
The agreement obtained with Gurevich indicates that
the simpli6cation of the Soltzmann equation obtained
by replacing y by y,„is a valid approximation for large
magnetic 6eld and may be of value in other contexts.
It may be noted that the physical geometry of the
crystal was essentiaQy summed out of the problem by
the operation of averaging C over the sample cross

section. This technique may be used to treat cases of
6nite sample geometry with spherical energy surfaces
if the averaging can be carried out over the cross
section of the crystal. In addition the ellipsoidal-energy-
surface case may be treated in this manner if the
crystal boundaries map into a reasonable geometry
under the Ham-Mattis transformation.
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%'e consider a magnetic dilute alloy system. The interaction between the localized magnetic moment and
the conduction electrons is described by an s-8 exchange Hamiltonian. The transverse susceptibility of the
impurity spin is calculated in a Green's-function formalism. Sy employing the Wick and linked duster
theorems for spin systems developed by Wang and Callen, @re have been able to analyze the Green's function
diagrammatically. ln the high-Geld low-temperature region (pH»kT) a partial summation of the main
diagrams and lock diagrams gives, in addition to diagrams with self-energy structure, a set of diagrams arith
terminal parts. We have calculated the self-energy and the terminal function to the third-order in E(0)J,
where ii(O) is the density of states at the Fermi surface and J is the exchange parameter. It is shown that
there is a lnH g shift in the resonance frequency, and an HlnH correction to the analogous Korringa line-

width (which is linear in H). The magnetization is also calculated and is consistent with the earlier pertur-
bation calculation.

L INTRODUCTION

MREAT interest has focused on the physics of~ dilute alloys containing magnetic impurities. Since
Kondo's discovery of a lnT term which explained the
low-temperature resistance minimum, similar loga-
rithmic terms have been found in perturbation theory
for the magnetization. "Recently, Spencer and Doniach
reported the calculation of a logarithmic shift of the
electron-spin-resonance g factor of the impurity' and
Langreth t,$ al.' analyzed in more detail the transmission
paramagnetic resonance. Here we report a related per-
turbation theory calculation of the dynamic suscepti-

bility of the impurity spin for the high-6eld low-temper-

atule legion p~pkT. We 6Qd 1Q addition to a 1QH shift
of the g value, that lno terms appear in the linewidth

and amplitude of the dynamic susceptibility. Implicit in

these calculations is the assumption that the relaxation
rate of the conduction electrons is much faster than that
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of the impurity spin. In the absence of a conduction-

electron spin-lattice coupling the conduction-electron

spins follow the impurity adiabatically, and these ex-

change-induced e6ects vanish for equal g values of the
conduction-electron and impurity spin.

A zero-temperature theory of this same system has
been given by Giovannini and Koide' using a diagram-
matic method derived from multiple contraction of spin
operators. They considered only one class of second-
order self-energy diagrams and did not obtain any of the
logarithmic corrections. Spencer and Doniach, 4 using a
drone-fermion representation for the impurity spin,
summed an additional class of second-order self-energy
diagrams and obtained a logarithmic shift in the g
value. However, they did not coBect all terms in this
order. Here we use a diagrammatic method based upon
Schwinger's coupled-boson representation of the spin
operators and the %ick-like theorem developed by
%'ang and CaBen. ~ 8 This allows the spin Green's func-
tion to be expressed in terms of a self-energy and a
terminal function, each of which can then be calculated
in perturbation theory when IJB&&kT. The consistency
of this procedure is checked by evaluating the mag-
netization and comparing with the known perturbation-
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theory results. In addition, for spin -'„ the sum rule

(S+S-)+(S-S+)=1
ls vcr 16ed.

