
PH YSI CAL REVIEW VOLUME 17$, NUMBER 2 1Q NOVEMBER 1968

Unitary Theory of Dynamic Polarization of Nuclear Spins in
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The dynamic polarization of nuclear spins, or spin pumping as it is often called, is discussed from a unitary
point of view by means of a stochastic model. The Hamiltonian of this model describes two spins, I and S,
which are inQuenced by a constant external magnetic field Ht) and a rotating field H&, which have a dipole,
or a contact, interaction, and of which the S spin experiences a randomly fluctuating "local" field BI.(t).
The coe%cients of the dipole, or the contact interaction, are also random functions of time, all of which
serves to replace, as accurately as possible, the inhuence of the surrounding particles on the two spins.
In order to preserve the consequences of the principle of detailed balance, which is essential, the amplitude
spectrum of these random functions has to be complex, i.e., nonreal, in a manner depending on the tem-
perature. With several transformations, including a complex stochastic rotation, the interaction representa-
tion is obtained, from which equations of motion for the spin polarizations are found by means of an iteration
and truncation scheme. In calculating the coe%cients of these equations, extensive use is made of the
Fokker-Planck equation characterizing the stochastic rotation. The equations are solved with some
simplifying assumptions, and an explicit closed-form expression for the polarization of the I spin is derived.
This yields the well-known results for the extreme cases of a line-narrowed liquid and of a solid, for the
dipole as well as for the contact interaction. In intermediate cases, it yields hybrid effects as a function of
all the variables of the problem. Where comparisons are possible, they differ markedly from earlier predic-
tions. This discrepancy is attributed to a defect of other derivations, in which nondiagonal elements of the
density matrix are neglected.

I. INTRODUCTION

t lHE aim of the present work is to study the evolution..of a system of interacting spins in an external
magnetic Geld, and especially the phenomenon of the
dynamical polarization of nuclear spins in liquids and
solids. '

In systems containing paramagnetic impurities one
can, when the electronic spins are pumped by means of
a hyperfrequency magnetic field, observe a nuclear
polarization due to processes of different types. One
distinguishes the solid effect, '' characteristic of solids
with a dipole interaction between the electronic and
nuclear spins, the inverted Overhauser effect, ~'
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characteristic of liquids with dipole interaction,
and the Overhauser effect, ' ' characteristic of liquids
and solids with contact interaction. There exist, also,
intermediate situations, which correspond to "viscous
media" and in which the dynamic polarization obtained
is of a hybrid nature, representing the transition from a
pure solid effect to a pure inverted Overhauser effect."
During the present study, we were particularly in-
terested in the phenomenon of the transition from one
effect to another, while at the same time trying to
account theoretically for the evolution of the polariza-
tion with time as a function of the intensity of the
hyperirequency (pumping) field.

In order to characterize the differences between the
phenomena of dynamic polarization in liquids and in
solids with dipolar coupling, one may consider the
energy levels of an electronic spin S and a nuclear spin
I, with dipolar interaction. In a liquid this interaction
is modulated by the relative movement of the spins,
and its average value is thus zero. It therefore cannot
mix the Zeeman levels of the system. With a solid,
however, since the dipolar interaction is static, it
combines the individual states of the Zeeman Hamil-
tonian, which means that a given hyperfrequency
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field will have a di6'erent eGect. Indeed, one can in-
duce in a solid the transitions corresponding to the
frequencies 0+co, 0 and co being the Larmor frequencies
of the S and I spins: in liquids, only the transitions
corresponding to an energy exchange 50 are permitted.
One must take into consideration the electronic spin-
lattice relaxation mechanism, which induces spon-
taneous transitions of the electronic spins between two
levels and which yields, via the S-I interaction, the
dominant mechanism for nuclear relaxation in solids.
The interaction between the electronic spins must also
be considered. In the liquid case, it provides the most
eScient mechanism of spin-lattice relaxation, but in

solids, it gives rise to the spin-spin relaxation which is
a source of mell-known complications. A satisfactory
theory of dynamic nuclear polarization must correctly
describe the saturation of the electronic spins as a
function of the intensity of the pumping field. We shall

now briefly examine the present state of the art from
this point of view.

In the case of solids, the first step toward a general
theory was made by Motchane. " He considered the
rate equations for the populations of the Zeeman

levels of a nuclear spin I and an electronic spin S,
interacting with a (static) dipole force. The equations
contain spontaneous transitions (relaxation) satisfying
the principle of detailed balance, and also the transitions
induced by the pumping field. The latter are, conform-

ing to the ideas first introduced by Bloembergen, "
proportional to the difference in level population and
to HP f(s&), where f(su) describes the electron resonance

line shape which itself depends on the electron spin-

relaxation time, and where B&' is the intensity of the

pumping field.
This theory has two limitations and contains two

doubtful approximations. The limitations, which also

apply when only one kind of spin is considered, are the
requirement of high fields (in order that the Zeeman

levels be well separated) and the condition that the
interaction between the S spins is negligible. The ap-
proximations, of relevance only because of the inter-

action with the I spins, lie in the fact that the non-

diagonal elements of the density matrix are neglected,
viz. , those produced directly by the pumping Geld as
well as those produced by the force causing electron

spin relaxation in the presence of the high-frequency
6eM.

