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The agreement obtained with Gurevich indicates that
the simplification of the Boltzmann equation obtained
by replacing p by pav is a valid approximation for large
magnetic field and may be of value in other contexts.
It may be noted that the physical geometry of the
crystal was essentially summed out of the problem by
the operation of averaging C over the sample cross
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section. This technique may be used to treat cases of
finite sample geometry with spherical energy surfaces
if the averaging can be carried out over the cross
section of the crystal. In addition the ellipsoidal-energy-
surface case may be treated in this manner if the
crystal boundaries map into a reasonable geometry
under the Ham-Mattis transformation.
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We consider a magnetic dilute alloy system. The interaction between the localized magnetic moment and
the conduction electrons is described by an s-¢ exchange Hamiltonian. The transverse susceptibility of the
impurity spin is calculated in a Green’s-function formalism. By employing the Wick and linked cluster
theorems for spin systems developed by Wang and Callen, we have been able to analyze the Green’s function
diagrammatically. In the high-field low-temperature region (uH>>kT) a partial summation of the main
diagrams and lock diagrams gives, in addition to diagrams with self-energy structure, a set of diagrams with
terminal parts. We have calculated the self-energy and the terminal function to the third-order in ¥ (0)J,
where NV (0) is the density of states at the Fermi surface and J is the exchange parameter. It is shown that
there is a InH g shift in the resonance frequency, and an HInH correction to the analogous Korringa line-
width (which is linear in H). The magnetization is also calculated and is consistent with the earlier pertur-

bation calculation.

I. INTRODUCTION

REAT interest has focused on the physics of
dilute alloys containing magnetic impurities. Since
Kondo’s discovery of a InT term which explained the
low-temperature resistance minimum,! similar loga-
rithmic terms have been found in perturbation theory
for the magnetization.2® Recently, Spencer and Doniach
reported the calculation of a logarithmic shift of the
electron-spin-resonance g factor of the impurity* and
Langreth ef al.5 analyzed in more detail the transmission
paramagnetic resonance. Here we report a related per-
turbation theory calculation of the dynamic suscepti-
bility of the impurity spin for the high-field low-temper-
ature region uH>>kT. We find in addition to a InH shift
of the g value, that InH terms appear in the linewidth
and amplitude of the dynamic susceptibility. Implicit in
these calculations is the assumption that the relaxation
rate of the conduction electrons is much faster than that

* Supported at University of Pennsylvania by U. S. Office of
Naval Research and at University of Pittsburgh by Air Force
Office of Scientific Research. Present address: University of
Pittsburgh, Pittsburgh, Pa.

1 Supported by National Science Foundation.

17. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964).
(1;K.) Yosida and A. Okiji, Progr. Theoret. Phys. (Kyoto) 34, 505

65).

3D, J. Scalapino, Phys. Rev. Letters 16, 937 (1966).

( ‘}% J. Spencer and S. Doniach, Phys. Rev. Letters 18, 994
1967).

sD. C. Langreth, D. L. Cowan, and J. W. Wilkins, Solid

State Commun. 6, 131 (1968).

of the impurity spin. In the absence of a conduction-
electron spin-lattice coupling the conduction-electron
spins follow the impurity adiabatically, and these ex-
change-induced effects vanish for equal g values of the
conduction-electron and impurity spin.

A zero-temperature theory of this same system has
been given by Giovannini and Koide® using a diagram-
matic method derived from multiple contraction of spin
operators. They considered only one class of second-
order self-energy diagrams and did not obtain any of the
logarithmic corrections. Spencer and Doniach,* using a
drone-fermion representation for the impurity spin,
summed an additional class of second-order self-energy
diagrams and obtained a logarithmic shift in the g
value. However, they did not collect all terms in this
order. Here we use a diagrammatic method based upon
Schwinger’s coupled-boson representation of the spin
operators and the Wick-like theorem developed by
Wang and Callen.”® This allows the spin Green’s func-
tion to be expressed in terms of a self-energy and a
terminal function, each of which can then be calculated
in perturbation theory when uH>>kT. The consistency
of this procedure is checked by evaluating the mag-
netization and comparing with the known perturbation-
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theory results. In addition, for spin %, the sum rule
(StS)+(S—S+H)=1 (1.1)
is verified.

