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The pseudopotential theory of metals is applied to the case of a binary alloy with an arbitrary degree
of order. A self-consistent screening potential which includes the effect of the total conduction-electron
charge is derived to first order in a perturbation-theory expansion in the pseudopotential. Expressions are
obtained for the conduction-electron contributions to the ordering energy and to the effective pairwise
interactions among the jons in the alloy. If the conduction-electron energy may be expressed accurately
to second order in the pseudopotential, this energy is shown to depend upon only two-particle correlations
among the ion positions. Numerical values are obtained for the ordering energy and the pairwise inter-
actions for stoichiometric LiMg. The ordering energy is not obviously inconsistent with experimental
observations. If the ordering interaction is expressed approximately as a sum of two terms, one of which
depends exponentially and the other sinusoidally on interionic separation, the former dominates throughout

the region of the calculation.

I INTRODUCTION

N attempt to extend the theory of metals to enable
the calculation of properties of a binary alloy
with an arbitrary degree of order is presented in this
paper. In particular, expressions are obtained for the
conduction-electron contributions to that portion of
the crystalline energy which varies during rearrange-
ments of the ions at constant volume, henceforth called
the structure-dependent conduction-electron energy,
and to the effective pairwise interactions among the
ions. Numerical values are obtained for the difference
in internal energy between the ordered and disordered
states and for the pairwise interactions in a stoichio-
metric LiMg alloy.

The choice of the pseudopotential method for the
treatment of the alloy problem presented in this work
is motivated largely by the results of Harrison'? and of
Pick and Blandin.® These authors demonstrate that a
consistent perturbation theory expansion of the elec-
tron energy in a periodic metal to second order in the
potential yields a simple approximate expression for the
structure-dependent conduction-electron energy. The
accuracy of this expression is increased by the replace-
ment of the actual potential with a suitable pseudo-
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potential. A computation of the change in crystalline
energy when the ions are rearranged at constant volume,
such as occurs during the ordering of an alloy or a change
of phase, is greatly simplified in this formalism by the
avoidance of intermediate calculations of the band
structure. Further, an effective pairwise interaction
can be deduced from the expression for the structure-
dependent conduction-electron energy. These related
features indicate that the application of the pseudopo-
tential method to the alloy problem, as suggested by
Harrison! and by Pick and Sarma,* will yield appro-
priate expressions for the quantities of interest.

The conduction-electron contribution to the difference
in internal energy between the ordered and completely
disordered states is a significant alloy property which
may be estimated from the structure-dependent con-
duction-electron energy. The importance of this con-
tribution to the ordering energy was recognized by
Mott® in his formulation of the polar model of an alloy.
In this model, the actual interactions among the
screened ions are approximated by the interactions
between effective point charges located on each lattice
site. The Thomas-Fermi model of the screening of an
isolated Coulomb potential by an electron gas is used
to compute the conduction-electron contribution to the
effective point charges. Thus the effect of the electrons
is reduced to that of point charges and the Madelung
expression may be used to evaluate their contribution
to the ordering energy. More recently, Harrison and
Paskin® have reformulated the polar model in terms of
an effective pairwise interaction between the ions in the
alloy. They obtained an expression for this interaction
using an asymptotic form of the screening density

4R. Pick and G. Sarma, Phys. Rev. 135, A1363 (1964).
S N. F. Mott, Proc. Phys. Soc. (London) 49, 258 (1937).
¢ R. J. Harrison and A, Paskin, J. Phys. Radium 23, 613 (1962).
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700 HAYES, BROOKS,
derived by Langer and Vosko,” who considered the
reaction of an electron gas to an isolated perturbing
Coulomb potential. The electrons in the gas were
allowed to interact with one another through a many-
body potential. Unfortunately, their interaction is
extremely sensitive to an adjustable parameter.

In the present work, an expression is obtained for
the screening by an electron gas to first order in pertur-
bation theory of a pseudopotential constructed from
the potential of an isolated nonlocal Hartree-Fock ion.
The electrons in the gas interact with one another
through the Hartree potential only. While this treat-
ment neglects the many-body interactions among the
conduction electrons, it should represent the important
interaction between the ions and the electrons more
accurately than the other approaches. Expressions for
the structure-dependent conduction-electron energy and
for the effective pairwise interactions are derived in
analogy with the procedure of Harrison! for single-
element crystals. This approach to the alloy problem
has the virtue of yielding an interaction which is free
of adjustable parameters and which has, therefore, an
unambiguous magnitude and shape.

II. FORMULATION OF THE ALLOY PROBLEM

The effective pairwise interactions among the ions in
an alloy may be divided into two contributions. The
first is the interaction which would remain if the ions
were stripped of the conduction electrons. That is, it
is the sum of the point ion Coulomb interaction, the van
der Waals interaction, and the interaction due to core
overlap. The latter two interactions are assumed to be
small for the alloys being treated and are neglected in
this formalism. The second contribution is the indirect
interaction among the ions by means of the conduction-
electron gas. This interaction depends upon the average
electron density and may be derived for a given atomic
volume from the structure-dependent conduction-
electron energy, which will be denoted by Ega.

By using a perturbation theory expansion of the
electron energy with the set of plane waves as the zeroth-
order wave functions, Harrison! found that E. could
be approximated for a periodic metallic crystal by

Eu= z{t}' S(@)S*(9)E(q), (1
where
e—iq-R
Sl@=>2 ; @
R} N

The set {R} consists of vectors to all of the ionic sites
in the crystal {from some convenient site chosen as
origin. The structure factor, denoted by S(q), is ac-
cordingly dependent upon only the positions of the
ions, and not their nature. The energy-wave-number

7%J. S. Langer and S, H. Vosko, J. Phys. Chem, Solids 12, 196
(1959). ‘ '
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characteristic, denoted by E(q), is dependent upon
only the ionic potentials, the average electron density,
and the atomic volume, and not the positions of the
ions. Once E(q) is evaluated for a given metal with a
specified atomic volume, E, may be obtained for any
crystalline structure from Eq. (1) without an inter-
mediate calculation of the band structure. Accordingly,
this formalism is well suited for obtaining the structure-
dependent conduction-electron energy as a function of
structure. By means of a comparison between Eq. (1)
and the form of the expression for the energy of the
point-ion interaction, Harrison deduced that the con-
tribution of the indirect interaction to the effective
pairwise interaction is

singr

Qo
VII(”)=;_‘2' / dg ¢*E(g)—, 3

0 qr

where @ is the volume per ion. Thus the indirect inter-
action follows immediately from a knowledge of the
energy—wave-number characteristic.

