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Energy Width of Spin Waves in the Heisenberg Ferrornagnet*
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A calculation of the energy width of spin waves whose energy is small compared to k T in a Heisenberg
ferromagnet is presented. Full account is taken of all two-particle processes. For 2JS/kT&&1 and
2JSu9,'/h T«1, the energy width nca of a spin wave of wave number X is n&aq~)4 rs LA+8 ln(h 2'/2 5So hs) +
C In'(h T/2 J'Sa'X') )1 The disagreement with some previous treatments is explained physically by their ne-

glect of two many-body effects.

I. INTRODUCTION

OTH the static and dynamic properties of the
Heisenberg ferromagnet at low temperature have

been studied by many authors. Although there is
general agreement as to the low-temperature thermo-

dynamics, there is presently some controversy as to
the dynamical behavior of long-wavelength spin waves
at moderately low temperatures. Specifically we refer
to the calculation of the width in energy, 2"(X),
of spin waves of momentum 3 whose energy @ is
much smaller than kT. Recently Cooke and Gersch'
and also Marshall and Murray' have found the result
Z"())~X'T', whereas Kashcheev and Krivoglazs ob-

tained 2"(),) X'T'ln'(T/X') using the 6rst Born
approximation. Our work substantiates and simulta-

neously generalizes this latter result. %e find

g"(h) ~X'Tet 2+8 in(T/Xs)+C in'(T/X') $ (1)

correct to all orders in 1/S for 2JS/kT»1 and

2JSa'X'/kT((1.
Although our calculations are rather formal, we

can clearly identify two crucial effects which are
essential to a correct treatment of the problem. The
erst and most obvious of these is the principle of
detailed balancing. This principle asserts that in the

calculation of the lifetime of a state one should cal-

culate a net transition probability which is the dif-

ference between the rate of scattering out of the

state minus the rate of scattering into the state. Ac-

cordingly in Z" (X) one finds a factor [1—exp( —Peq) j,
where P—=1/kT. In the regime where Peq»1 this factor
is essentially unity. But in the present case Peq(&1,

so that this factor becomes approximately 2JSa') '/kT.
Inclusion of this factor in Refs. 1 and 2 would result

in an energy width Z"(X)~heTs. The presence of

the additional logarithmic factor is due to a typica1

* Research supported in part by the National Science Founda-
tion under Grant No. GP-6771.

f Alfred P. Sloane postdoctoral Fellow.
' J. F. Cooke and H. A. Gersch, Phys. Rev. 153, 641 (1967).
'%. Marshall and G. Murray, J. Appl. Phys. 39, 380 (1968).
3 V. N. Kashcheev and M. A. Krivoglaz, Fiz. Tverd. Tela

3, 1541 {1961) tEnglish transl. : Soviet Phys. —Solid State 3,
1117 (1961)g; R. A. Tahir-Kheli and D. ter Haar LPhys. Rev.
127, 95 (1962)j give an expression for T"(e~) which, when eval-

uated, would give our results.

S+= (2S)'"(1—ata/2S) tt,

S =(2S)'tsttt

S'=S—e a

so that the Heisenberg Hamiltonian becomes

X=Ep+Xg+ I/',

with

Eo———SsJS',

(2a)

(2b)

(2c)

(4a)

(4b)

Here'
ei,=2JsS(1—v),),

(4c}

I'K(» p') =—»t: .-v'+ +v,
—vKt.+,—vx„,j, (Sb)

4 F. J. Dyson, Phys. Rev. 102, 1217 (1956) S. V. Maleev,
Zh. Eksperim. i Teor. Fiz. 33, 1010 (1957) fEnglish transl. :
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the potential and spin-wave energies and hence the t matrix are
periodic functions of all wave vectors, so that we may use the
reduced-zone scheme.
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many-body effect. For the Fermi gas one knows that
many-body eGects are partially taken into account
by modifying matrix elements by the appropriate
occupation numbers so that particles scatter only
into empty states. For the Bose gas, on the other
hand, scattering into an occupied state d is enhanced
by the factor 1+rt,. In the regime Peq&(1, the state 2
and its neighbors are significantly occupied even though
the simultaneous condition 2JSP»1 insures that the
total number of particles is small. Thus the condition
Peq(&1 means that the state 2 must be treated as
being in a partially excited Bose gas. Inclusion of
the enhancement factors 1+st, leads to the expansion
of Eq. (1) in agreement with Ref. 3.