Abragam and Borghini" have taken into account the
interaction between the S spins, on the basis of the
theory of Redfield, " and the theory of Provotorov"
separately. The validity of this method is restricted to

»
¹ G. Bloembergen, Nlclear Magnetic Relaxation {W. A.
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values of Hj for which these theories apply. ' A gener-
alized theory" valid for all H& has not yet been applied
to this problem. Moreover, the other limitation and the
approximations are still in force.

The case of liquids can be developed in analogy with
Ref. 10; the main diGerence being that the interaction
between the S spins gives no problem because it is
modulated by the random motion of the liquid. The
other diQiculties apply, however.

It follows from the above that a unitary theory,
covering the transition from liquid to solid, can reason-
ably be expected only when the interaction between the
S spins is negligible, or can adequately be represented

by its eGect on the S-spin relaxation only. An attempt
at such a theory has been made, " but with the same
limitations and approximations as above. In the
present paper we try to take proper account of the
nondiagonal elements of the density matrix in order to
arrive at a quantitative theory. In principle, our method
does not require well-separated Zeeman levels, and thus
also applies to very weak external Gelds.

II. SIMPLIFYING ASSUMPTIONS

From the most general Hamiltonian describing a
set of electronic spins S; and nuclear spins I; with their
interactions with each other, with the lattice, and with
external fields, a number of terms will be dropped
immediately. They are: the mutual interaction of the
I spins and the energy of the I spins in the hf field, this
Geld being at or close to resonance with the S spins. It is
assumed that a given I spin interacts with one and only
one S spin. A dipole and a contact interaction will be
considered separately. This interaction is supposed to
dominate the I-spin relaxation, and any direct I-spin-
lattice interaction will be neglected.

The object is to calculate the magnetization of the
S- and the I-spin system as a function of time. For
convenience, we use the initial condition that at t=o
the system is in thermal equilibrium at a temperature
8 in the total external Geld. Although a direct approach,
with Green s-function or similar methods, is con-
ceivable, the difhculty of keeping track of all the
remaining interactions simultaneously has led us to
make two simplifying assumptions about the evolution
of the system ub initio. First, it is assumed that the
lattice serves as a large heat bath, i.e., that it remains,

in thermal equilibrium at the temperature 0 at all
times. Secondly, it is assumed that the orientation of
the S spins relative to each other retains its equilibrium
distribution at temperature O. For liquids this hardly
involves an approximation, but for solids this assump-

tion will lead to errors in situations where, under the
inhuence of the hf field, the spin temperature associ-

a J. L. Motchane and G. Theobald, Compt. Rend. 264, 1553
{1967)."G. Theobald, thesis, Besanqon, 1967 {unpublished).
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ated with the S-S interaction is diferent from the
lattice temperature.

III. STOCHASTIC APPROXIMATION

These assumptions open the way for a decomposition
of the system which forms the basis of our treatment.
The idea is to reduce the problem to one involving
only one representative I-5 spin pair and to express the
inQuence of the other 5 spins and of the lattice in terms
of randomly time-dependent "local fields. "The general
conditions for such a decomposition have been discussed
elsewhere. ' There it was shown that the inQuence of a
heat bath can be described by local fields if it remains
in internal thermal equilibrium and if its microscopic
relaxation times are short compared with the relaxation
times of the system with which it is in contact. When
these conditions are met, the properties of the system
are obtained with a statistical matrix po(t) given by

pe(l) = I W(t —i/2kB) Wt((+i/2kB) I „, (1)

where the operator W(t) satisfies the Schrodinger
equation

idW(t)/dt= LX(t)+X (t+i/2kB) ]W(t) . (2)

Here Xi(t) is the energy of the system due to given,
time-dependent, external fields, and X(t) is the re-
maining part of the Hamiltonian of the system and
owes its time dependence to randomly varying local
fields. The average in Eq. (1) has to be taken over a
time which is long compared with the correlation time
of X(t), but short compared to the relaxation times of
the system. The analytical continuation into the
complex plane, implied in Kq. (1), is not unlike that
required for equilibrium ensembles. The unusual
feature is the appearance of a non-Hermitian term in
Eq. (2) when time-dependent fields are present. This
can be explained in an elementary way by considering
the populations of the levels of the system due to the
static part of X(t). The time-dependent part of X(t),
as well as Xi(t), considered as a perturbation, causes
transitions that change the level populations. But while
the former tends to stabilize a canonical distribution,
exp( —E/kB), the latter tends to equalize the popu-
lations. Both these trends are easily discerned in
Eqs. (1) and (2).