Before describing the detailed calculation, we sum-
marize our results. The transverse dynamic suscepti-
bility of an impurity of spin S can be expressed in the

form
X(w)=2S(14A)/[w—wo— 25Z(w)]. 1.2)

Here wo is the Zeeman energy 2upH, 2 is an irreducible
self-energy part, and A is the terminal function.
Throughout the calculation, the bare g values of the
impurity and the conduction electrons have been set
equal to 2. We have calculated the self-energy and the
terminal function through third order in the exchange
interaction. The results are that the peak of the imagi-
nary part of X(w) is shifted from the noninteracting
value wo to

wr=wof{1+3N (0)7+2[3N (0)J J* In(wo/D)
+4[3N(0)JF In*(wo/D)} . (1.3)

This form suggests a geometric series which would sum

to ) [p V()T ]
LT IIN O In(ey/D)

(1.4)

For antiferromagnetic coupling (J<0), this diverges
when the magnetic field is reduced to a value determined

by
gusH=D exp[1/(N(0)7)], (1.5)

and, in fact, becomes negative even before this. This is
symptomatic of the failure of perturbation theory for
fields such that gupH/kg is of the order of the Kondo
temperature. The imaginary part of Z gives rise to a
linewidth

I'=2S[3N(0)J JPwo[14+4-3N(0)J In(wo/D)], (1.6)

which has the expected logarithmic contribution in
third order. This departure of the linear dependence of
the linewidth on the magnetic field is the main feature
of the third-order calculation. For antiferromagnetic
coupling the logarithmic term enhances the broadening,
especially at lower fields. On the other hand, for
ferromagnetic coupling, the linewidth is reduced. The
terminal correction is given by

A=2[3N(0)J ] In(wo/D)+8[3N (0)J F In*(wo/D) (1.7)

and corresponds to a reduction in the effective strength
with which the impurity moment couples to the
transverse magnetic field.

Using Eq. (1.2) for X and the perturbation calculation
of = and A, the expectation values (S+S~) and (S—S*) are
directly evaluated. From these, the expectation value of
the magnetization is obtained:

2u5(S%) = —2upS{1+2[5N (0)J J? In(we/D)

+4[3N (0)J P In*(wo/D)}.  (1.8)
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This is in agreement with previous calculations,® and has
the same divergent form as the expression for w, given
in Eq. (1.3). Finally, for spin §, the sum rule Eq. (1.1) is
checked. In both the magnetization and the sum rule,
the presence of the terminal correction plays an
essential role.

In Sec. IT we briefly review the Wang-Callen for-
malism as it applies to the impurity problem. The
susceptibility. Green’s function for the impurity is ex-
pressed in terms of self-energy and terminal functions.
In Sec. III, calculations of the first- and second-order
contributions to the self-energy and terminal functions
at zero temperature are discussed and the results
through third order are summarized. We conclude by
formally extending these results to finite temperatures
and note that the high-temperature form of the resulting
expression for the static susceptibility agrees with the
known perturbation-theory result.

II. DIAGRAMMATIC REPRESENTATION OF THE
IMPURITY SUSCEPTIBILITY

The dynamics of a single localized impurity of spin S
interacting with the conduction electrons in an external
magnetic field H will be described by a Hamiltonian

3C=3Cy+3C;. 2.1)
Here 3Cy is the sum of the electron quasiparticle energies
éxo=€x+upHo, o=z1, (2.2)

and the Zeeman energy wo=2ugH of the impurity spin
‘,}C0= Z Gkakafcka‘i'woS’. (2.3)
ko

For the purposes of this analysis, the coupling between
the impurity and the conduction electrons will be
written as a simple point-contact exchange interaction
3= —'%f Z S'Ck',.TG,,kay, (2.4)
kk/, uv
where J is the exchange coupling and (o) are the Pauli
matrices. The transverse susceptibility and the mag-
netization of the localized impurity can be determined
from the spin Green’s function:

G(t)=—1i(0| PS—()S*(0)]0). (2.5)

Here |0) is the true ground state of the interacting
system, the spin operators are in the Heisenberg repre-
sentation, and P is the Dyson time-ordering operator.

