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The pseudopotential theory of Inetals is appHcd to the case of a binary alloy %1th an arbitrary degree
of order. A self-consistent screening potential which includes the e6ect of the total conduction-electron
charge is derived to erst order in a perturbation-theory expansion in the pseudopotential. Expressions are
obtained for the conduction-electron contributions to the ordering energy and to the effective pairs'ise
interactions among the ions in the alloy. H the conduction-electron energy may be expressed accurately
to second order in the pseudopotential, this energy js shorn to depend upon only two-particle correlations
among the ion positions. Numerical values are obtained for the ordering energy and the pairvnse inter-
actions for stoichiometric LiMg. The ordering energy is not obviously inconsistent with experimental
observations. H the ordering interaction is expressed approximately as a sum of bvo terms, one of @which

depends exponentially and the other sinusoidally on interionic separation, the former dominates throughout
the region of the calculation.

I. DTTRODUCTION

N attempt to extend the theory of metaIS to enable

~

~ ~

~

the calculation of properties of R binary alloy
vath RD arbitrary degree of order is presented in this
paper. In particular, expressions are obtained for the
conductloD-clcctI'on COQtx'lbutloDs to thRt poI'tloQ of
the crystalline energy which varies during rearrange-
mcnts of thc loDs Rt constaQt volume, hcnccfox'th called
the structuxe-dependent conduction-electron energy,
and to the CBective pair@rise interactions among the
ions. Numerical values are obtained fox the difference
in internal energy between the ordered and disordered
stRtcs RDd fol thc pair%'lsc lQtcI'Rctlons 1D R stolchlo-
metric LiMg aHoy.

The choice of the pseudopotcntial method for the
treatment of the alloy problem presented in this vrork
is motivated largely by the results of Hax'rison'2 and of
Pick Rnd Blandin. ' These authors demonstrate that a
consistent perturbation theory expansion of the elec-
tx'on energy 1D R pcrlodlc metal to second ox'dcx' lI1 thc
potcntlal yields R simple approximate cxplesslon fox' thc
structure-dependent conduction-electron energy. The
accuracy of this expression is increased by the replace-
IIlcnt of thc RctuRl potential with R sultablc pseudo"

~Portions of this vrork constituted part of a Ph.D. thesis
submitted to Harvard University hy Timothy M. Hayes.
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potential. A computation of the change in crystalline
energy%'hen thc lons Rrc x'cRIYRngcd Rt constRDt volume,
such as occurs during thc ordering of an alloy or a change
of phase, is greatly simplified in this formalism by the
avoidance of intermediate calculations of the band
stl ucture. Further' RQ cgcctlvc palrWlsc 1ntcl action
can be deduced from the expression for the structure-
dependent conduction-electron energy. These related
features indicate that the application of the pseudopo-
tcQtlRl DMthod to thc alloy problem, Rs SUggcstcd by
Harrison and by Pick and Sarma, will yield appro-
pI'1Rtc cxplcsslons foI' thc quantitics of 1Qtcx'cst

Thc conduction-clcctlon contribution to thc dBkrcncc
in internal energy between thc ordered and completely
disordered stRtcs ls R signi6cant RHoy plopclty %'hich

may be estimated from the stxucture-dependent con-
duction-clcctlon encl'gy. Thc importance of tbls coD-
tl'lbutloD to thc ordering cDclgy %'as recognized by
Mott' in his formulation of the polar model of an aHoy.

this model, the actual interactions among the
screened ions are approximated by the interactions
betvmcn effective point charges located on each lattice
site. The Thomas-Fermi model of the screening of an
isolated Coulomb potential by an electron gas is used
to compute the conduction-electron contribution to the
c6cctive point charges. Thus the efrect of the electrons
is reduced to that of point charges and the Madelung
expression may be used. to evaluate their contribution
to the ordexing energy. More recently, Harrison and
Paskin' have reformulated the polar model in terms of
Rn CGective pairvrise interaction between the ions in the
RUoy. They obtained an expression for this interaction
using an asymptotic form of thc scxcc5.1Dg dcnslty

' R. Pick and G. Sarma, Phys. Rev. 1N, A1363 (1964).' N. F. Mott, Proc. Phys. Soc. (London) 49, 258 (193/).' R. J.Harrison and A, Paskin, J.Phys. Radium 23, 613 (1N2).
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derived by Langer and Vosko, ~ who considered the
reaction of Rn electron gas to an isolated perturbing
Coulomb potential. The electrons in the gas werc
aHowed to interact with one another through a Inany-
body potential. Unfortunately, their interaction is
extremely sensitive to an adjustable parameter.

In the present work, an expression is obtained for
the screening by an electron gas to first order in pertur-
bation theory of a pseudopotential constructed from
the potential of an isolated nonlocal Hartree-Fock ion.
The electrons in the gas interact with one another
through the Hartree potential only. While this treat-
ment neglects the many-body interactions among the
conduction electrons, it should represent the important
interaction between the ions and the electrons more
accurately than the other approaches. Expressions for
the structure-dependent conduction-electron energy and
for the eRective pairwise interactions are derived in

analogy with the procedure of Harrison' for single-
element crystals. This approach to the alloy problem
has the virtue of yieMing an interaction which is free
of adjustable parameters and which has, therefore, an
unambiguous magnitude and shape.

The CRective pairwise interactions among the ions in
an alloy may be divided into two contributions. The
6rst is the interaction which wouM remain if the aeons

were stripped of the conduction electrons. That is, it
ls thc sunl of thc polQt loD COUloIIlb lntcIRctlOD, tlM vRD

dcx' %Rais 1Dtcr'RctloD RDd the lntcI'Rctlon dUc to coI'c

overlap. The latter tmo interactions are assumed to be
small for the alloys being treated and are neglected in

this formalism. The second contribution is the indirect
interaction among the ions by means of the conduction-
electron gas. This interaction depends upon the average
electron density and may be derived for a given atomic
volume from the structure-dependent conduction-
electron energy, which will be denoted by E,q.

By using a perturbation theory expansion of the
electron energy with the set of plane waves as the zeroth-
ordcr wave functions) Harrison found that Equi could
be approximated for a periodic metaHic crystal by

characteristic, denoted by Z(q}, is dependent upon
only thc ionic potentials, the average electron density,
and the atomic volume, and not the positions of the
ions. Once E(q) is evaluated. for a given metal with a
speci6ed atomic volume, E,~ may bc obtained for any
crystalline structure from Kq. (I) without an inter-
mediate calculation of the band. structure. Accordingly,
this formalism is well suited for obtaining the structure-
dependent conduction-electron energy as a function of
structure. By means of a comparison between Kq. (I)
and the form of the expression for the energy of the
point-ion interaction, Harrison deduced that thc con-
tI'1butlon of thc 1Qdilcct lntcrRctlon to thc cGectivc
pairwisc interaction is

sinp'
dq q'E(q)

where Qo is the volume pcr ion. Thus the indirect inter-
action follows immediately from a knowledge of the
energy —wave-number characteristic.