The above-mentioned application to our spin
systems oversteps somewhat the limits of validity of
this method, even granting the two assumptions.
The difhculty is similar to that of applying the theory
of Brownian motion to individual molecules: The
characteristic time of the local Geld, describing the
eGect of neighbors on a given 5 spin, is essentially
equal to the relaxation time of the 5 spins. This is, at
least, the case in solids. In liquids, the random molecular
motion eliminates this difhculty. Our theory will be
developed as if this characteristic time were short:

» J. Korringa, Phys. Rev. 133, A1228 (1964).

this could be a source of errors, especially in weak
Zeeman fields, when eGects of line shape tend to be-
come important. However, we are primarily interested
in the polarization of the I spins, and, while this may
be inQuenced by these considerations, the main function
of the local fields is to produce the correct relaxation
times T& and T2 of the S spins. These two quantities,
rather than the statistical properties of the local Geld,
will later on be treated as adjustable parameters.

The statistical matrix for a spin pair, obtained with
Eqs. (1) and (2), is not unique, because it depends,
through the I-S interaction, on the initial relative
location of the atoms carrying the spins I and 5. In
liquids, where one can average over times long com-
pared with the liquid correlation time, this initial state
disappears from (1), but in solids or viscous liquids it
does not. We are interested in the average behavior of
spin pairs irrespective of their initial configuration.
This can be obtained by including, in the symbol

I, , an ensemble average over all possible initial con-
lgurations of the spin pair, to be performed after the
short-time averaging. In the following this will always
be implied.

IV. EFFECTIVE HAMILTONIAN AND
DENSITY MATRIX

Kith the above specifications the effective Hamil-
tonian in Kq. (2) takes the following form:

X(t)+Xi(t+ ',iP) =VsIIoS-s+»II+VsHi, (~) S

+»»I e(i) S+»H, (~+ioiP). S. (3)

Hr, (t) is the local field, @(/) is the tensor of the IS-
interaction, as modulated by the lattice motion. The
pumping Geld B& is rotating with frequency 0 in the
x-y plane. We have put P= 1/kB.

In the following we are interested only in the high-
temperature limit, i.e., in terms to order p. The analytic
continuation in Kq. (1) to first order in p is immedi-
ately obtained from Eq. (2). With the initial condition
mentioned above one finds

p (l) =
{ pe'j" {W(/) W (i) I,Q ']'"+0(P'), (4)

p, expL P(~sIIos=, +»II—g.+~sH (~) S)], (S)

W(0) =1. (6)

In Kq. (5), the time average of the I Sinteraction has-
been neglected. Owing to the non-Hermitian term
X&(t+,iP) in Eq. -(2), W(t) is not unitary. The devi-
ation from unitarity is of first order in P, and hence
W(t) Wt(t) =1+0(P).

The problem is to calculate (S)o, i and (I)e,i, where

(Q)o, i Trgps(t) /Trps(t) .——

(I,)s, is of particular interest. These quantities
are of first order in p, so the denominator in
Eq. (7) can be replaced by its zero-order value:
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Trpe(t) ~(2S+1)(2I+1) . We consider in the following

only the case 5=—'„ I=—,'. For that case it suKces to
calculate the quantities

(Q) = l TrLQ{W(t) Wt(t) I -3 (g)

where Q is any component of S or I. To Grst order in P
one has

(9)(Q), =(Q)+-' T Q",

V. INTERACTION REPRESENTATION

We now perform three transformations in order to
remove all but the I—S interaction from the Hamil-

tonian:
(1o)W(t) =Wr(t) W2W2(t) W'(t) .

(1) W2(t) is a rotation with frequency Q in the
space of S and with frequency co=plHD in the space of

I, i.e.,
Wq(t) = exp( —iQS, t —uvI, t).

This gives a new Hamiltonian

Xo =6(aS,+MgS, +-2ipQcogS„+psHr, o& (t) S~
where

~&=Vs+0 1 +8+1) (13)

and where Hl. ('& ari.d 4(') are HL, and W as seen on the
rotating frame. The pumping term has been expanded
to Grst order in P.

(2) W, is a rotation to put the news axis in the space
of S in the direction of the eGective field:

W2——exp| —iS„arctan(~~/A~) j, (14)

i.e., (Q)& measures the deviation from equilibrium in the
instantaneous applied field.

t equal to the solution of the modihed Bloch equations,
minus the thermal equilibrium value of S in the in-
stantaneous held.

(c) A(x(t) ) is a rotation of the frame of reference,
given by the complex Euler angles x&=8, x2 f,——x2=22.

(d) The time dependence of x(t) is obtained from a
probability P(x, x, t) in which x and its complex
conjugate x appear as independent variables, and
which satishes a Fokker-Planck equation, as discussed
in Ref. 19. We will assume from now on that the
S-spin relaxation is isotropic. This causes an error in
solids or viscous liquids in large Ho, but this lack of
generality is well compensated by the resulting isotropy
of the Fokker-Planck equation, without which the
advantage of having the z axis parallel to H, would be
lost. As a result the Fokker-Planck equation takes the
form

rtP/Bt=zp, &=&2+&2+&2,

F2——(1/2T) (K+K) '

Fg—— (o,(K,+—K,),

F2=
2QPi erg

—(K„K„), —

(19)

(20)

(21)

idW'(t)/dt=X'(t) W'(t),
with

X'(t) =q&ysI e (t) A(x(t)) S.