In order to obtain Egs. (1) and (3) from the pertur-
bation theory expansion of the energy, it is necessary
to neglect all terms which are of higher order than
second in the pseudopotential. By the introduction of
additional structure dependence, these higher-order
terms would prevent the expression of Ey in the
simple form of Eq. (1) and thereby prevent the deduc-
tion of a structure-independent effective pairwise
interaction. The retention of terms of higher order than
second in the pseudopotential would introduce the same
complications in the problem considered here. Since the
goal of this work is to obtain information about the
changes in the energy of the alloy system in response to
changes in the ionic arrangement at constant volume,
within a formalism which leads to a structure-indepen-
dent effective pairwise interaction, these higher-order
terms are neglected here.

We now proceed with a derivation which follows the
pseudopotential formalism of Harrison!-?:# for periodic
crystals whenever it is appropriate. E,q depends upon
the conduction-electron eigenstates of the nonlocal one-
electron crystalline Hamiltonian,

H=T-+4V{+V5¢, @
&|T|)y=(—V,- V. A4V)é(r—r). (5)

Throughout this work, atomic units are used for all
quantities except energies, which are in rydbergs. V' is
the spatial average of the Hartree potentials of all the
ions and conduction electrons in the crystal. V7 is the
sum of the Hartree-Fock potentials of all the ions less
the spatial average of the Hartree potentials. In the
absence of a suitable method for including the effects of
both exchange and correlation among the conduction
electrons in a unified formalism, we will approximate

where

8 Réferf_:nce 2, Chaps. 2 and 8,
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V'S¢ with the Hartree potential of the conduction elec-
tron gas less the spatial average of that potential. The
basis functions for the perturbation theory which follows
are eigenfunctions of the operator T, the set of plane
waves. The wave function of the plane-wave state k is
given by

(r| k)=exp(ik-1)/Q"2, (6)

where @ is the volume of the crystal, and the associated
eigenvalue of T is k24 V ;.

In applying the pseudopotential method to a given
system, each electron state is labeled as either a core
state, denoted by ¢, or a valence (conduction-electron)
state, denoted by v. In this problem, the core states are
those states whose eigenfunctions are sufficiently local-
ized about their respective nuclei that they may be
very closely approximated by the corresponding
atomic eigenfunctions. We then adopt the pseudo-
potential formalism of Austin, Heine, and Sham,? who
established the properties of a general pseudo-Hamilto-
nian, H,=T+W, where the pseudopotential, denoted
by W, is defined by

W=VI4V5SC4-VE, (7

The repulsive potential, denoted by V%, is defined by the
relation

x|VE[r)=% (r]e)fo(r)), (8)

where the sum extends over all the core states of H.
fe(r) represents an arbitrary function of r’ and the
parameter ¢. The essential properties of the eigenstates
of H, result directly from the exclusion of the valence
states from the sum in Eq. (8) and may be summarized
as follows: The ‘“‘core” eigenstates of H, are linear
combinations of the core eigenstates of H; the “valence”
eigenvalues of H, are identical with the valence
eigenvalues of H; the “valence” eigenstates of H,,
denoted by @, are related to the valence eigenstates of
H by

l0)=18)—2 [e)c|D)- )

A pseudopotential is constructed by selecting a par-
ticular form for f.(r’), which might be an operator or an
energy-dependent expression. In general, f.(r") is chosen
to optimize in some sense the convergence of a procedure
for determining the conduction-electron property of
interest. For instance, it is desirable in this problem to
optimize the convergence of a perturbation theory ex-
pansion of the total conduction-electron energy in
orders of the pseudopotential using a basis set of plane
waves. However, we will proceed with the derivation
using the general form of the pseudopotential given by
Eqgs. (7) and (8).

The unscreened pseudopotential, denoted by W?° and
equal to V4 V%, is examined first. V7 is determined by

( ;B2) J. Austin, V. Heine, and L. J. Sham, Phys. Rev. 127, 276
1962).

BINARY ALLOY OF SIMPLE METALS

701

the Hartree-Fock potentials of the ion cores, which
consist of the nuclei plus those electrons which occupy
core states. We have assumed that the core eigen-
functions may be very closely approximated by the
corresponding atomic eigenfunctions. This assumption
is justified only if the core eigenfunctions are sufficiently
localized about the nuclei that the difference between
the crystalline and atomic potentials may be considered
as essentially constant over the core region. Under these
conditions, the ionic Hartree-Fock potential for an 4
ion, for instance, in an 4B alloy will be independent of
the lattice site occupied by that ion since it depends
upon only the nuclear charge and the core eigenfunc-
tions. Taking advantage of this invariance and the
definition

o(R)=+1if the site R contains an n ion,

10
o(R)=—11if the site R contains a B ion, (10)

we may write

(| ViI+VI|r)=} {Z {{1+oR) Jr—R|va|r'—R)
R)
+[1—e(R)J(r—R|vz|r'—R)}. (11)

Here, v; is the Hartree-Fock potential of an ion of type
i and V11 is the spatial average of the Hartree potential
of the array of ions. _

As expressed in Eq. (11), V14 V7 has a general form
which occurs repeatedly throughout this work. Let
us consider a general function G which can be expressed
for a given configuration of ions in the AB alloy in
terms of a sum over ionic functions g; as

{r|Glr)=3% {Zki} {{1+o(R) Jr—R[g4|r—R)
+[1—o(R)Jr—R|gs|r—R)}. (12)

This form merely expresses the property that the func-
tion g; which is associated with an ion of type ¢ is inde-
pendent of the lattice site occupied by that ion. A
matrix element of G between the plane-wave basis
functions can be written as

(k+q|Glk)=4 {ZR} e R {[140(R) [k+q| g4 | k)
+[1-o(R) Ik+aq|gs|k)} .
Itis convenient to define an average g by

(k+q|z|k)=xN(k+q| g4| k)
+(1—2)N(k+q|ge|k) (14)

(13)

and a difference g by
(k+a| Ag|k)=3N(k+q| ga| k)— 3N (k+q| gz| k), (15)

as well as

a(R)
<‘7>REZ =2x—1 )
N

{R}

(16)

where &V is the number of atoms in the crystal and x is
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the fraction of them which are of type 4. Substitution
of Egs. (2), (14), (15), and (16) into Eq. (13) yields
(k+4|G|k)=S(0)(k+q|g|k)+F(a)(k+aq| Aglk), (17)

where
~iq*R

F (q)—:—‘ZR} [o(R)—(o)=]- (18)

