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A study of the scattering of BCS single-particle excitations by an isolated vortex in a clean type-II super-
conductor is reported. The coupled Bogoliubov equations provide a theoretical framework for calculating
quasiparticle wave functions. The vortex introduces superfluid velocity into the metal, depresses the order
parameter A(r) at the core, and gives rise to a Bohm-Aharonov effect. The scattering problem has two
channels with coupling between particlelike and holelike excitations. The total cross section diverges because
of the Bohm-Aharonov effect, but the cross section o, for a particle to scatter from one channel to the other
remains finite. This quantity o, is also equal to one-half the transport cross section. A numerical evaluation
of o, as a function of the energy and polar angle of the excitations relative to the external field has been

made.

I. INTRODUCTION

T has recently been observed that the ultrasonic
attenuation!? and thermal conductivity® of clean
superconducting niobium exhibit a dip near Hy. The
magnitude of these transport coefficients suddenly drops
with the appearance of flux penetration, proceeds to a
minimum, and increases to its normal value as the
magnetic field approaches the upper critical field H,.34
Forgan and Gough’ have suggested that the initial
decrease may be due to scattering of electronic excita-
tions by the vortices present in the superconductor.
The absence of the anomaly in dirty superconductors
corroborates their suggestion.?5 It is the purpose of
this paper to study the scattering effects of a flux line
on the BCS ¢ quasiparticles and to calculate the cross
section of a vortex. In another paper we study the
transport properties of a superconductor containing a
random array of vortices and employ the results ob-
tained here to compare with experiment.

The spectrum of bound states of a vortex in a clean
high-x superconductor has already been calculated by
Caroli, de Gennes, and Matricon.”® We extend their
calculational technique to encompass the scattering
problem in superconductors with intermediate values
of k (k>21/v2) such as niobium and vanadium.
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In Sec. II the problem of a vortex in a clean type-II
superconductor is formulated. This is followed by a
discussion of the potentials which we shall employ in
the Bogoliubov equations. Section III is devoted to
the uncoupled problem which represents a normal elec-
tron in an inhomogeneous magnetic field. These calcu-
lations also correspond to the high-energy limit in the
coupled case. A partial-wave analysis of the exact equa-
tion is carried out in Sec. IV and we proceed in Sec. V
to introduce the envelope approximation. The results
of our numerical calculations are also included in this
last section.

II. FORMULATION

In the BCSS® approximation, the electronic excitations
of a type-II superconductor containing a vortex are de-
scribed by the coupled Bogoliubov equations®

{i(0/08) = (r9/2m) [ (p— (¢/c) A(r)T¥)— pp*]
—A(r) exp(igr®)rO}¥, (x) =0. (1)

(pr is the Fermi momentum of the metal, and we
take Planck’s constant # and Boltzmann’s constant kg
equal to 1.) A spinor notation abbreviates the usual
form of these equations (r®, r®, and 7® are the Pauli
spin matrices) where the wave function is now a two-

component vector:
_ (%)
w@=(70). @

We employ the notation p to denote the momentum
operator —id/0x in the curly brackets of Eq. (1) and
as a label on the wave function to characterize its
incoming properties.

The vortex modifies the magnitude of the order pa-
rameter or pair potential function from its constant
value of A in the Meissner state and gives it a nonzero
coordinate-dependent phase. The introduction of a sys-
tem of circular cylindrical coordinates (7, ¢, z) centered

*N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov,

A New Method in the Theory of Superconductivity (Consultants
Bureau Enterprises, Inc., New York, 1959).
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F16. 1. Approximate potentials employed in Bogoliubov equa-
tions: A(7) in units of the order parameter in zero field, A(T)
and H(r) in units of the bulk critical field, H.(T) versus r in
units of the penetration depth N(7'). The approximate potentials
are given by the sclid line and numerical solution of the Ginzburg-
Landau equations with k=1/v2 are given by the dotted line.

along the axis of the vortex is convenient for describing
the spatial dependence of this potential and of the
magnetic vector potential A(r).

Equation (1) is translationally invariant in time
and in space along the 2 axis and can be made rotation-
ally invariant about z by introducing a new wave func-
tion

¥, (x) = exp(i3ér®) @, (x)..

The symmetry of the problem is exploited by extract-
ing a plane wave propagating in the z direction from
the new wave function and carrying out a partial-wave
expansion in the angular variable ¢. One has

8, (x) = (20)" exp[iha—ED)] 35 ewdp(r), (3)

ﬂ:—*m
where
P=g+. )

q and % are the components of momentum perpendicu-
lar and parallel to the external field, and p is restricted
to half-integral values in order that the wave function
¥, (%) may remain single-valued. The partial-wave com-
ponent &g (r) satisfies a simplified differential equation
which depends only on the coordinate 7. The equation is