(22)

(23)

The term in B(t), which is of first order in P, has been
neglected in Eq. (23), as it gives only contributions of
second and higher order.

From this we want to calculate

where T is the S-spin relaxation time, K and K are the
operators of angular momentum in terms of Euler
angles and their complex conjugate, respectively.

The transformed Schrodinger equation takes the
form

which gives

~&2& =(o,S,+-22iPQ&o2S&+psHr, '(t) S+yrysI N'(t) .S, and
ES(t) =-,' Tr{W'2 (t)A(x(t) ).SW'(t) I. (24)

»(t) =-,' Tr {W't(t) IW'(t) I .. (25)

where
~ 2 —(g~2+ +~2 (16)

The physical meaning of ES(t) and»(t) follows from
Eqs. (9), (17), and (24):

S:
(a) W2 induces an inhomogeneous transformation of

W,t(t) SW, (t) =A(x(t) ) S—B(t). (17)

(b) B(t) is a c number and has a limit for "large"

"J.Korringa, J. L. Motchane, P. Papon, and A. Yoshinmri,
Phys. Rev. 133, A1230 (1964).

and where Hl, ' and +' are obtained from Hq") and 4 &')

with this rotation.
(3) W2(t) is the stochastic and nonunitary trans-

forrnation which removes all but the interaction term
from K"). This transformation has been obtained"
in connection with the derivation of the modified

Bloch equations. The following properties of lV3 are of
importance for the present problem

AS(t) = (S)e,2
—(S)s, (26)

»(t) = (I) . —(I) .o. (27)

(S)e approaches, in a time of the order of the S-spin
relaxation time, the solution of the modifi. ed Bloch
equations, and (I)e,2 is the thermal-equilibrium value
in the Geld H2. »(t) refers to a frame rotating
with frequency a&, and ES(t) refers to a frame rotating
with frequency 0 and with the z axis parallel to the
effective Geld. The symbol { I „in Eqs. (24) and (25)
indicates, as before, a short-time and ensemble aver-
age. e'(t) and A(x(t) ) will, in the following, be treated
as noncorrelated. As the former represents lattice
motion, the latter S-spin motion, this is permitted.
Products of + components give rise to lattice cor-
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A= ReA+ImA, (31)

ReA=-', LA(x)+A(x) ], (32)

ImA=-', LA(x) —A(x) ]. (33)

ImA is of the order P.
Taking ReA in both brackets leads to terms linear

and bilinear in S and I. The latter can be neglected,
because they contribute only in the order P'. Taking
ImA in the outer bracket, ReA for the inner, yields a
term proportional to the unit matrix, which contributes
to order P. All other terms in ImA are of order P' or
smaller.

The truncation is now performed as follows:

(a) Products of two components of +(t) are aver-
aged separately as if they were uncorrelated with
W(t) and A(x(t) ) and their average is equated to a
correlation function, with an assumed correlation time
7-, averaged over all possible initial conditions.

(b) In products of the form

j W't(t") A, (x(t") )A, (x(t') )W'(t") },,
appearing in Eq. (28) and in which A; are any com-
ponents of A, with t"(t', Ap(t') is shifted backward in
time by means of

Ar(x(t') )~Lexp(t" —t')r]Ap(x(t") ). (34)

A similar approximation was made in Ref. 20; it means,
loosely speaking, that the actual statistical time de-
pendence is replaced by the most probable one. Products
of three A' s, which appear in Eq. (29), are treated

PP J. Korringa and A. Yoshimori, Phys. Rev. 128, 1060 (1962).

relation functions, while products of A components
must be averaged using the Eqs. (18)—(21).

VI. EQUATIONS FOR AI AND AS

We will now derive equations for the quantities of
interest by iters, ting Eqs. (24) and (25) twice with use
of Eqs. (22) and (23), neglecting terms of order P',
and performing a suitable truncation. The first step
gives

t t'

AI(/) =——,
' Tr dt' dt"

0 0

X jW't(t") Ca'(t"), L0i'-'(t'), 1]]W'(t")}- (28)
t tr

aS(&) = —-', Tr dt' dt"
0 6

X jW'(t") j X'(t"), fX'(t'), A(x(t) ) S]]W'(t")}. .
(29)

Here one has, instead of the usual commutator,

j K', Q]=K'tQ —QX') (30)

which yields the commutator with the Hermitian part
of K, plus the anticommutator with the anti-Hermitian
part. These parts are obtained from the splitting:

similarly:

A, (x(t') )A, (x(t) )~j exp(t" —t') S]
X j As(x (t") )Lexp(t' —t) &]As(x(t") )}. (35)

This procedure is simplified by the fact that the
components of A are linear combinations of eigenfunc-
tions of the real part of the operator 5, i.e., of Ps+Sr.
Introducing rotating components for vectors and ten-
sors, e.g.,

(36)

(37)

I=(Ip, I+, I ),
I~——I &zI„, Ip ——I„

and similarly for S and for the tensor A, one has

(Ps+Fr)A),„=—(T '+iso, )A),„(X,p=p, +, —).
(38)

jReAr(x(t") ) ImAs(x(t") )}..
This can be done with 6rst-order perturbation theory,
treating F2 as the perturbation. Details of the calcu-
lation are given in the Appendix.

