PHYSICAL REVIEW

VOLUME 175,

NUMBER 2 10 NOVEMBER 1968

Energy Width of Spin Waves in the Heisenberg Ferromagnet*

A. Brooks Harris?

Depariment of Physics, University of Pennsylvania, Philadelphia, Pennsylvawia 19104
(Received 12 April 1968)

A calculation of the energy width of spin waves whose energy is small compared to kT in a Heisenberg
ferromagnet is presented. Full account is taken of all two-particle processes. For 2J.S/kT>1 and
27 Sa?¢/kT<1, the energy width Aw, of a spin wave of wave number \ is Awx~MT2[A+B In(kT/2J Sa®%)+
C In2(kT/2J Sa®?)]. The disagreement with some previous treatments is explained physically by their ne-

glect of two many-body effects.

I. INTRODUCTION

OTH the static and dynamic properties of the

Heisenberg ferromagnet at low temperature have
been studied by many authors. Although there is
general agreement as to the low-temperature thermo-
dynamics, there is presently some controversy as to
the dynamical behavior of long-wavelength spin waves
at moderately low temperatures. Specifically we refer
to the calculation of the width in energy, =""(A),
of spin waves of momentum X\ whose energy e is
much smaller than k7. Recently Cooke and Gersch!
and also Marshall and Murray? have found the result
3" (\)~\2T*, whereas Kashcheev and Krivoglaz® ob-
tained =" (\)~MNT21n2(T/N\?), using the first Born
approximation. Our work substantiates and simulta-
neously generalizes this latter result. We find

(N ~MTTA+B In(T/\)+C 2 (T/x)], (1)

correct to all orders in 1/S for 2JS/ET>>1 and
27 Sa?N/ET<K1.

Although our calculations are rather formal, we
can clearly identify two crucial effects which are
essential to a correct treatment of the problem. The
first and most obvious of these is the principle of
detailed balancing. This principle asserts that in the
calculation of the lifetime of a state one should cal-
culate a net transition probability which is the dif-
ference between the rate of scattering out of the
state minus the rate of scattering into the state. Ac-
cordingly in = () one finds a factor [1— exp(—Be) ],
where 3=1/kT. In the regime where Be>>1 this factor
is essentially unity. But in the present case fa<l,
so that this factor becomes approximately 2J.Sa?\*/kT.
Inclusion of this factor in Refs. 1 and 2 would result
in an energy width ="/ (3)~\'T2 The presence of
the additional logarithmic factor is due to a typical
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many-body effect. For the Fermi gas one knows that
many-body effects are partially taken into account
by modifying matrix elements by the appropriate
occupation numbers so that particles scatter only
into empty states. For the Bose gas, on the other
hand, scattering into an occupied state ¢ is enhanced
by the factor 1+#,. In the regime Ba<1, the state 2
and its neighbors are significantly occupied even though
the simultaneous condition 2/.56>>1 insures that the
total number of particles is small. Thus the condition
Ba<k1 means that the state X must be treated as
being in a partially excited Bose gas. Inclusion of
the enhancement factors 14, leads to the expansion
of Eq. (1) in agreement with Ref. 3.

II. ENERGY WIDTH DUE TO TWO-PARTICLE
PROCESSES

We use the Dyson-Maleev® boson representation
for spin operators

St=(25)1"2(1—ata/285)a, (2a)
S—=(25) 127, (2b)
Se= S—ala, (2¢)

so that the Heisenberg Hamiltonian becomes
3=E¢t+3+V, 3)

with

Ey=—NzJ§?, (4a)
(4b)

Hy= Z 6>\dx*ax,
Ey

V=(2N)" 3 V(p, P')axserp'0x/0p 0k /240 Oxj2 -

Kpp/
(4c)
Here®
a=2JzS(1—m), (Sa)
Vk(p, p)= _JZEVD—D’+VD+D’_'YK/2+p_'YK/2—p]7 (Sb)

4 F. J. Dyson, Phys. Rev. 102, 1217 (1956); S. V. Maleev,
Zh. Eksperim, i Teor. Fiz. 33, 1010 (1957) [’English transl.:
Soviet Phys.—JETP 6, 776 (1956) 7.