{E+4 (2m) 7 O[d2/dr*+r1d/dr— (u/r+mvs(r)7®)?
+prt— ] A(r)TO} () =0, (5)
where the superfluid velocity function is given by

v (r) =m~1[(2r) 71— (e/c) A(r) . (6)
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The potentials which appear in Eq. (5) must be
obtained self-consistently from the wave functions in
order to arrive at a complete theory of a superconduct-
ing vortex.! Fortunately we have the Ginzburg-Landau
(GL) equations to provide us with the functions that
are needed in order to proceed.!* The solution to these
equations gives a self-consistent result in a tempera-
ture range restricted by the inequality (7.—T) /T .<&<1.2

In Fig. 1 we plot the results of Neumann and Tewordt!?
for the order parameter A(r) and magnetic field H(r)
obtained by solving the GL equations for a supercon-
ductor with x=1/v2. We shall employ the following
analytic approximations for these potentials in our cal-
culations:

. A(r) =A[1—exp(—7*/4N7) ' (7
an
H(r) = (c/4eN2) exp(—r2/4N?), 3)

where A\(T') is the penetration depth at temperature 7.
The magnetic field is equal to the curl of the magnetic
vector potential, which implies that

mu,(r) = (1/2r) exp(—73/4\2). 9)

In units of the bulk critical field H.(T), the magnetic
field of a vortex in our approximation has the form

H(r)=H,(T) exp(—r*/4\?) V2. (10)

We also plot Egs. (7) and (8) in Fig. 1 for x=1/V2.
The approximate functions H(r) and A—A(r) exceed
the numerical ones in the range 0<7<3\(T"). For large
7 they approach their limiting value much more rapidly
than the true GL solutions; we will therefore obtain
incorrect wave functions for large partial-wave num-
ber u, but such waves make a minor contribution to
the cross section. Moreover, this “Gaussian” behavior
of the potentials for large » ensures rapid convergence
in the integration of Eq. (5).

Just below the critical temperature the GL param-
eter of clean niobium is 0.76 while that of vanadium
is 0.848.14.15 These two metals constitute the only two
clean type-IT superconductors presently known and
both have relatively small values of «.

The potentials of Egs. (7) and (8) can be improved
in two ways: (1) Numerical solution of the GL equa-
tions may be employed to obtain very accurate results
for « values appropriate for niobium and vanadium.
(2) Higher-order terms of the free-energy functional

0P, G. de Gennes, Superconductivity of Metals and Alloys
(W. A. Benjamin, Inc., New York, 1966), Chap. 5.

1Y, L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor.
Fiz. 20, 1064 (1950) [English transl.: Men of Physics: L. D.
Landau I, edited by D. ter Haar (Pergamon Press, Inc., Oxford,
1965), Part 2, p. 138].

127, P. Gor’kov, Zh. Eksperim. i Teor. Fiz. 36, 1918 (1959)
[English transl.: Soviet Phys.—JETP 9, 1364 (1959)].

13T, Neumann and L. Tewordt, Z. Physik 189, 55 (1966).

14D, K. Finnemore, T. F. Stromberg, and C. A. Swenson,
Phys. Rev. 149, 231 (1966).
( 156R). Radebaugh and P. H. Keesom, Phys. Rev. 149, 209
1966).
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may be kept to obtain a correction to the potentials
for temperatures below the immediate neighborhood
of T, This latter correction is important in clean
type-II superconductors for small values of x as we
point out in the next paragraph.

As the temperature tends to 7., where the GL solu-
tions are valid, the lower critical field H,; of the super-
conductor approaches the upper critical field H,; and
it becomes increasingly difficult to study the individual
nature of an isolated vortex. At temperatures of 0.97,
the calculations of Neumann and Tewordt indicate
that the correction to the GL magnetic field at =0
is equal to +6% for a clean superconductor with
k=1/V2Z. At temperatures much lower than T, the
vortex potentials for such a superconductor are pres-
ently unknown. We expect however that the approxi-
mate expressions of Egs. (7) and (8) remain qualita-
tively correct over the entire temperature range.

III. UNCOUPLED CASE

Before solving Eq. (5) we examine its properties in
the absence of the coupling term A(r)r®. This corre-
sponds to the limit £>>A, and the solution of the equa-
tion describes the wave function of a normal electron
in the presence of the inhomogeneous magnetic field
due to a vortex.’® Since the equations are uncoupled
in this case we need only consider a single component
ug(r) of the wave function. The other component .2(7)
satisfies the same equation with the modification

E——E; (11)

in the square brackets of Eq. (12). The scalar equation
that must be solved for the electron wave function is

[2mE+a2/dr*+r-1d/dr— (u/r+mp,)?
+prt—kJug (r) =0 (12)

with the boundary condition that us#(r) be square
integrable at the origin.

If we ignore the superfluid velocity function in Eq.
(12), an exact solution is obtained in terms of Bessel
functions of half-integral order. The asymptotic value
of the exact wave function will therefore behave as
follows:

u——p

(13)

where ¥, (gr) is the Neumann function which diverges

at the origin. In order to simplify notation in the re-

mainder of this paper the absolute value brackets about

p in the Bessel functions will be made implicit.
Except for a small group of states with

ke~ (pp*-2mE) 12

traveling in a narrow cone about the z axis, the wave
function varies rapidly over a length interval which is
much shorter than the penetration depth. The WKB

ug (r)~J1u1(gr) cosdy—Yu(gr) sing,

16 Hide Yoshioka, J. Phys. Soc. Japan 21, 948 (1966).
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approximation is well suited for this situation, and we
may immediately write down an expression for the
phase shifts?”

