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Critical Behavior of the Pseudospin Model of Order-
Disorder Type Ferroelectrics
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The behavior of the specihc heat, the Geld-dependent susceptibility, and the soft mode is considered in
the neighborhood of the critical point using the spin model for hydrogen-bonded ferroelectrics with a purely
dipolar interaction. Shape-independent results are obtained if one refers always to the state of zero internal
Geld, i.e.,with an external Geld present that, just compensates the depolarizing Geld. The results are expressed
in terms of the nonvanishing expectation values of single spin operators. These can be obtained either by
solving self-consistency conditions or more crudely by using the molecular-Geld values. The critical co-
efGcients are given explicitly for the latter case. For the speciGc heat a logarithmic singularity is obtained,
while the inverse susceptibility is found to depend linearly on ) r—F, ). The next higher-order response
functions and the corresponding behavior of the soft mode, as well as the leading power in the electric
GeM. of the susceptibility and the soft mode at 2"= T&, have also been calculated. The predicted critical
behavior agrees with experimenta, l results surprisingly close to the critical point.

L INTRODUCTION

KCENTLY a microscopic model for order-disorder

type ferroclectrics was introduced by Blinc'
which takes into account the tunneling of the ferro-
electric" ions /the protons forming the hydrogen bonds
in substances like KHsPO, (KDP) j in their double-

well potentials. This model could. be conveniently
rcforInulated in terms of a pseudospin model. '~
Even in its simplest form, "which consists of an Ising
interaction Hamiltonian with an additional tunneling

term, it accounts qualitatively for many of the proper-
ties of order-disorder type ferroelectrics. In particular,
in the molecular-Geld approximation one 6nds a second. -

ordcr phase transition with a spontaneous dipole
moment in the ordered phase, and with low-lying

collective excitations exhibiting the Cochran-Landauer
behavior in the neighborhood of the transition temper-
ature. ' 4

As a 6rst step in studying the critical behavior of
order-disorder ferroelectrics, we have examined the

simple model, m ' taking only the motion of the protons
into account. Since their displacements arc small

compared to the nearest-neighbor proton-proton dis-

tance, the interaction between the protons is ap-
proximated by a dipolar interaction. These calculations

must be considered preliminary for two distinct reasons.

The model Inay be oversimpli6ed, and the statistical
mechanical treatment may be too crude.

The model neglects the strong coupling between the

protons and the other ions of the crystal4 as well as

R. Blinc, J. Phys. Chem. Solids 13, 204 (1960),
~ P. G. de Gennes, Solid State Commun. 1, j.32 (1963).
s R. Brout, K. A, Mueller, and H. Thomas, Solid State Com-

mun. 4, 507 (1966).
4 J. Villain and S. Stamenkovic, Phys. Status Solidi 15, 585

{1966).
~ R. Blinc and S. Svetina, Phys. Letters 15, 1I9 (1965);Phys.

Rev. 147, 423 (1966).
6M. Tokunaga and T. Matsubara, Progr. Yheoret. Phys.

(Kyoto) 35, 581 (1966).

three- and four-body interactions between the protons. '
This model has so far been applied exclusively to
KDP. Mueller has, however, recently pointed out~

that the simple model may be expected to apply more
closely to triglycine sulphate (TGS) than to KDP.
In the latter crystal, each PO4 ion is linked to four
other PO4 ions by hydrogen bonds, and the four
protons forming these bonds are known to interact
strongly via three- and four-body forces which give rise
to the "Slater rules. '" In TGS, on the other hand,
glyccniuIIl lons arc only llnkcd ln pall s by single
hydrogen bonds, and one would expect three- and four-
body interactions to be much less important. Since, in
addition, the lattice distortion induced by the phase
transition is smaller in TGS than in KDP, one might
conclude that interaction with other phonon modes is
also less important in TGS. This will, however, be true
only for the acoustic modes. In both crystals, the phase
transition induced by the ordering of the protons gives
llsc to apprcclablc lntcrnal dlsplaccmcnts of othcl ion
groups in the unit cell. In TGS this results mainly in a
bending of one member, 'of the glyccnium ion pair, and
a shift of the unpaired glyccnium ion."0 These dis-
placements, as well as the electronic polarization of the
ions, give a contribution to the spontaneous polarization
of the crystal that is usually larger than the direct
proton contribution and of a different direction.
They will further lead to an indirect interaction between
the protons that may mell be larger than the direct
dipolar interaction, and that is only approximately
described by the interaction term of our model.