In the linked-diagram method of Wang and Callen,
the spin operators are expressed in terms of Schwinger’s
coupled-boson operators:

St=qty,
S—=utv,
S?=% (v'o—ulu) = — S+,

9 B. Giovannini, R. Paulson, and R. Schrieffer, Phys. Letters 23,
517 (1966).

(2.6)
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F1c. 1. The simple interaction vertices for a localized impurity
of spin S in the conduction electron sea. Solid lines represent »
propagators (spin propagators). Dashed lines represent electron
propagators. The vertical wavy lines represent interactions. The
diagrams (a) and (b) with a cross arise from the first term in the
interaction Hamiltonian 3C; of Eq. (2.8). Note that only » propa-
gators are drawn. The # operators are taken care of implicitly by
constructing the lock diagrams.

Here the last equality follows from the auxiliary
constraint

vt utu=2S, 2.7
which is equivalent to the condition $?=S(S+1). The
#’s and v’s are operators which satisfy boson commuta-
tion relations. Writing the Hamiltonian in terms of the
u and v operators we have

JCO=Z ekvckakav'{‘wo'UTl’—wgS,
ko

F1=3J 2 [(—S+9'0) (Ct'Crrt—Crc4Cr ) (2.8
Kk’

F 0" uCi 41 Crr 4400 Cret'Crr 4]

Invoking the usual “adiabatic turning-on theorem” for
the effect of the perturbation JC; on the ground state
and applying the linked diagram theorem for spin
operators given in Ref. 7, the spin Green’s function can
be expressed in the form

G=—40]| Pv(£)vt(0)ast ()u(0)S( 0 )| OVconnectea. (2.9)

Here |0) is the unperturbed ground state of 3¢, the
time dependence of the #(f) and v(¢) operators is de-
termined by 3C,,

ot ()= einiat(0),
o(f)=¢0n(0),
wt()=1(0),

(2.10)

u(t)=u(0),
D
S E f
(a) (b) (c)

—<lo

(d) (e)

Lefs
g\ _* - j

(f)

F1c. 2. Dependence of the diagrams on the weight associated
with the ordering of the » propagators. Diagrams (a) and (b) have

weight factor (25)? while diagrams (c) to (f) have weight factor
25(2S—1).
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and 8(c0) has the usual form

8§(0)=P exp[—if:o dt Jcl(t)]. (2.11)

An expansion in powers of JC; gives various terms
which can be represented by diagrams. As is usually the
case, calculating with the final formalism is easier than
explaining it. Since the details of the formalism are
given in Ref. 7, we will simply illustrate some features of
the method as it applies to the present problem. Let us
focus on a second-order term in Eq. (2.9),

k%p,(— 37)2(—4)X0| Po ()" (0)
X (1) (0) (t)u" (£2)9" (t2)u(t2)
XCit"(t)Cr s (1)Cpat (t2)Cr 1 (12) [ O} .
This can be rewritten as
> (=377 (=D)X0[ Tv (@) (0o (1) (12) | 0)
X OO a0
XO| TCrt' (t1)Crr 1 (1)C i (1) 1 (22)|0),  (2.13)

(2.12)

where we have replaced the Dyson’s chronological
ordering operators by Wick’s chronological ordering
operators. For Bose operators the two types of chrono-
logical operators are identical, while for Fermi operators
this replacement is also justified since the Fermi
operators always occur in pairs. Then it is obvious that
to each product one can apply the conventional Wick’s
theorem which breaks the whole product into product
of contracted pairs. However, as shown in Ref. 7 it is
more convenient to treat the product of # operators
specially. Instead of applying Wick’s theorem to the
chronological product we evaluate it directly as a
numerical “u factor.” This procedure is suggested by the
fact that the  operator carries no energy and that the
u operators are always introduced with the » operators
so that one can easily read the % or u! operators from the
diagrams drawn for the v operators. Applying Wick’s
theorem to the v boson and the fermion parts of Eq.
(2.13), it becomes

