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It is shown, by means of a decoupling procedure for the equations of motion of a spin system governed
by the Heisenberg Hamiltonian, that the distribution of magnons in phase space satisfies the quantum-
mechanical Boltzmann equation at low temperatures. We conclude from this that disturbances in the
longitudinal component of the magnetization, which may be thought of as density fiuctuations in the gas
of magnons, propagate essentially undamped at long wavelengths, in complete analogy with the propagation
of sound in a gas of real particles. The interaction of this hydrodynamic mode with phonons is considered,
and the damping coef6cient of the phonons when their velocity coincides with the magnon sound velocity is
obtained.

One can then infer the behavior in the hydrodynamic
region from the well-known properties of the solution
of this equation, and conclude that the magnon sound
wave does in fact exist.

I. INTRODUCTION

i 1HE dynamical behavior of the Heisenberg ferro-
magnet at low temperatures has been studied ex-

tensively. ' Most of this work has centered on the
behavior of the spin waves, or Quctuations of the mag-
netization transverse to the direction of the spontan-
eous magnetization. The resultant picture is that the
lowest excited states can be described in terms of a
weakly interacting gas of particles, the magnons. It
has been suggested by Gulayev, ' on the basis of this
analogy, that the density Quctuations in such a gas
would behave in the same fashion as do those in a gas
of real particles. That is, they would propagate as a
sound wave if their wavelength were anciently long.
Since an increase in the density of magnons in a region
of the lattice will result in a decrease in the longi-
tudinal component of the magnetization, this sound
wave will manifest itself as a Quctuation in the longi-
tudinal component of the magnetization, and will there-
fore appear as a pole in the longitudinal susceptibility.

There have been several attempts to calculate the
longitudinal susceptibility directly from the equations
of motion. ~9 These works do not support the conclu-
sion that there is a hydrodynamic soundlike mode, but
are either incorrect or not valid in the region of wave
vectors and frequencies of interest.

The present work calculates the susceptibility in the
collision-dominated or hydrodynamic reyme. This is
accomplished by demonstrating that the distribution
of magnons in phase space satisaes a Boltzmann equa-
tion when the wave vector of the Quctuation is small.

II. LONGITUDINAL SUSCEPTIBILITY-
COLLISIONLESS REGIME

First, we shall discuss the behavior in the limit that
collisions are neglected, From the Heisenberg Hamil-
tonian for a lattice of spins,

x= —aa+S; —',agV, ;S,'S,,
t2

the commutation relations for the spin operators

[S;*,S,~j= +8;;S;+,
[S~+, St j=28;;S;*,

and the Heisenberg equation of motion for an opera-
tor A,

i5(i)A/Bt) = [A, x],
we can obtain a chain of equations describing the tem-
poral behavior of the magnetization and the various
correlation functions. In terms of the Fourier-trans-
formed variables

S(q) =N "+exp( iq r~)—S;,

V(q) = gexp[iq (r;—r;) jv;;,

the equations of motion can be written

i(&/&t) (S (q) )=lN-"' 2 Lv(q-q') —V(q') 1
ql

X(S-(q') S (q—q'» ,
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0). (rl/rlt) (S (q ) S+(q ) )
=[ (q) — (q,))(S (q)S+(q)&

+N '&' g v(q') —v(q-, —q')
ETP ql

...)
&& (S-(q —q') LS'(q') —N"'»(q') jS'(q.) &

—N"' Z V(q') —V(qs —q')
New ql

X (S-(q ) [S*(q')— ' N' t(S8)qjS (q —q') &, (1b)
where co(q) =H+S[v(0) —V(q) j.
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The averages ( ) are to be taken with respect to
some initial density matrix. Since we are interested in
the linear response, we will take this to be of the form

p,~+Dp, where p,~ is the thermal-equilibrium density
matrix, and Dp is the initial perturbation, assumed to
be small. Averages over p,~ will be denoted by (( )).
We have suppressed the time dependence of the aver-

ages for simplicity of notation.
Equations (1a) and (1b) can be given a suggestive

semiclassical interpretation. A classical gas can be de-

scribed in terms of the density of particles with mo-

mentum P at the point X. The quantum-mechanical
analog of this distribution is the Wigner function, "
which can be de6ned as

f(XP) = [,4 )-' f e pP 2)

X [Trpa'(P+ -,' ()r1n) )a (P——,
' (Sn) )]d321,

where a) (P) is the creation operator for a particle of
momentum P. Thus the spatial Fourier transform of
this quantity can be written as

Trpa'(P+f4 —,'q) a(P —f3 —',q) .
At low temperatures, 5 (q) behaves like a creation
operator for a magnon of momentum Sq, 5+(—q) as
a destruction operator. Hence, if we choose q1 ——q'+2q
q2

——-', q —q', we can interpret Eq. (1b) as the equation
of motion for the Wigner function.