Before describing the detailed calculation, vre sum-
marize our results. The transverse dynamic suscepti-
bility of an impurity of spin S can be expressed in the
form

X(~)=2S(1+~)/[p —pio —2SZ(~)g. (1.2)

Here ~0 is the Zeeman energy 2ygH, Z is an irreducible
self-energy part, and A is the terminal function.
Throughout the calculation, the bare g values of the
impurity and the conduction electrons have been set
equal to 2. We have calculated the self-encrgy and the
terminal function through third order in the exchange
interaction. The results are that the peak of the imagi-
nary part of x(pd) is shifted from the noninteracting
value coo to

P (0)~
(1.4)cd „=cop 1+

1—X(0)J In(pip/D)

For antiferromagnetic coupling (J&0), this diverges
vrhen the magnetic Geld is reduced to a value determined
by

gpgH= D exp[1/($(0) J)g, (1.5)

and, in fact, becomes negative even before this. This is
symptomatic of the failure of perturbation theory for
fields such that gpiiH/ks is of the order of the Kondo
temperature. The imaginary part of Z gives rise to a
linewidth

~,=ppo{1+pE(0)J+2PN(0)2'1' 1n(~o/D)
+4[-',1V(0)J'jo lno(pdo/D) }. (13)

This form suggests a geometric series vrhich vrould sum
t.o

This is in agreement with previous calculations, o and has
the same divergent form as the expression for co, given
in Eq. (1.3).Finally, for spin pi, the sum rule Eq. (1.1) is
checked. In both the magnetization and the sum rule,
the presence of the terminal correction plays an
essential role.

In Sec. II vre brieQy revievr the Wang-Callen for-
malism as it applies to the impurity problem. The
susceptibility Green s function for the impurity is ex-
pressed in terms of self-energy and terminal functions.
In Sec. III, calculations of the Grst- and second-order
contributions to the self-energy and terminal functions
at zero temperature are discussed and the results
through third order are summarized. Ke conclude by
formally extending these results to Gnite temperatures
and note that the high-temperature form of the resulting
expression for the static susceptibility agrees vrith the
known perturbation-theory result.

II. DIAGRAMMATIC REPRESENTATION OF THE
IMPURITY SUSCEPTIBILITY

The dynamics of a single localized impurity of spin S
interacting with the conduction electrons in an external
magnetic Geld H vrill be described by a Hamiltonian

(2.1)

Here Ko is the sum of the electron quasiparticle energies

ops= pp+pgPO'~ 0'=+1)
and the Zeeman energy Me= 2',~H of the impurity spin

(2.3)

For the purposes of this analysis, the coupling betvreen
the impurity and the conduction electrons will be
vrritten as a simple point-contact exchange interaction

1'=2Spr[-', E(0)Q'a&p[1+4 -',E(0)J ln(pdp/D) j, (1.6) 3'.i= —siJ P S Cp„tpr„,Cp„ (2.4)
vrhich has the expected logarithmic contribution in
third order. This departure of the linear dependence of
the linewidth on the magnetic Geld is the main feature
of the third-order calculation. For antiferromagnetic
coupling the logarithmic term enhances the broadening,
especially at lovrer Gelds. On the other hand, for
ferromagnetic coupling, the lincwidth is reduced. The
terminal correction is given by

h.=2[pS(0)Jj' 1n(idp/D)+8[-;N(0) Jlo 1no(pop/D) (1.7)

and corresponds to a reduction in the cGective strength
with vrhich the impurity moment couples to the
transverse magnetic Geld.

Using Eq. (1.2) for X and the perturbation calculation
of Z and h., the expectation values(S+S ) and(S S+)are
directly evaluated. From these, the expectation value of
the magnetization is obtained:

2pii(S*)= —2psS{112[-',E(0)Jj' In(pop/D) .

+4['pE(0)Jjo lno(pdo/D) }. (1.8)

5+=St@
q

8 =sv~
S'=-,' (ptp —Ntl) = —S+ptp.

(2.6)

' B.Giovannini, R. Paulson, and R. Schrie8er, Phys. Letters 23,
517 (1966).

Rh', ps'

where J is the exchange coupling and (~„„);are the Pauli
matrices. The transverse susceptibihty and the mag-
netization of the localized impurity can be determined
from the spin Green's function:

G«) =-'«IP~(~)S (0) i0).
Here ~0) is the true ground state of the interacting
system, the spin operators are in the Heisenberg repre-
sentation, and E is the Dyson time-ordering operator.