N

The significance of Eq. (17) is not readily apparent
on the basis of a cursory inspection. However, the
vanishing of S(q) F*(q) for all values of q is easily demon-
strated using Eq. (16). In the common case of an alloy
such that the vectors {R} form a Bravais lattice, the
set of reciprocal space vectors, {q}, can be divided into
two subsets. These are the reciprocal-lattice vectors
{K}, which have the property that exp(—iK-R)=1
for all members of {R}, and all other reciprocal vectors.
It is easily shown that S(q)=A(q,K), where A(q,K) is
equal to unity if q is a reciprocal-lattice vector and zero
otherwise. For such an alloy, it follows that F(K)=0.
However, for any alloy structure, the important conse-
quence of the vanishing of S(q)F*(q) is that only one
of the two terms on the right-hand side of Eq. (17) is
nonzero for any point . Thus, a given matrix element of
G is always the product of a g;-independent factor, such
as F(q) or S(q), and a structure-independent factor,
such as a matrix element of 7 or Ag. This separability,
when demonstrated for the screened pseudopotential,
will lead directly to structure-independent energy-—
wave-number characteristics and effective pairwise
interactions. Having demonstrated the form for
V114V through the analogy between Egs. (11) and
(12), we now proceed to show that the other term in
the unscreened pseudopotential, VZ, can be similarly
described.

The repulsive potential, as defined in Eq. (8), can be
written more explicitly as

x|VE|Y)=% ¥ (r—R|nims; R) faime;r(@—R). (19)

{R} nims

Here, #, 1, m, and s are the usual radial, orbital, and
spin quantum numbers used to describe one-electron
ionic core states. The assumed invariance of the core
eigenfunctions is typical of the invariance which must
characterize other components of the pseudopotential
in order that separability be achieved. Accordingly, we
find it necessary to restrict the very general form of the
fo(r') so that the fo(r') associated with a particular
type of ion is independent of the surroundings of that
ion. While this requirement is not an assumption in any
sense, it does limit the freedom which one has, in
principle, to optimize the convergence of the pertur-
bation expansion by variations of f.(r'). With this
restriction, Eq. (19) can be written in the form of Eq.
(12). Tt is convenient to define the unscreened pseudo-
potential associated with an ion of type 7 located at the
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origin by
(elwd|t)y=(r|vi|t')+ X (x|nms;i)faimer).

nlms

(20)

Replacing G by V. I+W9, g by w°, and Ag by Aw®, the
same analysis which yielded Eq. (17) from Eq. (12)
leads to the relation

(k+q| V.I4+W°| k)= S(q)(k+q|@°| k)
+F(q)(k+q|An°|k). (21)

Since the difference unscreened pseudopotential Awn®
vanishes in the limit in which the two types of atoms
are identical, Eq. (21) reduces to the appropriate un-
screened pseudopotential for an elemental crystal.

The above expression for the matrix elements of the
unscreened pseudopotential may be discussed in relation
to the virtual crystal approximation, which has been
used widely to treat the case of a completely disordered
binary alloy. In this approximation, the actual potential
due to the ions in the crystal is replaced by a periodic
array of effective ionic potentials. This effective poten-
tial is the weighted average of the two different ionic
potentials in the alloy. As may readily be verified by
examining the definition of the average g in Eq. (14), the
first term on the right-hand side of Eq. (21) represents
a virtual crystal approximation for the potential of the
pseudo-ions. This term depends primarily upon the
configuration of ionic states in the crystal, rather than
the arrangement of the ions on the sites. The second
term is a correction to the virtual crystal approximation
which accounts for the difference between the ionic
potentials and depends in detail upon the arrangement
of the ions on the ionic sites. This term is nonvanishing
for all ionic configurations. Further, it must be stressed
that S(q) and F(q) do not necessarily contain all of the
structure dependence in Eq. (21). As defined above, the
average and difference unscreened pseudopotentials
are not strictly independent of the structure, but can
vary with the ionic arrangement through variations in
the optimal f,(r). For the calculation of certain physical
quantities, such as the effective pairwise interactions,
we have found it convenient to restrict fo(r) to being
invariant under rearrangements of the ions at constant
volume. Under that restriction, the average and differ-
ence unscreened pseudopotentials are truly constant
during variations of that sort. In any case, it is expected
that the ordering process will affect the pseudopotential
most strongly through variations in F(q), not f.(r).
This expectation has been borne out in calculations on
LiMg. Let us now turn to the calculation of the matrix
elements of the screening potential.

In the Hartree approximation, Poisson’s equation
may be used to express the relationship between the
matrix elements of the screening potential and the
matrix elements of the conduction-electron density in
a basis of plane waves. Since V'S¢ is manifestly local in
this approximation, its matrix elements are a function
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only of the difference between the wave vectors. If #
is the conduction-electron density operator, the off-
diagonal matrix elements of V'S¢ may be written as

8w
{a| V5°[0)y=—(q|%|0}, (22)

lq|?
(rlnlr’>5%3’ [{r|o)|28(x—1")

where
(23)

The set {v} consists of the occupied valence eigenstates
of H. Using Eq. (9), |(r|2)|? may be written as

| (x|o)|*= [ (x| )| 2—2 Re({x| P|5)(3]x))
+/(x| P|o)(3| P|1),

where 7 satisfies the pseudo-Hamiltonian equation,
H,|0)=T|0)+W|0)=E.|7), (25)

and the crystalline core projection operator, denoted by
P, is defined by

(k+q|P|k)=3 (k+q|c)ck).

(24

(26)

It is now shown that Eq. (22) can be written in the ‘

separated form of Eq. (17). By analogy with the appli-
cation of the pseudopotential method to a single-
element crystal,® it may be assumed that all terms of
order higher than first in the pseudopotential must be
neglected in the plane-wave perturbation theory expan-
sion of the right-hand side of Eq. (22). Our examination
of alternative procedures indicates that this assumption
is justified. Accordingly, let us associate the state 7 with
the zeroth-order wave function, ao(k)|k). This associ-
ation does not imply that k is a good quantum number
in the alloy. Expansion of the wave function of 7 in
plane waves and neglect of all contributions to the wave
function involving the product of two or more matrix
elements of the pseudopotential yields

Wk

k) ) @

(k+q|W
|k|?— |k+q|?

In writing this equation, we have ignored the vanishing
of the denominator for certain values of q5%0. The
difficulty encountered in the evaluation of expressions
involving such a singularity has been closely examined
by Harrison? and by Pick and Blandin.? They conclude
that this singularity enters into a perturbation theory
expression for the total conduction-electron energy
accurate to second order in the pseudopotential only in

the form "
h
/ P
o |K|2—|k+q[?

98 Note added in proof. While the formal lack of orthogonality
among the members of {v} as obtained through Eq. (9) has been
ignored in the writing of Eq. (23), we have found that this non-
orthogonality does not affect the screening to first order in the
pseudopotential.

