38) is also sufficient
for the appearance of the pole in Z(z). Since u®=1%
for the model density of states (4.27), the upper dotted
line in Fig. 4 is given by xy§2=1.

The simplest case is Fig. (5a), in which §=0.5 and the
band is not split. In the lower part of the band ImZ is
relatively small and Re2 nearly constant, although not
quite equal to e=0.2. This behavior is characteristic of
the virtual crystal limit. At the higher energies, the
impurities produce a rapidly varying ReZ and large
values of Im=. The increase in ImZ, indicating that
states near the top of the band are preferentially damped
by the impurities, is observed for the smallest values of
0 studied. Increasing & to 1.02, in Fig. 5(b), splits off a
sub-band, and the strongest damping occurs near the
gap edge of that impurity sub-band. The majority sub-
band for the most part displays the ‘“virtual-crystal”
behavior already noted in Fig. 5(a). For the largest &
considered, namely, §=2.0 in Fig. 5(c), Z(c) has a pole
at —e=0.8. Although the lower sub-band in Fig. 5(c)
is not very different from that of Fig. 5(b), ImZ in the
impurity sub-band has increased by a factor of roughly

The relation between Figs. 5(b) and 5(c)maybeunder-
stood in terms of the sum rules involving Im=. When
p® is given by (4.27), the sum rule (3.58) for the lower
sub-band, which is exactly valid only for large split-
tings, is nevertheless satisfied in the CP approximation
as soon as the impurity sub-band has split off. Thus
ImZ in the majority sub-band cannot differ markedly
in the two cases. Because the appearance of the pole
causes the integral of ImZ over the two bands to satu-
rate at the value —mu,® which is independent of &
[cf. (3.56)], ImZ in the impurity sub-band increases
rapidly with 8 only in the middle region of Fig. 4. For
the 6=2.0 characterizing Fig. 5(c), this saturation has
occurred, and the sum rule (3.58a) for the a sub-band
is satisfied as well.

We now turn to a discussion of the total and com-
ponent densities of states, p(E), p4(E), and p?(E), as
defined by (3.17) and (4.15). These quantities are
plotted?®® as Figs. 6 and 7, respectively, for three values
of §, all less than 1. For each §, results for a set of con-
centrations are given, with values of x spaced logarith-
mically to emphasize the transition from the dilute to
the nondilute alloy region.

2 This region was previously identified in Ref. 9.

26 The “three-dimensional” graphs of TFigs. 3, 6, and 7 are
tracings of machine output prepared with remarkably little effort
or expense on an IBM 7094 computer with Calcomp plotting
accessories,
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Fic. 5. The real (solid line) and the absolute value of the
imaginary (dashed line) parts of the self-energy in the coherent-
potential approximation calculated for *=0.1 and (a) §=0.5,
(b) 8=1.02, (c) 6=2.0. These correspond to points on the vertical
line in Fig. 4 and typify the three regimes. Note the changes of
scale in these three figures.

The restriction to small § was motivated by the fact
that the SSA is likely to be best when the two types of
atoms present do not differ too greatly. Under these
circumstances, the fluctuations due to the nearby en-
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F16. 6. Density of states calculated with the model p (E) given
by (4.27) in the coherent-potential approximation, for a variety
of concentrations along the lines (a), (b), and (c) of constant &
in Fig. 4; (a) §=0.25, (b) §=0.5, and (c) 5=0.75.

vironment, neglected in (2.19) to yield (2.20) and (2.23),
are most likely to be small. We show results for various
values of the parameter x because this corresponds to
the experimental possibility of making samples with
different concentration ratios.

Figure 6(a) corresponds to 8=0.25 and reflects be-
havior characteristic of the virtual crystal limit. The
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parameters used in these graphs are shown by dots on
the bottom horizontal line in Fig. 4. The only visible
effects of alloying are a concentration-dependent broad-
ening and shift of the band center of gravity given by
e=(x—v)d/2. In Fig. 6(b), §=0.5, and some distortion
of the band shape is evident. This distortion is localized
near the upper edge for small  and spreads over larger
portions of the band with increasing concentration. It
is most evident in the curves for £=0.05 and 0.16.