II. ENERGY WIDTH DUE TO TWO-PARTICLE
PROCESSES

We use the Dyson-Maleev' boson representation
for spin operators
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in the usual notation. ' It can be shown~ that the
spin Green's function ((S+:S )), i.e., the dynamical
susceptibility, can be expressed in terms of boson
Green's function. In this way one concludes' that
near resonance, i.e., for co

((S+; S-)) 2(S')G(X, (c),

where G(2, ie) is the usual single-particle boson
Green's function with associated self-energy Zi, (a&)

given by
G(X, ce) = La&—eg—Z), (~e) g '.

gk (zg )

k»zv

+ ~ ~ ~

Physically Zz(ce) describes the modification of the
energy due to interactions with other particles. The
energy shift is given by ReZ&(ez) and the energy
width due to interactions is given by ImZ&, (ez).

We will calculate Zq(&e) according to the usual
rules of diagrammatic perturbation theory. ' In this
formulation Zq(&c) is obtained by summing the con-
tributions of all irreducible graphs with one line
entering and one line leaving the diagram. It is
desirable to classify diagrams according to the number
of particles whose interactions are being described.
For each particle interacting with the spin wave of
momentum X, it can be shown that one obtains
a factor (n), where (n) is the density of spin waves;
(n) T'". Thus to lowest ord.er in the density of
spin waves we must compute Zq(ce) from ladder
graphs as shown in Fig. I. The sum over all ladder
graphs can be expressed exactly by

Z„(»)=—(2/XP)

X p t(»+»'; &+y; »(&—p), »(&—p) )(»'—eP) ' (g)

where z and z' are on the set of imaginary frequencies'
2lsi/P and the t matrix satisims

t(; K; y, y') = V (p p') —(&tt) '

I
X g VK(p, y) L"—( K+9)3 L»—"—(-:K—t)) 3

Xt(»; K; 9, p'). (9)

The sum over z' may be performed to yield

t(»; K; y, p') = VK(p, y')

1+n(-,'K+tt)+n( ',K 9)-—
»—e(»K+9) —e(»K—e)

X t(»; K; t), p'), (10)
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see also L. P. KadanoB and G. Saym, Quanta Statistical j/Ie-
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FIG. i. The diagrammatic series for X)t(s}.

f(x) = (e'*—1)-'. (14)

As noted above, we seek to calculate the energy
width, which is given by ImZ&(ez):

ImZ), (eg) =—Z"(g) = (2/il)')

X Q Imt(eg+en —ie) X+y; » (g—p), »t (g—y) )

X (f(e.)—f(e.+ e) )j (1S)

Since Ret is a much more convenient quantity than
Imt, we use the optical theorem, discussed in Ap-
pendix A:

Imt(ic —ie E p y')= —Q t(ee —ie K p t))
It

x L1+n(-,'K+9)+n(-', K—9)j
X 5(ee—e(-,'K+ t)) —e(-',K—p) )t(oi+ee; K; t), y'). (16)

where

n(p) =-Lexp(e;)-1j-',

e(p) =—e'
By the use of the dispersion relation for the t matrix,

t(»; K; p, p') = VK(p, y')

+ Imt(co —ie; K; y, y')
die, (12)

z M

one can perform the»' sum in Eq. (8); the result is

Z) (») =Zd"

Imt(oi —je; X+p; -', (X—p), -', (Z—p))
Xx »+ ep —M

x $f(;)—f( )], (13)

where Z&('& is the Hartree energy from the erst term
on the right-hand side of Eq. (12) and
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Substituting this into Eq. (15) we find

X ~(sx+e.—s.—ex+.—.)L1+f(")+f(ei+.—.)]
X t(e&+e, ib—; X+y; -,'(a—p), p

—-', (a+y))
X t(.i+e,+Q; &+y; y

——',(&+y), -', (&—p) ), (17)

where we have used the identity

f(z) —f(y) =f(z) I 1+f(y)]/I 1+f(y—z)] (1g)

In conformity with our previous discussion, note
that 2"(X) is proportional to

I 1+f(s&,)] '= 1—
exp( —Psi, ) Psi. Note also the presence in Eq. (17)
of the factor I 1+f(e,)+f(ex+~,)], which gives the
enhancement due to scattering into thermally occupied
states. Having obtained an exact but convenient"
expression for the energy width due to two-particle
processes, the aim of the present section has been
achieved.