In order to obtain Kqs. (I) and (3) from the pertur-
bation theory expansion of the energy, it is necessary
to neglect all terms which are of higher order than
second in the pseudopotcntial. By the introduction of
RddltlonRl stI'uctul e dependence, these higher-order
terms would prevent the expression of E,g in the
simple form of Kq. (I) and thereby prevent the deduc-
tion of a structure-independent CRective pair wise
interaction, The retention of terms of higher order than
second in the pseudopotential would introduce thc same
complications in the problem considered here. Since the
goal of this work is to obtain information about the
changes in the energy of the aHoy system in response to
changes in the ionic arrangement at constant volume,
within a. formalism mhich leads to a structure-indepen-
dent elective pairwise interaction, these higher-order
terms arc neglected here.

We now proceed with a derivation which follows the
pseudopotential formalism of Harrison'*'8 for periodic
crystals whenever it is appropriate. E,q depends upon
the conduction-electron eigenstates of the nonlocal one-
electron crystalline Hamiltonian,

whcl c

The set (R} consists of vectors to all of the ionic sites
ln the crpstal from some convenient sltc choscD Rs

origin. The structure factor, denoted by 5(q}, is ac-
cordiHgly dependent upoD only thc posltloDs of thc
ions, and not their nature. The energy —wave-number

gJ. S. Langer and rS, H. Vosko, J. Phys. Chem, . Solids 12, 196
(1959tl,

Throughout this work, atomic units are used for all

quantities except energies, which are in rydbcrgs. Vl, ls
the spatial average of the Hartrce potentials of all the
ions and conduction electrons in the crystal, VI is the
sum of the Hartree-Fock potentials of all the ions less
the spatial average of the Hartree potentials. In the
absence of a suitable method for in.eluding the cGects of
both exchange and correlation among the conduction
electrons 'in a unihed formahsm, we will approximate

' Reference 2& Chaps. 2 and $„



8 I NARY ALLOY OF S I M P LE M E TALS

The repulsive potential„denoted by V", is de6ncd by the
relation

(g)(rl l"lr'&—=2 &rlo&f.("),

where the sum extends over all the core states of II.
f.(r') represents an arbitrary function of r' and the
parameter c. Thc essential pI'opcI'tlcs of thc clgenstatcs
of H„result directly from the exclusion of the valence
states from the sum in Eq. (8) and may be summarized
Rs follows: The cox'c clgcQstRtcs of II& Rrc linear
combinations of the core eigenstates of B;the "valence"
eigenvalues of H~ are identical with the valence
cigcnvalues of H; the "valence" cigenstates of II„,
denoted by 8, are related to the valence eigenstates of
II by

8 — c |, 8.

A pseudopotential is constructed by selecting a par-
ticular form for f,(r'), which might be an operator or an
energy-dependent expression. In general, f,(r') is chosen
to optlmizc 1D some scnsc thc convcl gcncc of a ploccdulc
for determining the conduction-electron property of
lntcx'cst. Fox' 1DstRncc, lt ls dcsirablc 1D this problem to
optimize the convergence of a perturbation theory ex-
pansion of the total conduction-electron energy in
orders of the pseudopotential using a basis set of plane
waves. However, wc will proceed with the derivation
using the general form of the pseudopotcntial given by
Eqs. (7) and (8).

The unscreened pseudopotential, denoted by 8'0 Rnd
equal to VI+ V", is examined erst. VI is determined by

98. J. Austin, V. Heine, and I,. J. Sham, Phys. Rev. 127, 276
I'I9M).

V8~ with the Hartree potential of the conduction elec-
tron gas less the spatial average of that potential. The
basis functions for the perturbation theory which foBows
are eigenfunctions of the operator T, the set of plane
waves. The wave function of the plane-wave state k is
given by

(rl»—=exp(ik r)jQ'",
where 0 18 the volume of the crystRl, RDd the BssoclRtcd
eigenvalue of T is k'+ Vz.

In applying the pseudopotential method to a given
system, each electron state is labeled as either a core
state, denoted by c, or a valence (conduction-electron)
state, denoted by e. In this problem, the core states are
those states whose eigenfunctions are SU%.ciently local-
ized about their respective nuclei that they may be
very closely approximated by the corresponding
atomic eigenfunctions. %C then adopt the pseudo-
potential formalism of Austin, Heine, and Sham, 9 who
established the properties of a general pseudo-Hamilto-
nian, H„=T+8', w—here the pseudopotential, denoted
by 8', is dehned by

the Hartree-Fock potentials Of the ion cores, which
consist of the nuclei plus those electrons which occupy
core states. %C have assumed that the core eigen-
functions may be very closely approximated by thc
corrcspoDdiDg atomic clgcnfUIKtlons. This Rssurnptlon
is justi6ed only if the core eigcnfunctions are SUSciently
locRllzcd Rbout thc Duclcl that thc diGcrencc bctwecQ
the crystalline and atomic potentials may be considered
Rs csscQtla11y constRnt over the cox'c I'cglon. Under these
conditions, the ionic Hartrce-Fock potential for an A
ion, for instance, in an AB alloy will be independent of
the lattice site occupied by that ion since it depends
upon only the nuclear charge and the core eigenfunc-
tlon8. Taking advRntRgc of this lnvRI'1RDcc Rnd the
dcGnition

o(R)=+1 if the site R contains an A ion,
(10)

o(R)= —1 if the site R contains a 8 ion,

(rll'i'+l" lr')=4 2 (L1+o(R)j&r—Rl»lr' —R&
«Rf

+Li—o(R)j(r—Rloslr' —R)}. (11)

Here, v; is the Hartree-Fock potential of an ion of type
i a,nd VJ.I is the spatial average of the Hartree potential
o'f thc RrrRy of lons.

As expressed in Eq. (11), VL,I+ Vl has a general form
which occurs repeatedly throughout this work. I.et
us consider a general function 6 which can be expressed
for a given con6guration of ions in the AB RBoy in
terms Of R Sum OVCI' lonlC functions gs RS

&rlolr'&=-: Z (L1+ (R)j(r—Rlg~lr' —R&
«R)

+Li—o(R)g(r—R
I g~ I

r' —R)}. (12)

This form merely expresses the property that the func-
tion g; which is associated with an ion of type i is inde-
pendent of the lattice site occupied by that ion. A
matrix element of 6 between the plane-wave basis
functions can be written as

&k+qlGli &=l 2 o-""(C1+o(R)j&l+qlg~l»
«RJ

+L1—(R)j&l+qlg I»}.
It ls convcnlcQt to dc6nc RQ RvclRgc g by

&1+qlg I»—=»(1+el g~l»
+(1—~)X(1+qlg, l» (14)

Rnd R dlGcrcncc g by

&1+.I~gl»=—:A«i+~Ig. l» —:~&i+.Ig.l», (»)

o(R)
(o&s=P =2x—1,

«R)

where E ls the QUIDbcI' of atoms ln the clystR1 Rnd s i$
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thc flactlon of them which arc of type A. Substitution
of Eqs. (2), (14), {15),and (N) into Eq. (13) yields