The approximation procedure used in our statistical
mechanical treatment becomes invalid within a certain
temperature interval AT around the transition temper-

~ K. A. Mueller (private communication).
8 See for example F. Jona and G. Shirane, Iierroelectric Crystals

(Pergamon Press, In.c., New York, 1962).
9 S. Hoshina, Y. Okaya, and R. Pepinsky, Phys. Rev. 115,

323 (1959).
«j'. L ajorhstatn, Phys. Rev. 153, 599 (1967).
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ature T„where the critical Quctuations are large.
General considerations" show dT to be the smaller,
the larger the range of the interaction, or rather, the
more concentrated the Fourier transform of the inter-
action is around the origin in reciprocal space. Because
of the long-range nature of the dipolar interaction, one
might expect hT to be quite small in our case, so that the
approximation remains acceptable even for temper-
atures reasonably close to T,. However, the Fourier
transform of the dipolar interaction is not very con-
centrated around the origin, but has a variation over
all of the Brillouin zone, which in a definite direction is
qualitatively similar to that of an isotropic nearest-
neighbor exchange interaction. That is, the particular
angular dependence makes the dipolar interaction
effectively short-ranged in real space. There exists, of
course, the possibility that indirect interaction mechan-
isms, like the one mentioned above, have a longer
effective range, but that would have to be shown in
detail.

Experimental results, on the other hand, seem to
agree with the resul. ts of the present approximation
scheme surprisingly close to T,. Susceptibility measure-
ments on KDP by Craig" show a linear dependence on
(T T,) for th—e reciprocal susceptibility, in agree-
ment with Eq. (48) below, outside an interval of
4T 5X 10 'T,. Within this interval Grst-order eGects
complicate the phase transition. "'2 The inverse sus-
ceptibility in TGS depends linearly on (T T,)—
outside hT 2&(10 4T, on both sides of the transition
porn

For the specific heat the situation is less clear. The
specific heat of KM was recently measured by Reese
and May. '4 These authors obtain a logarithmic be-
havior, in agreement with our Eq. (35) below, on both
sides of the critical point outside an interval of
AT~10 'T,. On the other hand, a recent analysis" of
some early specifi. c-heat measurements by Stephenson
et al." yielded a reciprocal square-root singularity
outside AT~10 'T„whereas a previous analysis"
of the same data suggested a logarithmic dependence.
For TGS, an analysis by Grindlay" of specific-heat
measurements by Strukov" gave evidence of a log-
arithmic behavior for 10 'T, &T &10 'T,.

The temperature dependence of the soft ferroelectric

"R. Bront, Phase Trarssesiorss (W. A. Benjamin, Inc., New
York, 1965), Chap. 2.

~ P. P. Craig, Phys. Letters 20, 140 {1966)."S.Triebwasser, IBM J. Res. Develop. 1, 212 (1958};J. J.
Srophy and S. L. Webb, Phys. Rev. 128, 584 (1962)."W. Reese and L. F. May, Phys. Rev. 162, 510 (1967).~.D. T. Teaney, Solid State Commun. 5, 207 (1967)."C. C. Stephenson and J. C. Booley, J. Am. Chem. Soc. 65,
1397 (1944); C. C. Stephenson and A. C. Zettlemayer, ibid. M,
1402 (1944).

~ J. Grindlay, Phys. Rev. 139, A1603 (1965).
'8 J. Grindlay, Phys. Letters 18, 239 (1965).
'9B. A. Strnkov, Fiz. Tverd. Teia 6, 2862 (1964} LEnghsh

transl. : Soviet Phys. —Solid State 6, 2278 (1965}$.

mode frequency in KDP has recently been measured, '
and its real part shows a variation, in good agreement
with Eq. (26) below.

Further experiments to determine the nature of the
transition particularly for TGS would be of great
interest, as would the determination of the critical
coefficients in the presence of an applied Geld, both for
KDP and TGS.

In Sec. II the required spin-pair correlation func-
tions are calculated. The specific-heat calculation is
presented in Sec. III, and in Secs. IV and V the eGect
of an external electric Geld on the polarization and the
Cochran mode is studied. In Sec. VI we discuss briefly
the eGect of the interaction of the protons with other
ions.

II. MATHEMATICAL FORMULATION

For reasons of mathematical simplicity, we formulate
the theory for a rigid lattice and consider only direct
proton interactions. We expect, however, that the
eGect of the motion of the other ions can be taken
approximately into account by using eGective values
for the interaction parameters and the dipole moment,
which will leave the functional dependence of the
physical properties on temperature and Geld un-
changed.

The model is described in terms of Pauli spin oper-
ators o,(n) (s=1, 2, 3) at lattice site e. We assign a
direction ((e) to the line connecting the two valleys
of the double-well potential at site e, and call the
valleys on the positive and negative sides V+(e) and
V (e), respectively. The operator os(n) describes the
excess in population of the valley V+(e) over that of
V (e), and is thus proportional to the dipole moment
of that lattice site, and ot(n) and os( e) are operators
which transfer the ion from one valley to the other.
The o;( n) satisfy the commutation relations

L '( )»( ')3=2s8-" ( ), (1)
where e is the totally antisymmetric tensor of third
rank. Unless otherwise noted, the operators will be
taken in the Heisenberg representation.