— Z (== 0| Tt (O ()]0
T X(O] To(e)e ()] 0)X0] oot ()] 0)
(0] To(2)s" (0) | 0XO] Ta(tx)et () 03
X0 TCxt (t2)Crct (t1) | 0)
X{0| TCpu (1)C,4' (12)[0).  (2.14)

Here the extra minus sign arises from the rearrangement
of the Fermi operators.

This can be represented diagrammatically by im-
agining that the horizontal axis measures time increasing
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from right to left. The v propagator (0| Tv(£)vt(¢2)|0) is
represented by a solid line drawn from the point #; to the
point £ The electron propagator (0| TCx1 (t2)Cx1(t1) | 0)
is similarly represented by a dashed line drawn from #,
to t,. Finally vertical wavy lines are used to represent
interactions. The basic vertices associated with 3C; are
drawn in Fig. 1. Taking the first term in Eq. (2.14) and
assuming {>#>#>0 we draw a diagram as shown in
Fig. 2(a). Recalling that |0) has 25 # particles and no
v particles, the # factor for this time sequence reduces to
(0| utun'u|0)= (25)2. On the other hand, when f>#
>$,>0 we obtain the diagram shown in Fig. 2(c), and
the # factor is (O|ututun|0)=25(25—1). It is im-
mediately clear that whenever the two v propagators
overlap in time, as shown in Figs. 2(c)-2(f), the # factor
is 25(25—1) while the non overlapping Figs. 2(a) and
2(b) have u factors (25)%

The dependence of the diagrams on the weight as-
sociated with the ordering of the v operators is an
undesirable feature since it requires that the time
integrations be done over the restricted time intervals
whose number, in higher order of perturbation theory,
increases catastrophically fast. This difficulty can be
circumvented by introducing “main diagrams” in which

érif;‘::; 3
(a) (b)
1) {l‘f—g

(c) (d)

F16. 3. Lock diagrams. To remove the dependence of the weight
of the diagrams with different orderings of the » propagators, a
“main diagram” in which the time sequences of the propagator
terminals are arbitrary is introduced with fixed weight (25)2. Then
to compensate the incorrect weight given to the diagrams with
ordering of v propagators shown in Figs. 2(c) to 2(f), we introduce
these lock diagrams with time sequences of the v propagators re-
stricted as shown and bearing a weight of —25.

the time sequences of the propagator terminals are
arbitrary and the # factor is fixed at its maximum value.
Then to compensate for the incorrect weight given to
certain time orderings, an additional set of ‘lock
diagrams” are introduced. These are represented by
putting a small circle on overlapping v propagator lines
and are given the appropriate weight factor to correct
for the error made by using a fixed weight factor in
evaluating the main diagram. The time sequences of
these lock diagrams are restricted. However, as shown in
Ref. 7 the lock diagrams can be summed to obtain
finally, an unrestricted set of diagrams. Here we illus-
trate this for the second-order diagrams. Figure 2(a)
forms a main diagram, and the associated lock diagrams
[Figs. 3(a)-3(d)] are obtained by putting a small
circular “lock” on the overlapping v propagators shown
in Figs. 2(c)-2(f). Note that the time sequences of these
lock diagrams are restricted as shown in each diagram.
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F16. 4. A second type of contraction gives main diagram (a)
and the associated lock diagrams (b) to (e). Diagram (a) is un-
linked and has no contribution to the Green’s function.

These diagrams are weighted by a factor (—2S5) so that
when they are combined with the main diagram the
correct “u factor” weighting is restored. Similarly, the
second type of contraction of the » operators given in
Eq. (2.14) reduces to the diagrams shown in Fig. 4.
Since only linked diagrams contribute to G, the main
diagram, Fig. 4(a) is discarded.