® Strictly speaking Eq. (5b) is incorrect, because momentum
is only conserved to within a reciprocal lattice vector. However,
the potential and spin-wave energies and hence the ¢ matrix are
periodic functions of all wave vectors, so that we may use the
reduced-zone scheme.
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in the usual notation.® It can be shown’ that the
spin Green’s function ((S*: S—)), i.e., the dynamical
susceptibility, can be expressed in terms of boson
Green’s function. In this way one concludes® that
near resonance, i.e., for w~e,

((S*; §)~2(5)G (%, w), (6)

where G(X,w) is the usual single-particle boson
Green’s function with associated self-energy =\(w)
given by

G(%, w)=[o—ea—2\(w) . (7)

Physically Z(w) describes the modification of the
energy due to interactions with other particles. The
energy shift is given by ReZ\(e) and the energy
width due to interactions is given by ImZ)(e\).

We will calculate 2)(w) according to the usual
rules of diagrammatic perturbation theory.® In this
formulation Z\(w) is obtained by summing the con-
tributions of all irreducible graphs with one line
entering and one line leaving the diagram. It is
desirable to classify diagrams according to the number
of particles whose interactions are being described.
For each particle interacting with the spin wave of
momentum A, it can be shown that one obtains
a factor (n), where (#) is the density of spin waves;
(n)~T%2, Thus to lowest order in the density of
spin waves we must compute Z\(w) from ladder
graphs as shown in Fig. 1. The sum over all ladder
graphs can be expressed exactly by

2)\(2) =—(2/NB)
X Z, t(z+2; 2+p; 3(2—D), 3(2—p) ) (Z'—e) ", (8)

where z and 2’ are on the set of imaginary frequencies?
2lri/B and the ¢ matrix satisfies

{(z; K; p, p') =Vk(p, p') — (NVB)*

1 1
X ,,z,,: Vk(p, o) [Z—e(3K+p) ] [2—2 —e(3K— o]

Xi(z; K; 0, 0). (9)
The sum over 2’ may be performed to yield
i(z; K; p, o) =Vx(p, p')

14n(3K+e) +n(3K—¢)

N1 2, Ve(p,

N Va0 S R g —c ik
X 1z K; 0,0,

(10)
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Fic. 1. The diagrammatic series for 2, (z).

where

n(p) =[exp(Be) — 117, (11a)
(p) =ep. (11b)
By the use of the dispersion relation for the ¢ matrix,
1(z; K; p, ') = V(p, p)
+oo —ee . /
+7r“1f Imt(w—1ie; K; p, p')

— Z—w

dw, (12)

one can perform the 2’ sum in Eq. (8); the result is
E)‘(z) =3,
42y [ Totlomis 3 30—p), 10p)
Nr 5 ztep—ow
X [fleo)=flw)], (13)

where Z\® is the Hartree energy from the first term
on the right-hand side of Eq. (12) and

f(@)=(e#—1)~1 (14)

As noted above, we seek to calculate the energy
width, which is given by ImZ\(e\):

ImZ\(e)=Z"(A)= (2/N)
X 2 Imt(exte—ie; A+p; 3(2—p), 3(—p))
X [fle) =fleot+ea)]. (15)

Since Ret is a much more convenient quantity than
Imi, we use the optical theorem, discussed in Ap-
pendix A:

Imi(w—ie; K; p, p') = AI, 2. Hw—ie; K; py @)
P

X [1+2(3K+0)+n(3K—p) ]
X 8(w—e(3K+g) —e(3K—p) )t(wtie; K; o, p'). (16)
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Substituting this into Eq. (15) we find

7 2 ) [+ (erta) J[1+H(e) T
pp

X6 (5X+ep;fp— e)\+p—n) [1+f(5p) +f(€>‘+p—p) ]
X t(ente—id; 2+p; 3(2—p), o—3(2+p))

()=

X t(atetid; A+p; e—5(2+D), 2(2—p)), (17)
where we have used the identity
f@)—=f@) =fO+fV[1+f(y—2)].  (18)

In conformity with our previous discussion, note
that Z(2) is proportional to [14f(e)l=1—
exp(—pBe)Be. Note also the presence in Eq. (17)
of the factor [14f(e,)+f(entp—p)], Which gives the
enhancement due to scattering into thermally occupied
states. Having obtained an exact but convenient!
expression for the energy width due to two-particle
processes, the aim of the present section has been
achieved.