In the simplest case, to which we shall restrict our-
selves in this paper, the system is described by a
Hamiltonian containing only a tunneling term and an
interaction term. "Since we shall consider the system
in the presence of an external Geld E' ', we add a term
describing the interaction of the system with this
Geld. Thus,

P= —I' pat(e) ——,
' Q s(en')as(n)os(n')

aa~

—E'"' Z p(e) os(n) (2)

»I. P. Kaminow and T. C. Damen, Phys. Rev. Letters 20,1105 (1968).
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Go(q 1 1) =( +) Z expL its (i ")7

&&Go(q, ~.), (6)

and a spectral representation"

X'i" (q» )
—co X' (Op M

Here, S is the number of lattice sites, and (o,=
2sv/( —iP) where i is an integer. The spectral weight
function x@"(q, to) is defined by

X*;"(q,~) = — «expL~(1 —1') 3

X Z-p&-'q (.-"»&L';( 1), ;("1)». (g)

The Green's functions satisfy the equation of motion

G' (q ~ ) =

i(cj/Bt)G@(nt, nV) =8 .o(t t') {Qr,(nt), r, (—nt)]&
—i&(i(a/at) r, (nl) r;(nV) ),&. (9)

"5=1 in this paper.
» See for example, L. P. KadanoG and G. Baym, Queltuns

S]aristkal 3ferhunics (W. A. Benjamin, Inc., New York, j.962},
Chaps. 1-3.

"This hoMs in general only for the terms v&0. The case v =0
is discussed below.

Here, 21' is the tunneling frequency, "p( n) is the dipole
moment due to the ion at site e being displaced into the
valley V+(n), and Wv(n, n') is the interaction energy
between particles at lattice sites 0, and 0,

' when they
are in corresponding (—) and opposite (+) valleys of
their potentials, respectively. In Appendix A, we discuss
the properties of s( n, n') for the case of purely dipolar
interaction.

In order to obtain the susceptibility and the specific
heat, we shall need the spin-spin correlation functions.
For the Hamiltonian Eq. (2), both oi(n) and os(n)
will, in general, have average values (oi(n)) and.

(os ( n) ) about which fluctuations will occur. We
restrict ourselves, for simplicity, to the case that all
double-well potentials are identical and have parallel
axes, and to a ferroelectrically ordered state. Then, the
average values are independent of the site e. We
define the fluctuations r;( n) by

o;( nt) = (o,)+r;( nl) .

For the purpose of calculation it is most convenient to
study the time-ordered correlation functions (Green's
functions) of the form

G'r(«, n'1') = —i&(r'(«)r (n'~') )+& (4)

The + denotes the Wick time-ordering operation, and

( ) the termal average. These functions possess Fourier
series expansions~

G';( 1, '1') =(1/&) Z pl q ( — ')jG'(q, 1—1'),

s(0) = Qs(n, n').

The Green's functions G33 and Gis will be particularly
useful for the calculations that follow. From Eqs.
(10)-(12) we obtain for i &0

Gss(q, to„)=4F&oi&/(es, s—oi,'), (15)
4L (o) &-.)+PKr-"j&-)

(16)
OPgp Mq

where so~ are the eigenfrequencies for small oscillations
about the mean values I (oi), 0, (os) f,'

~'=41'Ll' —v(q) (~r)j+4Lv(0) &ns&+At'*"j' (1&)

For dipolar interaction, s(0) will be shape-dependent.
One obtains shape-independent physical properties if
one refers to the state of zero internal field, i.e., if an
external 6eld is present that just compensates the
depolarizing field. Using the expression for the re-
quired external field given by Kq. (A1'I) in Appendix
A, we can write

(0) &"&.+»- =. &-.&.,
where v, qq is the shape-independent quantity dered in
Eq. (A19), and where the subscript zero refers to the
state of zero internal field. Thus, for vanishing internal
field, Eq. {13) takes the form'4

Lf' —~ ( &oh( )o=o. (19)
2' This relation implies that the perpendicular susceptibility x~

for the pure Ising model is constant for T&T, I', l here plays the
role of a transverse Geld). This may be compared with exact
calculations by M. E. Fisher [J.Math. Phys. 4, 124 (1N3) g for
the two-dimensional Ising model which shows a variation of x~
of less than 14'P~ for the interval 0&T(T„andin three dimen-
sions the deviations from a constant value are expected to be
less pronounced.

G„(q,~„)=—

The equations of motion for the individual spin oper-
ators, which follow trivially from the Hamiltonian
Eq. (2) using the commutation relations Kq. (1), are
linearized about the average values (o,), and the re-
sulting expressions for Br,(nt)/Bt are substituted into
Eq. (9). Then, making use of the Fourier series Eq.
(6), the following set of coupled equations is obtained:

to„Gss(q, ts,) = —2iFG,s(q, cs„), (10)
G (q, .)=2 & )—2L (0)( )+PE1'"'3G (q

+»Ll' —s(q)& &jG (q, .), (»)
~„Gts(q,~.) =2i[s(0) (os)+pEr' 'j. (12)

In addition, setting the static parts of the equations of
motion for 0; equal to zero yields the following relation-
ship between the average values of a.~ and 0.3..