If the Wigner function is summed over the momen-

tum variable, the resultant function gives the density
of particles at X. A similar relation holds for its spin

analog if S=-,'. We have in this case

5 '=S—(5, 5;+/25)

or, in terms of the Fourier-transformed variables,

S'(q) —N'1254) (q)

= —(N-'I'/25) g S-(q'+-', q) 5+(-', q
—q'). (2)

ql

Thus, if we interpret N'1254) (q) —(5'(q) ) as the Fouri&:r

transform of the density of particles, we will be con-

sistent with the interpretation of

(1/») (5-(q'+ la) 5"(lq —q') )

as the Fourier transform of the distribution of magnons
in phase space. Equation (1a) can then be interpreted
as the continuity equation. We should emphasize that
these remarks are only intended to facilitate the inter-

pretation of the equations. We will not make use of

any transformation to Bose operators, so that the
quantities we will deal with will not be strictly Wigner
functions. Also, the restriction that S=-,'is not neces-

sary and will be removed at the end of the calculation.

'0 H. Mori, I. Oppenheim, and J. Ross, StnChes ie Statistical
3lechanics (North-Holland Publishing Co., Amsterdam, 1965),
Vol. I.

Using (2) we can write (1b) a,s

2(~/~&) (5-(q ) 5'(—q ) )

=[ (q ) — (q )](S-(q)5+(—q,))
+(25N) ' Z ~(ql+q3 ql q2) 1"(q1q3 ql q2)

q1'qS'q3'

X (S-(q1') 5-(q2') 5 (—q3') S+(—q2) )
—(»N)-' Z ~(q2+q2' —q3' —q4') 1'(q2q2'; q3'q4')

q2'q3'q4'

X (5-(q ) 5-(q ') 5+(—q ') 5+(—q ') ), (3)

where

1'(q q2; q3q )
=-', [v(q1—q,)+ v(q1—q ) —v(q, ) —v(q, )].

The quantity F is the matrix element that appears in

the four-magnon interaction term when the Heisenberg

Hamiltonian is converted to a boson Hamiltonian by
means of the Dyson-Maleev transformation. "

At this point we can make an approximation, similar

to the Hartree-Fock approximation for the electron

gas, and convert the identity (3) into an equation from

which we may determine (S (q1) 5+(q2) ):
(5-(q)5-(q)5'(q) 5+(q))

=(5-(q1)5'(q3) )(5-(q2) 5'(q4) )
+(5-(q,) 5 (q,) )(5-(q,) 5+(q,) ). (4)

The justification for this approximation is the observa-

tion that any physically realizable density matrix must

have the cluster property. That is, any two groups of

spins must behave independently as the distance be-

tween the two groups is increased. Thus the quantity

(5, 5; 52+5~+) must approach (S; 52+)(54. 54+) as

the pair [2, k] recedes from the pair [j, l]. Quite

generally, the average of a product of operators can

be written as a sum over all possible decompositions

into subsets, plus a term for which no decomposition

is made. This latter term will have the property of

vanishing unless all the operators that enter the product

refer to sites that are close to one another. Our approxi-

mation consists of neglecting this term entirely. We

need not consider factors such as (5, 5; )(52+51+)
since the initial perturbation will be chosen so that

these terms vanish initially. The rotational invariance

of the Hamiltonian ensures that they will vanish for

all time.
The equation that results from substituting (4) into

(3) is nonlinear, and we do not propose to solve it. We

note that

(1/») (5-(q1) 5+(q2) )=~(q1+q2)n(q1)

is a stationary solution of this equation for any value

of n. This follows from the translational invariance.

1 S. V. Maleev, Zh. Eksperim. i Teor. I'iz. 33, 1010 (1957)
t English transl. :Soviet Phys. —JETP 6, 776 (1958)g.
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Ke choose n to be the equilibrium correlation function,
({5-(q)S+(—q) )), and linearize the equations about
this stationary solution. That is, we ma, ke the replace-
ment

(&/25) {5-(q'+lq) 5'(-:q—q') )
=&(q) n(q')+ f(q, q')

and drop all terms of order e'. The resulting equation,
(5), is linear and describes the behavior of small devi-
ations of the magnon distribution function from its
equilibrium value:

i(~/@)f(q q') =C~i(lq —q') —~i(iq+q') jf(q q')
+&-' ZE(V(q'+lq —q") —V(q") )~(lq+q')

qII

—(V(q'+ l q —q") —V(q —q") )
X~(lq —q') 7{5-(q")5'(q —q") )

+&-'"[(V(q)—V(-:q+q') )n(-:q+q')
—(V(q) —V(lq-q') )n(lq-q') 3~(5*(q) ) (~)

~q(q) is a renormalized magnon energy given by

co (q) =H+SLV(0) —V(q) g

—2X-' g I'(q, q'; q, q') n(q')

and &(5*(q) ) is {5'(q))—((5'(q) )) H we ignore the
sum on the right of Eq. (5), the solution can readily be
obtained. Introducing the I.aplace-transformed quan-
tities

p(q) = ~'"~(5'(q &) )«

we have

if(q„q', 1=0)
s—~(lq —q')+~~(kq+q')

l(V(q) —V(-:q+q')) (lq+q') —(V(q) —V(-:q—q')) (lq —q') j
s—(o&(iq—q') +a&(~~q+q')

y(q, s) = —i e'"((LS*(q &) 5 (—q)$))«fms&0

Using (7) and (2), we obtain an expression for y(q, s):
~(lq —q') —n(lq+q')

yq, z = —E'z," s—i(-:q—q')+~(lq+q')

~(q, q') '
(g)

~ s—~i(kq —q') +~~(kq+q')

@here

~(q, q') = V(q' —lq)~(q' —lq) —V(q'+lq)n(q'+-:q)
—V(q) (~(q' —kq) —n(q'+-:q) ).