In this manner one obtains from (28) and (29)
equations of the following form:

t t'
AI, (t) = — dt' dt"LM»(t' —t")AI, (t")

0 0

+ g M„(t'—t")AS, (t")—R, (t' —t")], (39)

t tl

AS~(t) = — dt' dt" exp(T '+iX~,) (t' —t)
0 0

X j Mgr(t' —t")AI, (t")
+ g M&, (t' —t")AS, (t")—g„(t'—t")]. (40)

Therefore the exponents in Eqs. (34) and (35) are, in
zeroth order of P, simple exponentials, while it is
evident that corrections of 1st order in P to (34) and
(35) contribute in Eqs. (28) and (29) only terms of
higher order.

The result of this time shift is that all functions A
now occur at the time t". Terms involving only ReA
then simplify because of the orthogonality relations of
real rotations, and what is left in the right-hand side of
Eqs. (28) and (29) are only terms with one factor A,
and terms with none at all. The former always appear
combined with operators S to form some component of
A(x(P) ).S, the latter always are some component of I.

Thus, for these terms, the goal of truncation has been
achieved, leading as it does to a set of integral equations
for AI and AS. One further simpli6cation is that the
equations for AI and AI„do not couple with those for
AI, and AS.

The terms in ImA in (28) and (29) simplify for a
diferent reason. They do not contain I and 5, and their
contribution of first order in P therefore does not come
from W'(t), but from ImA. Consequently one can
substitute W't(t") W'(t")+1 and the problem reduces
to evaluation of averages of the form
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Equations of similar structure hold for iU and LU„,
but they are of no interest here.

The Laplace transform of Eqs. (39) and (40) is

LMn(p)+pl~. (p)+ Z M~V(p) ASV(p) =R~(p)/p,

M»(p) ~.(p)

+ 2, EM~, (p)+(p+ T '+~~ .) ~~ 3» (p) =»(p)/p

The asymptotic values for large t, AI, and AS~,
are given by

AI,"=limps I,(p), (43)
y~

b,S„™=limphS, (p) .

They are therefore to be found from

Mn(0) AI."+ Q Mg, (0)AS,"=Rg(0), (45)

M»(0) M,

+ g ttM„(0)+ (T'+8, ,)S„-]as;=R,(0). (46)

The polarization time TI, i.e., the I-spin relaxation
time as influenced by the pumping field, is given by

Tr —1/p;„, —— (4&)

where p;„ is the smallest root of the equation

Det(p) =0, (48)

Det(P) being the determinant of Eqs. (41) and (42).

VII. SIMPLIFYING ASSUMPTIONS AND RESULTS

Up to this point no approximations have been
made other than those implied by the stochastic model.
In particular, no assumption has been made concerning
the magnitude of the S-spin relaxation time T. Also,

the constant field IIO can have any desired value,
although it should be remembered that in weak IIO a
rotating pumping field, as we have assumed, is not
equivalent with an oscillating one, as used in experi-

ments.
In order to obtain some explicit results we will make

two simplifying assumptions, which are satisfied in

most cases to which our theory applies, viz. ,

M(0), because M(p) is a function of p+T '+r '
only, where r is the correlation time of relative motion
of the two spins. This uses only the weaker inequality
Tr '((T-'+r'. N-ext, p can be neglected in the coef-
6cient of AS~(p) in Eq. (42). Finally, because of the
fact that all M,;(0) are of the same order of magnitude,
Eq. (48) gives

1/TI=Mn(0)+O(M'(0) T), (51)

where the second term is, by virtue of (49), negligible.
As also all R, (0) are of the same order of magnitude, it
then follows from (45) and (46) that

AI."=Ri(0) /Mn(0) +0(R(0)T),

AS,"=0+0(R(0)T),

(52)

(53)

D=Vr'vs'(r '),
A=1 '+r ',

(55)

(56)

F(co) = (h.'+(o') -', (57)

G(a), (o,) =F(a&+a),)+F(co &v,) —2F(a)—). (58)

R&(0) is given by

R (o) = —(1/20)DAl0PL '/( .'+2 ')${10F(n)

+3(A~/~. ) [1+(AT) 'jE(~, I,)-
—3(co~/a& ~AT)G(~ ~ ) ) (59)

It(" ")=F( — ) —F(~+~.). (60)

with

From Eqs. (54) and (51) one has for the polarization
rate

TI ' Tr '(0)+ (3/20) DA(cop——/co, 2) G(co cy,), (61)

where again, in view of (49) and (51), the second term
is negligible.