~&-)-L (o) (.&+P~-'j&. )=o

In these equations

s(q) = Q s(n, n') expr' —iq (n —n')]
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The normal mode frequency can be written

~,' =~o'+4r &oi)os.«—o(q) j,
where

too =41'(I'—o «(o'i) )+4o,iP(o's)o,

and where

(20)

(21)

and obtain the isothermal susceptibility as the second
derivative of the free energy with respect to this ad-
ditional Geld t'ai( e) . The result is

—ip

x; -"'(~, ~') =~ (r'(«)~t(e'0) ).=o«
0

which is recognized as the negative v =0 Fourier
coefficient of the Green's function G,;(«, e't'). After
taking the spatial Fourier transform, we find

G' (q, o) = -x,,'-'"(q).

It can be shown that this result agrees with

limG@(q, co„)
Cd tt~o

(25)

of Eq. (7) (regarding to„as a continuous complex
variable), only if the Green's function G,,(«, e't')
goes to zero suKciently rapidly for large time dif-
ferences

~
t t'

~, and only then—is G;;(q, 0) given by the
spectral representation Eq. (7). For the functions
G~3 and G33, this is the case in the paraelectric phase,
and we can therefore use Eqs. (15) and (16) also for
or„=0. In the ferroelectric phase, however, these
functions approach nonvanishing values G;, for

~
t—t'

~
~~, and we find a difference proportional to

the constants G;; between the correct expression,
Eq. (25), and the to„=0limit of Eqs. (15) and (16).

The Green's functions and the eigenfrequencies have
been expressed in terms of the equilibrium values

v.ii) o(q) for q WO (22)

is required as a stability condition for ferroelectric
order.

It should be noted that this compensation of the
depolarizing field is always necessary in order to obtain
shape-independent results, whenever dipole forces are
present. The procedure is the same whether or not
additional short-range forces contribute to ii(q) .

For v=0, the determinant of the system of Eqs.
(10)—(12) vanishes, and the i =0 Fourier coeKcients
G@(q, 0) have to be determined by a diferent method.
We obtain a relation between G;, (q, 0) and the iso-
thermal static susceptibility x@'"t~(q) in the following
way: We consider the system under the action of an
additional static field y(e) in pseudospin space, which
adds to the Hamiltonian, Eq. (2), a term

&'= —Z e(~) d(~) (23)

(oi)o and (oa)p and the isothermal static susceptibility
g,,'"'". These quantities can either be obtained from
a molecular-field approximation, or they can be de-
termined in a self-consistent fashion analogous to the
random-phase approximation for the Heisenberg Hamil-
tonian. In this paper, only the molecular-field values
will be used, but we should like to emphasize that the
results expressed in terms of (o,)o, (oii)o, and g; "'"
are more general than the molecular-field approxima-
tion.

The molecular-field values for &oi)o and &o~), have
been obtained in Refs. 3 and 4. With these values,
top( T) sllows the Cochran-Landauer behavior for
T T.:

too =tip
~
T Tc

~
(26)

-»»- Z &-.(.». (»)

The second term in this equation can be expressed in
terms of the Green's function G33. We obtain for zero
internal field,

(H)/E = —I'(oi)ii —-', o,ii(oa)o'

——,'(1/1V) g ii(q)iG, (q, t=t'). (30)

The Fourier coeKcients G»(q, to„) are given by Eq.
(15). Inverting the time Fourier series Eq. (6) and
using the summation formula

(I/t3) Z 1/( —.) =~( )+l —(1/t3 ), (31)

with different coefficients a+ above and u below the
transition temperature. '4

The molecular-field calculation for g;, '"'" is presented
in Appendix B. It is readily confirmed that the results
Eqs (B13) and (B14) for xiaisoth(q) and x»' o (q)
agree with the to.~0 limit of Eqs. (15) and (16) for
T)T„but are diferent for T&T,. By using the
molecular-field values for (oi)o and (o'3)p, we find from
Eqs. (B13)—(B16) for T T, the critical behavior

C(T.—T)"'
v~ii —o q l5 T~ T—

(27)
x»'-'"(q) = C&.« —o(q)+4 I T.—T Ij ',

for T~~T,. (28)

Note that yia'-'"(q) =0, for T) T,.