IIt. MSCUSSION OF SUSCEPTIBILITY IN
THE COLLISIONLESS LIMIT

The numerator in (8) is essentially the susceptibil-
ity appropriate to a noninteracting gas of bosons. The

%e have left the initial condition unspeci6ed until
now. An appropriate choice for the perturbate. ion d,p is

~a= —~LS*(—q) ~~3. (7)

p(q) is then precisely the longitudinal susceptibility,
g(q, s), de6ned by

denominator gives the corrections arising from the
average Geld experienced by a magnon as a result of
the interactions. The zeros of the analytic continua-
tion of the denominator into the lower half of the
frequency plane correspond to collective excitations of
the system, if they lie su%.ciently close to the real
axis. It is important to note that there are no such
zeros. In particular, for q suHRciently small that the
6nite differences appearing in (8) may be replaced
by derivatives, we show in the Appendix that the real
and imaginary parts of the sum in the denominator
are less than 5—((5'))/25 and (5—((5')))/5, re-
spectively, for all values of s on the real axis. Thus,
when (5—((5')))(&25, the sum in the denominator
is uniformly small compared to unity. Therefore, there
is no collective mode and it is a good approximation
to neglect the effect of the average 6eld on the motion
of the magnons, This is to be expected, since the effec-
tive interaction between magnons is short ranged.

The effect of the term that we have neglected in (5)
would be to add to the numerator and to the sum in
the denominator terms proportional to (n)'. These
will be smaller by a factor of S—((5')) than the terms
we have kept, and do not affect the conclusion we have
reached. This conclusion agrees with the results of Liu, '
whose expression for the susceptibility at low tempera-
tures diGers from ours essentially in the dehnition of
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d, (q, q'). Liu's expression is related to ours by

A'(q, q') =A(q, q')

+(I'(q'+ lq) —I'(q' —lq) )~(q'+ lq)

Since Liu's result is based on the random phase ap-
proximation, which neglects the dynamical correlations,
we expect that our result will be more accurate, al-
though the corrections to the noninteracting suscepti-
bility are negligible in either case.

Our results contradict the work of Mitsek, ' whose
decoupling scheme appears to us to be invalid below
the Curie temperature, since it neglects the effect of
the free drift of the magnons. As we have seen, this is
the dominant term in the equations of motion for the
distribution function, and may not be neglected.

In regard to the work of Mori and Kawasaki '~ we

note that, in the present approximation, the longitu-
dlnR1 magnetization does not SRtlsfy R macroscopic
equation at all, since the initial value of the magneti-
zation does not determine its future values, even for
long times. This wiB remain true when we take the
effect of the collisions between magnons into account,
since it will be f(q, q') that satisfies an equation of
motion of the type suggested by Mori and Kawasaki,
not (S*(q) &.

We can readily see that Kq. (5) does not include
the effect of collisions between the magnons, since it
implies that

(~i~&) &S-(q') S'(-q') &=o

and hence does not describe the relaxation of the mag-
non velocity distribution. If g is an average relaxation
time for the matt, nona, then Kq. (5) is valid only when

aor&&1 To.obtain an expression for x(q, &a) valid in the

opposite bmit, we must include the effect of the re-
laxation of &S-(q') S+(—q') ) in the equations of mo-

tion.
IV. DERVfATIOÃ OP THE
BOLTZMANN EQUATION

The effect of collisions between the magnons is con-
tained in the part of &S-(qq) S (qs) S+(qs) S"(q4) ) that
we have neglected. We will calculate this directly from
the equations of motion, (9). Equation (9) is exact.
The second set of terms results from normal ordering
the last set, where by normal ordering, we mean that
all 5+ are to the right and all S to the left of the Sz.
The purpose of this reordering is to separate those
terms, in the linearized equation of motion that we

will eventually arrive at, that are proportional to n,

from those that are proportional to (n)'.

s(~/&&) &S-(q~) S-(qs) S'(- qs) S'(-q4) &= L~(qs)+~(q4) -~(e) -~(qs) j&S-(e)S-(qs) S'(—qs) S+(—q4) &

+& ' Z I'(q q; q '%.')&(q+q —q
'—q') &S (q')S (q')S'( —%)S"(—q) &

—& ' Z I'(qsqs; qs'q. ')~(qs+qs —qs' —q ') &S (qi) S (q )S'(—qs') S"(—qs') )

+(»&) ' Z I'(q qs; e'qs) b(e+qs —e' —qs) (S (q~') S-(q ) S-(qs) S'(—qs) S'(—qs) S'(—q.) &

+(2S&) ' Z I"(q q;q. 'qs)&(q+qs —q
'—qs)(S (e)S (qs')S (qs)S'( —qs)S'( —q)S'( —q4) &

—(»&)-' Z I'(q qs; qs'qs)h(qs+q —q
' —q') &S-(q) S-(q) S-(q) S'(—qs) S'(—q') S'(—q) )

—(»&)-' Z I'(qq; q'q)~(q+qs —qs' —q) &S-(q~) S-(q)S-(q) S'(-qs) S'(—q)S'( —q') & (9)