In the linked-diagram method of Wang and CaQcn,
the spin operators are expressed in terms of Schvringer's
coupled-boson operators:
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(0) (b)

RIll 3(oo ) has the usual form

$(~)=E exp —s chic, (f) . (2.11)

(e)

Fxo. i. The simple interaction vertices for a localized impurity
of spin S in the conduction electron sea. Solid lines represent e
propagators (spin propagators). Dashed lines represent electro~
propagators. The vertical wavy lines represent interactions. The
diagrams (a) and (b) with a cross arise from the 6rst term in the
interaction Hamiltonian X& of Eq. (2.8). Note that only s propa-
gators are drawn. The I operators are taken care of implicitly by
constructing the lock diagrams.

An expansion in powers of K~ gives various terms
which can be represented by diagrams. As is usually the
case, calculating with the final formalism is easier than
explaining it. Since the details of the formalism are
given in Ref. '7, we will simply illustrate some features of
the method as it applies to the present problem. Let us
focus on a second-order term in Kq. (2.9),

Xut(t)u(0)e(ft)ut(ft)et(fs)u(fs)

2 (—V)'(—')'(oIf' (f) '(0)
Here the last equality follows from the auxiliary»'rr'
constraint

(2.'7)

which is equivalent to the condition Ss=S(S+1).The
I's and e's are operators which satisfy boson commuta-
tion relations. Writing the Hamiltonian in terms of the
e and e operators we have

3.o=Z ea~ca~tca~+&octo —oteS
&

kr

Kt=-,'J Q L(—8+ate)(cattca. t —Cay"Ca. g) (2.8)

+etuca ttca~ t+eutca ttea~ 4j ~

Invoking the usual "adiabatic turning-on theorem" for
the efr'ect of the perturbation X~ on the ground state
and applying the linked diagram theorem for spin
operators given in Ref. '7, the spin Green's function can
be expressed in the form

6=—
s&OI Pe(f)et(0)ut(f)u(0)S(~) IO) ...„~. (2.9)

et(f) =e'""vt(0),
e (t) = e '~"e(0),

ut(f) =ut(0),

u(f) = u(0),

(2 10)

Here I0) is the unperturbed ground. state of Xe, the
time dependence of the u(t) and e(f) operators is de-
termined by Xo,

xcst'(ft)cs t(4)c„~t(fs)c,.t(4) I0&. (2.12)

This can be rewritten as

Z (—:»(-)&0l»(f)(0) «.) (f.)l0&
kk'py'

x&0 l Tut(f)u(0)ut(f, )u(f,) lo&

x&0I rc, tt(f,)c,.~(f,)c,~t(f,)c„.t(f,) Io), (2.13)

where we have replaced the Dyson's chronological
ordering operators by Kick's chronological ordering
operators. For Bose operators the two types of chrono-
logical operators are identical, while for Fermi operators
this replacement ls also )ustl6ed since the Fermi
operators always occur in pairs. Then it is obvious that
to each product one can apply the conventional Yak's
theorem which breaks the whole product into product
of contracted pairs. However, as shown in Ref. 7 it is
more convenient to treat the product of I operators
specially. Instead of applying Wick's theorem to the
chronological product we evaluate it directly as a
numerical "u factor. "This procedure is suggested by the
fact that the e operator carries no energy and that the
u operators are always introduced with the tt operators
so that one can easily read the I, or u~ operators from the
diagrams drawn for the e operators. Applying Vhck's
theorem to the e boson and the fermion parts of Eq.
(2.13), it becomes

-2(-lJ)*(- )'&0IT '(f).(0) '(f ) (f ) I0&

(o)

i=~-3
(b) (c)

x(&0l »(f)et(f.)10&&0l »(f.)"(o) I o)

+«I2' (f)"(0) Io&«I2 (f )"(t.) Io&)

x(o I
2'c»(is)cat'(f t) I0&

x(0I T'c, &(ft)c,~t(f,) I0). (2.14)

(e)

FIG. 2. Dependence of the diagrams on the weight associated
with the ordering of the e propagators. Diagrams (a) and (b) have
weight factor (25)' while diagrams (c) to (f) have weight factor
2S(2S—S).