When § is increased to 0.75, then, as shown in Fig. 4,
an impurity band splits off the upper edge of the host
band. This is the situation considered in Fig. 6(c). The
width and height of the impurity sub-band are pro-
portional to 4/« for small x, and remain approximately
so until the bands merge. The integrated density in the
impurity sub-band is x within numerical accuracy in
the split-band region.

The results of these calculations differ from those of
the rigid-band model for alloys. This model has been
questioned on grounds that effects associated with
changes in the average crystal potential and broadening
due to fluctuations should alter the shape of the band
in the alloy.?"-?8 In addition, the rigid-band model as-
sumes that all sites are equivalent, as in a perfect crystal.
Its limited empirical successes? do not imply unique-
ness. In fact, a “minimum polarity’”” model which de-
stroys site equivalence by insisting on local charge
neutrality has proven successful in predicting several
electronic properties of NiCu alloys.?”

The first objection to the rigid-band model, that p(E)
is distorted, is clearly sustained by Figs. 6(a)-6(c). To
explore the inequivalence of the 4 and B sites, we must
calculate the component densities of states, p4(E) and
pB(E), given for the CP model by (4.15). These are
plotted in Figs. 7(a)-7(c), for the same values of &
and % as in Figs. 6(a)-6(c). The total density of states
is obtained from p4 and p? by

p(E) = xp4(E)+yp?(E).

Only p4, represented by solid lines in Fig. 7, contains
any sharp structure. By contrast, the behavior of p®
arising from the host atoms is much more like that in a
virtual crystal, particularly for small x. Accordingly,
the structure seen in the corresponding p is due to the
A sites. Even in the virtual crystal limit, Fig. 7(a), p4
is distorted, peaking at the higher energies. This be-
havior contradicts the rigid-band assumption that sites
are equivalent.

The quantities p4 and p? also provide insight into
the dilute alloy limit. Within the coherent potential
approximation it is true in general, according to (4.23),
that as x — 0, 2(z) — e Thus (4.15) leads to the limiting

(4.13)

( 2N, D. Lang and H. Ehreneich, Phys. Rev. 168, 605
1968).

%8 D. H. Seib and W. E. Spicer, Phys. Rev. Letters 20, 1441
(1968).

2 J, Friedel, Nuovo Cimento Suppl. 7, 287 (1958).
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forms

PB(E)= —7"1 ImF O (E— 84-10) = p (E—¢5) ,

pA(E)=—7"1 Im{FO(E— e8+410)
X[1—38FO(E—eB+4140)T1}.

The expression for p# is seen to be just the Koster-Slater
formula'® for the density of states at a single impurity,
whereas p? has become the unperturbed B crystal den-
sity of states. Figures 7(a) and 7(b) demonstrate these
low concentration limits. It can be seen in Fig. 7(c),
however, that the impurity band remains broader than
the 6 function predicted by the one-impurity Koster-
Slater model. This is a general result for any effective
wave theory, since the effective medium broadens an
impurity level at any concentration. Because of the
possibility of electron hopping between sites, some
broadening of the impurity level would be expected
at any finite concentration. However, the CP approxi-
mation overestimates this broadening by using effective
atoms, each of which possesses some impurity character
and facilitates hopping over short distances.

(4.39)

E. k-Dependent Properties of the CP Approximation

The preceding subsections have compared the CP
approximation with other single site approximations
and discussed its consequences for the k-independent
quantities, as, for example, the densities of states per
atom. This subsection will be devoted to a discussion
of the entire averaged Green’s function

§k,2)=[z—s(k)—2(2) I (3.9)

as calculated for the model density of states (4.27) in
the CP approximation. G(k,z) contains full information
about the one-particle properties of this model, and in
particular permits discussion of the quasiparticle ap-
proximation. In virtue of the properties of (G), the
quasiparticle states are Bloch waves |k). Because Z(z)
is k-independent in the coherent potential approxima-
tion, G(%,2) depends upon k only through s(k), which
ranges from —1 to 1.