=3 Ll m—arot [ ar (Lf— (u/rtma) =g},
(19)

where the transverse component of momentum ¢ is
given by
q= (pr'—K*=+2mE)'", (15)

and 7, the classical turning point of the trajectory, is
a root of

g= | w/rotmvs(ro) |. (16)

The integrand in Eq. (14) is expanded in powers of
mv; and only the leading, nonvanishing term is retained,
so that

dr umv,(r)

a=—/w—————.
* ulia (@ri—p?)12

Substituting the potential of Eq. (7) into Eq. (17)
and introducing the new dummy variable of integration

(17)

F=3r\"L, (18)
we obtain the tabulated integral'®
b1z /°° df exp(—7)
S PR DI
=—sgn(u)ir erfc(| B ]), (19)

where z=pu/2¢g\ and erfc(z) is the complementary error
function
erfc(z) = 27102 fn exp(—£)di. (20)
To obtain the scattering amplitude it is necessary
to construct incoming plane-wave states from the
partial-wave functions of Eq. (12). At distances larger
than | u|/g the leading term in Hankel’s asymptotic
expansion for the Bessel functions simplifies Eq. (13)
and we may write

ug (r)~(2/mqr)" cos(qr—3 | u | m—iw+3,)

=(2/mgr)!* cos(gr—3 | | m—w+8,+im sgou),  (21)
where the integral wave number / is given by
I=p+3. (22)

Incoming plane-wave states are constructed by sum-
ming an infinite series of partial-wave functions with
the appropriate constant coefficients
g (T)~ve=4¢ 3 41 (21r) 1
7
Xexpli(lp+or+im sgnl) Jug' (), (23)

" M. L. Goldberger and K. M. Watson, Collison Theory (John
Wiley & Sons, Inc., New York, 1964), Chap. 6, p. 324.

1. S. Gradshteyn and 1. M. Ryshik, Table of Integrals Series
and Products (Academic Press Inc., New York, 1965).
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where #,'(r), 6;, and sgnl are equal to #(r), 8, and
sgnu for the value of u prescribed by Eq. (22).

In the asymptotic region we may employ Eq. (21)
to obtain an explicit representation for the wave func-
tion

tq (1) ~e % (2m) 7

X{D ilUei®(2/mqr) V2 cos(gr—% | 1| m—1x)
)

+expli(gr—im) r2f(9) },

where the scattering amplitude is simply
(@) = (2mq)~"2 3 [exp[2i(8r+1m sgnl) ]—1]ei%e
7

= (2mq) e 3 [exp[2i(3,+1m sgnu) J— 1.

M

(24)

(25)

The term i sgnu which is added to the phase shift is
identical with that which occurs in a study of the
Bohm-Aharonov (BA) effect for a flux line of strength
cr/e? In a study of flux lines with an even number of
quanta of circulation this contribution is absent since
the wave function #4(r) remains invariant under 2r
rotations about the z axis.

The differential scattering cross section is equal to
the absolute magnitude of the square of the scattering

amplitude ,
do/dp= | f(¢) [*

The total integrated cross section diverges as a result
of the BA effect. For very small scattering angles we
may ignore the phase shift §, in Eq. (25) and the
resulting sum is elementary. The differential scattering
cross section for small angles is given below:

lim do/d¢ee2/mgd?.
-0

(26)

(27)

The transport cross section remains finite and is
evaluated from Egs. (25) and (26). With the notation

8= 8,+1m sgnu=1r erf (7), (28)

we have
ou= [ a6 (do/ds) (1—cos$)

=271 Y sin?(§u1—5,)- (29)
"

The phase shift §, is a continuous and slowly varying

function of the variable u. To a good approximation

we may employ the definition of the derivative to write

o =2g"" Z (5u/du) % (30)
B
From Eq. (28) it is easy to show that
8,/ dp=n'22"" exp(— ")/ (2g)) .- (31)

1Y, Aharonov and D. Bohm, Phys. Rev. 115, 428 (1959).
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With this result we obtain the transport cross section
0

0'||=7rq—1(29)\)—1 exp(——-l“)dt

0
=7 T(}) (890)
=1.4/¢, (32)

where the summation over u is approximated by inte-
gration since the number of partial waves involved is
so0 large. In niobium, for example, prA(T") is equal to
102 at 7=0 and increases as T tends to T, where it
diverges.* We have the order-of-magnitude result

oy 2 10—2191{“1, (33)

which is too small to explain the anomaly discussed in
the Introduction.