Here the extra minus sign arises from the rearrangement
of the Fermi operators.

This can be represented diagrammatically by im-

agining that the horizontal axis measures time increasing
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from right to left. The s propagator (0l Ts(/) vt(ts) l 0) is
represented by a solid line drawn from the point t2 to the
point t. The electron propagator (0 l est (4)Cs I t(4) l 0)
is similarly represented, by a dashed line drawn from tj
to f2. Finally vertical wavy lines are used to represent
interactions. The basic vertices associated with Xj are
drawn in Fig. 1.Taking the 6rst term in Eq. (2.14) and
assuming t&t2&t~&0 we draw a diagram as shown in
Fig. 2(a). Recalling that l0) has 25 u particles and. no
e particles, the e factor for this time sequence reduces to
(Olutuu&ulO)=(25)'. On the other hand, when t&tI)is) 0 wc obtarn thc diagram sl1owll 111 Flg. 2(c), and
the u factor is (OlututuulO)=25(25 —1). It is im-
mediately clear that whenever the two e propagators
overlap in time, as shown in Figs. 2(c)—2(f), the u factor
is 25(25—1) while the non overlapping Figs. 2(a) and
2(b) have u factors (25)'.

The dependence of the diagrams on the weight as-
sociated with the ordering of the e operators is an
undesirable feature since it requires that the time
integrations be done over the restricted time intervals
whose number, in higher order of perturbation theory,
increases catastrophically fast. This difhculty can be
circumvented by 1ntloduc1ng Inain diagrams in which

(a)

FIG. 8. Lock diagrams. To remove the dependence of the weight
of the diagrams with diferent orderings of the e propagators, a
"main diagram" in which the time sequences of the propagator
terminals are arbitrary is introduced with axed weight (25)'. Then
to compensate the incorrect weight given to the diagrams with
ordering of o propagators shown in Figs. 2 (c) to 2(f), we introduce
these lock diagrams with time sequences of the e propagators re-
stricted as shown and bearing a weight of —25.

the time sequences of the propagator terminals are
arbitrary and the I factor is 6xed at its maximum value.
Then to compensate for the incorrect weight given to
certain time orderings, an additional set of "lock
diagrams" are introduced. . These are represented. by
putting a small circle on overlapping e propagator lines
and are given the appropriate weight factor to correct
for the error made by using a 6xed, weight factor in
evaluating the main diagram. The time sequences of
these lock diagrams are restricted. However, as shown in
Ref. 7 the lock diagrams can be summed to obtain
anally, an unrestricted set of diagrams. Here we illus-
trate this for the second-order diagrams. Figure 2(a)
forms a main diagram, and the associated, lock diagrams
LFigs. 3(a)-3(d)j are obtained by putting a small
circular "lock" on the overlapping e propagators shown
in Figs. 2(c)-2(f). Note that the time sequences of these
lock diagrams are restricted, as shown in each diagraIn.

(b)

( ) ( )

FIG. 4. A second type of contraction gives main diagram (a)
and the associated lock diagrams (b) to (e). Diagram (a) is un-
linked and has no contribution to the Green's function.

+

(c) {e)

+ f

(e)

+

FIG. S. A partial summation of lock diagrams removes the
restriction of time sequences of the terminals of the e propagators.
In addition to diagrams with self-energy structure, terminal
diagTams appears as ls character&&tie of spin systems.

These diagrams are weighted by a factor (—25) so that
when they are combined. with the main diagram the
correct "I factor" weighting is restored. Similarly, the
second type of contraction of the v operators given in
Eq. (2.14) reduces to the diagrams shown in Fig. 4.
Since only linked diagrams contribute to G, the main
diagram Flg. 4(R) Is drscarded.

In order to remove the restrictions on the lock
diagrams they are regrouped as shown in Fig. 5, where
diagrams (a) and. (b) are summed to diagram (A) and
diagrams (c) and (d) are summed to diagram (8). In
this form there are no restrictions on the time ordering
of the vertices. The structure of the diagram (8) in
Fig. 5 is characteristic of the spin problem. It has what
we will call a terminal part. The other lock diagrams are
combined in a similar way. The partial summation of
the lock diagrams thus generates a new set of diagrams
which has the form of the conventional diagrams aside
from a new set of "terminal correction" diagrams.