III. ASYMPTOTIC EVALUATION OF THE
ENERGY WIDTH

So far we have calculated exactly the energy width
of spin waves due to two-particle processes, which
will give /() correct to lowest order in the density
of spin waves. The present section is devoted to an
asymptotic evaluation of Eq. (17) in the regime

27551, (192)
ekl (19b)

The first of these conditions is necessary for the rapid
convergence of the density expansion which we have
already used. The second condition means that we
consider spin waves whose energy is less than ZT'
hence they are in thermally populated states. Gen-
erally each f factor in Eq. (17) will contribute a factor
of the density, i.e., of 7%2. This was the justification
for neglecting processes involving more than two par-
ticles, which involves at least two f factors. This
type of argument is only valid if the f factors refer
to independent energies. For example, f2(en)~T%2 In
Eq. (17) note that e and et¢, are not independent
because Bey~1. Also due to the delta-function con-
dition, e+enp—p=erte, so that when ¢ is small
e+, and hence e+ enpp—p, is also small. Thus all the
f factors in Eq. (17) must be kept. We may affect a
simplification by analyzing Eq. (17) when the Neumann
iterative solution to Eq. (10) is used for the ¢ matrix.
In this case the f factors associated with the internal
lines of the # matrices need not be kept, since they
represent independent momenta. Accordingly, we may
evaluate Eq. (17) using the zero-temperature / matrix.

19 The optical theorem may also be used to give a convenient
expression for 2y’ ().
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Even so, it is not feasible to evaluate Eq. (17)
exactly. We can develop an asymptotic expansion in
the regime characterized by Eq. (19) by evaluating
Eq. (17), keeping only the lowest number of powers
of momenta needed for a nonzero value of the ¢ ma-
trix. Additional powers of momenta will give terms
smaller in the ratio (a\) or (kT/27S)Y2, both of
which are small parameters. Accordingly, we evaluate
the ¢ matrix at zero energy (where it is real) and
will presently take the limit of zero total momentum.
Thus

2//(3') 2 6)‘

pi(ep)[l-i-f (etea)]

X [1+f(eo) +f(ep+)\—p) ]5(Ek+ep_ € 5)\+p—p)
X 10; 2+p; 3(2—p), o—3(\+D))
X £(0; 2+p; 0—3(2+Dp); 3(2—p)).

For the ¢ matrices we use the explicit expression!!

1(0; &+p; v, w)=4J > [cos}(d+p)i— cosu:]
8, J=xyz
X [1—(1/28) BTt cosy;. (21)
It is now permissible to evaluate the matrix B for
A+p=0;

(20)

Bi= _N—IEZ 3— zz:;il cos‘:zossz:oSp, - (22)
Note in particular that
57: Bij=0, (23)
so that also
2 [~ (1/29) BT %=1, (24)

In this way we obtain an expression for the ¢ matrix
for small momenta as

t(0; %p; v, v)
~—2JG(A+p)+u)G(0+p)—u),

where we have taken account of Eq. (24). Note that
we have not neglected higher orders in 1/S; their
contribution vanishes due to Eq. (24). Thus Eq. (20)
becomes

(25)

8 e)‘J2
X S e (et Lo (B —0)]

X (3"'?)5 (€X+5p—€p_fh+p—p> [1+f(€ﬂ) +f(€>\+p—p) ]
(26)

Using the symmetry between ¢ and A-+p—g¢ we note
that 1-4f(e,) +f(epr—p) may be replaced by 1+2f(e,).

3 ( 3')

(1;617{). Silberglitt and A. B. Harris, Phys. Rev. Letters 19, 512
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Using the quadratic approximation to the energy in

the delta functions, we have
2" (A)~(4xBeJ/S) (2n)t

X / Pdp sinb, db, d, p*dp sind, df,

Xdo, f(e&) [1+f(es+e) JL14+2f(e,) ]
X 8[e*+2-p—2¢-2+p)J(3-p)[o-2+p—0)], (27)

where we take the lattice constant to be unity, and
extend the momentum integrals to infinity. We can
also now redefine

f(x)=[exp(Ba®) -1 (28)

since we wish to obtain Z''(3) correct to lowest
order in kT/2JS. If we write

e (3+p)=p| 2+p| cost,, (29a)
(Ap)2=7N24p2+2), cosb,, (29b)
cosf,=1x, (29¢)

the integrations over ¢,, ¢,, and 6, can be done and
one finds

] )\2 o
2= o35 [ f@ T fate)
1 x%dx P>(2)
X [ oo prmgn ), DY@ @
where
> S AN (O ) = )], (31)
Let us evaluate
' 1
fi= [ f@) [+ f o) dp [ 322(as=p2)
0 -1
X (N p*-2\px) V2dx.  (32)

We may neglect A in comparison to p since terms
in (\/p)? will give contributions to I; smaller by Be.
Then

I

Il

[ f@Hf@) I (35)
(]

= (7%/18) (RT/2J S)%. (33b)