)= ao<k>( T i)

(28)
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where the integral extends over the Fermi sphere of
radius k7 and k(k) is a slowly varying function of k
everywhere, The principal value of this integral is a
well-defined function for all values of g0, independent
of the relationship between ¢ and %z. These results are
fully applicable to the alloy problem. Hence, it may be
concluded that, whereas the singularity occurring in
Eq. (27) leads in many instances to insurmountable diffi-
culties in the evaluation of properties of individual elec-
tron eigenstates, such as the energy or the wave function,
properties derivable from the second-order perturbation
theory expression for the total conduction-electron
energy can be evaluated without any particular diffi-
culties. It must be pointed out, however, that there
may be physical properties, including the energies, of
certain alloy systems whose perturbation theory expan-
sions are strongly influenced by terms of order higher
than second in the pseudopotential. In these instances,
the second-order expression for the conduction-electron
energy can be readily evaluated but will be of little
significance. The formation of a long-period superlattice
in an alloy may be an example of such a process.

Ignoring the singularity in the perturbation theory
expression, Eq. (27) may be substituted into Eq. (24)
to obtain

el #= )1 e
—2 Re((e] P )k )+ el Pk | P|1)]
o
dok 2 o
2lacfk)|? Re [;Z} k= it
¢ (el ek )— (e P kg )

——<rxk+q><ku>lr>+<rxP|k+q><k|Pzr>>]. (29)

To obtain an expression for |ao(k)|2?, both sides of
Eq. (29) are integrated over the crystalline volume. The
resulting left-hand side is unity since the state » con-
tains just one electron. Therefore, |ao(k)|?2 is given by

lao(k)l2=[1-<kIPlk)

, (| P|k+q)k+q| W [k)\ T
—-ZRe(%} TADE ):I . (30)

This expression for |a¢(k)|? is dependent upon the
matrix elements of the screening potential for all non-
zero values of q through the presence of the matrix
elements of the pseudopotential. Accordingly, if this
expression were used in a calculation of the matrix
elements of V5, a given matrix element of the screening
density defined in Eq. (23), and hence a given matrix
element of V'S¢ as given in Eq. (22), would also depend
upon all the matrix elements of V8¢, This would be
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true even if Eq. (29) were linearized after the substitu-
tion of Eq. (30). Therefore, the matrix elements of the
screening potential would result only from the solution
of an infinite set of equations. In addition, and of more
significance in this treatment, the resulting matrix
elements of V8¢ would not have the proper form to
enable the separation of the matrix elements of . In
order to avoid this situation, we shall introduce the
approximation that the matrix elements of the crystal-
line core projection operator, P, may be treated as
first-order expressions in W. This approximation is
discussed in detail by Harrison.® The small magnitude
of the matrix elements of P, typically of order 0.1, sug-
gests that the approximation is reasonable.

As a result of this approximation, |ao(k)|2 can be
written to “first order” in the pseudopotential as

lao(k) | 2= (1— (k| P|K))~". (31)

In order to find the matrix elements of the screening
density, the matrix elements of Eq. (29) must be
evaluated in a basis of plane waves. This leads to expres-
sions like

LT etalo) [ drilneerele)e 0, @

where the sum over core states in P has been displayed
explicitly. If =0, the orthonormality of the core states
reduces this expression to a matrix element of P. The
presence of exp(—iq-r) in the integral serves to moder-
ate the sharp orthonormality condition and should not
increase markedly the magnitude of the expression.
Accordingly, we shall also consider expressions like
(32) to be “first order” in the pseudopotential. With
these approximations, the matrix elements of the screen-
ing density may be evaluated and Eq. (22) used to
write the matrix elements of V5 to first order in W° as

T 1
—_— ok 2
2lal? D) e oW
(<k+qlW°Ik>L<k—qlW°Ik>*
|k|*— [k+q|? |k|*—|k—q]?

where

(a|Vse]0)=

4 B(k,q>), (33)

87
D(@)=1——— 3% |ao(k)|?
Qlq|? mr

1
} 34
X(lk|2~lk+ql2 lk|2—lk~q12> .

and

B(k,q)=—(k+q| P|k)— (k| P|k—q)

+ j dx(k| P |y (c| P|K). (35)
Q

AND BIENENSTOCK

175

The sum over {7} of Eq. (23) has been replaced in these
expressions by an equivalent sum over the set of
states, denoted by {k}r, contained within the Fermi
volume.

It is apparent from the form of Eq. (33) and the
separability of W?° that the separability of V'S¢, as
discussed in connection with G, will follow directly
from the separability of B(k,q) if | ¢o(k) | 2is independent
of the arrangement of the ions in the alloy. To show
this independence, the invariance of the core states is
used to write the r-space representation of P as

(x| P|r)=3 {ZR) {[1+o(R) Jr—R|pa|r'—R)
+[1—o(R)I(r—R|ps|r'—=R)}, (36)

where the projection operator associated with an ion
of type ¢ at the origin is given by

(r|p:|¥'y= X (t|nims; i)i; nlms|t’).

nlms

(37

In strict analogy with the treatment of G, the matrix
elements of P may be written as

(k+q| P|ky=S(q)(k+q| 5| k)+F(a)(k+q| Ap|k). (38)

Since |ao(k)|? depends only upon (k|P|k), Eq. (38)
demonstrates that it depends only upon (k|p|k) and
is, therefore, independent of the arrangement of the
ions in the crystal. It does, however, depend upon the
relative numbers of 4 and B ions.

To establish the separability of B(k,q), we note that
the assumption that the core states are invariant
is reasonable only if the overlap of core wave functions
on adjacent ions is negligible. Accordingly, the middle
integral in the last sum of Eq. (35) must vanish unless
¢ and ¢’ are associated with the same ion. This property
implies that this sum may be written as

%{Z,}{[l-l—a(R)] dr(k|ps|r—R)
R Q
Xe @ (r—R]|pa|k)+[1—a(R)]
% / dr(k| po | 1— Rye—ie(—R | pa|K)} . (39)

We will now define an ionic 4:(k,q) by
bi(k,q)=— (k+q|p:|k)— (k| ps| k—a)

+/ dr(k| pi|rye=i (x| pi| k)  (40)
e
and proceed in analogy with our treatment of G to write

B(k,q)=S(@bk,+F(@Adkg).  (41)

Here, b and Ab are defined in strict analogy with Eqgs.
(14) and (15).
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Since |ao(k)|? is independent of the ionic arrange-
ment and B(k,q) can be written as in Eq. (41),
{q]| V5¢|0) depends directly upon the ionic arrangement
only through a factor of either S(q) or F(q), whichever
is nonvanishing for that value of q. Of course, the matrix
elements of the screening potential may also depend
upon the ionic arrangement indirectly through the
optimal form for f.(r). In any case, the matrix elements
of V'S¢ can be separated in the same manner as were

those of W, By defining an average screening potential
by

8w
75¢| )= o(k) |2
@relo)= s © Jalk)

[<k+qrw°1k>  (k—q|0|k)*
|k|*— [k+q> |k|*—|k—q|?