Ke now proceed to a summary of the rules which
Rllow us to evRIuate the diaglamxnatic pel'tu1'bRtlon
expansion of iG in a systematic manner.

(1) With each spin line associate the function sGs
=s25(ro —oIs+$8) ~ Hcl'c oIs= 2IIsg RIld 5 ..Is R~JBosltlvc
in6nitesimal.
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FIG. 6.The 6rst-order diagrams.

(2) With each electron line associate the function
i(&e—e~ +Q„) ', where eq, is given by Eq. (2.2) and 8„
is an in6nitesimal having the sign of or.

(3) With each transversal interaction line (i.e., spin-

Qip) associate the factor ~2iJ.

(4) With each longitudinal interaction line (i.e., non-

spin-fhp) associate the factor (i/2S) (J/2)o; where ~= 1
(or —1) for the interaction of local spin with an up (or
down) spin electron.

(5) The external-fieldlike vertex )Figs. 1(a) and

1(b)j which arises from the first term in the interaction
Hamiltonian is represented by a cross and a longitudinal
interaction line. We associate with the cross a factor
—2S'o, where a =+1 as in rule 4.

(6) The grouping of the locked diagrams gives rise to
a set of diagrams with "triple points" where three so]id
lines meet together. We associate with each triple point
a factor —2/(2$)'.

(7) Associate with each internal closed electron loop
a factol —i.

(8) Sum over all electron momentum and. integrate
over all free-energy variables. In carrying out the
summation over the electron momentum we will use a
constant single-electI'on density of states ovel R sym"
metric energy band ( D to D) about t—he Fermi energy.

As we mentioned earlier, the grouping of the lock
diagrams not only enables us to reveal the self-energy

portion of the propagator but also leads us to discover
the set of terminal correction diagrams which have no

analogue in the usual fermion or boson case. This set of
terminal diagrams turns out to be particularly im-

portant in the evaluation of the magnetization and. in

satisfying the sum rule, Eq. (1.1), for the spin operators.

Physically, the terminal corrections correspond. to a
renormalization of the effective transverse spin pro-

jection due to the interaction with the conduction

electrons.
To suD1 the diagrams we proceed as follows: Fll st we

construct a Green's function 8 by summing the classes

of diagrams which have the usual Dyson structure so

0=Go+GpZC, (2.15)

where Z is und. erstood, as the sum of the irreducible self-

energy parts in the usual sense. %e then note that for
each of these diagrams there exist corresponding dia-

grams with terminal parts. Therefore, the total Green's

function is obtained by collecting these additional

dlagl Rms
(2.16)

where h. is the sum of all terminal parts. As we discussed, ,
4 contributes to a renormalization of the response of the
impurity moment to the transverse magnetic Beld.
Having obtained the form for G given by Eq. (2.16), the
perturbation calculation reduces to evaluating Z and. A.

to R given ordel ln Xl.

HI. PERTURBATION CALCULATION OF X AND A. .

The 6rst-order self-energy diagram is shown in Fig. 6.
According to the rules given in Sec. II, the contribution
to the self-energy from this diagram is

1
Zo& = —x2JN(0)—Q

25

4d
dip

2%'$ M Eye+$8(y .

gN(0)—J 2p~P—. (3.1)
2S

There is no terminal correction so that in this order

2S
G((o) =

(»—~DL1+ yN (0)J$+9
(3.2)

and the resonance frequency is shifted, from coo to
a&0/1+-,'N(0) Jj. In this order the matrix elements

~ko
(S 5+)= — —ImG((o)

0 'F
(3 3)

0 eke
(S+S )= — —ImG(s)) (3.4)

are simply evaluated and we find (S S+)=2S and
(S+S )=O. Therefore the magnetization is —2p~S and
the sum rule Eq. (1.1) for spin ~ is trivially satisfied.