III. CALCULATION OF THE SPECIFIC HEAT

The internal energy is given by

(~)=-I' Z (-.(-))—:Z o(-, -) (-.(.)"(-»
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where «(p&) is the Bose occupation number factor

tt((o) = 1/(d'" —1), (32)

the equal-time Green's function G»(q, t=t') may be
written

sG„(q,t=t') = (4r(, ),/, )L«(,) y-,'—(1/P, ) 3

+ (1/0) x»'-'"(q) (33)

%hen we substitute this equal-time Green's function

in the expression Eq. (30) for the internal energy, we
note that only the x'"' part gives rise to a singularity
of the specific heat. " On account of Eq. (28), the
dominant contribution to the integral for T~T,
comes from the small-q region. In order to determine
the singular behavior near T„it is therefore sufhcient
to use the functional form for e,«—p(q) given by Eq.
(A20) of Appendix A. In order to simplify the cal-
culation, it will be assumed that ( is a symmetry axis
of the crystal. Then,

1
x '-"(q) =

4n«p'[qrs/. q'+ ,'(Miqts+-Msq„'+ Jtfsqrs) j+fi~ (
2' 2;

~

'— (34)

The summation over the Brillouin zone in Eq. (30) is
approximated by an integral over the Debye zone. The
specific heat for zero internal field is obtained by dif-
ferentiating the internal energy with respect to the
temperature. For T&T. we obtain for the singular
term

b+ 1 Tc
In . (35)

2pr yg(4s. /Ps) P (Xi+Ms) P r—r
In addition to the singular term, the (pp)ps and (oi)p
terms in Eq. (30), as well as the first term of Eq.
(33), contribute to a finite discontinuity at 2'=T, .

The logarithmic singularity is a consequence of the
particular form of the dipolar interaction and does not
depend on the presence of the tunneling term. For an
isotropic interaction potential of the form

n, «—n(q) =Aq' for q-+0, (36)

a square-root singularity would be obtained for the
specific heat. "

For T&T„the singular term is negative. This
represents a serious shortcoming of the approximation
procedure for T& T.. It should be emphasized that this
result does not depend on the particular nature of the
dipole interaction or on the presence of the tunneling
term. It can be shown that the same difhculty occurs in
the random-phase approximation (RPA) when this
approximation is applied to the Ising model with
isotropic interaction potential, " or even when applied
to the Heisenberg model. " However, as far as we

know, this difhculty has not been previously recognized.
In both of these cases, as well as for the present model,
the internal energy is a continuous function of temper-
ature and has a cusp at T=T„from which it follows
that any singular contribution to the specific heat at
T=T, will have a diGerent sign for T&T, and for
T&T.

IV. FIELD-DEPENDENT SUSCEPTIBILITY

In the presence of a space- and time-varying electric
field 3E(nt) applied along the anisotropy axis, the
following term is added to the Hamiltonian Eq. (2):

~*~=—p g 3Z(&t) ~,(«t). (37)

"3'( p(nt) )= Q dt'xg(et, et't') ppE(e', t'), (38)

where the adiabatic response function xg has the form

x ( t 't') =f9(t—t')(5 '( t) ( 't')j) (39)

Here rt(t) is the step function. The Fourier transform of
x,&(et, e't') is directly related to the spectral weight
function x@"(q, e~) defined by Eq. (8):

x~(q, ~) =(1/~) (4o)

The spectral weight function x»"(q, pp) is obtained from
Eq. (15):

(41)

and the response function may be written in the form

X»(q, ~) =4r(~i)p/E~e' —(~+&)'j (42)

It is assumed that the field has been switched on at
some past time tp such that 3E(et) =0 for t(tp. This
field is in addition to the static external 6eld required
to give zero internal field for t&to. The adiabatic
response of the system to 3E(ut) will be calculated
using perturbation theory.

The linear response of the pseudospin operators to
this additional field can be written

as The 6rst term is proportional to co~ for small co~, as em be seen by expanding e(~), and does not, therefore, contribute to
the singularity.

"H. S. Bennett& Ann. Phys. (N.Y.) 39, 127 (1966).
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bE' '=bE —4irnpb"I(oh)Nrr. (44)

It is therefore given by

art(0, si) =Np'x»(0, 10)/I 1—
41m p'Errx»(0, oo) j

=—»p'x» (~), (45)

which leads to the shape-independent result

art(0, oo) =4iip'I'&01)o/Lao' —(no+is)'j (46)

with iso as defined by Eq. (21). It is equal to the q-o0
limit of err (q, ni) for qJ (. If we use the molecular-field
result Eq. (26) for coo, we obtain for the static limit of
the adiabatic susceptibility the critical behavior

~rr(q, o) =Np'/L~. « v(q)+v—+ I
T—T lj (+)

In our model, the electrical susceptibility tensor has
only one nonvanishing component O,g, which for
q/0 is given by

0'n (q h&) =&P'X»(q, h~). (43)

Note that the other components of the pseudospin
response tensor have no relation to the electrical
susceptibility. Special attention is required for the
q=0 case where the discontinuous behavior of au~ at
q=0 reQects the fact that the response to a spatially
uniform Geld is shape-dependent. For this reason, the
susceptibility at q=0 is deGned as the response to a
change in the inI|emel GeM:

gi»is"" =COnat/(T —T.) ' (T&T.). (51)