The Rpploxlmatlon thRt we shRll make to close Eq.
(9) is

&S (c)S (%)S (q)S'(%)S"(q)S"(%)&
=&S (q)S'(q)&&S (q)S'(q)&&S (q)S'(%)&

+fall permutationsg. (10)

We define the connected part of the four-spin correla-

tlon function C(qgqsj qsqs) as

~(q~qs; qsq ) = &S-(e)S-(q.) S'(—qs) S"(—q.) &

—&S-(q) S'(—q))(S-(q)S'( —q) &

—&S-(qs) S+(—q.) &&S-(qs) S'(—qs) & (II)

We are primarily interested in the limit that the wave

vector of the external disturbance is small, and so we
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will consider first the case in which it vanishes entirely. We will then have

(2S)-'(S (qi) S (—ga) ) =&i(gi—qa) n(q4) (12)

and we wish to obtain an equation describing the evolution of n(q) . The equation of motion for C(qiqa, gag&) is,
from Eqs. (9)-(12),

i(8/8t) (2S)-'C(qiga, qsg4) = (~(gs)+&a(q4) —~(qi) —sa(qa) )(2S)-'C(qiqa, qsgs)

+28(qi+qa —gs—gs) F (giga, gsg4) n(gs) n(q4) (1+n(qi) +n(gs) )
—28 (qi+qa —gs —gs) r(qsg4, giga) n(qi) n(qa) (1+n(qs) +n(q4) )

+(2S) 'N ' Q F(giga, gi'ga')8(q, +ga —q,
'—q, ')C(qi'ga', qaq4)

—(2S)-'N-' g r(gags, qs'qs')b(qs+gs —qs' —gs')C(giga; qs'qs')
qe~q4~

-E~(gi-gs) h(qa-qs)+~(gi-g4) ~(ga-gs) ji(~/~t) n(ga) n(g )

We shall neglect the sums in (13). As we shall see,
this corresponds to a Born approximation for the scat-
tering amplitude of the magnons with moments q3 and
q4. Since the magnons involved in the scattering process
are thermally excited, they will have a combined mo-
mentum much smaller than that needed for the forma-
tion of a bound state' (approximately sa of a reciprocal-
lattice vector), and this will be a reasonable approxi-
mation. Furthermore, it is the structure of the collision
term that is important for our considerations, not the
magnitude of the scattering amplitude.

With this approximation, Eqs. (13) and (3) may
readily be solved by Laplace transforms. We require,
however, the initial value of C(giga, gsg4) .This quantity
is essentially irrelevant to the dynamics, and produces
eGects that vanish in a time which is roughly that
necessary for an average magnon to traverse a distance
on the order of the range of the initial correlations. We
wi11, therefore, set this quantity to zero. The solution
for the Laplace transform of C(qiqa, qsq4) is then

(2$)-'C (giga; qsq&s) = 2N-'8 (qi+ qa —gs —qs)

+ (s+~(gi) +~(ga) —~(gs) —~(g4) —~(g4) ) '

X ( r(qiqa, qsq4) n(gs) Wn(q4) P Pf+n(gi)+n(qa) j
—r(qsg4, qiqa) n(qi) gn (qa) g L1+n(qs)+ n(q4) ][

—(~(g —g )~(g —q ) +~(g —q )&(g —q ) )
X (n(qi) Wn(qa) —ia 'n(qi, t=0) n(ga, t=0) ). (14)

The symbol A +8 denotes the convolution of the trans-
forms of A and B.

When (14) is substituted into the Laplace-trans-
formed version of (3), we obtain a closed equation for
the quantity n(g, s). It should be noted that as a
consequence of the delta functions of momentary the

last term in (14) does not contribute to this equation.
The quantity C(qiq, ; qsgss) appears in this equation
summed over three of the momentum variables and
multiplied by F. In such a sum, it is permissible to
replace s by ie in the factor

Ls—~(gi)+~(ga) —~(gs) —~(gs) 3 '.

This corresponds to replacing the exact value of the
correlation functions by the value they would obtain
if n(q) were held 6xed in time and the correlation
functions allowed to approach their asymptotic value.
The approximation will be valid whenever the relaxa-
tion time of n(q) is much greater than the time scale
for the change of the correlation functions. This latter
is roughly the time necessary for a magnon of average
velocity to traverse a distance on the order of the
range of the exchange interaction. To see this, consider
one of the integrals that results from substituting (14)
into (3) and eliminating the momentum delta function:

j (qi, s) = 2N-'

X Q r(giga; gi+g, ga —g) F(gi+g, ga —g; giga)
9 &%2

X (s+~(gi+g) —~(gi)+~(qa —g) —~(qa) ) '

Xn(ga) +n(gi) *(1+n(gi+g)+n(ga g) ) (15)

If we fix q&, the integrand is a smoothly varying func-
tion of g over a range of wave vectors on the order of
the reciprocal of the range of the exchange interaction,
which we denote by q[. We are ultimately interested in
the behavior of n(gi, a) for s=—ir(gi) ' where r(gi)
is an effective relaxation time for n(qi) . In this region,
replacing the value

C(giga; gsg&a)
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by its value on the real axis,

C(q,q„. q,q,i~),

will be valid if the imaginary part of the factor

[—~'(v)-'+( (q+q) —(q-q.)- (q)- (q.))j
behaves essentially as a delta function in the integral.
This will be the case as long as the width in wave
vectors of this Lorentzian is much smaller than q. This
is true, on the average over q&, if r(qi) qV))1 where
V is an average value of V~,~(qi) —V~,&0(q,). This is

precisely the condition that the collision time, or the
time necessary for an average particle to move a dis-
tance on the order of the range of the interaction, be
much less than the relaxation time. This condition
fails for small q&. However, there is very little contribu-
tion to the final integrals from this region, since the
phase space available is small. An essentially identical
argument forms the basis for our neglect of the initial
values of C(qiqz, qaq4).