We may also obtain a measure of the asymmetry of
the scattering by calculating the integrated cross sec-
tion averaged over sin ¢:

1= f_ " i (do/de) sing

=q¢1 Y sin(28,—25,11). (34)
®

Making the same approximations as in the calculation

of the transport cross section we have

oue—20 O db,/du=—mrq L (35)
B

This cross section is small but finite and of the order

7pr~Y, which in niobium and vanadium is 12 and 7 &,

respectively.'5 The sign of the cross section indicates

that the electrons prefer to rotate against the super-

fluid motion.

IV. PHASE SHIFTS

The scattering theory of the coupled set of equations
constitutes a two-channel problem. In a normal metal
it is well known that there are particle excitations
above the Fermi surface and holes below which possess
the same energy. The superconducting interaction mixes
the particle-hole configurations near the Fermi surface
and the physical distinction between particles and holes
is lost. It remains possible, however, to talk of single-
particle excitations that have wave vectors whose mag-
nitude is in excess of or less than pp. Superfluid motion
or a local depression of the order parameter in a super-
conductor permits particlelike and holelike excitations
to couple so that a scattering event may involve a
change of channels.

In the uniform case, Eq. (5) reduces to

{E+ (2m) "7 OL @/ dr*+r1d/dr— pr 2+ pr*— k]
— AT}, Ou(r) =0, (36)
which has the two real solutions

M(E)) Ju(gr)

Wq(o)” (7') = ( ‘D(E)
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and
a0 =("DV @, @)
where
IECE e
)= (01~ (AP PETT (39)

are the BCS coherence factors.® The two momenta ¢
and § are given by

¢= prt— I+ 2m(B2— A?)

and

P=pr— B 2m(EP— AP, (39)

The potentials of Egs. (7) and (8) couple the two
channels and introduce a phase shift in the asymptotic
wave functions. From Fetter’s work one can show that
the real solutions of Eq. (5) behave as follows in re-
gions remote from the core of the vortex®:?:

wgt (r) ~cosxun[Ju(gr) coss,®—Y,(gr) sins,®]
+sinx il Ju(qr) coss,®+Y,(gr) sing,®],
Wt (1) ~—sinxm[Ju(gr) cosd,@—Y,(gr) sing, @]
~+ cosx, il Ju(@r) cosd,@+Y,(Gr) sind,@].

The normalization vector n has components #(E) and
2(E) and

(40)

f=10n. (41)

The coupling angle x, is found to be nonzero for scatter-
ing of electronic excitations by a vortex. As in the case
of normal electrons we evaluate the Bessel functions
for g7 | u| and introduce the integral wave number
I given by Eq. (22):

w' (r)~(2/mgr)'*n cosxa
X cos(gr—3% | 1| m—3ir+8,041r sgnl)
+ (2/7qr) ' siny
X cos(Gr—3% | 1| 7—ir— 8,0+ sgnl)
and
Wo! (r)~— (2/mgr) "'y sinx;
X cos(gr—3 | 1| w—iw+6:P+1w sgnl)
+(2/mgr) % cosxa
X cos(Gr—3% | 1| m—3r—8,D+1r sgnl). (42)

Linear combinations of these two functions, ®,'(r)
and ®,'(r), are chosen so as to obtain new functions
with incoming wave limited to a single channel. The

# A, L. Fetter, Phys. Rev. 140, A1921 (1965).

2 Fetter has calculated the reaction matrix for a spherical
potential in an infinite superconductor. The modifications re-
quired to treat a cylindrical potential are not very great and we
omit the details here.
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group velocity for waves of momentum g is equal to
vy=dE/dg=q(E*— A */mE, (43)

which is positive, whereas that for waves of momen-
tum § is equal to

Ty=dE/dj= —G(E*— A?)\?/mE,
which is negative.

It follows that the waves carrying energy inward
towards the z axis have the functional form e—ir/2
and exp(igr) r1/%; the corresponding wave functions
are given by

B! (r) =il {w,(r) cosxs exp[4(8:P+1w sgnl) |
— g} (r) sinx; exp[4(8:@+3w sgnl) ]}
~ilU(2/mwgr)Vy cos(gr—% | 1| 7—%m)
— (2/mgr) "y exp[i(gr— i) Jir T
— (2/mgr) Piett™ exp[ —i(qr—im) JinTn?

(44)

(45)
and

&, (r) =111 {w,(r) siny; exp[i(8;¥— 3 sgnl)]
+ @1 (r) cosx exp[3(8:P— 1w sgnl) ]
~iU(2/wgr) 5 cos(gr—3% | 1| m—im)
— (2/7qr) Pyer exp[ —i(gr—im) Jir T
— (2/mqr) "% exp[ —i(qr—im) JinT'.  (46)

We have introduced the T matrix in Eqgs. (45) and
(46) without preceding its introduction by a formal
definition. In the simple treatment of this paper it
may be regarded simply as a symbol to abbreviate the
following expressions:

—aTul=cosx; exp(i8;?) sin§;®
+sin?x; exp (6,®) sin;@,
— 7T ot =sin?x; exp (18, @) sind,/®

4 cos?x; exp(48/?) sind,/?,
and

""'W'T121= —TTﬂl

=siny; cosy[ exp(48;V) sind;®

—exp(6:;?) sing; @7, (47)
where the phase shifts §,” and §/® are given by
8,0 =58;+1r sgnl (48)
and
8/ D =§;"—1r sgnl (49)

with ¢ running from 1 to 2.