Fox 2 p Te, thc second-order xcsponsc PI' ls zero, since
the polarization is an odd function of the Geld. In this
case, it is possible to obtain the third-order response

big —11pX»»isoth(pbEint) 1 (52)

from the second-order response coeKcient g™~3'~'"by
means of Eq. (13), which may be written in the form

I
I'-v.«&~I)3&~3)=pbE'"'(~I) (53)

If we insert the power series in bE'"' for (01) and &Os)

and compare the coeKcients, we find

isoih
I p/{p V&0. ) )1]x isoth

For XI»'"'h, we obtain from Eq. (329) the critical
behavior

The isothermal response to an additional field jn the
pseudospin space is considered in Appendix B. The
quadratic response of the polarization E=Np&ol) to a
field in real space can be written

bshe —iiPX iso'�(PbEins) I (49)

where x»3""h is given in Eq. (330) of Appendix 3.
For T(T„weobtain the critical behavior

x»iso' =const/(T, —T) (T&T,) . (50)

Ke give here also the result for xi33'"'~. From Eq.
(329) we find

~rr(0 o) =Np'/~+I T—T
I

xi»"""——const/(T —T.) ', (T& T.) (55)

with different coeKcients c+ above and c below T,.
The isothermal susceptibility art'"'h(q) is given by

the same expressions Eq. (43) and Eq. (45) except that
the adiabatic response function x33 is replaced by the
isothermal response function y~3'"'". The isothermal
susceptlMlty aglees with the static 11Il1lt of the adi-
abatic susceptibility only for T& T,. From Eq. (28) it
follows that the critical behavior of art'""h(q) is of the
foH11 glveI1 by Eqs. (47) aIld (48) wltll tllc coefficient
c+ replaced by b+ where b+ =c+ but b Wc .

The expression Eq. (42) for the frequency-dependent
susceptibility has been previously derived by Srout,
Mueller, and Thomas' and later (in the g =0 limit) by
Silverman, ~ who in addition considered relaxation
eGects. The static limit was Grst derived by Tokunaga
and Matsubara, ' using the molecular-Geld approxima-
tion. The particular consequences of dipolar interaction
were, however, not studied in these papers.

For the higher-order response functions we shall, for
simplicity, consider only the isothermal response to a
time-independent spatially uniform Geld hE'"'. All
response functions with respect to the internal Geld
are denoted by a tilde.

tb' B.D. Silverma, n, Phys. Rev. Letters 20, 443 (1968).

which gives for the third-order response

x»» "' =const/(T —T,)', (T)T,). (56)

For T=T„there exists no power-series expansion for
the response. For both

I p —p, I
and pbE'"' small, but

one not necessarily small compared to the other, an
equation of.'state can be derived from the molecular-
Geld equations of the form

&og)' —A (as)b, —B(pbE'"'/v ii) =0 (5'1)

(58)

where

A=tanhi'P —tanhl'P,
I

1—(I"/v, li) jl"(P—P,) (59)

B= (I'/v, il) A

P2 p ](9—2
1—P,v,ii(1—I' /v, ii )

The solution of Eq. (57) can be written

(os)= I 2BpbE/v, «+$(2BpbE/v. ii)' (~Ah)'g''}''—
+I 2BpbE/vofi p(-', BpbE/voff)' —{-'AA)'j' 'j" (61)
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For T=T„i.e., 6=0, one obtains

(~ )—pl/3gpbgint/p i]i/8

and
(62)

&~i) = ( /'«) I 1 & —i/'LP»'"'/p «j'"I (63)

V. FIELD DEPENDENCE OF THE NORMAL
MODE FREQUENCY

.'=4I'Ll' —(q) ( )j+4L ~ ( )+Pb&'"'j' (64)

We make use of the results of the preceding section in
order to obtain the field dependence of ~q. For T)T„
we find a shift of second order in the field:

to o(bE'nt) =to o(0)+4L(1+& iixto'" )

1'&(q) x»o'"'"3(pbE'"') ', (65)

which leads to the critical behavior

,'(bE'"') = +(T—T.)+4«)oL. —(q)]

9++&+p(q) j
(

(T—T,)' (T& T,). (66)

For T(T., the shift is linear in 8E'"':

oo '(bE'"') =to '(0) +4L2pof f(0'o)o(1+ps ffx„'-'")
1p& (q) X isoth j(pbgint)

The normal mode frequency in an arbitrary uniform
field is given by Eq. (17) and may be written in the
form

In order to incorporate these effects at least approxi-
mately in the model discussed in this paper, we assume
that the displacement of any of the other ions is
proportional to the local electric field at its lattice site,
and that all the frequencies considered are below the
optical phonon frequencies of the crystal. Then indirect
dipole interactions between the protons as well as
possible short-range contributions can be taken into
account by replacing by e6'ective values the parameters
in the interaction energy, Eq. (A14), which will not
change the form of the functional dependence on tt.
The total electric polarization of the crystal can be
written in the form

ptota i —(1++),pproton+ @host. pint

where y depends on the polarizability of the other ions
and on the proton —other-ion interactions as well as on
the interactions of the other ions among themselves, and
g""' is the electric susceptibility of the crystal in the
absence of the protons. Under the stated assumptions,
we therefore expect that the form of the temperature
and field dependence of the spontaneous polarization,
the soft mode frequency, the speci6c heat, and the
response coeKcients in the critical region is well repre-
sented by the rigid lattice model.