(k+qlclk) =S(~(k+qlglk)+F(~«+ql~g!», (»)
where

Tile slgnlflcance of Eq. (17) ls Ilot readily Rppal'ellt

on the basis of a cursory inspection. However, the
vanishing of S(q)F~(II) for all values of q is easily demon-

strated using Eq. (16).In the common case of an alloy
such that the vectors {R}form a Bravais lattice, the
set of reciprocal space vectors, {q},can be divided into
two subsets. These are the reciprocal-lattice vectors

{K},which have the property that exp( —iK R)=1
for all members of {R},and all other reciprocal vectors.
It is easily shown that S(q) =6(II,K), where 6(q, K) is

equal to Unity lf Q ls a lcclplocal-lRttlcc vcctox' Rnd zcx'o

otllel'wise. Fol' such Rll alloy lt, follows tllRt F(K) =0.
However, for any RBoy structure, the important conse-

quence of the vanishing of S(q)F*(q) is that only one
of the two terms on the right-hand side of Eq. (17) is
nonzcro for any point q. Thus, a given matrix element of
G ls always the product of a g;-independent factor, such
as F(q) or S(q), and a structure-independent factor,
such as a matrix element of g or Qg. This separability,
when demonstrated for the screened pseudopotential,
wiB lead directly to structure-independent energy-
wavc-number chRractcllstlcs Rnd CGcctlvc pall wise

interactions. Having demonstrated the form for
Vl,I+VI through the analogy between Eqs. (11) and

(12), we now proceed to show that the other term in

the unscreened pseudopotential, V", can. be similarly

described.
The repulsive potential, as de6ned in Eq. (8), can be

written morc explicitly as

(r!V~!r')=P P (r—R!ntms; R)f.l, a(r' —R). (19)

Here„N, 3, m, and s are the usual radial, orbital, and

spin quantum numbers used to describe one-electron
ionic core states. The assumed invariance of the core
eigenfunctions is typical of the invariance which must

characterize other components of the pseudopotcntial
in order that separability be achieved. Accordingly, wc

And it necessary to restrict the very general form of the

f,(r') so that the f,{r') associated with a particular

type of ion ls lndcpcndcnt of thc surroundings of that
ion. awhile this requirement is not an assumption in any

sense, it does limit the freedom which one has, in

principle, to optimize the convergence of the pertur-

bation expansion by variations of f,(r') With this.
restriction, Eq. (19) can be written in the form of Eq.
(12). It is convenient to define the unscreened pseudo-

potential associated with an ion of

types'

located at the

origin by

(r!u;0!r') =—(r]I;!r')+ g (r!elms; i)f.l, ;(r') . (20)

Since the diGcrcncc unscreened pseudopotential Qmo

vanishes in the limit in which the two types of atoms
are identical, Eq. (21) reduces to the appropriate un-

screened pseudopotential for an elemental crystaL
The above expression for the matrix elements of the

unscreened pseudopotential may be discussed. in relation
to the virtual crystal approximation, which has been
used widely to treat the case of a completely disordered
binary aHoy. In this approximation, the actual. potential
due to the ions in the crystal is replaced by a periodic
Rx'I'Ry of cgectlvc loDlc potentials. This cBcctlvc poten-
tial is the weighted average of the two diferent ionic
potentials in the alloy. As may readily be veri6ed by
examining the definition of the average g in Eq. (14), the
6rst term on the right-hand side of Eq. (21) represents
a virtual crystal approximation for the potential of the
pseudo-ions. This term depends primarily upon the
con6guration of ionic states in the crystal, rather than
the arrangement of the ions on the sites. The second
term is a correction to the virtual crystal approximation
which accounts for the difference between the ionic

potentials and depends in detail upon the arrangement
of the ions on the ionic sites. This term is nonvanishing

for all ionic con6gurations. Further, it must be stressed
that S(q) and F(q) do not necessarily contain all of the
structure dependence in Eq. (21).As de6ned above, the
average and difference unscreened pseudopotentials
are not strictly independent of the structure, but can

vary with the ionic arrangement through variations in
the optimal f,(r). For the calculation of certain physical
quantities, such as the effective pairwise interactions,
we have found it convenient to restrict f,(r) to being
invariant under rcaxrangements of the ions at constant
volume. Under that restriction, the average and diKcr-

cncc unscr'ccrlcd pscudopotcntlals RI'c tl'Uly constant
during variations of that sort. In any case, it is expected
that thc GrdcllDg pI'occss %10 RRect thc pscudopotcntlal
most strongly through variations in F(q), not f,(r).
This expectation has been borne out in calculations on
I.iMg. Let us now turn to the calculation of the matrix
elements of the screening potential,

In the Hartrec approximation, Poisson's equation

may be used to express the relationship between the
matrix elements of the screening potential and the
matrix elements of the conduction-electron density in

R basis of plane %'aves. Slncc V ls manifestly local irl

this approximation, its matrix elements are a function

Replacing G by VII+W', g by Io', and Qg by XII', the
same analysis which yielded Eq. (17) from Eq. (12)
leads to the relation

(k+ Il! V I,I+,VVO! k) S(q) (k+ II!I0'!k)

+F{11)(k+q!EI0'!k). (21)
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only of the difference between the wave vectors. If I
ls thc conduction-clcctx'on densltg operator, thc 06-
diagonal matrix elements of Vso may be written as

Sm

(ql vaolo}= &qjsjo),
lql'

(rlelr')=Z j&rje) I'a(r-r').
(ej

(22)

It is now shown that Eq. (22) can be written in the
separated form of Eq. {17).By analogy with the appli-
cation of the pseudopoteDtial method to a single-
elemcnt crystal, ' it may be assumed that Rll terms of
order higher than 6rst in the pseudopotential must bc
neglected in the plane-wave perturbation theory expan-
sion of the right-hand side of Eq. (22). Our examination
of alternative procedures indicates that this assumption
is justified. Accordingly, let us associate the state 8 with
'tile zcroth-order wave fllnctloll, Go(k) I k). Tllls assoc1-
ation does not imply that k is a good quantum number
in the alloy. Expansion of the wave function of 8 in
plane waves and neglect of all contributions to the wave
function involving the product of two or more matrix
elements of the pscudopotcntial yields

jc&=oo(k)l lk&+Z' lk+q) I (2&)
(k+qjs'lk) )

isi Ikl'- lk+ql'i

In writing this equation, we have ignored the va,Dishing
of thc denominator fox' ccltain values of Q/0. Thc
dBBculty encountered in the evaluation of expressions
involving such R singularity has been closely examined
by Harrison' and by Pick and Blandin. ' They conclude
that this singularity enters into a perturbation theory
expression for the total conduction-electron energy
accurate to second order in the pseudopotential only in
the form

h(k)
dk (28)

s Ikl'- lk+ql'
e' Foto added is Proof. While the formal lack of orthogonality

among the members of {ej as obtained through Eq. (9) has been
ignored in the writing of Eq. (23), me have found that this non-
orthogonality does not a8ect the screening to erst order in the
pseudopotential.