Thus, in so far as the final equation of motion is
concerned, we can approximate C(qiqg, '

qsqis) by

p
(25)—'C(qiqi q3q4 i~) =28(qi+q& —qi —q4) iir—8(~(qi)+&a(qi) —~(q3) —(u(q4) )

~(qi)+~(q~) —~(q3) —~(q4)

X[1'(qiq&, q&q4)n(q&) +n(q4) P(1+n(qi)+n(q&)) —I'(q&q4, qiq&)n(qi) +n(q&) P(1+n(q&)+n(q4))j. (16)

The symbol I' denotes that the principal value should

be used when this term is inserted in an integral.
It should be noted that the real part of C(qiqi, qaq4ie)

is symmetric under the interchange of q&q2~qsq4, while
the imaginary part is antisymmetric. The sums in equa-
tion (3) can be written, when qi= qi, as

(2Sill') ' Q I (qiq~', q3'q4') [C(qi'q4', qiqi')
qqf q3/q4/

—C(q q'; q'q')]
and hence only the antisymmetric part of (15) con-
tributes to the final equation of motion.

We note that although I'(qiqq, '
q3q4) &r(q&q4,. qiq&),

the difference is zero on the energy shell for which

&u(qi)+~(q&) —u&(qa) —~(q4) =0. The asymmetry of I'
has as a consequence the non-Hermiticity of Dyson's
Hamiltonian in terms of boson operators. Making use
of the symmetry of F when multiplied by the energy
and momentum delta functions, substituting (16) into

(3), and converting back to the time domain, we have
finally the equation of motion for n(q), (1/), which

should be recognized as the quantum-mechanical Boltz-
mann equation, with the Born approximation for the
scattering amplitude appropriate to Dyson's dynamical
interaction:

(8/Bt)n(q ) = —4 1V g [I'(q,q, ; q,q )g
q&qgq4

X8(qi+q2 qs q4)b(~(ql)+~(qi) ~(q ) M(q ) )
X in(qi) n(q ) [1+n(q3) ][1+n(q.)7

—n(q)n(q)L1+n(q))[1+n(q)]}. (»)
It might be argued that Eq. (17) could simply be

written down on the basis of Dyson's boson Hamilton-
ian, and existing derivations of the master equation. ""

"L.Van Hove, Physica 23, 441 (1957).
&' j.', M. Mathews, Physica 32, 2007 (1966).

These derivations make use of the Hermiticity of the
Hamiltonian in order to achieve detailed balance, how-

ever, and hence are not immediately applicable to the
effective boson Hamiltonian, which, as a consequence
of the asymmetry of I", is not Hermitian. Furthermore,
we feel that our derivation of the Boltzmann equation
brings out clearly the part that distinct time scales
play in the dynamics. In this respect, our derivation
is similar in spirit to the method used by Prigogine"
and his co-workers, although they base their arguments
on a perturbation expansion of the full Liouville opera-
tor, rather than a decoupling of the equations of motion
for the reduced density matrices, or %igner functions.
Our derivation also permits a straightforward discus-
sion of the significance of kinetic interactions and the
interpretation of the Boltzmann equation as a low-

density expansion.
The collision term in (17) guarantees that in the

evolution of the velocity distribution function, the
quantities P~n(q), P~qn(q), g,co(q)n(q) do not
change. " These quantities can be interpreted as the
total number, momentum, and energy of the magnon
gas. Except for the total number in the case that S= -'„

these are not exact conservation laws for the system,
but are a consequence of our approximations. Further-
more, the collision term guarantees that smaH disturb-
ances in the distribution function relax in a time r(q)
given by

r(qi)-'=4 &-' P [I'(qiq~; q~q4) 1'
q2qaq4

X~(ql+q& q3 q4)b(~(qi)+i0(qi) —~(q3) —~(q4) )
Xn(q&) (1+n(q&) )(1+n(q4) ). (18)

I. Prigogine, Nonequilibrium Statistica/ Mechanics (Inter-
science Publishers, Inc. , New York, 1962) .

15 K. Huang, Statistical Mechanics (John Kiley R Sons, Inc. ,
New York, 1963).
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The equilibrium distribution can no longer be arbi-
trary, but must be of the Bose-Einstein form

n(q) = (expIP)(o(q)+y q+t47} —1)

if it is to be a stationary solution of (12). P, y, and p,

are in principle arbitrary, but we shall take y, p to be
zero, so that n(q) is given by its noninteracting spin-
wave value.

Equation (18) is the relaxation time that would be
computed from Dyson's dynamical interaction using
the Born approximation. We shall make the quadratic
approximation to the function V(q), and define an
effective magnon mass by the relation

55} V(0) —V(q) 7=5'q'/2m.