The matrix elements Ty and T.! pertain to scatter-
ing in the ¢ and § channels, respectively, and are
affected by the BA effect. The elements T3,} and Ty '
exist because of the coupling between channels and
have no term %} sgn! present in them.
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To obtain incoming plane-wave solutions of the prob-
lem one must evaluate the right-hand side of Eq. (3),
and this gives us
&, ()~ (2m) 2 exp[[i(ka— Et) Je~*{n exp(iq- 1)

+n exp[i(gr—im) Jfu(@) "
+i exp[—1(gr—im) 1(¢/9) g (¢—m) 2} (50)
and
&, ()~ (2m) 7% expli(ks— Et) Je~* {5 exp(—ig- 1)

+n expli(gr—im) Jg(¢—m)r 12

+i exp[—i(gr—1m) Ife(¢)7},  (51)
where the scattering amplitudes are
f1(@) =¥ (2/mg) "2 37 (—inTut)es,  (52)
fo(@) =¥ (2/n) 2 32 (—inTot) e,  (53)
m
and
g(¢) = (2/mq) ' 3 (—inTur)ews.  (54)

The scattering cross section is equal to the radial
flux of outgoing single-particle excitations per unit
angle divided by the total incoming flux. The quasi-
particle density is equal to the inner product of the
wave function with itself:

pu=T"(2)¥ (x) (55)
and satisfies the conservation equation
9pa/ 3+ V+ju=0 (56)
with the current density
jn= (2im) ¥ (2)r OV (x) —[VI' () JrO¥ (x)
—2i(e/c) A(r) Tt (x)¥(x)}. (57)

One may verify Eq. (56) by carrying out the time de-
rivative of p, and employing Eq. (1) where necessary.

We evaluate the scattered current for the wave func-
tion of Eq. (50). The magnetic potential term may
not be ignored because of the 1/ term, but the super-
fluid velocity function will make no contribution when
7 is sufficiently large. The result of this calculation is

(Gu)r=q(B2— )" | fi(9) [+ | g(&—) [P]/mE(27)".
(58)

The incident flux of quasiparticles is equal to the group
velocity divided by the volume of the system which
in continuum normalization is (27)3. We have already
calculated the group velocity in Eq. (43) so that the
differential scattering cross section may be immedi-
ately written down:

dow/dp= | fi(¢) [+ | g(o—) [* (59)

ROBERT M. CLEARY
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A similar expression can be derived with the wave func-
tion of Eq. (51). However, we will have no need for
it in the remainder of this paper, and we do not calcu-
late it here.

On a length scale pr?, the order parameter and
superfluid velocity are smooth and slowly varying func-
tions. It follows from conventional scattering theory
that the amplitudes f;(¢) and f3(¢) are narrowly peaked
in the forward direction. The same argument applies
to the distribution of wave vectors q and q for particles
changing channels in a scattering event. However, the
difference in sign of the group velocity for the two
channels causes energy and momentum to be carried
in the opposite direction from that of the incident
beam. This fact is reflected in the amplitude g(¢—n),
which is peaked about ¢=1.

We may introduce another density function p, which
is given by

pe=T1(x) 7OV (x). (60)
The subscript ¢ is employed to denote this function
since in second quantization the off-diagonal compo-
nents of the corresponding operator are proportional
to the electric charge density operator. The current
density is

je= (2im)H{ ¥ (x) V¥ (x) —[VIT (x) J¥ (x)

—2i(e/c) A(r) T (x)r®¥ (x)}; (61)
however, a conservation equation similar to Eq. (56)
is not satisfied by these two functions except in special
cases. In particular, eigenstates of the energy operator
will satisfy the conservation equation in regions where
the energy gap is a constant and where there is no
superfluid motion. Since the density function p. appears
in calculations of transport properties it is useful at
this time to introduce a cross section do./d¢ which
in a scattering event is equal to the radial flux of
outgoing current 7, per unit angle divided by the total
incoming flux of the same current. We evaluate the
radially scattered current for the wave function of
Eq. (50) and ignore interference terms between chan-
nels. These have an oscillatory dependence on the radial
coordinate of the form exp[4(g—@)#] which will aver-
age out to zero over some finite length except in the
low-energy limit when ¢ equals §. The radial compo-
nent of the current in the region r—o is

(j)r=m2(2m) =L | fu(9) P~ | g(¢—m) ], (62)

while the incident flux is (2x)~3g/m. The differential
scattering cross section becomes

doo/db=| () [*— | g(¢—m) |*

Because of the BA effect the total integrated cross
sections ¢, and ¢, diverge. However, their difference

(63)



175 VORTEX IN CLEAN

remains finite and may be calculated:

20 [ 46 Ldoa/dg—do /6]

=2 [ dg1g(e) I (64)