The evaluation of the rest of Eq. (30) is more
delicate. We write

81853 (2) =BT e (I1+ 1) (34a)
and
L=L®+ 1,0, (34b)
with
EN
19=2 [ f(e) [+ (et-a) 1p'dp
0
1 x2dx > (x)
x [ cerprmosn / L f@eds (340
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and I,® similarly an integral over p from £\ to co.
We take

£= (27582114, (35a)

so that, according to Eq. (19),
&1, (35b)
Bean=2J SBEN = (2T SBN?) 2= (Be,) 12<K1.  (35c¢)

Then in [,® we may approximate f(x) as 1/x and
in I,® we will be able to neglect N\ in comparison
to p by Eq. (35b). Then writing p=g¢\ we have

kTN ¢ ¢*dg !
Lo=—— / 2 2)—1/2
2 (2]5) e —ldxx (142gx+¢%)

L [(14¢) — 4]
TH¢—[(1+¢)— 4"’

X In (36)

so that

L®=(kT/2JS)* [% In%+% Int+ K], 37

neglecting terms which vanish as &é— . Naturally
in I,® we must find terms to eliminate the ¢ de-
pendence. Here

K= lim [{ f g / e+ 2gnk )
tro L g 146"/

1+ L(14¢) —dga? ]

@=L (I ¢) = age ]

and is evaluated in Appendix B.

As we have mentioned, in I5»® we neglect \ in
comparison to p because of Eq. (35b). Then

X In

} —3 In%—% 1n$] (38)

£ 1 >(2)
10t [ f@) )T [ s [ fe)od.
28 0 (@)
(39)
Doing the # integral by parts, one obtains

=4 [ S L1 1 [ oo

@A) o \3
[T reo(5) 0 -y

A 3
+ [ (G ) -] o)
0

It is clear now that the second integral in the square
brackets is negligible in comparison to the first inte-
gral. Furthermore the third integral can be done by
expanding f(e,) in powers of B¢, and (p2-A2—p?)si2
in powers of (N*—p?)/p? since p<AKp. Keeping only
the leading terms we have

/ Af(e) (—”-)3 (N2 p2— p?)32dpe 3 (RT/2T S). (41
o p) P )\p Py ). ( )
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Then
19=4 [ Je)UiH(e) 2| [ Se)ods

n / f(ep)pdpt3} (ZJS)]

Because of Eq. (35c) we can approximate f(e,) by
(Be,) ! in the second p integral, so that

1= [ @)U )1 [ feodo

(42)

4 (75) (D) [ f@)1H @) . (19
Now one has
/:f(ep)E1+f(ep)]P3dP~%(kT/ZJS)2
X [14 In(kT/27SEN) ], (44)

and by integration by parts one evaluates

[ 1@+ [ feods
& a

= a1 [ st pip P +2 [ Se)oio} . 45)
Furthermore,

[ srsip [[ snan= | [ arpas| (a6

~A(ET/27S)? W (KT/2TSEN).  (46b)
Also,
kT T
/ F2(ep) prdp (215)(1+1n2m£2k2—€>. @)

Substituting Eq. (44) through (47) into Eq. (43)
one obtains

L,O= {3 (Ing+3)[1+ In(RT/275N) —2 In£]
+1[In(RT/27SN) — 2 Ing P+
11 In(kT/2TSN) —% Int—n2/18} (KT/2J S)* (48a)
—[—32 In%—$ Inf—2/184-3+5 In(ET/27 SN
L In2(AT/2TSN2) J(RT/2J S)>. (48b)

Using this equation together with Egs. (37) and (33)
in Eq. (34) we obtain finally

L (ﬁ)ﬁ
S \2JS

X (% In?

bl (l) =

kT
2J S\

+5In —o.so> , (49)

2J S>\2
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where we have used the value K=—1.06 from Ap-
pendix B. The leading term in Eq. (45) agrees with
the results quoted by Kashcheev and Krivoglaz,3 who,
however, did not give the remaining terms. Since the
condition In(kT/2J5N)>> 1 is rather stringent, it is
well to have the remaining terms. Further terms in
the series will be smaller by at least a factor (k7'/2J.5)"2
and perhaps even by k7/2JS, although the analysis
seems to be too complicated to bother with. As a final
comment we note that =" (X)/e—0 rapidly as A—0.
Thus we conclude that spin waves are perfect modes
in this limit.”? In contrast the formula in Refs. 1 and 2
predicts that =/(Q) /ex remains finite in the limit A—0.

APPENDIX A: OPTICAL THEOREM FOR
THE ¢ MATRIX
The ¢ matrix satisfies Eq. (10);
t(z§ K; X U) = VK(D‘) 9)

1+n(‘K+9)+n(‘K—o)
—e(3K+0) —e(3K—p)
X (3 K; 0, u).