2JSj9))1,

Ps),«1.
(19a)

(19b)

The Grst of these conditions is necessary for the rapid
convergence of the density expansion which we have
already used. The second condition means that we

consider spin waves whose energy is less than kT;
hence they are in thermally populated states. Gen-

erally each f factor in Eq. (17) will contribute a factor
of the density, i.e., of T'". This was the justi6cation
for neglecting processes involving more than two par-
ticles, which involves at least two f factors. This

type of argument is only valid if the f factors refer
to indepemdewt energies. For example, f'(ex) Tsi'. In
Eq. (17) note that ei and ex+ed are not independent
because Pe~~i. Also due to the delta-function con-

dition, e+ ex+,= ex+„es othat when s, is small

s~+eq, and hence e~+si+~ s, is also small. Thus all the

f factors in Eq (17) mu. st be kept We may af. fect a
simplification by analyzing Eq. (17) wheri the Neumann
iterative solution to Eq. (10) is used for the t matrix.
In this case the f factors associated with the internal
lines of the t matrices need not be kept, since they
represent independent momenta. Accordingly, we may
evaluate Eq. (17) using the zero-temperature t matrix.

III. ASYMPTOTIC EVALUATION OF THE
ENERGY WIDTH

So far we have calculated exactly the energy width
of spin waves due to two-particle processes, which
will give 2"(X) correct to lowest order in the density
of spin waves. The present section is devoted to an
asymptotic evaluation of Eq. (17) in the regime

Even so, it is not feasible to evaluate Eq. (17)
exactly. We can develop an asymptotic expansion in
the regime characterized by Eq. (19) by evaluating
Eq. (17), keeping only the lowest number of powers
of momenta needed for a nonzero value of the t ma-
trix. Additional powers of momenta will give terms
smaller in the ratio (a7) or (kT/2JS)'~', both of
which are small parameters. Accordingly, we evaluate
the t matrix at zero energy (where it is real) and
will presently take the limit of zero total momentum.
Thus

cosp; (1—cosp;)

3—cosp, —cosp„—cosp,

Note in particular that

(22)

(23)

so that also

(24)

In this way we obtain an expression for the t matrix
for small momenta as

t(0' X+y' y p)

~—2J(-,' (X+y) +y) (-,' (X+y) —p), (25)

where we have taken account of Eq. (24). Note that
we have not neglected higher orders in 1/S; their
contribution vanishes due to Eq. (24). Thus Eq. (20)
becomes

SxPcxJ'
&"(&)= Zf(ei) I 1+f(ei+sx)]Le'(&+p —9)]

x (& p) b(ex+;—ep
—ex+.-p) I:1+f(e,)+f(ei+~,)]

(26)

Using the symmetry between y and. X+y—y we note
that 1+f(s,)+f(e~x,) may be replaced by 1+2f(s,).

2xPe),
, Zf(")t1+f(e.+ei)]g2

X L1+f(sn)+f(s~i o)]&-(si+e. e, —"+.—,)—
X t(0; 2+y; -', (2—p), y

——', (li+y) )
x t(o; x+p; q

—-', (x+p); -', (&—y) ). (2o)

For the t matrices we use the explicit expression"

t(0; 3+y; y, y) =4J g I
cos-', (X+p);—cosy;]

4s g=Sg8

X I 1—(1/2S)8] 'cosy; (21).
It is now permissible to evaluate the matrix 8 for
x+p= 0;

o The optical theorem may also be used to give a convenient
expression for Xi'(co) .

~ R. Silberglitt and A. B. Harris, Phys. Rev. Letters 19, Sf2
(1967).
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&= (2J~Pl')

cording to Eq.. 19),

(3Sh)

1/2((1 (35c)2g2 (2JSP~')

f g as

, 1+V

1/22) 2—4g +]
(36)

1+/i +
2~ 1/2

&& ln, I-(1+q')' —4'I

(37)

H we wrrte

(29a)+.y) P I z+y I
" "

(29h)2X2 co+p) 2=X'+P

(29c)co@n=~

} e done andand tIn canover qy~ &»

0

I ('/= (k T/2 J
naturally„hashwhich v

l.
inane the

eglectlng t
~ d terms toI (&) we must2

endence. HereP

1q2dq

2
d„(1+2q*+v') "'

the»tegratlons
one Qnds

pJ@~2"(&)
82/2S It —11111

1+q —1

4 ink
~(1+&2) 2—4(t'&

s2 ln'5
1+9+

2 4 2' 1/2
y ln,

L (1+(t') —
~

(31) a
have mentione

~ '"
'"(35h) ThencomParlSo

) I-1+f(2 +EX) ]Pf(ep

(30)L1+2f (Eq) ]Pd
g dS

(Z2+P'+

.