: 5<k,q>] 2)

and a difference screening potential in a completely
analogous manner, the matrix elements of the screening
potential can be written as

(a] V5°|0)=S(q)(q|75°|0)+F(q){q| AvS€[0).  (43)

This expression for V5¢ differs from that obtained by
Harrison® in two respects. Since he chose to treat the
conduction-electron charge which arises from the sum
over core states in Eq. (9) as part of an effective valence,
there is no contribution in his expression from terms
analogous to B(k,q). In addition, |ao(k)|?2 has been set
equal to unity. While it may be argued that setting
|ao(k)|2=1 does not drop any terms from Eq. (42)
which are not of second or higher order in the pseudo-
potential, we have chosen to retain both this contribu-
tion and that from B(k,q). For the system LiMg,
| @o(K) | % increases the matrix elements of the screening
potential by 6 to 8%, for important values of q. The
terms resulting from B(k,q) decrease the screening
potential matrix elements by about 0.5%, for ¢=0.25
atomic units (a.u.) and by 20 to 30% for ¢=1.50 a.u.
Therefore, the combined effect of the two corrections
tends to redistribute the screening potential in q space.
By combining Eq. (21) with Eq. (42), the matrix
elements of the total screened pseudopotential can be
written as

(k+q| V4 W|k)=S(q)(k+q|w|k)
+F(q)(k+q| Aw|k), (44)
where

w=1w"4+05¢ and Aw=Aw'"+ AvSC.

Having obtained a separated form for the screened
pseudopotential, we shall review the assumptions which
were required to achieve this form. In this use of the
Austin, Heine, and Sham? form of the pseudopotential,
the core eigenfunctions are assumed to be closely ap-
proximated by the corresponding atomic wave functions
and, accordingly, to be independent of the local en-
vironment of the ion. Use is made of the implication of
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this assumption that the core eigenfunctions on adjacent
ions in the solid do not overlap. It is also assumed that
the Hartree-Fock one-electron Hamiltonian is sufficient
to describe the interaction of the conduction-electron
eigenstates with the core-electron eigenstates. These
assumptions are common to most orthogonalized-plane-
wave (OPW) and pseudopotential approaches. In
addition, the form of f.(r) is restricted in this treatment
to one which does not vary among the ions of one type
throughout the alloy, for a particular configuration of
ions. This last restriction is, of course, trivial in the case
of a periodic elemental crystal. While this restriction
enabled the separation of W?, it must be remembered
that the matrix elements of %° and Aw® may depend
upon the arrangement of the ions through f.(r).
Perturbation theory is used to obtain an expression for
V'S¢ in the Hartree approximation which is first order
in the pseudopotential. Finally, by assuming that the
matrix elements of the crystalline core projection oper-
ator may be treated as first-order expressions in the
pseudopotential, we were able to separate the matrix
elements of V5¢, and therefore of W.

Turning to a discussion of the crystalline energy, it
is convenient to distinguish two groups of charges. The
first group consists of the ionic cores, while the second
consists of the conduction electrons. By the conduction-
electron contribution to the crystalline energy, we mean
the self-energy of the second group of charges plus the
energy of interaction between the first and second
groups. Summing the energy E, over all of the occupied
conduction-electron eigenstates yields the energy of
interaction of the second group of charges with the full
charge density in the crystal. Since this sum counts the
self-energy of the second group of charges twice, we
may subtract one contribution of this self-energy to
yield the following expression for the conduction-

electron contribution to the crystalline energy per ion:
Q
(= B ol @l velo):
v 167 (1

1
~fdr/dr'!f1fii!]. (45)

N

The last term in this expression is the self-energy of a
uniform charge distribution with density #, equal to
the average conduction-electron density in the crystal.
Harrison? and Pick and Blandin3 have shown that the
sum over the valence states shown above may be ex-
pressed to second order in the pseudopotential by a
sum over the free-electron Fermi sphere of Ey, where

Ex=k2+V 1+ k| W k)
k| |k+q)(k+q| W k)
(a) |k|2— |k+q|?

Since only the last two terms in Eq. (46) will vary when
the ions are rearranged at constant volume, the con-

(46)
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duction-electron contribution to the structure-depen-
dent crystalline energy can be written as

Esd“_' > (k|W[k)

N xyr
1/ &W]kta)ktaw]k)
Y %; ((m k|2— [k+q]?

Iql2

IMW%W)@D

Substituting for the matrix elements of W and V5¢
from Eqs. (43) and (44) yields

1
Egy=— Y (k|w|k
a NW(I k)

+4{v_‘," [1S@|2En(@)+ |F(a)|2Ex(q)]. (48)

Here, the energy-wave-number characteristics are
defined by

(oo e ) )
@)= Qg, T T
_Qlqf”

wwmwm0<w

where wi=w, wy=Aw, 1= and v,=Av5C. The
separability of the matrix elements of W and V5¢ has
resulted in the appearance of only the absolute magni-
tudes of S(q) and F(q) in Eq. (48). If the system is held
at constant volume during the rearrangements of the
ions and the f,(r) are restricted to be invariant during
such rearrangements, then Ey will vary only through
|S(q)|? and |F(q)|2 |S(q)|? is independent of the
arrangement of the ions on the ionic sites and is ac-
cordingly invariant during the ordering process.
| F(q) |2 is discussed in the Appendix and shown to be a
Fourier transform of a two-particle correlation function.
Therefore, under these conditions, the variations in Esq
during the ordering process depend upon the position
of the ions only through two-particle correlations.