The transport cross sections are also finite:

sui= [ d8(doa/d6) (1—cosg)

= [ 46l 1 7@ I~ | 56 Pl —cos)+20, (65)

and

sai= [ db(do./dg) (1—cose)

= [ d6L17:6) P+ 1 8(6) IF1(1—cos) 2a.
(66)

{E—s(r) /r—A(r) 70+ (2m) 77 OLd/dr*+§*(r) ]} Ry (r) =0,

where the square of the coordinate-dependent wave
vector is

S%(r) = prt— B2— ur2+4-3r2— (mo,) % (70)
We assume a real solution of the form
Ry (r)=S(r) " Lg(r)ex+g*(r)ex],  (71)
with
x= / dr S(r)+1x (72)
70

and 7>7. In the WKB] approximation the exponen-
tial functions of Eq. (71) are solutions of Eq. (69) in
the absence of the first three terms in the curly bracket.
To include these we introduce the envelope vector g(r)
which we assume is slowly varying compared to x.
With this assumption in mind Eq. (71) is substituted
into Eq. (69) and only first derivatives of g are kept
so that one arrives at the simplified result?

[—iS(r)/m]r® (dg/dr) = (E—uv,/r) g— A(r)7Wg.
(73)

If g is a solution of Eq. (73), Z=r®g* is still another
and we may express the components of g in terms of
the complex function a(r)

8(r)= (izg:; *) '

22 See Ref. 8, Eq. (I21).

(74)
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We have shown that in the high-energy limit E>>A,
the transport cross section is very small. The first term
on the right-hand side of the lower of Egs. (65) and
(66) is of the order pz~! or less for all E, while the cross
section ¢, is very large in the low-energy limit E>A,
as we shall show in the next section. To a good ap-
proximation therefore,

(67)

The appearance of this rather large cross section o,
for excitations to change channels is strictly a super-
conducting effect which does not occur when A=0
or EX>A.

o'n”&—-ae“&st.

V. CALCULATIONS

Up to now only the scattering theory of super-
conductivity has been discussed and the particular
differential equation introduced in Sec. II remains to
be solved. We begin the solution of Eq. (5) by intro-
ducing the change in dependent variable

R (r) =r2@p(r) (68)
so that the wave equation contains no first derivative
inr:

(69)

For the positive sign in Eq. (74) the real and imaginary
components of ¢ satisfy the equations

—m 1S (r)da,V /dr=E— uvr+A(r) Ja;  (75)
and
m 1S (r)da;® /dr= E—uvr'—A(r) Ja,®, (76)
where
a®(r) =a,V(r)+1a, V(7). (77)

We shall use the superscripts (1) and (2) to denote
the functions a(r) that acquire a positive or negative
sign in Eq. (74). Since the wave function must be
finite at the origin one must impose the condition that
a(r) be real at o as required by the WKB]J theory of a
linear turning point.

To construct a®(r) we replace the superscript (1)
in Egs. (75) and (76) with (2) and introduce the new
boundary condition

a9 (ro) =0. (78)
We proceed to carry out the sum
a®(r) = —a;® (r) +ia,®(r) (79)

after solving the equations.

Some exact consequences of Egs. (75) and (76) are
derived by studying the solutions at large 7. In the
limit »—e0, the superfluid velocity function vanishes
and the order parameter equals its value in the field-
free state. We may easily solve the differential equation
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Fic. 2. The phase shifts 6, and §,® as a function of energy
in units of the order parameter A(T) for | u|/prN(T) equal to
0.5, 1.0, and 1.5 at 0 =4, where p is the partial-wave index.

for the real and imaginary parts of ¢ (r) to obtain
ai(l) = d(l) Sinl:g‘ (r) +6M(I>]

and

a,O=a®[(E+A)/(E—A) T2 cos[¢ (r)+6,7], (80)
where
¢ =m f " (B2— )12 (r)dr (81)

and @@ is a real constant. In the Meissner state the
phase shift 8, must vanish and Egs. (80) and (81)
become exact for all #>7,. In general §, will not be
zero and as E tends to A the phase shift 6, must
approach =37 for all 4 in order that Eq. (81) may
remain finite. The complex function ¢®(r) is calcu-
lated with the help of Egs. (77), (80), and (81)

a® (r) =a®[E/ (E—A) J"*{u(E) exp[i(¢(r)+8,%)]

+o(E) exp[—i(c(r)+8,) 1} (82)
Combining Egs. (71) and (82) and comparing with
Eq. (40) we see that x, is equal to fw. In the high-
energy limit Egs. (80) and (81) are valid for all » and
one may rederive the WKB] results of Sec. II.

In calculating ¢@(7) for large 7 proper considera-
tion must be paid to Eqs. (78) and (79).

59 (r) =GOL(E-+A)/(E— ) sinf§ () +5,7

(83)
and
a:® (r) =—a® cos[{ (r)+8,% ], (84)
where @® is a real constant. As E tends to A the phase
shift §,® must vanish in order that ¢, (r) may remain
finite. The complex function a®(r) is constructed and
exhibited on the following line:

a® () = —a®[E/(E—A)
X {—u(E) expli(¢ (1) +8.2)]

+o(E) exp[—i(c(r)+0.2)]}.  (85)
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With ¢®(r) we may construct the second wave func-
tion of Eq. (40) with the coupling angle x= 1.