For a simple cubic lattice with nearest-neighbor ex-
change m=35/SV(0) a', where a is the lattice param-
eter. The relaxation time r(q) is then explicitly, to
lowest order in k'1, when H=O,

r(q)-'=
} V(0)/657(kTm/2nP)'"a'(qa)'$(5/2), (19)

where $ is the Riemann zeta function. The quantity
(24rP/kTm)"' is the thermal wavelength for the mag-
nons, Xr. Equation (19) holds only for wavelengths
shorter than the thermal wavelength. At low tempera-
tures, the density of thermally excited magnons, n=
5—((5 )), is

(20)

There are three distinct changes that occur in the
equation of motion for (1/2S) (5 (q'+-,'q) 5 (-,'q —q') )
when we allow q to be nonzero. The most important
of these is the appearance of the free drift terms for
the magnons, arising from the first term on the right
of Eq. (3) . There are, in addition, Hartree-Fock terms
such as we have already considered, as well as modifi-
cations to these terms arising from C(qiq2, qsq4) be-
cause of the fact that the real part of this quantity is
no longer completely symmetric in the exchange of
q&q2~qsq4. And finally there are modifications of the
collision term that arise from the fact that the Wigner
function varies over the range of the collisions. The
full nonlinear equations are thus quite complicated
although they can be obtained in a straightforward
vray by the procedure we have outlined. We are pri-
marily interested in the long-wavelength, linear re-
sponse function. As we have already seen, the contri-
bution of the Hartree-Fock terms to the linearized
response function is negligible for q small and for all co,

as long as S—((5*))«S. We will, therefore, neglect
the effect of these terms on the linearized equations of
motion, and include only the slight modifications that
result from the energy renormalization of the mag-
nons. The corrections arising from the real part of
C(qiq2, q3q4ie) are neglected for the same reason.

The average relaxation frequency as delned in this
manner is not significantly diferent from the value one
obtains from (19) using the value of q appropriate to
the thermal velocity. We find for H=0,

X,/a=0. 15'(5—((S'))) "'/2. 612, (23)

where X. is the mean free path.
The conservation laws, together with (22), lead im-

mediately to soundlike propagation of the magnetiza-
tion. A more detailed treatment, which includes the

The corrections to the collision integral arise from
the variation of the magnon-distribution function over
distances comparable to the range of the exchange
interaction, and hence will be quite small for wave-
lengths long compared to this range. Furthermore,
these corrections do not aftect the conservation laws
to lowest order in q. We will therefore neglect these
corrections also.

For the reasons mentioned, it is a good approxima-
tion in the long-wavelength limit, to represent the
linearized equation of motion for the magnon distribu-
tion function by the sum of a drift term and a collision
term:

(af/at) (q, q') (i—q Sq'/ m) f(q, q') =s.Lf(q, q') 7,

(21)

where Z,Lf(q, q')7 can be obtained by making the
replacement

~(q') ~n(q')+ f(q, q')

in Eq. (12) and keeping only terms of order e.

Here, m~ is the renormalized magnon mass defined

by the relation 5a»(q) =SH+(5'q'/2m*), with &oi(q)
defined as in Eq. (5), and the quadratic approximation
used. for V(q).

It is well known" that the solutions of (21) in the
long-wavelength limit are of the form of linearized local
equilibrium solutions. These are eigenfunctions of the
operator 2, with eigenva1ue zero, and can be written as

f«(q, q', «) = —(1+n(q') )n(q') L (q, «)

+v(q, «) q'+P(q, «) ~(q') 7 (22)

The quantities n(q, «), P(q, «), and y(q, «) determine
the local number, momentum, and energy density, and
can be evaluated from the moment equations for these
quantities. These follow immediately from (21) upon
multiplying that equation by t, q', or 4d(q'), and sum-
ming over q'. In order that (22) be a good approxima-
tion to the exact solution of (21), it is necessary that
the wavelength of the disturbance be much larger than
the mean free path of the magnons. We define the
mean free path as the product of the thermal velocity,
(2 kT /m)'t', and r, defined as

1/r =X-i g r(q)-in(q) /iV-i P n(q)
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eGect of the damping of the soundlike mode, may be
obtained by replacing the exact collision integral with
an approximate expression such as

&Zf(q, q', &)] —(1/ ) Lf(q, q', &)
—f-(q, q', &) ].

The parameters n, y, and P are then determined self-

consistently from the moment equations in such a way
that the conservation laws are satis6ed. This procedure
was initially suggested by Bhatnagar, Gross, and Krook"
and lends itself readily to a perturbation expansion in
powers of co7.. We 6nd that the susceptibility, to 6rst
order in co7=, is

—Ãq'(S —((S*)))/ *](1—'
)

X(q, s) =
s' —c'q'+isi'q'+iraq'c'q'{s+ii~q2{ 1+fi(S—((S~}})/c'm*x]I ' '

where

5 L~X ' P, (Kq/m*) 'n(q) ] 5 EsT gs/, (X)
E ' P„n(q) 3 m* gq/2(X)

'

s.(&)= z(—), X=exp

1 =—,'c'~

7 g7/2(X) 5 gs/2(X) EsT
3 gs/2 (X) 3 g))/2 (X)

x= (a/as') X-' g n(q) = —a- (a((S*))/aa).