The evaluation of the two quantities of interest,
AI, and TI, therefore requires only the calculation
of Mn(0) and R~(0). They have been obtained, in the
high-field limit, with the method described above.
The other coeKcients, R, (0) and M;, (0), have also
been obtained, but will not be given.

'tA"e find for MU.

Mll(0) = (1/20) DAL14F(Q)

+6F(~)+3(~i/~e) 'G(~, (o.) j, (54)

where we have used the abbreviations

and
T«Tr

Q»e, .

(49)

(50)

where
Tr ~(0) =TvrDA/7F(0) +3F((o)3 (62)

As T is the S-spin relaxation time in absence of the

I Scoupling, Eq. (49—) will be invalid in systems such

as, e.g., Ii centers, where the S spin relaxes through
its coupling with the I spin. Equation (50) is, by and

large, the high-field approximation.
In Eq. (48) for p;, M(p) can now be replaced by

is the familiar expression for the relaxation rate, caused
by the I-S dipole interaction in H& ——0.

VIII. INTERPRETATION

Upon substitution of (59) in Eq. (52), ~,~ is ex
pressed as the sum of three terms, which can be dis-
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tinguished by their dependence on T and 7. I'or a
systematic discussion it is of advantage to write the
T/r dependence of the curly bracket of Eq. (59) in
terms of the three parameters

qg
——T'(T+r) qg=~'(T+r) ',

qg
——Tr(T+r) '. (63)

We 6nd

~*"=—(S*)e,or ~i'/(~e'+ T ') 3(qd'a+ q2P2+ qsPs),

(64)
~here

p, =F-'C 10F(Q)+3(«/au, )Ej, (65)

p, =X i[10F(Q)+6(«/(a, )E 3((u«—/ru, 2) G], (66)

pa=x 'L20F(Q)+9(«/& )I~—3(~«/~')G3 (67)

F= 14F(Q) +6F(&a) +3(a)P/(o, s) G. (68)

(S )o,o is the equihbrium value of S. in the field Ho,
which is approximately equal to sPQ, in lieu of which it
has been substituted. P», P2, and Pe are similar in
structure: therefore, the 6rst term will dominate when
T&&v, the second when T«7., while all three contribute
when T 7. They are functions of co», heu, eu, 0, and A.
As to the relative value of these frequencies, we have
thus far only assumed co»«Q. We will now illustrate our
results for the case that also ~&&0,

'

which will hold when
the S spin is an electronic spin, the I spin a nuclear
spin. «will be restricted to the range

~

« ~/s&=O(1).
In view of the form of E and 6, we distinguish be-

tween the following extreme cases:

(a) Q&(h., (b) a)(&h«Q, (c) A«(v.

The relative size of T and w leads to the distinction
between

(1) r«T, (2) T«r.

In this expression, both terms can be of the same order
of magnitude, thereby giving a polarization which lacks
the symmetry in h~ of the "liquid" efFect, while the
system is still a hquid in the sense that v«T, i.e., that
the relative motion of the two spins is the primary
source of randomness. When, in Eq. (71), r~(&1,
as will normally be the case, the criterion for the pure
liquid effect Li.e., dominance of the first term of Eq.
(71)] is

r4(v~02&&1. (72)

In Ref. 17 the criterion for this was given to be
v'Q'/T&(1, which indicates a failure of the qualitative
arguments used there. When the two terms of Kq. (71)
are of the same order of magnitude, the polarization is
neither even nor odd in her. It is easily seen that the
magnitude of this hybrid eGect is necessarily small. An
efFect of this type has been observed. " The Aced de-
pendence agreed with Eq. (71), but the observed value
was approximately twice as large.

Case (bZ) and (cZ), i e , A&. (.Q and T«~.

One has F(Q)(&F(~), and therefore the polarization
for «=0 is small. Assuming

~
« I/u=O(1), and

neglecting F(Q), one has

q2P2= o&«(&am+co 2+54~)

)(t (~2 ~ 2)2+2+2(~2+~ 2)++4+~ 2(3~2 ~ 2 A2) j—y

(73)

and the other terms are negligible, while A= 1/T. The
polarization found from Kq. (73) is an odd function of
bee. The values can be compared with a result obtained
in Ref. IO, under identical conditions. It turns out that
the result is not the same, but is obtained from Kq.
(73) with the replacement

N»
dZ,"=—~~(S,)s,p, , (1+0.3r'Q') '.' (oj'+«+T ' (70)

This is the well-known result for a liquid. The maximum
is at her=0; saturation is reached for co»T&&1, yielding
the value -~(S,)e,o if Qr&(i.