We begin by plotting two numerical examples of
@(k,2) defined in (3.10). By (3.11), @(k,2) completely
determines G(k,2). In the first example, shown in Fig.
8(a), where £=0.05 and 6=2.0, x has been chosen
fairly small, and 6 large enough to guarantee that the
impurity sub-band has split off. We expect that in the
spectral density two kinds of excitation will appear, one
related to the plane-wave-like eigenstates of the pure B
crystal, the other to the impurity states. In Fig. 8(a)
this occurs: For each %, represented by the correspond-
ing s(k), there are two peaks in @(%,3). The lower peak
has a quasiparticle character, being well localized in &
space as well as in energy, and having a generally
Lorentzian shape except at the band edge. Its center
moves to higher energies as s(k) increases. By contrast,
the upper peak of @ does not shift with s(&) and the
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F16. 7. Component densities of states, p4 (solid lines) from the
minority sites, and p?(dashed lines) from the majority sites, as
dz(aﬁ)ned in (4.15). Values of x and 4 are the same as in Figs. 6(a)-
6(c).

shape of @ is quite different. The flatness of the upper
sub-band in % space and its extent over the entire band
is that expected of states localized in coordinate space.
The strongly damped, non-Lorentzian character of the
states is consistent with the behavior of =(z) shown in
Figs. 5(b) and 5(c).

It is interesting that this behavior in @ is also ex-
hibited when 6 is decreased to 0.75, x=0.15 [in Fig.
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8(b)7, and the impurity band is no longer split off. As
before, quasiparticle behavior is evident near the bottom
of the band, but this is disturbed very strongly in the
vicinity of s(k)=1. In contrast to Fig. 8(a), however,
the influence of the impurity extends only over a smaller
portion of £ space. This greater localization in % space
of the states associated with e4 implies a greater degree
of delocalization of the states in coordinate space. This
behavior of course is just that to be expected as ¢4 and
8 move energetically closer and the concentration of B
sites increases, thereby making hopping between them
easier.

We should expect the qualitative quasiparticle be-
havior discussed above to coincide with the appearance
of poles in the continuation of G(%,2) into the lower half
z plane. Such poles will be located at z given by

z—2(zg)=s(k). (4.40)

To determine z, (4.40) may be substituted into the
continuation of (4.23). The resulting quadratic equation
for 2 is easily solved. For xy6? small, the physical root is
given by

21k~ e+ 5s(B)+2ySFO[s(k)+i0].  (4.41)
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As xy82— 0, this root tends to the virtual crystal
eigenvalue e+s(k). Thus we may interpret z:(k) as a
quasiparticle energy. The other root has no clear re-
lationship to the structure of Q(%,E). In particular the
impurity region of the spectrum is not associated with
a pole. This is an expected result, since the impurity
region of @(k,E) shown in Fig. 8 was non-Lorentzian.

Unfortunately, when xy8? is not small, neither pole
may have a clear interpretation. This could represent
a breakdown of the quasiparticle concept for strong
coupling. More likely, it is the nature of the coherent
potential approximation which limits the identification.
We have not been able to resolve this ambiguity.

The difficulties of interpreting the most detailed
single-particle properties that result from the CP ap-
proximation represent no bar to the calculation of
grosser physical quantities which bear more directly
on observable properties of the system. One important
example is the distribution function of Bloch states in
the bands, which proves to be rather insensitive to the
fine details of @(k,E). At 0°K, the Fermi energy is
determined by the equilibrium electron concentration
per atom and per spin, ¢, according to

EF

/.