(25)

The quantity p is just the isothermal susceptibility
that would be computed from noninteracting spin-wave
theory. For sag, sT&&1, the last terms in the denomi-
nator are negligible, and the sound-wave dispersion re-
lation becomes

a) =cq(+I i-,'cqr)—
~e have assumed that n(q) could be neglected at the
zone boundaries in calculating (24) and (25).

V. VALIDITY OF THE BOLTZMANN EQUATION

The existence of a hydrodynamic mode follows in a
straightforward way from the Boltzmann equation. The
only pathological point about the magnon interaction
is the fact that the very low-momentum magnons have
arbitrarily long collision times LEq. (19)], and one
might hesitate to treat their relaxation by means of
an average collision-time approximation. However, the
phase space available to these magnons is vanishingly
small, and the principal contribution to the damping
of a sound wave comes from those particles having
higher than average momentum, so that we do not
expect this to be a signi6cant objection.

The hydrodynamic mode will therefore exist, unless

the Boltzmann equation does not provide an accurate
description of the dynamics over a time period long

compared to an average relaxation time. We wish,
therefore, to assess the accuracy of Eq. (21) .

In the case that S=i„ for which Eq. (2) is exact,
the errors in our derivation stem primarily from our
decoupling approximation, since we feel that the addi-
tional approximations that were made in order to re-
duce the equations to their 6nal form are justi6able
for the reasons mentioned. The decoupling approxima-
tion involves only a six-spin correlation function, and
leads to terms in the linearized equations of motion
that are proportional to (n) '. (It is easy to show that
((S; S;+))(~—((S*)) for all i and j.) Thus terms
proportional to (n)' vanish at least as fast as (kT)'.
Even if we had neglected these terms entirely, we
would still have arrived at a linearized Boltzmann
equation, but with the classical expression for the colli-

sion term, since it would not have included the possi-

bility of a particle being in the 6nal state of the scatter-
ing process. We expect, therefore, that the corrections
arising from inaccuracies in our decoupling approxima-
tion vanish at least as fast as T3. This is unfortunately
not sufFiciently fast to guarantee that the solution (24)
is asymptotically exact in the limit that or, q, T—+0 in

such a way that wr«1, and SX,«1. From (19), we see

that r vanishes as T. Thus, the collision integral
could be negligible compared to the terms we have
neglected, and the conservation laws upon which we

have based the argument invalid. It seems unlikely that
this is the case, but we have no proof that it is not.

If one allows for an external 6eld, then the density
of magnons and the temperature of the magnon gas
can be varied independently. The relaxation frequency
depends linearly on the density, for a 6xed tempera-
ture, while the corrections that we have neglected will

vary as (n)'. The corrections will be asymptotically
negligible if we increase the 6eld, but keep the temper-
ature constant. In the high-field limit, the Boltzmann
equation goes over to its classical form, and the sound

velocity approaches its classical value. Unfortunately,
the strength of the pole in the susceptibility depends
linearly upon the density also. Thus, although the
existence of the sound wave can be guaranteed in the

' J. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev.
102) 593 (1956).
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low-density limit, it would be extremely dificult to ments and momenta satisfy the commutation relations
observe there.

When S&-,', we cannot relate the sum over g' of [U;, P;j=i58,;.
f(q, q') directly to the change in the magnetization,
since Eq. (2) no longer holds. We have instead a rela-
tion of the form 00

S S+ S-S-S+S+
2S (2S)'(25—1)

~ ~ ~

Let

X.h(q~ ~) = —~ »"'(([U(q i) U( —q) j»

VVe feel that the additional terms have very little
eGect on our conclusions. They contribute terms to
the equation of motion for f(q, q') that vanish at least
as fast as (n)'. Hence they do not affect the existence
of the sound wave in the low-density limit, and can at
most modify the temperature and external Geld at
vrhich the hydrodynamic mode becomes ill deGned. In
view of the fact that we are unable to make any rigorous
statements about the equations to an accuracy of better
than T' anyway, it does not seem worthwhile to try
to incorporate the higher-spin corrections into the equa-
tion of motion. Physically, we would expect the higher-
spin values to make the interacting boson model better,
in any case, since the kinematic interaction is presum-
ably less eGective.

VI. INTERACTIONS WITH PHONONS

Direct observation of the hydrodynamic modes by
means of a transmission experiment would probably be
dificult since one would have to avoid exciting magneto-
static modes. Observation by means of inelastic neu-
tron scattering may not be feasible, because of the
weakness of the pole in the susceptibility. We therefore
investigate the possibility of observing this mode in-
directly, by means of its eGect on a phonon system.

A magnetoelastic interaction arising from single-ion
anisotropy can contain a term such as

X;,4 SG Qe;(S )',

where e; is a strain and G a coupling constant. At low
temperatures, the dynamical variable (S,*)' can, in
the spirit of a spin-wave approximation, be replaced
by (2S—1)5 . Such a term leads to a direct coupling
between the magnon density Quctuations and the pho-
nons. For simplicity, we consider the interaction with
a single phonon mode. The complete Hamiltonian for
the system is then

Q (PP/2)V)+ ', Q CgU;U;-
+KG(25—1) Q e;5'+XH 4 b,g,

C(q) —=X-"'g exp(iq r4—r;) C;;=MC'q'.