The set (s) consists of the occupied valence eigenstates
of B."Using Eq. (9), l(rim)l'may be written as

I&rle&l'= l&rl~)l'-2«(&rlf'l~)&~jr&)
+&rl~l~&&elf'lr&, (24)

where 8 satisfies the pseudo-Harniltonian equation,

If.j~)=2'I~&+IVI~)=E l~) {25)

and the crystalline core projection operator, denoted by
Pp 18 dc6ncd by

&k+ql&lk)—=Z &k+ql~)«lk& (26)

where the integral extends. over the Fermi sphere of
radius kr and h{k) is a slowly varying function of k
everywhere, The principal value of this integral is a
weH-dc6ncd function for all values of q/0, independent
of the relationship between g and kg. These results are
fully applicable to the alloy problem. Hence, it may be
concluded that, whereas the singularity occurring in
Eq. {27)leads in many instances to insurmountable di6i-
culties in the evaluation of properties of individual elec-
tx'on clgeDstatcs, such Rs thc energy or thc wRvc funct1on,
properties derivable from the second-order perturbation
theory expression for the total conduction-electron
cncx'gy CRD bc cvaluatcd without Rny pRrtlcular (4fB-
culties. It must be pointed out, however, tha, t there
may bc physlcRl px'opcrtlcs, mcluding the cnclglcs, Gf

certain alloy systems whose perturbation theory expan-
sions are strongly inQucnced by terms of order higher
than second in the pseudopotential. In these instances,
the second-order expression for the conduction-electron
energy can be readily evaluated but will be of little
slgn16cance. The formation of a long-period superlattlce
in an alloy may be an example of such a process.

Ignoring thc singularity in the perturbation theory
expression, Eq. (27) may be substituted into Eq. (24)
to obtain

j.' 8 = Co

-2R (( l~l»& I &)+& j~jk&&kj~l )j
k+q W' k

+2lao(k) I'Re P'-
ice Ik I

'—lk+ql
'

X((rjk+q)(klr) —(rlPlk+q)&kjr)

—&rjk+q&&kl&lr&+(rl&lk+q&&kl~lr&& * (»&

To obtal11 an cxpl'ess1011 fol I eIo(k) I, both stdes
Eq. (29) are integrated over the crystalline volume. The
resulting left-hand side is unity since the state e con-
tains just one electron. Therefore, I ao(k) I

' is given by

Ia,(k) lm= I—(klrlk)

&klzlk+q)&k+ql wlk)—2Rel g'-- (30)
lkl' —lk+ql'

This expression for lao(k) I' is dependent upon the
matrix elements of the screening potential for all non-
zcro values of Q through thc px'cseDcc of thc matrix
elements of the pseudopotential. Accordingly, if this
expression were used in R calculation of the matrix
elements of Va~, a given matrix element of the screening
density de6ned in Eq. (23), and hence a given matrix
element of Vac as given in Eq. {22),would also depend
upon all the matrix elements of Va~. This would be
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true even if Eq. (29) were linearized after the substitu-
tion of Eq. (30). Therefore, the matrix elements of the
screening potential would result only from the solution
of an inhnite set of equations. In addition, and of more

significance in this treatment, the resulting matrix
elements of V8~ would not have the proper form to
enab1e the separation of the matrix elements of 8'. In
order to avoid this situation, we shall introduce the
approximation that the matrix elements of the crystal-
line core projection operator, E, may be treated as
erst-order expressions in 8'. This approximation is
discussed in detail by Harrison. ' The small magnitude
of the matrix elements of E, typically of order O.i, sug-

gests that the approximation is reasonable.
As a result of this approximation, lao(k) I' can be

written to "6rst order" in the pseudopotential as

I "(k)I'=(1-(kl~lk))-'.

In order to find the matrix elements of the screening

density, the matrix elements of Kq. (29) must be
evaluated in a basis of plane waves. This leads to expres-
sions like

The sum over {e}of Eq. (23) has been replaced in these
expressions by an equivalent sum over the set of
states, denoted by {k}r,contained within the Fermi
volume.

It is apparent from the form of Eq. (33) and the
separability of 5" that the separability of VB~, as
discussed in connection with G, will follow directly
from the separability of 8(k,q) if

I
ao(k) I

' is independent
of the arrangement of the ions in the alloy. To show

this independence, the invariance of the core states is
used to write the r-space representation of P as

&rl~lr'&= l 2 {[I+~(R)3r—Rl p~lr' —R&

+[1—0(R)](r—Rl pair' —R)}, (36)

where the projection operator associated with an ion
of type o at the origin is given by

(rip, lr')= g (rlmlms; i)(i; nlmslr') (3. 7)

In strict analogy with the treatment of G, the matrix
elements of E may be written as

E & &k+q'l~& «&~lr&~ "'&rl"&("Ik& (32) (k+«l~lk&=~(q)&k+«IPlk&+"(«)&k+«1&Plk& (»)

where the sum over core states in E' has been displayed
explicitly. If q= 0, the orthonormality of the core states
reduces this expression to a matrix element of E. The
presence of exp( —iq r) in the integral serves to moder-

ate the sharp orthonormality condition and should not

increase markedly the magnitude of the expression.

Accordingly, we shall also consider expressions like

(32) to be "6rst order" in the pseudopotential. With

these approximations, the matrix elements of the screen-

ing density may be evaluated and Kq. (22) used to

write the matrix elements of V8~ to first order in lV0 as

Since Iuo(k) I' depends only upon (kl&lk), Eq. (3g)
demonstrates that it depends only upon (klplk) and

is, therefore, independent of the arrangement of the
ions in the crystal. It does, however, depend upon the
relative numbers of A and 8 ions.

To establish the separability of B(k,q), we note that
the assumption that the core states are invariant
is reasonable only if the overlap of core wave functions
on adjacent ions is negligible. Accordingly, the middle

integral in the last sum of Eq. (35) must vanish unless

c and c' are associated with the same ion. This property
implies that this sum may be written as

&ql v"I0)=- 2 I "(k) I

Qlql'D(q) (~)»

(
(k+qln oil) (l —qlwolk&*

+ +&(k,«) I, (33)
Ikl' —Ik+ql' lkl' —Ik—«I'

where

Sm

D(q)—= 1— P Iao(k) I'
nl«l' p)z

+
& Ik I

'—Ik+ ql
' lk I

'—Ik—«I'j

B(k,q)—=—(k+qlP lk) —
(klan lk

—q)

—',p {|1+o(R)j dr(klpglr —R&
[R~ 0

ye—'o'(r —R
I pg I

k)+[1—o(R)j

dr(kl pii I
r—R)e-'o'(r —R

I ps I k)}. (39)

We will now de6ne an ionic b;(k,q) by

b'(k, «)—=—&k+« 1 p'I k&
—&k I p'I k—

«&

+ «&klp'lr&~ "'&rip'Ik& (40)

and proceed in analogy with our treatment of G to write

B(k,«) =S(q)5(k,q)+ F(q) Kb(k, q) . (41)

dr(klylr)g
—.