APPENDIX A: DIPOLAR INTERACTION

The interaction energy between two dipoles tt(&)
and tt( e) at sites n and n' has the form

and we find the critical behavior ') =S( ) D( — ') t( '), (A1)

to '(bP. ' ') =a (T —T) + (41'/p «) $v ii —p(q) ]
Lg-+&-s(q) 3 bz...

(T,—T) '/'

Finally, for T=T„we obtain for the normal mode
frequency

co '(bZ'") = (4l"/p ii) $p ii —p(q) ]
+&go+Itos(q) ](pbE'")"',

where

D(x) = (1/x') $3xx—x'1$

is the dipolar interaction tensor.
For our pseudospin model,

e(~) =P(~) ~o(~), (A3)

where p(n) is the dipole moment due to the ion at site
n being displaced to one side. We thus find an inter-
action term as in Eq. (2) with

VI. CONCLUDING REMARKS i/(nn') =p(n) D(e —e') p(e'). (A4)

In the preceding sections, we have obtained the
specihc heat, the response to external electric fields,
and the normal mode frequency for the case of a rigid
lattice. As discussed in the Introduction, there is good
qualitative agreement with available experimental
results. For a quantitative comparison with experi-
ments it will be necessary to take into account the
displacements of the other ions in the crystal and their
electronic polarizability. These effects give rise to.an
indirect interaction between the protons, and to a
contribution to the total polarization of the crystal.

p(«') =P'Drr(~ —~') (A6)

We are interested in the small-q behavior of the Fourier
transform

s(q) =p'D (q)

We shall assume for simplicity that all the ferroelectric
ions sit in identical double-well potentials with axes
all parallel to a common direction eg. Then,

(A5)
and
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D(q) = Q D(e —e') expL i—q (e—n')]. (A8)

The matrix element D„I,(q) can be considered. as the
~ component of the 6eld at site 0.' produced by dipoles
of magnitude exp) —iq ( e—e') ] in the X direction at
sites n (s, X =P, v, f) W.e can write this Geld as a sum of
two terms, the 6rst of which is produced by a con-
tinuous polarization distribution

P(x) =I exp( —iq. x) 81 (A9)

(where I is the density of ferroelectric ions), and the
second of which is produced by the difference between
the actual discrete distribution and P(x).

The field due to the polarization distribution Eq.
(A9) ls g1ve11 by

E(x) = —4v(q P/q'), (A10)

and we obtain for the first part of D(q),

D„I,I» (q) = —4v.n(q.q1/q') . (A11)

The long range of the dipole interaction is reQected in
the discontinuous behavior of D.q&'& for small q; the
q=0 limit depends on the direction from which the
point q=0 is approached.

The second part will be analytic at q =0, because the
contributions to the 6eld at site e' from the dipole at
e and from the polarization —E(x) in the cell at n
cancel each other for large distances

~
e—e'

~. Since
the Taylor expansion in powers of q will contain only

Special consideration is required for the g=0 Fourier
component D(0). As is well known, the sum in Eq.
(AS) is only conditionally convergent for q=O, which
means that D (0) depends on the shape of the sample. ""
This shape dependence is related to the occurrence of
depolarization eGects. If there exists a spontaneous
polarization Isp(os}er, it gives rise to a depolarizing
field

Eo= 4—vip(os)N 8r, (A16)

v,«= v(0)+4IrepsEg =4'«pslrr.

where N is the depolarization tensor (we confine our-
selves to samples of ellipsoidal shape) .We can eliminate
all shape dependence from our theory if we always
compare states with the same macroscopic internal
field.

In order to obtain the state of zero internal field, we
have to apply an external 6eld determined by

E'"'=E'*'+E"=E'*'—4v ep(os}N er =0, (A17)

in which case the molecular 6eld acting in the pseudo
spin space has the form

F= I I', 0, Lv(0) +4vnPsErr 1 (os) I. (A18)

Ke thus see that the transition from zero external
field to zero internal 6eld is eGected by replacing the
shape-dependent v(0) by the shape-independent quan-
tity'v(0)+4vsp 1Vrr, wlllc11 by coilstl'llctloI1 is eqllal to
the Lorentz local-field contribution:

Comparison with Eq. (A14) shows that v,II is equal to
D I»( ) 4 Il +& p~ +0(~) I (A12) the q=0 limit of v(q) for qi(, and we can write

v.«—v(q) =4 ~p'I (qr'/q')+l Z ~rr. q.q' I (A2o)where I.„),and 3f~„„dependon the lattice structure.
The tensor I.„q is just the Lorentz local-field factor.
Since trD=0 and trD~') = —4xe, L satisfies APPENDIX 3: ISOTHERMAL RESPONSE