(bi). When ru(&h.«Q, Eq. (69) gives

qd'a=r'r(rQ) ~(1+v ~P) +2r'~«(1+r cuP) '. (71)

Cases (al) and (b&), s,.e., &o&&A and r«T.
One has

qlpl —L5 (A2+&19) +~«(A2+Q2) (A2+&12)-1j
)& (10'.'+3Q') ' (69)

and the other terms are negligible, while &= 1/r.
(a1) . When, in particular, A) xQ, s=O(1), one has

h»co», while the second term in the square bracket is
negligible. This gives

(~2+(g 2+5+2)~(2«2+2A2) (74)

"J.Leblond, J. L. Motchane, P. Papon, and J. Uebersfeld,
Compt. Rend. 265, 423 (j.967).

in the numerator. We attribute this difFerence to the
fact that in Ref. 10 only the diagonal elements of the
density matrix are taken into account. A comparison
with Ref. 12 reveals difFerences of the same origin.
Another source of difFerences lies in the fact that in
Ref. 12 the efFects of S-S interaction, which we tried to
represent by the local field Hr, (/), are more appropri-
ately treated by the spin temperature.

(c2) and co&&«o. In the particular case that the
nuclear levels are resolved (A«~) and that the pump-
ing field is not too large (a&x&(a&), Eq. (73) can be
simplihed. The denominator has a sharp minimum
near o&.'=oP, i.e., near

~
« ~=a&, and this yields the

well-known "solid efFect, "
(MI ) a~~=&(S,)o,p/1+2(ra~T)~$ ~ (75)
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More precisely, the minima occur at

A(0= ~(g} 1—i4 (~p/(02) —i (~2T~)—i] (76)

and the square width of the peaks is equal to
-,'(~eP+21 ')

The result (75) was also obtained in Ref. 10, as
follows immediately from the fact that the two ex-
pressions in (74) become identical in the limit A'«c0',
coq'((~', and near hoP =co'. However, the two expressions
still differ, even in this limiting case, for other values
of Aco.

(b2). When the above conditions are not satisfied,
the polarization still changes sign with Ace, but the
maxima are broader and shifted, and the polarization
at the peak is substantially smaller.

IX. THE CASE OP CONTACT INTERACTION

The method of calculation of the dynamic polariza-
tion, illustrated in the foregoing for the case of dipole
interaction, can also be used when the two spins have
pure contact interaction. In fact, the replacement

I e(t) S~C(t) I S,

where C(t) is a randomly time-dependent scalar with
correlation time r, greatly simplifies the algebra. A
straightforward calculation gives, under the same
condition as those used to derive Eq. (64),

Al, =&S,),o{ /(, '+T ')~

X {1+-',(AT)-'{.(A' —&')/(A'+fl') j}. (79)

» G. E. Schacher, Phys. Rev. 135, A185 (1964).

Cases (aZ) and (cl).
These cases are unphysical under the present condi-

tions, and v ill not be discussed. The intermediate case
T, for which all three terms of Eq. (64) are impor-

tant, can either be "solidlike" or "liquidlike, " de-

pending on the value of A relative to ~ and Q.
Finally, we briefIy discuss the polarization time, as

given by Eq. (61), in the extreme cases (a1) and (c2) .
In the "liquid case" (a1), the term proportional to
or~' in the polarization rate is negligible compared
with 1/Tr(0). In the "solid case" (c2) this term has
maxima near Aor=~co, i.e., near the frequencies for
which the dynamic polarization is extreme. More
accurately, the maxima occur for

5Q) =~ie} 1—-'(Mp/i0') —(M'T2) 'j (77)

and the corresponding rates are

T;i= T;i(0)+—,
' (D/A) L~P/(~~+,'A2) j, (78)

in general agreement with Ref. 10. An ori dependence of
Tl of this type has been observed in a number of cases."

In the "liquid case" (a1), the second term in the
square bracket is negligible, while in the "solid case"
L(b2) and (c2), i.e., AT 1, A«Qj, the second terni
equals —-', . This confirms earlier theoretical results for
these extreme cases, ' while the general expression (79)
shows how the transition, which leads to a factor of 2
between the two limits, takes place.

X. EPILOGUE

In the course of this paper we have made so many
simplifying assumptions that it is perhaps in order to
review them here.

The principal limitation of our theoretical model lies
in the decoupling scheme, which reduces the many-
body problem to one involving only one pair of spins,
I and S. The assumption that the inhuence of the
surrounding spins and of the lattice can approximately
be expressed by a randomly varying local field Hr, (t)
has been justihed on general grounds, but we have gone
one step further in requiring that Hz, (t) can be treated
as if it had a correlation time short compared with the
spin-relaxation time. This is essential for describing
the influence of Hr, (t) in terms of a Fokker —Planck
equation. While making this assumption we have
assured that it gives the correct relaxation times, and
our method also guarantees that the principle of
detailed balance is satisfied under normal saturation
conditions. Substantial errors can be expected in cases
where a spin temperature diferent from the lattice
temperature is produced.