(rlPlk& (35) Here, b aild Zb are de6Iled in strict allalogy with Eqs.
(14) and (15).
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Since [«(k) j' is independent of the ionic arrange-
ment and B(k,q) can be written as in Eq. (41),
(q j I 8~ [0) depends directly upon the ioruc arrangement
only through a factor of either S(q} or F(q), whichever
18 Qonvanlshlng fox' that vahlc of Q. Of course~ thc matrix
elements of the screening potential may also depend.
upon the ionic arrangement indirectly through the
optimal form for f,(r). In any case, the matrix elements
of V CRQ bc scpRI'Rtcd 1Q thc same manner Rs wcI'c

those of 8 .By dc6nlng RQ RvclRgc scrcc~g potcntlal
by

(q[~"jo&—= 2 j«(k) I'
f1jqj'D(q) &»

- (k+qje'jk& (k—q[to'jk&*
x + +5(k,q) (42)

-lkl'- Ik+ql' lkl'- [k-ql'

and a difference screening potential in a compl«ely
RnalogoUs manner, the matrix clcIDcnts of thc scI'ccnlng
potcntlRl CRD bc wrlttcD R8

(ql I""[0&=~(q)(qj~"[0&+F(q)(qj&s"[0&. (43)

This expression for V8~ di6crs from that obtained by
Harrison' in two respects. Since he chose to treat the
conduction-electron charge which arises from the sum
over core states in Eq. (9) as part of an effective valence,
there is no contribution in his expression from terms
analogous to B(k,q). In addition, j aq(k) j

' has been set
equal to unity. %hilc it may bc argued that setting
[«(k) j'=1 does not drop any terms from Eq. (42)
which are not of second or higher order in the pseudo-
potential, wc have chosen to retain both this contribu-
tion and that from B(k,q). For the system LiMg,
j «(k) j

~ increases the matrix elements of the screening
potential by 6 to 8% for important values of q. The
terms resulting from B(k,q) decrease the screening
potential matrix elements by about 0.5%%uo for q=0.25
atomic units (a.u.) and by 20 to 30%%uo for q=1.50 a.u.
Therefore, the combined CGcct of the two corrections
tends to redistribute thc screening potcDtlal ln Q spRcc.
By combining Eq. (21} with Eq. (42), the matrix
elements of the total screened pseudopotential. can bc
written as

&k+ql ~~+~ [ k&= ~(q)(k+q [ ~ [k&

+F(q)(k+q[~m [ k&, (44)

Having obtained R scpalRtcd form for thc screened
pseudopotential, wc shaB review the assumptions which
were required to achieve this form. ID this usc of the
Austl, HclDC, RQd Sham forID of the pscudopotcntlal,
the core eigcnfunctions are assumed to bc doscly ap-
proximated by the corresponding atomic wave functions
and, accordingly, to be independent of thc local en-
vironment of the ion. Use is made of the implication of

this assumption that the core cigenfunctions OQ adjacent
ions in the solid do Qot overlap. It is also assumed that
thc HRrtl'cc-Fock onc-clcctx'oQ Hamiltonian 18 s~cient
to describe the interaction of the cogduction-electron
eigcnstates with the core-electron cigenstates. These
assumptions Rxe common to most orthogonahzed-plane-
wave (OPW) and pseudopotential approaches. In
addition, the form of f,(r) is restricted in this treatment
to oQc which docs Qot vRry among thc lons of onc type
throughout the aHoy, for a particulax con6guration of
ions. This last restriction is, of course, trivial in the case
of R pcI'lodlc elemental clystal. While this I'cstx'lctlon
enabled the separation of 8'0, it must be remembered
that the matrix elements of to' and Qmo Inay depend.
upon the arrangement of the ions through f.(r).
Perturbation theory is used to obtain an expression for
V8~ in the Hartree approximation which is 6rst order
1Q thc pscUdopotcQtlRI. Finally& by RssuI111ng that thc
matrix elements of the crystalline core projection oper-
ator may be treated as 6rst-ordcr expressions ln the
pscu(Iopotcntlalq w'c %'erc Rblc to scpRrRtc thc matrix
elements of V8~, and therefore of 8'.

Turning to a discussion of the crystalline energy, it
is convenient to distinguish tw'o groups of chax'ges. The
6rst group consists of the ionic cores, while the second
consists of thc conduction clcctI'ons. By thc conductlon-
electron contribution to the crystalline energy, we mean
the self-energy of the second group of charges plus the
energy of lntcI'Rctlon bctwccI1 thc 6I'st and second
groups. Sumrrung the energy 8, over aB of the occupied
conduction-electron eigenstates yields the energy of
1QtcI'action of the sccoDd gloup of chRrgcs with thc full
charge density in the crystal. Since this sum counts the
self-energy of the second group of charges twice, we
may subtract onc contribution of this self-energy to
yeld the foBowing expression for the conduction-
electron contribution to the crystalline energy pcr ion:

Thc lRst teI'IQ ln this expression 18 thc self-energy of R
uniform charge distributloQ with density %0 equal to
the average conduction-electron density in the crystal.
Harrison' and Pick and Blandin' have shown that thc
sum over the valence states shown above may bc ex-
pressed to second order in the pseudopotcntial by a
sum over the free-electron Fermi sphere of E~, where

Eg,=k'+ Vr,+(k [8'[k)
(k[8'[k+q)(k+q[ W'[k)+p'- -- . (46)

[k ['—[k+q ['
Since only the last two terms in Fq. (46) will
thc iona ai'c i'caiTaiigcd s,t constant volume, the con
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duction-electron contribution to the structure-depen- ing the sums over real and reciprocal space yields
dent crystalline energy can be written as

2
Z 2 —Z's" &a "'(@1(q)

+C~(R') —(~&~3~»(q)+C~(R) —&~&~3~»(q)

+L (R)—& & jL (R')—( & ]~ (q)} (5o)

E,g ——P—&kl wlk&

(l Iwll+q)(1+qlivlk&
+—Z'I Z

alql2
l&ql vs&lo&l2 I. (4v)

i&r

This may be compared with the expression for the
energy of the array of point charges, Z;,

Z Z, (C(1+ (R))~ +(1—(R))~ j
Substituting for the matrix elements of W and Vs~

from Eqs. (43) and (44) yields XC(1+0(R'))Zg+ (1—0 (R'))Z1&j}. (51)

F,g= g(k—lrolk&+ t~)~

In. Eq. (51), the interaction between an A ion at R snd
an A ion at R', for instance, can be obtained from the
corresponding term in the double sum by setting

+2' LIS(q) I &11(q)+IF(q) I'~22(q) j (4g) ~(R)=~(R') =1. The effective pa1rw1se 1nteract1ons
which follow are deduced by extending this approach

0

Here, the energy —wave-number characteristics are
to the electron contnbut1on to the energy. Here, V2i(E)

deGned by
is the interaction between an ion of type i and one of
type j separated by a distance E:

1 p (kI20;Ik+q)(k+qlw;Ik&
@(q)=—

I Z
Ã&&& )~ Ikl' —lk+ql'

Qlql2
&01~;Ia)&el;I»). &49)

16m

where mi=co, m2= Lm, st=88~, and &2= A& ~. The

separability of the matrix elements of 5' and V8~ has

resulted in the appearance of only the absolute magni-

tudes of S(q) and F(q) in Eq. (48). If the system is held

at constant volume during the rearrangements of the

ions and the f,(r) are restricted to be invariant during

such rearrangements, then E,d will vary only through

IS(q)l' and IF(q)l'. IS(q)l' is independent of the

arrangement of the ions on the ionic sites and is ac-

cordingly invariant during the ordering process.