In order to remove the restrictions on the lock
diagrams they are regrouped as shown in Fig. 5, where
diagrams (a) and (b) are summed to diagram (A) and
diagrams (c) and (d) are summed to diagram (B). In
this form there are no restrictions on the time ordering
of the vertices. The structure of the diagram (B) in
Fig. 5 is characteristic of the spin problem. It has what
we will call a terminal part. The other lock diagrams are
combined in a similar way. The partial summation of
the lock diagrams thus generates a new set of diagrams
which has the form of the conventional diagrams aside
from a new set of “terminal correction” diagrams.

We now proceed to a summary of the rules which
allow us to evaluate the diagrammatic perturbation
expansion of 4G in a systematic manner.

(1) With each spin line associate the function G,
=125 (w—wo+18)"". Here wo=2upH and 8_is a positive
infinitesimal.

< e, e,
~~f>,¢ + \'t"/ —_— . 47,
(a) (b) (a)
by e
\_'y + ,_'_7, — \4_,.
(c) (d) (8)

(e) (f) (c)
s b, L-<f-,
§\4>_3 + é\_t)_} — é\‘t" ¢?

(g) (h) (D)

F1e. 5. A partial summation of lock diagrams removes the
restriction of time sequences of the terminals of the » propagators.
In addition to diagrams with self-energy structure, terminal
diagrams appear, as is characteristic of spin systems.
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N e
% g F16. 6. The first-order diagrams.
(a) (b)

(2) With each electron line associate the function
i(w— exo+10,)"L, where ex, is given by Eq. (2.2) and 8,
is an infinitesimal having the sign of w.

(3) With each transversal interaction line (i.e., spin-
flip) associate the factor 3iJ.

(4) With each longitudinal interaction line (i.e., non-
spin-flip) associate the factor (i/25)(J/2)s, where =1
(or —1) for the interaction of local spin with an up (or
down) spin electron.

(5) The external-fieldlike vertex [Figs. 1(a) and
1(b)] which arises from the first term in the interaction
Hamiltonian is represented by a cross and a longitudinal
interaction line. We associate with the cross a factor
—25%, where o==-1 as in rule 4.

(6) The grouping of the locked diagrams gives rise to
a set of diagrams with “triple points” where three solid
lines meet together. We associate with each triple point
a factor —2/(25)%

(7) Associate with each internal closed electron loop
a factor —1.

(8) Sum over all electron momentum and integrate
over all free-energy variables. In carrying out the
summation over the electron momentum we will use a
constant single-electron density of states over a sym-
metric energy band (— D to D) about the Fermi energy.

As we mentioned earlier, the grouping of the lock
diagrams not only enables us to reveal the self-energy
portion of the propagator but also leads us to discover
the set of terminal correction diagrams which have no
analogue in the usual fermion or boson case. This set of
terminal diagrams turns out to be particularly im-
portant in the evaluation of the magnetization and in
satisfying the sum rule, Eq. (1.1), for the spin operators.
Physically, the terminal corrections correspond to a
renormalization of the effective transverse spin pro-
jection due to the interaction with the conduction
electrons.

To sum the diagrams, we proceed as follows : First we
construct a Green’s function G by summing the classes
of diagrams which have the usual Dyson structure so

that G=Got+G=G, (2.15)

where = is understood as the sum of the irreducible self-
energy parts in the usual sense. We then note that for
each of these diagrams there exist corresponding dia-
grams with terminal parts. Therefore, the total Green’s
function is obtained by collecting these additional
diagrams

G=G+AG= (1+A)G. (2.16)
Combining this with Eq. (2.15) we.obj:ain
G=(1+4)/(G—2), (2.17)
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where A is the sum of all terminal parts. As we discussed,
A contributes to a renormalization of the response of the
impurity moment to the transverse magnetic field.
Having obtained the form for G given by Eq. (2.16), the
perturbation calculation reduces to evaluating 2 and A
to a given order in 3C;.