In deriving an expression for the effective pairwise
interaction, a form of E. which depends upon the
arrangement of ions for a given atomic volume only
through S(q) and F(q) must be used. Therefore, f.(r)
is restricted, in this instance, to being independent of
the arrangement of ions, so that the first term in Eq.
(47) can be dropped. Substitution of Eqgs. (43) and (44)
into the remainder of Eq.§(47), replacement of S(q)
and F(q) by the sums over real space which they
represent before taking their products, and interchang-
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ing the sums over real and reciprocal space yields

2
— ¥ =¥ v R Ey(g
2N (R} (R} N {q} {Eule)

+Le(R)—(@)r]E12(q)+[o(R)— (o) ] Ear(q)
+[o(R)—{o)rJ[o(R)— ()] E2s(q)} -

This may be compared with the expression for the
energy of the array of point charges, Z;,

1
2N (ZR};6§)2|R R'|
X[A+oeRNDZa+A—o(R)Zs]}. (51)

In Eq. (51), the interaction between an 4 ion at R and
an A ion at R/, for instance, can be obtained from the
corresponding term in the double sum by setting
c(R)=c¢(R")=1. The effective pairwise interactions
which follow are deduced by extending this approach
to the electron contribution to the energy. Here, V;(R)
is the interaction between an ion of type ¢ and one of
type j separated by a distance R:

(50)

{{A+oRDZa+(1—o(R))Z5]

2

Vaa(R) 2A-;-zz"RE()
= — e q
AA R o { 11

+(1—={(o)&)[Er2(q)+Ea(q)]
+[1—{o)r]?Esx(a)}, (52)

2Zp?

Z' e R*{ E1(q)
N (g

—(1+(0)2)[Er2(@)+E21(a) ]

+1+{o)r)Ex(@)}, (53)

and

2
2. e R{E1(q)
N (q

+ E12(q) — Eo1(q) — (o) e[ E12(@) + E(q) ]
—(1—{0)r?)Ess(q)} -

It must be emphasized that these forms arose as a
consequence of using a second-order perturbation
theory expression for the structure-dependent conduc-
tion-electron energy. Further, it was necessary to
restrict fo(r) to being invariant during rearrangements
of the ions at constant volume.

(54)

III. APPLICATION TO LiMg

The conduction-electron contributions to the ordering
energy and to the effective pairwise interactions are
evaluated below for stoichiometric LiMg. The selection
of LiMg for these computations is motivated largely
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by our expectation that the approximations which have
been introduced in this treatment are particularly
applicable to this alloy of simple metals. While LiMg
“has not been found in a fully ordered state, Herbstein
and Averbach!® have measured a degree of short-range
order in samples quenched from 200°C. Their experi-
mental results suggest that LiMg would exhibit long-
range order at low temperatures if the ions were suffi-
ciently mobile at these temperatures that the alloy could
readily reach equilibrium. The numerical values which
are obtained here for this system should be consistent
with these observations.

The choice of an optimal set of f,(r), which determine
the pseudopotential, must not be taken lightly even
though the work of Austin, Heine, and Sham® proves
that the exact conduction-electron eigenvalues of a
pseudopotential of the form of Egs. (7) and (8) are
independent of the f.(r). In this treatment, the final
expressions for Ey and for the effective pairwise inter-
actions are the result of second-order perturbation
theory and are therefore dependent upon the f,(r).
Accordingly, the optimal set of f.(r) in this context
will minimize the contribution of higher-order terms to
E,q. Pending the presentation of a detailed examination
of the optimization procedure in a paper to be published
shortly, the pseudopotential to be used here is given
without a discussion of its selection. For use in a
perturbation theory expansion of the properties of the
conduction-electron eigenstate which has the plane
wave k as a zeroth-order wave function, this pseudo-
potential may be expressed as

W=VI4V5¢+ 3 |c)(k2+V i+ k| W |k)—E.)c|, (55)

where E, is the eigenvalue of a crystalline core state.
This pseudopotential is in the form discussed by Austin,
Heine, and Sham?® although Eq. (55) is k-dependent.
The Phillips and Kleinman pseudopotential,!¥12 which
was derived from the OPW method, may be obtained
from Eq. (55) by the substitution of the exact energy of
the eigenstate for the first-order expression for that
energy, (k*+V 1+ (k|W|k)), which occurs in the sum
over the core states. If the matrix elements of the
crystalline core projection operator may be treated as
first-order expressions in the pseudopotential, as has
been assumed, then the Phillips and Kleinman pseudo-
potential will yield the same Eyq as Eq. (55) to second
order in the pseudopotential. Taking the expectation
value of Eq. (55) in the plane wave k leads to a self-
consistent expression for the diagonal matrix elements

1 F, H. Herbstein and B. L. Averbach, Acta Met. 4, 407
(1956); 4, 414 (1956).

11 7 °C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).

12],. Kleinman and J. C. Phillips, Phys. Rev. 118, 1153 (1960).
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of W,
k| W k)
(o] . k (2 LY, — ;
=<k;VI+Vs [k)+26 [(k|c)|2(k2+ TV, E). 8

1-3. [(k|c)|?

Expressions for the wave functions of the core
electrons and for the V' — E, are needed for the evalu-
ation of the matrix elements of the pseudopotential.
Clementi’s®® analytic neutral atom Hartree-Fock Li and
Mg eigenfunctions are used for the core wave functions.
The procedure customarily employed to estimate the
Vi—E, in a single-element metallic crystal treats the
ionic Hartree-Fock potential of the core as a first
approximation to the crystalline potential seen by the
core electron. The ionic Hartree-Fock eigenvalues are
corrected by approximating the influence of an appro-
priate superposed periodic array of N—1 ions and a
uniform distribution of the conduction electrons neces-
sary for maintaining the charge neutrality of the crystal.
Since the screening of the ions by the conduction elec-
trons is neglected in this model, the interchange of a
neighboring Li ion with a Mg ion would change the
attractive potential of the jons dramatically without a
compensating change in the repulsive electron potential
to which a core electron is subject. Hence, the change in
the core eigenvalues with ordering is vastly over-
estimated. Accordingly, we have used a neutral atom
model for the calculation of the V—E,.

Considering a neutral atom of type 4 at the origin, a
crystal is constructed by bringing neutral atoms of
types 4 and B from infinity and placing them on the
appropriate lattice sites. The atomic charge distribu-
tions are considered as fixed relative to their respective
nuclei in this model. For stoichiometric LiMg in a body-
centered cubic structure with a lattice constant of 3.5 A,
the added charge density at the origin calculated using
Clementi’s functions is no more than roughly 0.19 of
the valence-electron charge already present. Therefore
we will neglect effects related to this charge density at
the origin, such as the associated exchange potential.
Accordingly, V— E, may be estimated for this system
from the Hartree potential at the origin due to an array
of lithium and magnesium neutral atoms. The electric
field outside of a spherically symmetric charge distri-
bution with a net charge Z is identical to that of a
point charge of magnitude Z at the center of the dis-
tribution. Therefore, that portion of the neutral atom
charge which lies within a sphere of radius equal to the
nearest-neighbor distance will be treated as a point
charge at the nucleus. For this system, the effective
charges associated in this manner with the nuclei are
0.130 for lithium and 0.105 for magnesium. If the charge
outside the sphere is treated as being uniformly dis-
tributed throughout the crystal, the correction to the

18 E. Clementi, IBM J. Res. Develop. 9, 2 (1965), and suppl.
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atomic core eigenvalues may be estimated by the cus-
tomary procedure.® In this model, the difference
between V—E, and the atomic eigenvalues would be
roughly 0.13 Ry, which may be compared with a lithium
1S eigenvalue of —4.96 Ry and a magnesium 2P
eigenvalue of —4.56 Ry.!® The estimate of the correc-
tions in the ordered and disordered states of the alloy
would differ by roughly 0.008 Ry. Further, these
corrections appear in the pseudopotential only when
multiplied by the matrix elements of the core projection
operator P, a first-order quantity. Due to their small
magnitudes, we have neglected these corrections and
used the neutral-atom Hartree-Fock eigenvalues of
Clementi®® to approximate V;—E, in stoichiometric
LiMg.