Proceeding to the second order, one finds the four
self-energy diagrams and the one terminal correction
shown in Fig. 7. Again, using our rules, the contribution
from the self-energy diagram /Fig. 7(a)j is

BN(o)Jj'
tie

Ap
2gi

x
Cd +CO—6pg+$8(y'+(y ld 6@& $+$8y)&

=L;N(0)Jy4Din2 —~~PN(0)Jj*[ ). (3.5)

Here, terms of order gN (0)Jj' '/D have been dropped.
In the same way, the contributions from the remaining
self-energy diagrams 7(b) to 7(g) are evaluated. Com-
bining them, we find in the limit &o/D((1 that

Combining this with Eq. (2.15) we. obtain
!

G= (1+3)/(G0 '—Z) (2.17)

1 NO
Z&» =—pN(0) Jj'2~, ln—~p,'N(0)Jj'~[ (. (3.6)

2S D



The terminal diagram shown in Fig. 7(e) contributes X X

B
A."'= (—1) Poo/(0) Jj' dog

(2S)'

(2S)'

27I' (oo xoo+x5) oo —
o& o+Qzii

(e)

X . (3.7)
co +oo opt+f8~~+(gIi

Carrying out the integration, A.o& reduces to

A@&=2L:,'N(0) Jj' ln(ooo/D) . (3.8)
Fn. 7. Second-order self-energy diagrams and the

terminal diagram.Therefore, the Green's function to second, order is given

In ord.er to check the consistency of our second;order
calculation we turn to an evaluation of the matrix
elements (S+S ) and (S S+). Inserting the spectral
freight,

(3.9)G(xo) =
6 -1 y(1) y, o)

The dynamic susceptibilityx(&o) is equal to G(xo+N+).
Thus foI' posltlvc VRlucs of M, thc susceptibility to second
ordcl ls given by (2S)'(1+~)LP'(0)Jl I I——ImG(xo) = (3.14)

( — )'+PÃ(0)Jj&(2S)'oo'
2S(1+h.o&)

x{o))=
xo (o)+oT(o)

(3.10)

into Eqs. (3.3) and (3.4) we obtain

~„&»=~oL1+-,'X(0)J+2PX(0)Jg'ln(~o/D) j, (3.11) (s s-&=-(») L'~(0)» ~(-./», (3.15)

(S-S+&=2S+2S(2—2S)Bali(0)J3»( o/D). (3.16)
P'& =25$-,'X(0)Jfm2paH,

A&'& =2[-,'X(0)Jj' in(&oo/D),

(3.12)

(3.13)
Thcrcfore~

and, I'&') has been evaluated at au=~„—2pgK The
lcsoDRQcc fI'cqucDcy of thc lIQpurlty splD ls shifted ln
the second order by a log term in magnetic 6ej.d. The
logarithmic term in the g shift is similar" to that re-
ported by Spencer and. Doniach. 4 In addition, we And

that the amplitude of the susceptibility is modified.
V{2) is the half-width and is linear1y proportional to the
applied magnetic 6eld. This is just the analog of the
Korringa broadening" at zero temperature, where coo,

the Zeeman energy, takes the place of kT. However,
there is diGercncc of thc line broadening due to the T~
process considered by Korringa and that due to the
T2 process calculated here. In case of kT»gpgH, the
thermal Quctuation washes out the anisotropy intro-
duced by the Zeeman term in the Hamiltonian, and Tq
is equal to Tj as expected. . On the other hand, when
kT(ggIJ, ~H VM 6nd

(S*&=l((S'S-)—(S S'&)
= —S{112HE(0)J7 In(coo/D)}, {3.17)

which is consistent arith the static calculation by
Giovannini, Paulson, and SchrieEer9 for 5=~. The sum
rule for 5=-,',

( ) ( (3.18)

is also veri&ed by adding Eq. (3.15) and Eq. (3.16).
This provides a fuxther check on the form of the
calclgatcd GlccQ s function Rnd thc I'csultRDt sUs-
ceptibility X. |Ate note that both of these results can only
be obtained by including the terminal vertex correction
diagram which ls unique to thc splQ problems.