IF(q) I

' is discussed in the Appendix and shown to be a

Fourier transform of a two-particle correlation function.

Therefore, under these conditions, the variations in F q

during the ordering process depend upon the position

of the ions only through two-particle correlations.

In deriving an expression for the effective pairwise

interaction, a form of E,d which depends upon the

arrangement of ions for a given atomic volume only

through S(q) and F(q) must be used. Therefore, f,(r)
is restricted, in this instance, to being independent of

the arrangement of ions, so that the first term in Kq.

(47) can be dropped. Substitution of Eqs. (43) and (44)

into the remainder of Eq.g(47), replacement of S(q)
and F(q) by the sums over real space which they

represent before taking their products, and interchang-

2ZQ 2
Vg~(E) = +—Q' e'2'"fE11(q)

R E fq)

+(1-(.&.)C~-(q)+~. (q&j

+C1—(»'~ (q)}

2'
+—Z' "'(~-(q)

R Ã )q)

-(1+( & )Ca (q)+a (q)&

+&1+&-&.) a.(q». (53)

2~z~a
V~a(&) = +—p' e''2 "(811(q)+ tq)

+&»(q) —&»(q) —&~&sC&12(q)++21(q)j

It must be emphasized that these forms arose as a
consequence of using a second-order perturbation
theory expression for the structure-dependent conduc-
tion-electron energy. Purther, it was necessary to
restrict f,(r) to being invariant during rearrangements
of the ions at constant volume.

III. APPLICATION TO LiMg

The conduction-electron contributions to the ordering
energy and to the eGective pairwise interactions are
evaluated below for stoichiometric LiMg. The selection
of LiMg for these computations is motivated largely
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by our expectation that the approximations which have
been introduced in this treatment are particularly
applicable to this alloy of simple metals. %hile LiMg
has not bccn found ln R fully ordered state HcI'bstcln
and Averbach" have measured a degree of short-range
order in samples quenched from 200 C. Their experi-
mental results suggest that LiMg would exhibit long-
range order at low temperatures if the ions were suQi-

ciently mobile at these temperatures that the alloy could
readily reach equilibrium. The numerical values which
are obtained here for this system shouM be consistent
with these observations.

The choice of an optimal set of f,(r), which determine
the pseudopotential, must not be taken lightly even
though the work of Austin. , Heine, and Sham' proves
that the exact conduction-electron eigenvalues of a
pseudopotential of the form of Eqs. (7) and (8) are
independent of the f,(r). In this treatment, the anal
expressions for E,q and for the effective pairwise inter-
actions are the result of second-order perturbation
theory and are therefore dependent upon the f,(r).
Accordingly, the optimal set of f,(r) in this context
will minimize the contribution of higher-order terms to
E,q. Pending the presentation of a detailed examination
of the optimization procedure in a paper to be published
shortly, the pseudopotential to be used here is given
without a discussion of its selection. For use in a
perturbation theory expansion of the properties of the
conduction-electron eigenstate which has the plane
wave k as a zeroth-order wave function, this pseudo-
potential may be expressed as

IV= Vr+V-+g I.)(~e+V,+(kIm Il)—Z,)(cI, (55)

where E, is the eigenvalue of a crystaKQC core state.
This pseudopotential is in the form discussed by Austin,
Heine, and Sham~ although Eq. (55) is k-dependent.
The Phillips and Kleinman pseudopotential, ""which
was derived from the OP% method, may be obtained
from Eq. (55) by the substitution of the exact energy of
the eigenstate for the 6rst-order expression for that
energy, (0'+Vs,+(kIS"Ik)), which occurs in the sum
over the core states. If the matrix elements of the
crystalline core projection operator may be treated as
6rst-order expressions in the pseudopotential, as has
been assumed, then the Phillips and Kleinman pseudo-
potential will yield the same E,z as Eq. (55) to second
order in the pseudopotential. Taking the expectation
value of Eq. (55) in the plane wave k leads to a self-
consistent expression for the diagonal matrix elements

» F. H. Herbstein and B. L. Averbach, Acta Met. 4, 40/
(1956); 4, 414 (1956).

» J.'C.' Phillips and L Kleinman, Phys. Rev. 116, 287 (1959)."L.Kleinman and J. C. Phillips, Phys. Rev. 118, 1153 (1960).

(I IwIk)

(kIVr+. VacIk)+P I(kIc)I2(gm+Vz g) . (56)
~—Z I(kI ) I'

Expressions for the wave functions of the core
electrons and for the Vr,—E, are needed for the evalu-
ation of thc matrix elements of the pseudopotential.
Clementi's" analytic neutral atom Hartree-Fock Li and
Mg eigenfunctions are used for the core wave functions.
The procedure customarily employed to estimate the
VI,—E, in a single-element metallic crystal treats the
ionic Hartree-Pock potential of the core as a 6rst
approximation to thc crystalline potcntlR1 sccQ by the
core clect1on. The 1onic Hartree-Fock eigenvalues are
corrected by approximating the inQuence of an appro-
priate superposed periodic array of E—1 ions and a
uniform distribution of the conduction electrons neces-
sary for maintaining the charge neutrality of the crystaL
Since the screening of the ions by the conduction elec-
trons is neglected in this model, the interchange of a
neighboring Li ion with a Mg ion would change the
attractive potential of the ions dramatically without a
compensating change in the repulsive electron potential
to which a core electron is subject. Hence, the change in
the core eigenvalues with ordering is vastly over-
estimated. Accordingly, we have used a neutral atom
model for the calculation of the Vz. E.. —

Considering a neutral atom of type A at the origin, a
crystal is constructed by bringing neutral atoms of
types A and 8 from in6nity and placing them on the
appropriate lattice sites. The atomic charge distribu-
tions are considered as 6xed relative to their respective
nuclei in this model. For stoichiometric LiMg in a body-
centered cubic structure with a lattice constant of 3.5 A,
the added charge density at the origin calculated using
Clementi's functions is no more than roughly 0.1/q of
the valence-electron charge already present. Therefore
we will neglect effects related to this charge density at
the origin, such as the associated exchange potential.
Accordingly, VJ.—E, may be estimated for this system
from the Hartree potential at the origin due to an array
of lithium and magnesium neutral atoms. The electric
6eM outside of a spherically symmetric charge distri-
bution with a net charge Z is identical to that of a
point charge of magnitude Z at the center of the dis-
tribution. Therefore, that portion of the neutral atom
charge which lies within a sphere of radius equal to the
nearest-neighbor distance will be treated as a point
charge at the nucleus. For this system, the effective
charges associated in this manner with the nuclei are
0.130for lithium and 0.j.05 for magnesium. If the charge
outside the sphere is treated as being uniformly dis-
tributed throughout the crystal, the correction to the