2) 1/2 4g P + ).= @+p'+«"+
Let us

1

where

ISEN g ERG

QO ~

N

an ln tegral

S p IN W~

d 1(b) sim»arly

(35a)

an
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to the energy
pre take

roximatione uadratlc aPP
the delta func o

so that~

~~1(g) (421/3&1, J S)(2~) '

r 2dp simpX p2dP sin(ty ~ 2

f(2p+21) ]
27)

1 may approx
t y In comparrso

)(deaf(

~+y —p)]~
Then» 2 .

l h ahie to neg
l we have

)](&'y) &

.
g ~ I (2) we w1

n writing p

5 2+& y —2p'~+y

h unity~ an in 2

(35h) Then

nt«
Kq,

2) 1/2

take
t;„tegrals to» ' '

~T 3 g q'dq d»2 y 2q

also now

+) 1]—'(2:)=—Lexy

to lowestn(g) correctWlSh to obtansine
~ r,n kT/2J

s that

,„]+,in(+&]

y (X

(X

2u) L1+f(~.+")]p'd 2*'(a'-/(')
ntop

y&(~)

f(~.)/d/f(~p) I:1+f(")]p' »
(39)

g ther

f(")I:1+f(")]p f(")/ d/
p,

f(")I 1+f(")]p'd

= (m'/18) (k T/2 JS)'.
E'

n of the rest of q.The evaluation o
e write

(34a)8212'"(X =

(34b)

(33a)

(~'+p' /') "&/—
—

I
(~'+p -~)"~. .+ f(.)/ „— (40)

0

integral in the squarenowt a

gf( ~

in powers
the le

I2=I2"+I2(",
with

e )Ll+f(2,+2/, ) ]p'dI2('1 = 2 f(ep
0

'/2'. (32)

a«s, one obtains

le+ p'+2Ãpx)

integral by p, e obtains

X
sincece terms Dojnec

'
arison to p ce.I"-ll-b,e contributions toin (l1/P)2 will give con ri

'
o

(n+& )

+

x dx

-I (X2+p2+2Xp2:)I/2, (( I
( )p&p (34c) '—' 2/2d '(kT/2JS). 4-(l(2+p2 &2 2f(;)p
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Then

f(")L1+f(p.) jp' f(p, )p~u

+ f(p.)~d~+p I

, fkT
(42)

Because of Eq. (35c) we can approximate f(p,) by
(pp, ) ' in the second p integral, so that

1,(~)—~4: f(")9+f(pp) JP'~p f(p.)I ~I

X $1+ ln(kT/2JS/P7') ], (44)

and by integration by parts one evaluates

f(pp) 51+f(pp) 3p'&p f(pp)u~~

+x I
(lnt+x) f(o) t 1+f(pp) 3P'~p. (43), (Ir

p.

Now one has

where we have used the value E=—I.06 from Ap-
pendix B. The leading term in Eq. (45) agrees with
the results quoted by Kashcheev and Krivoglaz, ' who,
however, did not give the remaining terms. Since the
condition 1n(kT/2JS7~P))) 1 is rather stringent, it is
well to have the remaining terms. Further terms in
the series will be smaller by at least a factor (kT/2JS) "'
and perhaps even by kT/2JS, although the analysis
seems to be too complicated to bother with. As a final
comment we note that 5"(X)/p&~0 rapidly as X—+0.
Thus we conclude that spin waves are perfect modes
in this limit. ~ In contrast the formula in Refs. j. and 2
predicts that Z"(1)/pi, remains finite in the limit X—+0.

APPENDIX A: OPTICAL THEOREM FOR
THE t MATRIX

The t matrix satis6es Eq. (10);

t(s; K; X, y)=VK(0., p)

1+~(-',K+y)+e(-', K—p)+E' VK X, y '(pK+9) —p(pK —e)

X t(s; K; p, tp). (A1)
p. p.

Since s and K are merely parameters, we will in-
troduce a more convenient matrix notation:=(4pJS '

pp p&p p' tpp) happ P P

Furthermore,
~&~=~(~i Ki ~) S)~

Vg„=—VK(X, p),

(A2a)

(A2b)

Also,

f(p.)p~pf(p, )pdp f(p.)1~a= p
p, , p

~-p'(kT/2 JS)' in'(kT/2JS&P7').