Some further, nonessential assumptions have been
made in order to simplify the discussion. We have
assumed that the I spin relaxes only through inter-
action with the S spin, and that the S spin relaxation
is isotropic: we have taken the pumping 6eld to be
rotating near the Larmor frequency of the S spin, and
neglected its inhuence on the I spin. Kith these simpli-
fications, the set of linear integral equations (39) and
(40) was obtained. The explicit form of these equations
was given with some further specializations, viz. , that
the constant field is large compared with the pumping
field, and that the I—S interaction gives only a small
contribution to the S-spin relaxation. The solution,
Eqs. (64)—(68), of these equations was discussed with
the final assumption that yq(&yq.

These simplihcations nothwithstanding, our final
expression for the dynamical polarization still covers
most cases of interest. Our results are in full agreement
with the well-known results in the two extreme cases,
viz. , that of a liquid with motional line-narrowing of
the S-spin resonance, and that of a solid under normal
saturation conditions. This was veri6ed for dipole as
well as contact interaction between the two spins.
While this gives some conldence in our results for
intermediate cases, these diGer in important ways
from the theoretical predictions published earlier.
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"Intermediate" means here not simply the transition
from a liquid to a solid, i.e., the case of viscous media,
but denotes more intricate inequalities between the
various relaxation, correlation, and precession times.
We find in particular that the "solid" eGect can be
obtained in a liquid if the constant field is su%ciently
large, in agreement with Ref. T7. Characteristic for the
intermediate eGect is that the polarization as a function
of ~ is neither even nor odd, but rather unsymmetric
in appearance, and small compared with the maximum
e6'ect attainable in the extreme cases, in reasonable
agreement with experiment. "

We attribute the diG'erence between our results and
those of other theories to the nondiagonal elements of
the density matrix, produced by the pumping 6eld as
well as by relaxation. It was, indeed, the main purpose
of introducing a soluble model, to take those elements
into account.
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APPENDIX

subjected to the operators of angular momentum, k.
This property, and the form of F0 and Pi in Eq. (19)
and (20), gives rise to Eq. (38) which shows that the
Aq~ are eigenfunctions of $2+Pi. Therefore, sums of
products of two factors A, such as appear in Eq. (AS),
are decomposed in eigenfunctions of %2+Bi by the same
equations that decompose products of vector com-
ponents into their scalar, vector, and tensor parts.
This gives functions yl, l=0, 1, 2, —l«m« l. The cor-
responding eigenvalues of (%2+Pi) are Zi . One has

q20= g g ReA „ImA, „. (A6)
a

q i' ——Q (ReA~, ImAO, —ReAp„ ImA~, ,),
(pi2= Q (ReA+~ImA, „—ReA ~ImA~, ~),

yi ' ——p (ReA2, ImA, „—ReA, ImA2, ,) (A7)

and corresponding expression for q», which will not be
needed. Jq„can be written as

»y —g oxy, lmf pl }a~' (A8)
lm

From q p we obtain the eigenfunctions fp of P by using
of Eq. (21) in first-order perturbation:

The calculation of Ri and R„of Eqs. (39) and (40)
requires the asymptotic evaluation for large t of

»„(t)=—P IReA„(t) ImA„, (t) }... (A1)
v=0 +

to the first order in the parameter QP, appearing in
Eq. (21). One has

fi"=qi"+ Q
l~m~ +l'm' +lm

This gives

».(t) = Z oi. i-IA"}.-
l,m

(A9)

»„(t)= Q ReAi, (x, x)

XImA„, ,(x, x)P(x, x, t) dxdx, (A2)

where I' satis6es Eq. (18). With the initial condition

As the eigenvalue corresponding to Pi, which is in
zeroth order equal to Ei, contains a term —2l(l+1) jT,
where 2' is the relaxation time, Eq. (AS) shows that
only the terms in f22 contribute in Eq. (A10) for large t.
Using E00=0, this gives

P(x, x, 0) =8(x—x)b(x—x2), (A3)

where xo is arbitrary, one has

P(x, x, t) =exp(Pt) 8(x—x)8(x—x2). (A4)

Substituting in (A2) and integrating by parts gives

»„(t)=
} exp(Ft) g ReA&,„(x, x) ImA„, ,(x, x)j„:

(AS)

We now decompose the operand of this equation into
eigenfunctions of 5. -This can be done, to first order in
QP, as follows: According to Eq. (17), the A&„(x) for
Axed y transform as the components of a vector when

.1
Ap, lm( 2) 00,1m

m=1 +1m
(A12)

The coeKcients and matrix elements in this equation
are easily obtained.

The terms in l=2 are absent because of the selection
rule, hi=~i, for the matrix elements of P2. The coef-
ficient a~„,00=0, as follows from the fact that Jy„, as
dehned in (A1), contains no' zero-order terms in
QP. Poo can thus be replaced by q, , which has the
property that r q201„:,=3.This gives finally