IN THE MOLECULAR FIELD APPROXIMATION
A13

%e mant to calculate the isothermal response to anWe thus obtain to second order in q additional field y( n) in pseudospin space, which adds
v(q) =4s.«psI Lrr —(qrs/q') —ssg Jfrr„„q„q„I. (A14) to tile HamQtonian, Eq. (2), a term

One could take indirect interactions approximately
into account by assuming larger values for I.g than
Eq. (A13) permits as in Slater's theory of displacive
ferroelectrics. 's If t is a symmetry axis of the crystal,
then we can find axes P and q such that the quadratic
expression takes the form

,'gr, qs+m, q„s+M—,q-rs). (A15)

The ferroelectric structure will be stable only if this
quadratic form is positive-definite.

"J.C. Sister, Phys. Rev. 78, 'NS {$50).

We defin«h«esponse s(n) as the deviation from the
y=0 value (S)„

» A discussion of the problems associated with the shape de-
pendence and the conditional convergence of Fourier sums has
been given by M. Lax, J.Chem. Phys. 20, 135I (j.952) .~ Actually, for a 6nite sample such shape dependence exists
for q vectors within a pathological region, around the origin of
extent 0 ''3, where 0 is the volume of the sample as discussed
by M, H. Cohen and F. KeGer, Phys. Rev. 99, I128 (1955}.
%e shall here need only the behavior at g =0.
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and write to first order in the field cg,

s"'(e) = Zx'""(e e') e(e')
result for the pure Ising model":

(83& 1 ".'-"(q) =~(1-( &")/rl-Wq) (I-&.&:)j
This equation deanes the linear isothermal response
tensor x'"'h."The additional Geld cg(e) gives rise to a
change f(e) in the molecular Geld F in pseudospin
space:

F(e) =Ft+f(e). (84)

Here, FD is the molecular field in the absence of y( e):
Fo=fi', 0, .«& ) l (35)

and f(e) is given by

f(.) = Z (-, -&'(-)+~(-),

where the only nonvanishing component of the tensor
v(e, e) is

e»(e, e') =e(e, e').

From the molecular-6eM equation

(BZ7)

In the case of a uniform 6eld y, the above results
become shape dependent. This shape dependence is
again eliminated by calculating the response to the
additional "internal" 6eld y'"' dered by

y' '=y —4s NPsXsget. {818)

The change in the molecular field, Eq. (36), then

takes the form

f V ii.S+@Int

and the linear response to y' ' is given by

x""h=t I—A v,iij 'A. (820)

%e shall 6nally derive the quadratic isothermal
response for the ease of a uniform 6eM y. From Eq.
(38), we obtain to second order in f,

S(e) =P'(e)/F(e) j tanhPF(e), (88) s=A f—(d&0(f B.f)

we obtain the linear response to the change in the
molecular 6eld as

with

S&'I(e) =A f(e) (89)

A=«-.&./~»-t. «. &./n-~(1-&. &:)j
X(«&.«&./&-&"). (»0)

Taking Fourier transforms of Eqs. (36) and (89)
and solving for s&'I(q) gives

~=-:(&-.&./n L.&- &./F-t (I-&-&")jl
+5-'(& ) '/I")+P(l —

& )o')(-'(& &/n

-P&.&")3(«).(~&/(. &") (322)

In order to obtain shape-independent results, we use

Eq. (319) to express f in terms of yi '. In the quad-
ratic term of Eq. (321), we can replace f by its linear

appl oxlmatlon

fii) /+V ii, Xisothj, +int {823)

with

s'"(q) =x'-"(q) e(q)

x"'"'(q) =LI—A v(q) j-'A Xisoth, +tnt ~(+int. gl. +tnt) (824)

Then, solving Eq. (321) for s, we obtain to second
order 111 g' ",

Here, x""h is given by Eq. 820 . Further,
Of special interest are the components x~3'"'" and

X88 p=(1—A v,ii) ' ~ (a)n,

X»'-"(q) =~»/D —~»s(q) 3

x»'-'"(q) =~»/I I—~»~(q) j,
(313) aIld

S'=L1+v.«x- th) S Ll.+v.«.x'-~j. (826)

where

~ *=—(& ).& &./&.&")t:(&.&./I) -~(I-&.&:)j
g —

X lsoth+t+X»tigothts 9

(327)

(328)

Of special interest is the response to a field y' '=
(0 0 sit' ) wlliell Is g1veII by

A» ——(I/(ir&nt) L((01&t/n+p(0t)ot(l —(0&tt) j (316) Xitt"""=—t.(%s&»ii n+3»)/{I —&»Ii ii)'j

Q"e note that in the limit F~Oq we recover the RPA,
an

31 (X) ps Xgs X '-"=-L(3,.~:.,+3..)/(I-~-. )n&-.&' {»0)