The average occupation number for each Bloch state is

o(E)IE. (4.42)

Erp

my=| dEG(kE). (4.43)

—00

As before, (n;) depends on % only through s(k), and
therefore is constant in & space on surfaces of constant
s(k). Accordingly, it sufficies to consider (nx) as a func-
tion of s(k). Figure 9 shows such a plot for various values
of E, and the same § and « as in Fig. 8(b). In contrast
to the behavior characterizing the & dependence of the
Fermi distribution at 0°K in the pure crystal, quasi-
particle broadening effects prevent the (nx) of Fig. 8(b)
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Fic. 9. Distribution function (#,) at T=0°K versus s(k) (hori-

zontal axis) and Er (slanted axis), for §=0.75, x=0.15 as in Fig.
8(b). The origin of the Er scale is at the bottom of the band.
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from falling off abruptly. As an aid in visualizing the
degree of broadening, the results corresponding to the
pure-crystal limit have been sketched in the inset. In
this limit

(n)=0, s(k)>Ep.

The localized impurity state clearly visible in Fig. 8(b)
near the top of the band produces only extra broadening
of the distribution function near the top of the band.
The width of () obtained in Fig. 9 increases from about
5% of the bandwidth near the lower-band edge, where
the peaks in @(k,E) are quite narrow, to about 309,
near the upper edge.

(4.44)

APPENDIX A: PROPERTIES AND EXAMPLES
OF SYMMETRIC BANDS

We define symmetric bands as those for which a

vector « exists such that
s(k)=—s(k+x), forall k. (A1)

A direct consequence of (A1) is that the crystal density
of states is symmetric,

pO(E)=p®(—E). (A2)
The symmetry of G implied by (A1) is
g(kyzlx}a): _9*(k—K) _Z*lx, _6) . (A3)

From this equation together with (3.19), Egs. (3.20)
and (3.21) are obtained.

From (A1), it follows s(k+2«)=s(k) so that « is half
of a reciprocallattice vector. Although symmetric
bands are rare in nature, they appear in the simplest
cases of nearest-neighbor tight-binding approximation.

For example, in the simple cubic lattice,?

s(k) =%}(cosk,a+cosk,a+cosk.a)
and k= (r/a)(1,1,1). In the bcc lattice,
s(k)=cosik,a cosik,a cosik.a

and = (2r/a)(1,0,0).

APPENDIX B: COMPUTATION OF (HY)
Using (3.2), we write

()= (D))= D7)+ DW=+ - -+ (W'2). (B1)

Each of the 27 averages is performed separately. This
can be done for small p. The following examples, relating
to p=4, illustrate the procedure used. Properties of D
and W described in Sec. III A, in particular, (3.1) and
(3.6), are employed as well as definitions (3.27), (3.28),
and the useful identity

15%= e xyd?. (B2)
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The Wannier representation is used:

(<D4>) nm= <5n4>6nm= ([%6]41)"7" )
(DWW ) nm= (e Ynm= (e[ F81*W ),
(<DWDW>)nm= Z q¢7n<6n5q>tn alam
= (W) am,
((DW2D>) nm™= <5n6m>(W2) nm
= (224 xy8%u2 1) nm.

Averages appearing in (A4) for any p less than 7 may
be determined in the indicated way. For higher p cor-
relation of several sites becomes important and the
results are not obtained in the simple way shown above.

APPENDIX C: IDENTIFICATION OF EQ. (4.24)
WITH HUBBARD'’S THEORY

The third of Hubbard’s papers on electron correla-
tion in narrow bands deals with the so-called alloy
analogy: If one regards the down-spin electrons as
fixed to randomly distributed sites, the motion of the
up-spin electrons is identical to the motion of electrons
in a model alloy system equivalent to that treated in
the present paper. Part 4 of Ref. 13 deals with the
“scattering correction,” i.e., with the related alloy
problem. Hubbard’s approximate solution is given in
Eqgs. (37)-(40). Here, the dictionary is given which
translates Hubbard’s notation into that used in our
paper.