There are a large number of third-order diagrams, but
their evaluation is straightforward. Applying the rules
given in the above section vrc have evaluated RH the
self-energy diagrams and the terminal vertex parts.
Retaining only the most singular terms and evaluating
Z at co„@re obtain through third order the following
resonance frequency and linewidth parameters:

1/2 o——2' t'-,'Ã(0)J1'gga8',

compared %'1th

1/T, =41xQE(0)Jfgy aH.

&o,=xoo(1+',E(0)J+2t ax%(0)Jjo
)&ln(coo/D)+4pN(0) Jj' in'(coo/D) }, (3.19)

1'=2SPg lit'(0) Jj's xoof 1+4I sE(0)Jg ln(xoo/D) }. (3.20)

1o If ~o is replaced by kT in the argument of the logarithm, this
result differs by a factor of 2 from that reported by Spencer and
Doniach but agrees gath that obtained by Langreth, Co@ran, and
VA'kins.

xx J.Koxxinga, Phyoica 16, 609 (1980).
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(e)

(b) (c)

compared with the Kondo energy D exp —[1/(1V(0)J)7.
Using the Matsubara temperature ordered Green's
functions, a similar analysis for spin —, can be carried out
at Gnite temperature. However, the regrouping pro-
cedure for the half-overlapping diagrams is accurate
only to order exp ( 2p&H—/kT). This approach is there-
fore restricted to the low-temperature high-magnetic-
Geld regime. However, it is interesting to note that if
we formally replace coo by kT in the argument of the
logarithmic functions we obtained the high-temperature
results to logarithmic accuracy. We briefly il]ustrate
this, for 5=-,'.

(g)

Fio. 8. Third-order self-energy diagrams which give the ln'II
shift in the resonance frequency and an H lnH correction to the
linear II dependence in the linewidth.

(1+A) tanh (P&u„/2)
x +(a))=

Cd —Gl ~+Zr
(4.1)

The relevant diagrams are shown in Fig. 8. Where
diagrams (a) to (f) give the In'(&up/D) shift of resonance
frequency and. diagrams (g) to (j) give the tap ln(ppp/D)
correction to the linewidth.

The magnetization can also be calculated, and to the
third order of E(0)J we find

(S*)= —S{1+2[-,'X(0)17' In(ppp/D)

+4[-,'E(0)J7' ln'((op/D) }, (3.21)

which is consistent with the earlier perturbation calcula-
tion. ' The sum rule, Eq. (1.1), for spin p' is also satisfied
in this order.

The most interesting feature in the third-order calcu-
lation is the appearance of the lnB term in the linewidth.
The ]inear dependence of the second. -order line broaden-
ing upon magnetic Geld is therefore modified. In the
case of antiferromagnetic coupling where J(0 the
linewidth is enhanced by the logarithmic term. On the
other hand, for ferromagnetic coupling, the linewidth is
reduced.

1 " 1
(S")= —,

' —— d(v ImX—
+(&o)

1—e &"
(4.3)

= ——,'pa) „(1+4)

=(S*)p{1+p'1V(0)I+[A (0)J7' ln(kT/D)}, (4.5)

where (S*)p———rPcop is the expectation value of S* at
high temperature when J=O. This result, Eq. (4.5), is
consistent with that obtained by Giovannini, Paulson,
and Schrie6er' and the calculation of Scalapino' using
an Anderson model.

co„=orp{1+~~1V(0)1+2[~~cV(0)J7Pln(kT/D)},
A= 2[p1V(0)J7' ln(kT/D), (4 2)

r-[-;X(0)S7P~kr.

The function tanh(P~„/2) arises from the thermal
average of S' in the effective field s&,/(gp~). The function
exists of course even if J=O and reduces to unity at
T=O. For I"((kT we can approximate the imaginary
part of x~ by a 8 function. Therefore,

IV. EKTENTION TO FINITE TEMPERATURE

The zero-temperature perturbation method which has
been used to calculate x(&o) is suitable when AH is large

ACKNOWLEDGMENT

We would like to thank Professor H. B. Callen for
many helpful and stimulating discussions.