(46a)

(46b)

1+n(-',K+ Z)+~(~K—Z)
A2c

s—p(-', K+0 ) —(-',K—3 )

so that Eq. (A1) becomes, in matrix notation,

f
kT~ kT

2 2JS) 2JSPl' 6

Substituting Eq. (44) through (47) into Eq. (43)
one obtains

l, iP&= IxP(in)+ p) t'1+ 1n(kT/2JS7') —2 in@

+ ipLln(kT/2JS7') —2 in@'+ p

+i ln(kT/2JS7, p) —xp in~ —&'/18} (kT/2JS)' (48a)

t= V+ VGt. (A3)

We will now derive the optical theorem, assuming V
to be real but not Hermitian, as is the case for the
Dyson-Maleev Hamiltonian of Eq. (3a). We separate
G into its real and imaginary parts (s is complex):

G= G'+ pG".

We introduce to, which is defined as the solution to

+-' »P(kT/2JZP) ](kT/2JS)'. (48b)

xp»pg vp in~ —~p/18+ —', +—', ln(kT/2JSl~')
so that

tp V+ VG'tp, ——

tp (1—VG') 'V——

(A5)

(A6)

s=Ip(1+G"tQ"t,) '(1+KG"t.), -
(A7)

~ We are assuming that many spin-wave processes which are
of higher order in k T/ JS do not give contributions of lower order
in ) than X4 ln9. If this assumption is incorrect, then our results
will be limited to )&)Xo(T), where Xo{T) is the momentum at
which the terms of higher order in kT/ JS but lower order in )
become comparable with those retained here.

We now define
Using this equation together with Eqs. (37) and (33)
in Eq. (34) we obtain finally

W4 (kT'I'
8 'S E2JSi
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A3}, so that t=r:~

ll h that g satlsics Eq'

V+ Vgs= V+ VG'&+'Vg '
Vg&to(1+G"tog «) (1+og «)

+ oVg"to(1+ „«„«) g(1+og&'to) (Agb)

V+. Vg t, (1+G"tG"to) '(1++
+V(1—1+ig"to) (1+o t')

(Agc))((1+G toG to)

GIIt+IIt ) 1commutes @pithbecause x~ 0

Thus

V Vgs= V+ Vg' to( 1+ G"«G" t)o-'( 1+~" t}o

(A9a)+V(1+G"tog"to) '(1+-~"to)—

=t (1+G"t~"t)-'(1+~"to)

~herc

g ds
I«) = j q+p, «+2gx+s')"'

1+v'+L(1+v'}'—48~~'"
(B1b)

1+g—L(1+q )'—4goooj'io

jnte ral 1nto two ranges about g= ~~e break the q integra i
)1 we write q= 1/t. A»»

Then for 1»ge 5 we ~ndset x= (1+g')y 2g.

Q.E.D. (A9c) J(y) = (1+y)'"L-'y —r'sy 'fr l
1 (1,),I,

IEg Ef](1 G"t )(1+og"to)—(1+G « 1—(1—y)'"
(B3)+Is'(1 y) (2 y)+T&ln 1+(1 y)y~o

e 6 RDG ~0 %'hlch leads torthcrmore, since 6and Rlso Kq.
alc rcalp I(&)=r'~(A+Io+Io), (B4)

to= to(1+G"tog"to) '(1—&G 'to)

= t,(1 og"to) (1—+G"tog"to)

= (1—otog") to(1+G"tP"to) '.

(A10a) with

(A10b)

(A10c)

(BSa)

=t,(1+G tZ t.) (

g 1—ot~")t, (1+G"t4"to)-,' (A1»)

=t,(1+G"«"to) '(1+G"t6"«-)

for jf vfe have I2-Using Eq. (A7) for t an& Eq (A10c)

" -~1 m"«)G"]GIIp

r'(1+q') (2+/) ~e (BSb)

XG"to(1+G"tog"to) ' (A11b) Hs
cosh@

' (B6a)
=toG"to(1+G"toG"to) (A11c} I p

I,= 1 '(1+~)+8+4»k k+4—
e o tical theorem. %C have thus gener-wh1ch ls thc optlca . s cncl-

alized the optical theorem to e
Hcrmltlan but 1'cal potential.

APPENDIX 3 EVALUATION OF E

so that

E=-,oooo —~+r's in'(1+VX)

E= lim P(g) —so in't —~o in@,
Numerically we obtain(B1a)