Gy (E) — (2m)7'G(k,2)
Gi’(E)— F(3),
Fy(E) —z—2(2),

ek_TO_)S(k);
Nt X, e —>ed,

g =7y, e —>eB,

I—54.

With these identifications, it is straightforward to show
that Hubbard’s Eq. (38) is identical to our Eq. (4.24).

APPENDIX D: CONSTRUCTION OF A BAND
CORRESPONDING TO A GIVEN p©®

The dispersion law s (k) corresponding to a given
p@ is not determined uniquely. The function s©(k)
should be analytic and periodic in % space. We try to
obtain s (%) by deforming an arbitrarily chosen single
band appropriate to a given crystal structure. Its dis-
persion law and density of states are denoted by s(&)
and p(E) respectively. The correspondence of s and
s is assumed to have the form

sO (k)= oLs(k)].

The isoenergetic surfaces in %k space are not deformed
by (D1): The two surfaces

(D1)

s(k)=n=const,
(D2)
sO(k)Y= ¢(n) = const
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coincide. Therefore,

e(n)

()= / “amam)= [ dBoE). (D3

—0 —0

This is an equation for ¢. The function »(5), the inte-
grated density of states, increases smoothly from 0 to 1.
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If p®(E) is continuous, (D3) determines a unique
smooth monotonic function ¢. The s®(k) given by(D1)
is then periodic in %k space and smooth although in
general not analytic: The second and higher derivatives
may be discontinuous at critical points of both p and
p®. In practice, however, it is possible to fit s (k)
by an analytic function.
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Second- and Third-Order Elastic Constants of Alkali Metals*
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The second- and third-order elastic constants of lithium, sodium, potassium, and rubidium in the body-
centered cubic structure are calculated. The relationship between Brugger elastic constants and Fuchs
elastic constants is worked out. The Brugger elastic constants, which are defined as the derivatives of the
energy with respect to the Lagrangian strain, are widely used to express experimental results. The Fuchs
elastic constants, which are defined as the derivatives of the energy with respect to homogeneous expansion
and volume-conserving homogeneous shear, are often more convenient for calculations in terms of atomistic
considerations, and are particularly convenient for calculations with pseudopotentials. They are used here
to calculate the contribution of the band-structure energy to the elastic constants using the local pseudo-
potential proposed by Ashcroft. This pseudopotential contains the core radius as the only adjustable param-
eter. The contribution of the band-structure energy to the elastic constants is represented as a summation
of two kinds of derivatives of the wave-number characteristics over the reciprocal lattice points—those with
respect to homogeneous expansion and those with respect to volume-conserving homogeneous shear. The
core radius which gives the best fit to the experimental second-order elastic constants agrees with that
determined by Ashcroft from data on the Fermi surface or on the resistivity of liquid metals. The band-
structure energy term is found to make a small contribution to the second-order elastic constants but an
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indispensable contribution to the third-order elastic constants.

I. INTRODUCTION

HERE are two methods for calculating the second-
order elastic constants of a crystal: the method

of homogeneous deformation and the method of long
waves. One should be able to calculate the second-order
elastic constants using either of the two methods! and
the results obtained should agree with each other if the
same model of the crystal is used in both cases. Fuchs?*
calculated the second-order elastic constants of alkali
metals by the method of homogeneous deformation and
obtained a satisfactory comparison with the data avail-
able at that time. However, more recent calculations®7

* Supported by the U. S. Atomic Energy Commission under
Contract No. AT(11-1)-1198.
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of the second-order elastic constants of alkali metals
have been mostly carried out by the method of long
waves, except for the calculation of bulk moduli by
Ashcroft and Langreth.?

Ho and Ruoff® based their calculation on a quite
different model of an alkali metal which includes closed-
core interactions instead of the free-electron energy.
Therefore, their results cannot be directly compared
with the present calculation. Shyu and Gaspari® calcu-
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