Unlike the coupling angle x, the phase shifts §,®
and §,® are rapidly varying functions of the energy E
and the partial wave number u in the range ES A. The
quasiparticle momentum, however, may be restricted
to the value pr, and we write

kp= ﬁp sin0, (86)

where 6 is the polar angle of the trajectory of the
particles with respect to the external field.

We have solved Eqgs. (75) and (76) on the IBM
360/67 digital computer at the Stanford Computation
Center. The goal of our first computational effort was
to plot the phase shifts 5, and §,® as a function of
energy for typical values of x and 6. Some results are
plotted in Figs. 2 and 3 where energy is measured in
units of A(T). We employ?

A(T) =3.2T,(1—T/ T, (87)

and
MNT)=0.526(1—T/T,)772,

where &=1p/7A is the coherence length.

A peculiar resonance is observed in all of the phase
shifts in the low-energy limit prescribed by E=A. In
particular the phase shift 6, is equal to —§ sgnu for
all partial-wave numbers p and polar angles 6, while
the other §,® is identically zero. In Schrédinger theory,
a resonant phase shift must be attributed to the char-
acteristics of the scattering potential. In the Bogoliubov
problem the resonance previously described exists for
a whole class of potentials. The strength and spatial
extent of the potentials does not determine the posi-
tion of the resonance in the energy spectrum but only
its width. The group velocity of the waves vanishes
identically in the low-energy limit and the medium
itself contributes to the resonance.

In the high-energy limit the two phase shifts merge

(88)
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Fic. 3. The phase shifts 5, and 5, as a function of energy

in units of the order Pararneter A(T) for | u|/p#N(T) equal to
0.5, 1.0, and 1.5 at § =1, where p is the partial-wave index.

2 See Ref. 10, Chaps. 4 and 6.
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and the scattering reduces to the one-channel problem
examined in Sec. ITI. One may also observe an asym-
metry in the phase shift for positive and negative
values of u. It is known that a low-lying branch in
the bound-state spectrum exists only for negative val-

a;V>~G® sin {m / [(E—-—uvsr_l)2—A(r)2]1/25(r)"1dr}
70

and
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ues of u.® Here, the width of the resonance is larger
for u<0.2¢

A better understanding of the results illustrated in
Figs. 2 and 3 may be obtained by solving Egs. (75)
and (76) in the WKB]J approximation where we have

(89)

OGO (E— vy HA(r) )/ (E—posr1— A(r) ) V2 cos {m / ’ [(E—pver)2—A(r) 2425 (r) “1dr} ,  (90)

with
aV=[(E—uvs)2—A(r)2]71 (91)

For negative values of u the square root in the inte-
grand of Eqgs. (89) and (90) is real and slowly varying
for all » in the range 7, to . When E approaches A
the approximation breaks down because of the turning
point which exists at large 7 for E=A. With positive
values of u the square-root function is imaginary be-
tween the points

E—uwvr=24A(r), (92)

and the wave function must be modified over this re-
gion. The effect only exists for nonzero A(r) and results
in a large modification of the phase shifts for E~A.
Since the quasiparticles must tunnel through the re-
gion specified by Eq. (92) its amplitude and phase at
infinity are sensitive to the parameters which character-
ize the barrier. In particular the dependence of §,? —4,®
on @ is quite rapid, as can be seen in Figs. 2 and 3.

We have calculated ¢,(E, §) by evaluating the phase
shifts and performing the necessary summation over
partial-wave index u. The results are plotted in Fig. 4
with o, in units of A(7") sinf versus energy in units of
A(T) for a range of sinf between 1 and 0.2. The esti-

A(T)SING
[

| Ll L2 1.3 14
E/A(T)

Fic. 4. The cross section o,(E, 6) in units of A(T) sing for
scattering particles to change channel as a function of energy in
units of the order parameter A(T) for sind ranging from 1.0 to
0.2 in steps of 0.2.

mated error of the program was 19, although the
actual error was possibly 5%. The cross section is a
rapidly varying function of E and 6, decreasing to zero
for large E and small 6; it diverges when E=A since
all the phase shifts are equal to =4}=. From our nu-
merical calculations we conclude however that this
divergence is only logarithmic. A divergence of this
kind has been encountered by Fetter® in a study of
scattering by a spherical §-shell potential.

The cross section o, is very large in the range of
energies E~A(T). As T tends to T, this range shrinks
to zero, but o, diverges like N(7"). As a result the
thermally averaged cross section will remain finite and
nonzero even at I'=T1,. At temperatures below 7 in-
creased weighting of the low-energy part of the curve
will cause the cross section to increase.