III. PERTURBATION CALCULATION OF X AND A .

The first-order self-energy diagram is shown in Fig. 6.
According to the rules given in Sec. II, the contribution
to the self-energy from this diagram is

z0= —-lJN(O)—-Z f f P——
T 00— €pot-1

=— %N(O)J—SZ;LBH (3.1)

There is no terminal correction so that in this order

25
Gw)= , 3.2
(@) w—wo[ 143N (0)J J48 ¢2)

and the resonance frequency is shifted from wo to
wo[ 14+3N(0)J]. In this order the matrix elements

D duw
(S-S$H)=— / & mG @) 3.3)

and 00 ;rw
(S+S‘)=—[ — ImG(w) 3.4)

-D T

are simply evaluated and we find (S—St)=2S and
(§+57)=0. Therefore the magnetization is —2uS and
the sum rule Eq. (1.1) for spin 3 is trivially satisfied.

Proceeding to the second order, one finds the four
self-energy diagrams and the one terminal correction
shown in Fig. 7. Again, using our rules, the contribution
from the self-energy diagram [Fig. 7(a)] is

1

w,+w—' 5p1+i8w’+w w'— €p l+'i6w’
=[AN(0)J PAD In2—ix[AN (0)J P|w]. (3.5)
Here, terms of order [V (0)J Jw?/D have been dropped.
In the same way, the contributions from the remaining

self-energy diagrams 7(b) to 7(g) are evaluated. Com-
bining them, we find in the limit w/D<1 that

1 o . .
¢ )='2-§[§N(O)J:I Zwo IDB-—@[%N(O)J] 1rlw| . (36)
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The terminal diagram shown in Fig. 7(e) contributes

A= (— 1) rxiv ot [ d Dd/dw'
= (D) VO ]/_D “‘/_D «f o

do'"  (25)? 1
21 (' —wot18)? '’ — eqit18ure
1
. @37
o'+ — ex 1100 yurs
Carrying out the integration, A® reduces to
A®=2[LIN(0)J I In(wy/D). (3.8)

Therefore, the Green’s function to second order is given
as

14+A@
Glw)= 3.9
(@) G 3.9

3@

The dynamicsusceptibility x () is equal to G(w+i0").
Thus for positive values of w, the susceptibility to second
order is given by

2S(1+A®)
W)= | (3.10)
0— 0, @[
Here
w0 P =w[14+3N(0)J+2[3N(0)J FIn(wy/D)], (3.11)
T®=2STiN(0)J Pr2usH, (3.12)
A®=2[iN(0)J } In(w/D), (3.13)

and T'® has been evaluated at w=w,2upH. The
resonance frequency of the impurity spin is shifted in
the second order by a log term in magnetic field. The
logarithmic term in the g shift is similar®® to that re-
ported by Spencer and Doniach.* In addition, we find
that the amplitude of the susceptibility is modified.
T'® is the half-width and is linearly proportional to the
applied magnetic field. This is just the analog of the
Korringa broadening! at zero temperature, where wy,
the Zeeman energy, takes the place of 2T. However,
there is difference of the line broadening due to the T
process considered by Korringa and that due to the
Ts process calculated here. In case of 2T>>gupH, the
thermal fluctuation washes out the anisotropy intro-
duced by the Zeeman term in the Hamiltonian, and T
is equal to T as expected. On the other hand, when
kT<gupH we find

1/T9=2Sx[3N(0)J PgusH,
compared with
1/T1=4x[3N(0)J FgusH .
10 Tf ey is replaced by 27 in the argument of the logarithm, this
result differs by a factor of 2 from that reported by Spencer and
Doniach but agrees with that obtained by Langreth, Cowan, and

Wikins.
17, Korringa, Physica 16, 609 (1950).
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F1c. 7. Second-order self-energy diagrams and the
terminal diagram.