'I E. Clementi, IBM J.Res. Develep. 9, 2 (t965l, end eUppt.
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FIG. j,. The product of q' and the energy-wave-number charac-
teristic $~2(q) is plotted as a function of g, the distance from the
origin in reciprocal space, for stoichiometric LiMg. The vertical
bars and associated numbers indicate the positions and numbers of
signi6cant reciprocal-lattice vectors.

atomic coI'c clgcDvalues may bc estimated by thc cUS-

tomary procedure. 8 In this model, the difference
between Vl,—E, and the atomic eigenvalues would be
roughly O.I3 Ry, which may be compared with a lithium
j.S clgcnvaluc of —4.96 Ry Rnd R magnesium 2P
eigenvalue of —4.56 Ry."The estimate of the correc-
tions in the ordered and disordered states of the alloy
would diGer by roughly 0.008 Ry. Further, these
corrections appear in the pseudopotential only @&hen

multiplied by the matrix elements of the core projection
operator I', a 6rst-order quantity. Due to their small
magnitudes, we have neglected these corrections and
used the neutral-atom Hartree-Pock eigenvalues of
Clcmcntl to Rppl oxlIDRtc VI,—Eg 1D stolchlolTlctr1C

LiMg.
The nonlocal ionic pseudopotential is readily com-

puted froiii Eq. (20). Howevei', 'tile slngularlty caused

by the vanishing of the denominators in Eqs. (33) and

(34) must be treated with care in a numerical computa-
tion of the matrix elements of the screening potential.
In this calculation, large negative and positive con-
tributions from the singularity were paired OQ in direct
analogy with the usual de6nitions of the principal part
of Rn 1DtcglRl. Thc sRmc pI'occdurc wRs used 1D coID-

puting the energy —wave-number characteristics as
defined by Eq. (49). As we have neglected the change in

Vr.—Z„and hence in f,(r), during the ordering process,
only E»(q) will contribute to the estimate of the con-
duction-electron contribution. to the ordering energy.
This function, multiplied by q, is plotted in Fig. j.. As
discussed in the Appendix, IF(q) I' is nonvanishing

only for certain discrete reciprocal-space vectors in the
ordered state of the alloy. The magnitudes of these
vectors are indicated in Fig. 1 by the short vertical. bars.
The number below each bar indicates the number of
reciprocal-space vectors of that magnitude for which

IF(q) I' is nonvanishing. The contribution of F~,(q) to

t I

l2 P.48

plo. 2. The 1nte1'action V= pgg+p~g —2pgg js plotted as a
function of R, the interionic separation, for stoichiometric LiMg.
The vertical bars and associated numbers indicate the separations
and numbers of the 6rst 6ve sets of near neighbors.

the energy of thc ordered state is proportional to the
sum of the values of E22 at each bar multiplied by that.
number. In the completely disordered state, IF(q) I'
is a constant everywhere except for q a member of (K),
where it vanishes. Thus the contribution of E22 to the
disordered state is proportional to an integral of q'E»(q)
over all values of q. Accordingly, the conduction-electron
contIibution to the ordering energy is —0.%15 Ry per
ion. The point-ion contribution to the ordering energy
is the energy of a cesium chloride lattice of +0.5
charges, or 0.0768 Ry pcI' 10D. ThcI'cfoI'c, wc estimate
that. the internal energy of the ordered state is lower
than that of the disordered state by 5.3 mky pcr ion.

The CGective pairwisc interactions have been com-
puted according to Eqs. (52)—(54). The effect of these
interactions on the ordering process can be fully de-
scribed in terms of V~ V~g+ Vsii —2Vgs, which has
been plotted as a function of ionic separation in Fig. 2.
The short vertical bars and associated numbers indi-
cate the positions and numbers of neighbors at each
near-neighbor distance. In the ordered state of thc alloy,
the closest sct of neighbors is unlike, the next two sets
arc like, the fourth is unlike, and the fifth is like the
ion at the origin. These 6vc sets of neighbors yield an
ordering energy of 6.0 mRy per ion. However, since V
is still quite large for more distant neighbors, the
agreement between this estimate and the prior one,
which included the contributions of all sets of neighbors,
shouM be considered as largely coincidental.

Perhaps the most signi6cant result of this numerical
calculation ls quite Rppalent ln Flg. 2. If V is expressed
approximately Rs R sum of Rn cxponcDtlal term Rnd R
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sinusoidal term, the former dominates throughout the
region of this calculation.

As noted at the beginning of this section, the absence
of an empirical estimate of the critical temperature of
LiMg precludes a direct test of the accuracy of the
results of this treatment of the alloy problem. However,
the numerical value which has been obtained for the
ordering energy should be consistent with the work of
Herbstein and Averbach. ' Any comparison between
an empirical critical temperature, denoted by T„and
a theoretical ordering energy, denoted by E, requires
a statistical mechanical relation between these two
quantities. Considering an Ising model with nearest-
neighbor interactions only, Baker" has calculated a
value of 1.587 for kT,/E for a body-centered cubic
system, where k is the Boltzmann constant. According
to this relation, an ordering energy of 5.3 mRy corre-
sponds to T,=132'1 K, which is much higher than
would be expected from empirical observations. While
Baker's work appears to demonstrate that the results
of this treatment are inconsistent with experiment, the
applicability of the nearest-neighbor Ising model to the
LiMg system is questionable in light of the long-range
nature of V, as obtained in this treatment. Chang"
extended the second approximation of Bethe" by con-
sidering the interaction between both first and second
nearest neighbors, denoted by V& and V&, respectively,
for values of V2/Vi between 0 and 0.25. For stoichi-
ometric LiMg, our calculations indicate that V~/Vi
=0.394 and that the second and third nearest neighbors
contribute roughly equal amounts to the ordering
energy. If we approximate the effect of the third nearest
neighbors by increasing V2/ Vi to 0.794, Chang's
results may be extrapolated to yield a decrease in
kT,/E by 58 to 67%%u~ of its value for V2/Vi=0. Since
V2/Vi ——0.'794 is well into the region where Chang's
calculations suggest that kT,/E is very sensitive to the
value of that ratio and we have extrapolated beyond the
region of Chang's actual computation, the decrease in
kT,/E should be regarded as merely an indication of the
nature of the dependence of that quantity on V2/Vi.
For example, if we were to assume that kT,/E were
0.60, then an ordering energy of 5.3 mRy would corre-
spond to T,=500'K. This critical temperature is
certainly consistent with the observation by Herbstein
and Averbach that samples of stoichiometric LiMg
which were quenched from 470 K exhibit a degree of
short-range order.