The nonlocal ionic pseudopotential is readily com-
puted from Eq. (20). However, the singularity caused
by the vanishing of the denominators in Egs. (33) and
(34) must be treated with care in a numerical computa-
tion of the matrix elements of the screening potential.
In this calculation, large negative and positive con-
tributions from the singularity were paired off in direct
analogy with the usual definitions of the principal part
of an integral. The same procedure was used in com-
puting the energy—wave-number characteristics as
defined by Eq. (49). As we have neglected the change in
V1—E., and hence in f.(r), during the ordering process,
only Ea(q) will contribute to the estimate of the con-
duction-electron contribution to the ordering energy.
This function, multiplied by ¢? is plotted in Fig. 1. As
discussed in the Appendix, |F(q)|? is nonvanishing
only for certain discrete reciprocal-space vectors in the
ordered state of the alloy. The magnitudes of these
vectors are indicated in Fig. 1 by the short vertical bars.
The number below each bar indicates the number of
reciprocal-space vectors of that magnitude for which
| F(q)|? is nonvanishing. The contribution of Es(q) to
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F1c. 1. The product of ¢* and the energy-wave-number charac-
teristic Ez2(q) is plotted as a function of g, the distance from the
origin in reciprocal space, for stoichiometric LiMg. The vertical
bars and associated numbers indicate the positions and numbers of
significant reciprocal-lattice vectors.
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F1G. 2. The interaction V=Vi4+Vrr—2V 45 is plotted as a
function of R, the interionic separation, for stoichiometric LiMg.
The vertical bars and associated numbers indicate the separations
and numbers of the first five sets of near neighbors.

the energy of the ordered state is proportional to the
sum of the values of Eg at each bar multiplied by that
number. In the completely disordered state, |F(q)|2
is a constant everywhere except for q a member of {K},
where it vanishes. Thus the contribution of Es; to the
disordered state is proportional to an integral of q2Es(q)
over all values of ¢. Accordingly, the conduction-electron
contribution to the ordering energy is —0.0715 Ry per
ion. The point-ion contribution to the ordering energy
is the energy of a cesium chloride lattice of =+0.5
charges, or 0.0768 Ry per ion. Therefore, we estimate
that the internal energy of the ordered state is lower
than that of the disordered state by 5.3 mRy per ion.

The effective pairwise interactions have been com-
puted according to Egs. (52)—(54). The effect of these
interactions on the ordering process can be fully de-
scribed in terms of V=V 4+ Vpp—2V 45, which has
been plotted as a function of ionic separation in Fig. 2.
The short vertical bars and associated numbers indi-
cate the positions and numbers of neighbors at each
near-neighbor distance. In the ordered state of the alloy,
the closest set of neighbors is unlike, the next two sets
are like, the fourth is unlike, and the fifth is like the
ion at the origin. These five sets of neighbors yield an
ordering energy of 6.0 mRy per ion. However, since V
is still quite large for more distant neighbors, the
agreement between this estimate and the prior one,
which included the contributions of all sets of neighbors,
should be considered as largely coincidental.

Perhaps the most significant result of this numerical
calculation is quite apparent in Fig. 2. If V is expressed
approximately as a sum of an exponential term and a
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sinusoidal term, the former dominates throughout the
region of this calculation.

As noted at the beginning of this section, the absence
of an empirical estimate of the critical temperature of
LiMg precludes a direct test of the accuracy of the
results of this treatment of the alloy problem. However,
the numerical value which has been obtained for the
ordering energy should be consistent with the work of
Herbstein and Averbach.!® Any comparison between
an empirical critical temperature, denoted by T, and
a theoretical ordering energy, denoted by E, requires
a statistical mechanical relation between these two
quantities. Considering an Ising model with nearest-
neighbor interactions only, Baker!* has calculated a
value of 1.587 for kT./E for a body-centered cubic
system, where % is the Boltzmann constant. According
to this relation, an ordering energy of 5.3 mRy corre-
sponds to 7,=1321°K, which is much higher than
would be expected from empirical observations. While
Baker’s work appears to demonstrate that the results
of this treatment are inconsistent with experiment, the
applicability of the nearest-neighbor Ising model to the
LiMg system is questionable in light of the long-range
nature of V, as obtained in this treatment. Chang!®
extended the second approximation of Bethel¢ by con-
sidering the interaction between both first and second
nearest neighbors, denoted by V; and V, respectively,
for values of V,/V1 between 0 and 0.25. For stoichi-
ometric LiMg, our calculations indicate that V,/V;
=0.394 and that the second and third nearest neighbors
contribute roughly equal amounts to the ordering
energy. If we approximate the effect of the third nearest
neighbors by increasing Vy/V; to 0.794, Chang’s
results may be extrapolated to yield a decrease in
kT ./E by 58 to 679, of its value for V,/V;=0. Since
Vo/V1=0.794 is well into the region where Chang’s
calculations suggest that 27°,/E is very sensitive to the
value of that ratio and we have extrapolated beyond the
region of Chang’s actual computation, the decrease in
kT ./E should be regarded as merely an indication of the
nature of the dependence of that quantity on V,/V,.
For example, if we were to assume that kT./E were
0.60, then an ordering energy of 5.3 mRy would corre-
spond to 7,=3500°K. This critical temperature is
certainly consistent with the observation by Herbstein
and Averbach that samples of stoichiometric LiMg
which were quenched from 470°K exhibit a degree of
short-range order.

While thermodynamic measurements do not, at
present, yield a critical test of this theory, the treat-
ment of Clapp and Moss!'? appears to provide a direct
means of estimating V, apart from a constant multiplier.
Their procedure yields the values of V at near-neighbor
separations relative to the value at the nearest-neighbor

1 G. A. Baker, Jr., Phys. Rev. 124, 768 (1961).

1T, S. Chang, Proc. Roy. Soc. (London) A161, 546 (1937).
16 H. A. Bethe, Proc. Roy. Soc. (London) A150, 552 (1935).
17 P. C. Clapp and S. C. Moss, Phys. Rev. 142, 418 (1966).
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separation from the diffuse x-ray scattering at tempera-
tures considerably above T.. This method is ideally
suited for determining the shape of the interaction in
the LiMg system, for which equilibrium may be antic-
ipated at such temperatures, and thereby testing the
predictions of this formalism.