In order to check the consistency of our second-order
calculation we turn to an evaluation of the matrix
elements (S*5—) and (S—S*). Inserting the spectral
weight,

1 25)(1 % 2| w
L 6= 281+ M)[EN(0) || G4
T (w— )2 +[EN (0)T Jn2(25)%w?
into Egs. (3.3) and (3.4) we obtain
(§+57)=—(2SY[ZN(0)J I In(wo/D), (3.15)
(S—5+)=25+25(2—25)[AN (0)J P In(we/D). (3.16)
Therefore,
(§9)=3(S+S7)—(S=5*)
=—S{14+2[4N(0)J R In(we/D)}, (3.17)

which is consistent with the static calculation by
Giovannini, Paulson, and Schrieffer® for S=2%. The sum
rule for S=1%,

(SESHH(S-SH)=1, (3.18)

is also verified by adding Eq. (3.15) and Eq. (3.16).
This provides a further check on the form of the
calculated Green’s function and the resultant sus-
ceptibility x. We note that both of these results can only
be obtained by including the terminal vertex correction
diagram which is unique to the spin problems.

There are a large number of third-order diagrams, but
their evaluation is straightforward. Applying the rules
given in the above section we have evaluated all the
self-energy diagrams and the terminal vertex parts.
Retaining only the most singular terms and evaluating
Z at w, we obtain through third order the following
resonance frequency and linewidth parameters:

wr=wo{14+3N(0)J+2[3N (0)J
XIn(wo/D)+4[3N(0)J P In?(wo/D)}, (3.19)

I'=2S[3N(0)J Prwo{ 1-+4[3N (0)J ] In(wo/D)}. (3.20)
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Fic. 8. Third-order self-energy diagrams which give the In?H
shift in the resonance frequency and an H InH correction to the
linear H dependence in the linewidth.

The relevant diagrams are shown in Fig. 8. Where
diagrams (a) to (f) give the In?(wo/D) shift of resonance
frequency and diagrams (g) to (j) give the woIn(wo/D)
correction to the linewidth.

The magnetization can also be calculated, and to the
third order of NV (0)J we find

(§2y=—S{1+2[3N(0)J F In(ws/ D)
+4[53N(0)J F In*(wo/ D)},

which is consistent with the earlier perturbation calcula-
tion.® The sum rule, Eq. (1.1), for spin % is also satisfied
in this order.

The most interesting feature in the third-order calcu-
lation is the appearance of the InH term in the linewidth.
The linear dependence of the second-order line broaden-
ing upon magnetic field is therefore modified. In the
case of antiferromagnetic coupling where J<O0 the
linewidth is enhanced by the logarithmic term. On the
other hand, for ferromagnetic coupling, the linewidth is
reduced.

(3.21)

IV. EXTENTION TO FINITE TEMPERATURE

The zero-temperature perturbation method which has
been used to calculate x(w) is suitable when 2uH is large
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compared with the Kondo energy D exp—[1/(V (0)J)].
Using the Matsubara temperature ordered Green’s
functions, a similar analysis for spin % can be carried out
at finite temperature. However, the regrouping pro-
cedure for the half-overlapping diagrams is accurate
only to order exp (—2upH/kT). This approach is there-
fore restricted to the low-temperature high-magnetic-
field regime. However, it is interesting to note that if
we formally replace wo by &7 in the argument of the
logarithmic functions we obtained the high-temperature
results to logarithmic accuracy. We briefly illustrate

this, for S=1
1 Wy,
x—+(w)=( +4) tanh (Bw,/2) @)
w—w,~+1T
with
wr=wo{ 13N (0)J+2[3N (0)J P In(AT/D)},
A=2[iN(0)J R In(kT/D), (4.2)

I'~[3N(0)J FnkT.

The function tanh(Bw,/2) arises from the thermal
average of 5% in the effective field w,/(gus). The function
exists of course even if J=0 and reduces to unity at
T=0. For I'KkT we can approximate the imaginary
part of x~* by a é function. Therefore,

(S?y=2—~ f dor—— TmX~+(w) (4.3)
— 8w, (14 A) (4.4)
=(S9o{1+3N (0)J+[N () F In(kT/D)}, (45)

where (5%)o= —1Bw is the expectation value of S* at
high temperature when J=0. This result, Eq. (4.5), is
consistent with that obtained by Giovannini, Paulson,
and Schrieffer’ and the calculation of Scalapino® using
an Anderson model.
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