It follows from Egs. (47), (54), and (64) that
os(E,0) is the total scattering cross section for an
incoming particle to change channels. The coupling
mechanism between particlelike and holelike states of
the same energy appears only when A is finite and
will vanish for normal electrons. It is not possible,
therefore, to calculate such a cross section by the anal-
ysis of a simple Schrédinger equation of the type stud-
ied in Sec. III.

Cross sections like o,(E, 6) are not new to super-
conductivity theory but have been encountered previ-
ously in the study of paramagnetic alloys®® and of
current carrying films containing spinless impurities.?
In all these cases there is the introduction of an inter-
action into the Hamiltonian which violates the time-
reversal invariance of the electrons. As a result, super-
conducting pairs are broken by the scattering potential
which in the case of a vortex results in a region of gap-
less superconductivity of diameter £(T") near the core.

% Caroli and Matricon point out that the sense of rotation of
the superfluid motion of a vortex fascilitates the formation of
bound states for excitations rotating in the opposite direction.
In a similar vein, we expect the excitations rotating with the
superfluid to experience greater scattering because of the extra
energy needed for rotation in that direction.

% A. A, Abrikosov and L. P. Gor’kov, Zh. Eksperim. i Teor.
Fiz. 39, 1781 (1960) [English transl.: Soviet Phys.—JETP 12,
1243 (1961) 7.

% K. Maki, Progr. Theoret. Phys. (Kyoto) 29, 603 (1963).
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The potentials of a vortex are large and we have not
employed the Born approximation as is usually done
for scattering by atomic potentials. We have also exam-
ined a model for a vortex in which the depression in
A(r) has a square-well appearance and the superfluid
velocity is limited to the confines of the well. Such a
model can be solved analytically and the results may
be compared with the more realistic calculations pre-
sented here. The bound-state spectrum agrees qualita-
tively with that of Caroli, de Gennes, and Matricon.”-

Forgan and Gough have estimated a vortex cross
section of 40 A from their measurements of the anomaly
in the ultrasonic attenuation near H,.! More recently,
Sinclair and Leibowitz have observed a much larger
effect in vanadium which suggests a cross section of
200 A near T, for the attenuation of longitudinal sound
waves propogating in the direction of the external
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field.” In order to compare calculations with experi-
ment it is necessary to obtain a transport theory of
superconductors in the presence of vortices. We are
carrying out such a program and hope to publish the
results soon.
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Ultrasonic Investigation of the Isolated-Vortex State near
H, in Vanadium*
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Ultrasonic attenuation in the mixed state of vanadium has been investigated near Hea, where the vortex
density is low. The expected rise toward the normal-state value of attenuation at H, is preceded by an
initial absorption decrease as the vortices penetrate. The unexpected dip is interpreted in terms of a reduction
in the quasiparticle mean free path, a result of the scattering of quasiparticles by vortices. The scattering
width of a vortex was found to be (2.4:-0.4) X 1078 cm for temperatures near T, in good agreement with the
theoretical determination 2.1X1078 cm. The apparent width decreases at lower temperatures. Similar
measurements have been made in niobium. The scattering width is found to be considerably greater in
vanadium, and its temperature dependence is in the opposite direction. A further feature of the present
results observed even at rather low fields was the faster-than-linear dependence of the reciprocal attenuation

on the internal field.

HE attenuation of ultrasonic waves in a pure
type-IT superconductor near H. shows an unex-
pected decrease as the field initially penetrates. This
was first demonstrated in experiments in niobium.!? We
believe that the attenuation provides a sensitive test
for the vortex properties, and present here results of a
detailed investigation of the field dependence of the
attenuation. This behavior shows a systematic trend
with temperature.
The vanadium sample was the same one as that used
by Radebaugh and Keesom? for their demonstration

* Supported in part by the Advanced Research Projects Agency.

t Present address: Bellcom, Inc., Washington, D.C.

1E, M. Forgan and C. E. Gough, Phys. Letters 21, 133 (1966).

il1\'T7. Tsuda and T. Suzuki, J. Phys. Chem. Solids 28, 2487
(1967).

3R. Radebaugh and P. H. Keesom, Phys. Rev. 149, 209
(1966) ; 149, 217 (1966). The reader is referred to these papers
for a complete description of the superconducting properties of
vanadium, and of this particular sample.

of the intrinsic type-II behavior of vanadium. Longi-
tudinal 150-Mc/sec sound waves were propagated
axially through the central core (diam 0.1 cm) of the
cylindrical sample (length 1.9 cm, diam 0.7 cm). A
magnetic field was applied along the sample axis and
swept linearly in time. The voltage appearing across a
short coil (length 0.3 cm), wound centrally on the
sample, was integrated to give the total flux within the
coil. With a correction for the flux within the air gap
between coil and sample, the average magnetic field
within the central region of the sample was determined
from measurements in the normal and mixed states.
The magnetization through the sample was not
expected to be constant since the demagnetizing coeffi-
cient for a cylindrical sample is not uniform. This
consideration led us to propagate the sound wave only
through the central core of the sample, so that the
attenuation level was determined only by the field
within this core. Thus, the effect of the nonuniformity in