While thermodynamic measurements do not, at
present, yield a critical test of this theory, the treat-
ment of Clapp and Moss" appears to provide a direct
means of estimating V, apart from a constant multiplier.
Their procedure yields the values of V at near-neighbor
separations relative to the value at the nearest-neighbor

"G. A. Baker, Jr., Phys. Rev. 124, 768 (1961).
'~ T. S. Chang, Proc. Roy. Soc. (London) A161, 546 (1937)."H. A. Bethe, Proc. Roy. Soc. (London) A150, 552 (1935)."P. C. Clapp and S. C. Moss, Phys. Rev. 142, 418 {1966).

fR» «R/l

e—iP R +iz R~e
(57)

The substitution of R'= R+R" into Eq. (57) yields

where

& (0) (R")),

0 —ag o "—og
. (59)

(RJ E
Since 0(R) has been defined such that it has a value
of + 1 if R contains an A ion and —1 if R contains a 8
ion, Eq. (59) defines a two-particle correlation function.
Accordingly, an expression for the conduction-electron
energy which is accurate to second order in the pseudo-
potential depends upon the arrangement of ions during
the ordering process only through a two-particle corre-
lation function, apart from an optional dependence
through f,(r).

~F(q) ~' may be evaluated in terms of the Cowley
order parameters. " The conditional probabilities
p~(R) and pii(R) are the probabilities of finding an A
ion located at R if the origin contains an 3 or a 8 ion,
respectively. The Cowley order parameters, denoted by
n(R), are defined by

p~(R) =x—xn(R),

or, equivalently, by

(60)

p~(R) =x+ (1—x)n(R), (61)

where x is the fraction of ions in the alloy which are of
type A. These parameters have the properties that
n(0) = 1 and that the sum of n(R) over all values of {R}
vanishes. In analogy with Cowley's expression for the
intensity of a di6racted x-ray beam, " the average

"J.M. Cowley, Phys. Rev. 77, 669 (1950).
'~ J. M. Cowley, Phys. Rev. 120, 1648 (1960).

separation from the diffuse x-ray scattering at tempera-
tures considerably above T,. This method is ideally
suited for determining the shape of the interaction in
the LiMg system, for which equilibrium may be antic-
ipated at such temperatures, and thereby testing the
predictions of this formalism.

APPENDIX: EVALUATION OF
~ E(q) ~'

The expression for the structure-dependent conduc-
tion-electron energy presented in Eq. (48) depends upon
the positions of the ions during rearrangements at
constant volume through the ~S(q) ~' and ~F(q) ~'.
Equation (18) may be used to write

~
F(q)

~

' as
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defined by Eq. (59) is related to u(R) by

(o(O) o {R'))g——4x(1—x)u(R') . {62)

Therefore, IF(q) I' may be expressed in terms of the
Cowley order parameters as

sites. Accordingly, u(R)=1 for all members of iR}
which correspond to the set of repeating vectors for the
ordered state, denoted by (R,}.For all other sites in
iR}, u(R) is equal to 1—(1/x), or —1 in this case.
Therefore, IF(q) I' is given by

~iq R

IF(q) I'=4x(1—x) g
tRl

(63)
pig'Rs-

IF(q) I'=4*(1—*) —2 + 2 — . (6s)
«R~ g ~R, »

-g
In a completely disordered alloy, u(R) must be a

constant for all RWO. The two properties of u(R)
mentioned above imply that u(R) must equal
—1/(E-1) for all RWO. Therefore, in the disordered.

alloy, I F(q) I

' is given for a Bravais lattice by

4x(1—*)
IF(q) I'= I:1—~(q K))

g—1

The case of an ordered crystal is not as easily discussed
since the exact form of IF(q) I

' depends upon the par-
ticular structure involved. In the instance of a 50-50
alloy which orders in the cesium chloride structure, the
lattice of ionic sites is body-centered cubic. In the
ordered state, we may consider that A ions occupy all

of the body centers and 8 ions occupy all of the corner

IF(q) I'=4x(1-x)~(q, K.). (66)

In general, IF(q) I' is zero in the ordered state of any
alloy except for g equal to appropriate reciprocal-
lattice vectors.

If q is any member of the set (K},then both sums in this
expre»ion are unity and IF(q) I

s vanishes. Thi»s in
agreement with the previously noted property that
F(K)=o. If q is n«a ~~~b~r of (K.}, the s«of
reciprocal-lattice vectors corresponding to (R,}, then
both sums are zero and IF(q) I' vanishes. If q is a
member of (K,}, which consists of those members of
iK,}which are not members of {K},then the erst sum
is zero and the second is unity. Accordingly, for the
ordered case, we may write

I F(q) I

' as
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The electronic structure of one-dimensional binary alloys is studied in terms of exact mathematical ex-
pressions. It is shown by counter examples that the Saxon-Hutner theorem and its converse do not neces-
sarily hold for all potentials. The exact phase transfer theory is used. The present approach has the advantage
that it can examine with the same ease both the Saxon-Hutner theorem and its converse. Various sugicient
conditions of validity are found. The physical content of these conditions for potentials that are localized
and symmetric is analyzed by means of the one-dimensional scattering phase shifts of the indjvjdual con-
stituent potentials. As an example, it is shown that both the Saxon-Hutner theorem and its converse are
valid if the phase shifts of the two localized symmetric potentials forming the binary alloy are solutions
belonging to a certain class T, in which the even and odd phase shifts of type-A and type-8 symmetric
potentials indicated by n+, p+, and n, p, respectively, satisfy the condition Lain(a++a )/sin(a+-n )j
=

fain�

(p++p )/sin(p+ —p )j=f where f is a constant. The analysis can be trivially extended to the study
of alloys composed of more than two elements.

INTRODUCTION

' 'N $949 Saxon and Hutner' put forth an interesting
~ ~ conjecture concerning the forbidden energy levels of

a one-dimensional binary aBoy. In a form modided for
our purpose here it states that a level, which is forbidden

in the infinite one-dimensional lattice formed of pure
type-A potentials and in that formed of pure type-8

q part of the present work was carried out at Mathematics
Department, University of Hong Kong. It was supported in part
by the National Research Council of Canada.

1 D. S. Saxon and R. A. Hutner, Philips Res. Rept. 4, SI (I949).

potentials, is also forbidden in any arbitrary substitu-
tional alloy and A and B.%e shall call this the Saxon-
Hutner theorem. The original conjecture by Saxon-
Hutner refers only to 8 potentials of the Kronig-Penney
type situated at the centers of equal cells, and has been
proved by Luttinger' and. Dworin' and demonstrated
by numerical computations of Agacy and Borland. 4

Since then, many have questioned whether this conjec-
' J. M. Luttinger, Philjps Res. Rept 6 303 ($95$}
3L Downn, Phys Rev 138 AI121 (I965)'R. L. Agacy and R. E. Borland, Proc. Phys. Soc. (London)

84, 1017 (1964).