The equation of motion for U(q) is then

—[a (U(q) &/aij=c q (U(q) )

+iraq(G/M) (2S—1) (5'(q) ). (26)

This is to be solved with the initial condition

bp(t=0) = —i[U( —q), p~j,

where p~ is the thermal-equilibrium density matrix for
the full system. As far as the spin system is concerned,
it starts out from a state for which (S'(q) )=0 and
responds to an eGective external Geld proportional to
(U(q) ). We have therefore, to lowest order in the cou-
pling constant G,

(5'(q, i) )=i(25—1)GI X (q, i—i') (U(i') &«',

where xH is the susceptibility of the spin system. Sub-
stituting this into Eq. (26) and taking Laplace trans-
forms, we Gnd

x (q») =[»'—C'q'

—((&G) '/~) (25—1)'q'xH(q, ») 3 '.

The magnetoelastic interaction is quite weak, and a
strong interaction can only be expected when the pho-
non and magnon sound velocities are equal. In this
case, we have, using (24),

X"(q, ») = [»'—C'q'+(I'q4/»2 —C'q') 3-'

where I'=(2S 1)f4G[(5 ((5')&)/mMPU'. For small
values of I'/C, X,h has poles at

a) = aCq ',i (I'/C—)q-

If we express the sound velocity in terms of a force
constant, C'=k/M, then the acoustic attenuation co-
efficient a, defined as I'/2C' can be written in terms of
a magnetoelastic interaction parameter y =KG/k:

a= [(2S—1)/2jy(M(5 —((5'&))/m)'~». (2T)

where C;; are force constants, U, the displacements of If the additional attenuation of the phonons due to
the ions, and M the mass of the ions. The displace- their interaction with the magnon sound wave is to be
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observed, n &10 '. In terms of the Curie temperature,
the magnon mass is roughly zzz =2(5+1)fz'/ETcIz'. With
S=1, @=4A, a Curie temperature of 300' corresponds
to a magnon mass of approximately 0.04 amu, and a
maximum sound velocity, if (25) were valid at the
Curie temperature (which it is not) of approximately
10' cm/sec. There would thus be an ample range
of temperatures'at which the magnon sound velocity
was in the phonon range. If the ions are massive, the
square root can .easily be on the order of 25 for S—
((5*)) 0.2, so'that the values of y that are required
would be on the order of 4/10 '. This is a reasonable
order of magnitude for a magnetostriction constant.

VII. CONCLUSION

$: If collisions between magnons are neglected, the longi-
tudinal susceptibility of the Heisenberg spin system at
low temperatures is essentially that which would be
derived from the noninteracting spin-wave model. As
long as 5—((S'))«25, the "average field" eifects aris-
ing from the interactions are negligible, and do not
produce any collective motions. When the effect of
collisions is taken into account, it is found that the
magnon„velocity distribution satisfies the quantum-
mechanical Boltzmann equation. Since the "average
field" effects are negligible, we have argued that the
Fourier transform of the distribution of magnons in

phase space, de6ned as

satisfies an equation of motion that is adequately ap-
proximated, in the long-wavelength limit, by the sum
of a free drift term and the Boltzmann collision term.
The susceptibility may be obtained from the linearized

hydrodynamic equations that follow immediately from
the form of the Boltzmann collision term. We conclude
that the susceptibility has a pole at co= +Cq, where C
is the velocity of magnon sound, given by (25). The
decoupling procedure we used to obtain the Boltzmann
equation is accurate up to terms of order (5—((5*)))'.
Although this is not sufhcient to justify the results we

have obtained as an asymptotic expansion in the tem-

perature T, it is sufhcient to justify them, in the
presence of an external held, in terms of an asymptotic
expansion in the density of thermally excited magnons,
in which case the Boltzmann equation assumes its
classical form. The interaction of the magnon sound
wave with a model phonon system through single-ion

anisotropy was considered. We conclude that the inter-

action could produce an observable increase in the

phonon lifetime when the temperature is adjusted so
that the magnon sound velocity coincides with the

phonon velocity.
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APPENDIX

The scale of changes in n(q) is given by the recipro-
cal of the thermal wavelength. Hence, when the wave-
length of the external disturbance is much greater than
the thermal wavelength, we can replace the 6nite dif-
ferences in the denominator of (8) by differentials.
Upon converting the sums to integrals we obtain for
the denominator in (8), along the real axis,

Using the quadratic approximation, and defining 5'=
zNIe/f'zI q I, this becomes

where

1+(1/25)
W+IM+ze

'

Replacing the exact zone boundary by a sphere, and
doing the angular integrations, gives

We will neglect the contribution from the zone bound-
arv and so obtain the result that (A1) can be written

z (z) p'

(2zr) ' W+zz+ze
(A2)

(25) '(V/«) (2i'zTzzz/fzz)"'x'(e' —1) '. (A3)

The maximum of the function x'(e' —1) ' is approxi-
mately 0.6. Using (20), (A3) can be written as

(«) '"I:5—((5*))/25j*'(e*'—1) 5 '(5—((5*)))

Thus both the real and imaginary parts of the integral
are uniformly smail, for all co, when 5—((S*))«S.

The real part of the integral is a maximum at 8"=0,
where it has the value S—((5'))/2S. In terms of the
variable x=ziz'i'co/q(2kT)'iz, the imaginary part may
be written