APPENDIX: EVALUATION OF |F(q)|?

The expression for the structure-dependent conduc-
tion-electron energy presented in Eq. (48) depends upon
the positions of the ions during rearrangements at
constant volume through the |S(q)|? and |F(q)|2
Equation (18) may be used to write |F(q)|? as

F@F(-q)= {% (%, Lo(R)— (o) r Lo (R)—(0)x]

iR QR

X

7
¥ (7)

The substitution of R’=R+R" into Eq. (57) yields

iq R’
F@[*= T (@Oe®)e—o,  (58)
{R") N
where
(@O0 (R"))z
a(R)— (o a(R "N—{o)r
_y DR RER) = 0a]

(R} N

Since o(R) has been defined such that it has a value
of 41 if R contains an 4 ion and —1 if R contains a B
ion, Eq. (59) defines a two-particle correlation function.
Accordingly, an expression for the conduction-electron
energy which is accurate to second order in the pseudo-
potential depends upon the arrangement of ions during
the ordering process only through a two-particle corre-
lation function, apart from an optional dependence
through f.(r).

|F(q)|? may be evaluated in terms of the Cowley
order parameters.’®* The conditional probabilities
p4(R) and pg(R) are the probabilities of finding an 4
ion located at R if the origin contains an 4 or a B ion,

respectively. The Cowley order parameters, denoted by
a(R), are defined by

ts(R)=2—xa(R), (60)
or, equivalently, by
pa(R)=2+(1—x)a(R), (61)

where « is the fraction of ions in the alloy which are of
type A. These parameters have the properties that
«(0)=1 and that the sum of a(R) over all values of {R}
vanishes. In analogy with Cowley’s expression for the
intensity of a diffracted x-ray beam,'? the average

18 J. M. Cowley, Phys. Rev. 77, 669 (1950).
19 J. M. Cowley, Phys. Rev. 120, 1648 (1960).
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defined by Eq. (59) is related to «(R) by
(o(0)o(R")) p=4w(1—x)a(R"). (62)

Therefore, |F(q)|? may be expressed in terms of the
Cowley order parameters as
a(R)eir R

2=da(l—a) ¥ ——. 63
| F(@)|*=4x( x)‘ZR) v (63)

In a completely disordered alloy, «(R) must be a
constant for all R=0. The two properties of «(R)
mentioned above imply that «(R) must equal
—1/(N—1) for all R5#0. Therefore, in the disordered
alloy, |F(q)|? is given for a Bravais lattice by

4x(1—x)
|F(q) |?=——"[1—A(q,K)]. (64)

N—1

The case of an ordered crystal is not as easily discussed
since the exact form of | F(q)|2 depends upon the par-
ticular structure involved. In the instance of a 50-50
alloy which orders in the cesium chloride structure, the
lattice of ionic sites is body-centered cubic. In the
ordered state, we may consider that 4 ions occupy all
of the body centers and B ions occupy all of the corner
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sites. Accordingly, a(R)=1 for all members of {R}
which correspond to the set of repeating vectors for the
ordered state, denoted by {R,}. For all other sites in
{R}, a(R) is equal to 1—(1/x), or —1 in this case.
Therefore, |F(q)|?2 is given by

eiq-R e’iQ'Ra
IF(q)Iz=4x(1—x)[——(ZR:)—JF+ E} v ] (65)

If q is any member of the set {K}, then both sums in this
expression are unity and |F(q)|? vanishes. This is in
agreement with the previously noted property that
F(K)=0. If q is not a member of {K,}, the set of
reciprocal-lattice vectors corresponding to {R,}, then
both sums are zero and |F(q)|? vanishes. If q is a
member of {K.}, which consists of those members of
{K,} which are not members of {K}, then the first sum
is zero and the second is unity. Accordingly, for the
ordered case, we may write |F(q)|2 as

|F(q) | *=4x(1—2)A(q,K). (66)

In general, |F(q)|? is zero in the ordered state of any
alloy except for q equal to appropriate reciprocal-
lattice vectors.
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The electronic structure of one-dimensional binary alloys is studied in terms of exact mathematical ex-
pressions. It is shown by counter examples that the Saxon-Hutner theorem and its converse do not neces-
sarily hold for all potentials. The exact phase transfer theory is used. The present approach has the advantage
that it can examine with the same ease both the Saxon-Hutner theorem and its converse. Various sufficient
conditions of validity are found. The physical content of these conditions for potentials that are localized
and symmetric is analyzed by means of the one-dimensional scattering phase shifts of the individual con-
stituent potentials. As an example, it is shown that both the Saxon-Hutner theorem and its converse are
valid if the phase shifts of the two localized symmetric potentials forming the binary alloy are solutions
belonging to a certain class 7', in which the even and odd phase shifts of type-4 and type-B symmetric
potentials indicated by ., B4, and a_, 8-, respectively, satisfy the condition [sin(e4+a_)/sin(as—e-)]
=[sin(8,+B-)/sin(8+—B-) 1= f, where f is a constant. The analysis can be trivially extended to the study

of alloys composed of more than two elements.

INTRODUCTION

N 1949 Saxon and Hutner! put forth an interesting
conjecture concerning the forbidden energy levels of

a one-dimensional binary alloy. In a form modified for
our purpose here it states that a level, which is forbidden
in the infinite one-dimensional lattice formed of pure
type-A potentials and in that formed of pure type-B

* Part of the present work was carried out at Mathematics
Department, University of Hong Kong. It was supported in part
by the National Research Council of Canada.

1D, S. Saxon and R. A. Hutner, Philips Res. Rept. 4, 81 (1949).

potentials, is also forbidden in any arbitrary substitu-
tional alloy and 4 and B. We shall call this the Saxon-
Hutner theorem. The original conjecture by Saxon-
Hutner refers only to § potentials of the Kronig-Penney
type situated at the centers of equal cells, and has been
proved by Luttinger? and Dworin3 and demonstrated
by numerical computations of Agacy and Borland.*
Since then, many have questioned whether this conjec-

% J. M. Luttinger, Philips Res. Rept. 6, 303 (1951).

3 L. Dowrin, Phys. Rev. 138, A1121 (1965).

*R. L. Agacy and R. E. Borland, Proc. Phys. Soc. (London)
84, 1017 (1964).