+N1 3 Ve(3, @)
(A1)

Since z and K are merely parameters, we will in-
troduce a more convenient matrix notation:

l)‘,,EIf(Z; K; X, l‘)y (Aza)

V)\M:—: VK(DW U)’ (A2b)
1 1R -

Gry=s 1+2(3K+2)+n(3K—-2) (A20)

M= e(3K+2)— (3K—2) ’

so that Eq. (A1) becomes, in matrix notation,

t=V+VGt. (A3)
We will now derive the optical theorem, assuming V
to be real but not Hermitian, as is the case for the
Dyson-Maleev Hamiltonian of Eq. (3a). We separate
G into its real and imaginary parts (z is complex) :

G=G"+1G". (A4)
We introduce f4, which is defined as the solution to
to=V+VG't, (A5)
so that
b= (1-VG)V. (A6)
We now define
s=h(1+G"1G"1) 1 (141G""%), (A7)

2 We are assuming that many spin-wave processes which are
of higher order in kT/JS do not gwe contributions of lower order
in A than M In2\. If this assumption is incorrect, then our results
will be limited to N>No(T), where \o(T) is the momentum at
which the terms of higher order in 27/JS but lower order in A
become comparable with those retained here.
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and will show that s satisfies Eq. (A3), so that i=s:
VA+VGs=V+VG's+iVG's (A8a)
= V+ VG t(1+G"1G" 1) (14+iG"t)

+iVG"t(14+G"1G" 1) (14+4G"t)  (ASb)
= V+ VG ty(1+G"1:G" 1)~ (1+4G"'to)
+V(1—=14iG"1) (1+iG""1y)
X (1+G"4G"t), (A8c)

because 1+44G"fy commutes with (14+G"4%G"f)L
Thus

V+VGs=V+VGt(1+G"4G" ) (144Gt

+V(A+G"1G" 1) (14+iG"t) —V  (A9a)
=1(1+G"1sG" to) "1 (14+iG""ly) (A9b)
=s. QED. (A%)

Here we have used
(1—1G"t) (141G"h) = (1+G"t,G"'ty)

and also Eq. (AS5). Furthermore, since G” and f
are real,

P=1(14+G"6G ") (1—iG")  (A10a)
=t(1—iG"h) (1+G"tG"k)~*  (A10b)
= (1—itG")ts(14+G"8G"t)"1.  (A10c)

Using Eq. (A7) for ¢ and Eq. (A10c) for * we have
1G"t*=t,(14-G"1:G""t) 1 (1+4G"'t) G”

X (1=itG"t(14+G"1:G""1)~t  (Alla)
=t(14+G"1:G" 1) 1 (1+G"t:G""to)

X G to(1+G"1G"" 1) (A11b)
=4G"t/(1-+G"1sG"'ty) (Allc)
=1, (A11d)

which is the optical theorem. We have thus gener-
alized the optical theorem to the case of a non-
Hermitian but real potential.

APPENDIX B: EVALUATION OF K
From Eq. (38) we have that

E=lm[I()—3n%—4Ing],  (Bla)
t>0
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where
_ [fgdg [ x2dx
d (E)“/., 14+¢* /oy (1+2gx+¢2) 12
2 2Y2. 1/2
o LEEH Oty

¢ [+ — 4]

We break the g integral into two ranges about ¢=1.
For ¢>1 we write g=1/t. Also in the x integral we
set x= (14¢*)¥y/2q. Then for large ¢ we find

I(§)=% /1; g (14+¢8) (14-g2)32
) ().
14 (1—y2) 12

1— (1__.y2)1l2

1—(1—y)1?
1+ (1—y)in

where

J(y) =143y~ 15y+18] In

s (1my) (2 —y) +52 nl . (83)

which leads to

I(§) =5 (Lt It 1), (B4)

with

114g
I=—f' Ing[ 524" 1da,
1 it ng[5-+2¢%]dg

(B5a)

== [ ) e, (85b)
1/¢

L= /1; 204 (14+¢) (14+¢®)*2 In[ (14-¢*) ¥2+¢].  (B5c)

We find that

© xdy

=2+t —romt— [ (Béa)

o coshx’
I2= —52'—' lné—%‘,
1+
Ii= It (1) +8+§ Ing—3+4 [
1
so that
K=1%s—gon’+1% In?(14+2)

(B6b)
2 Inydy
y—1’

(B6c)

g [ xdx 4
2‘[0 coshx+ 1
Numerically we obtain
K=-—1.06.

2 Inydy
p-1

(B7)

(B8)



