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A study of the scattering of BCS single-particle excitations by an isolated vortex in a clean type-II super-
conductor is reported. The coupled Bogoliubov equations provide a theoretical framework for calculating
quasiparticle wave functions. The vortex introduces superQuid velocity into the metal, depresses the order
parameter it(r) at the core, and gives rise to a Bohm-Ahamnov eiiect. The scattering problem has two
channels with coupling between particlelike and holelike excitations. The total cross section diverges because
of the Bohm-Aharonov eGect, but the cross section a; for a particle to scatter from one channel to the other
remains Gnite. This quantity o; is also equal to one-half the transport cross section. A numerical evaluation
of cr, as a function of the energy and polar angle of the excitations relative to the external Geld has been
IQade.

I. INTRODUCTION
" T has recently been observed that thc ultrasonic
. . attenuation' ' and thermal conductivity' of clean
superconducting niobium exhibit a dip near H,~. The
Inagnitude of thcsc tI'aDspol't coeKcicnts suddenly dl ops
with the appearance of Aux penetration, proceeds to a
minimum

y and increases to its normal value as thc
magnetic Geld approaches the upper critical 6eld H,2.' 4

Forgan and Gough' have suggested that the initial
decrease may be due to scattering of electronic excita-
tions by the vortices present in the superconductor.
The absence of the anomaly in dirty superconductors
corroborates their suggestion. "It is the purpose of
this paper to study the scattering CGccts of a Qux line
on the SCS 6 quasiparticles and to calculate the cross
section of a vortex. IQ another paper we study the
transport properties of a superconductor containing a
random array of vortices and employ the results ob-
tained here to compare with experiment.

The spectrum of bound states of a vortex in a clean
high-~ superconductor has already been calculated by
Caroli, dc Gennes, and Matricon. v' VVC extend their
calculational technique to encompass the scattering
problem in supcrconductors with intermediate values
of a (tc 1/V2) such as niobium and vanadium.
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ID Scc. II thc problem of a voI'tcx ln a clean type-II
superconductor is formulated. This is followed by a
dlscussloQ of thc potcQtlals which we shall employ ln
the Bogoliubov equations. Section III is devoted to
the uncoupled problem which represents a normal elec-
tron in an inhomogeneous magnetic 6eld. These calcu-
lations also correspond to the high-energy limit in the
coupled case. A partial-wave analysis of the exact equa-
tion is carried. out in Sec. IV and wc proceed in Sec. V
to introduce the envelope approximation. The results
of our numerical calculations are also included in this
last section.

II. FORMULATION

In the BCS' approximation, the electronic excitations
of a typc-II superconductor containing a vortex are de-
scribed by the coupled Bogoliubov equations'

—a(r) e~(~r&»)r&»}e, (x) =0 (1).
(pt is the Fermi momentum of the metal, and we
take Planck's constant 5 and Soltzmann's constant kg
equal to 1.) A spinor notation abbreviates the usual
form of these equations (r&", r&@, and r&sl are the Pauli
spin matrices) where the wave function is now a two-
component vector:

%C employ the notation y to denote the momentum
operator s&)/itx in —the curly brackets of Eq. (1) and
as a label on the wave function to characterize its
incoming properties.

The vortex modiaes the magnitude of the order pa-
rameter or pair potential function from its constant
value of 4 in the Meissner state and gives it a nonzero
coordinate-dependent phase. The introduction of a sys-
tem of circular cylindrical coordinates (r, Q, s) centered

«N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov,
A Rem Method ie the Theory of SNpercondlctioky (Consultants
Bureau Enterprises, Inc., New York, i959) .
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The potentials which appear in Eq. (5) must be
obtained self-consistently from the wave functions in

order to arrive at a complete theory of a superconduct-

ing vortex. ' Fortunately we have the Ginzburg-Landau

( GL) equations to provide us with the functions that
are needed in order to proceed. "The solution to these
equations gives a self-consistent result in a tempera-
ture range restricted by the inequality (T, T) /—T,(&1."

In Fig. 1 we plot the results of Neumann and Tewordt"
for the order parameter A(r) and magnetic field H(r)
obtained by solving the GL equations for a supercon-
ductor with )(=1/&2. We shall employ the following

analytic approximations for these potentials in our cal-

culations:

g (y) —g[] exp ( r2/4/2) ji/2 (7)

0
0 1.0 2.0 3.0

H(r) = (c/4'~) exp( —r /4X ), (8)

where 'A(T) is the penetration depth at temperature T.
The magnetic Geld is equal to the curl of the magnetic
vector potential, which implies that

FIG. 1. Approximate potentials employed in Bogoliubov equa-
tions: A(r) in units of the order parameter in zero field, A(T)
and II(r) in units of the bulk critical field, H. (T) versus r in
units of the penetration depth X(T).The approximate potentials
are given by the solid line and numerical solution of the Ginzburg-
Landau equations with s = 1/v2 are given by the dotted line.

C~(x) = (2s) st' exp[i(ks —Et)j g e'I'eC', I'(r), (3)

where
P2 —(72+ $2 (4)

q and k are the components of momentum perpendicu-
lar and parallel to the external Geld, and p, is restricted
to half-integral values in order that the wave function
4'~ (x) may remain single-valued. The partial-wave com-

ponent 4, (r)tsatisfies a simplified differential equation
which depends only on the coordinate r. The equation is

{E+(2ws)
—lr(8)[d2/(tys+y ld/dy —(ti/y+yg(1 (y)v(3))2

+py' ts'] D(r)r('—) I C "—(r) =0 (3)

where the superRuid velocity function is given by

e, (r) =m '[(2r) '—(e/c)A(r) j. (6)

along the axis of the vortex is convenient for describing
the spatial dependence of this potential and of the
magnetic vector potential A(r).

Equation (1) is translationally invariant in time
and in space along the s axis and can be made rotation-
ally invariant about s by introducing a new wave func-
tion

+p(x) = exp(i-', yr('&) C, (x)

The symmetry of the problem is exploited by extract-
ing a plane wave propagating in the s direction from
the new wave function and carrying out a partial-wave
expansion in the angular variable tt. One has

rgt), (r) = (1/2r) exp (—r'/4X') . (9)

In units of the bulk critical field H, (T), the magnetic
Geld of a vortex in our approximation has the form

H(r) =H, (T) exp( —r'/4X')/v2)(. (10)

' P. G. de Gennes, SNperconductivity of Metals and Alloys
(%. A. Benjamin, Inc. , New York, 1966), Chap. 5.

"V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor.
Fiz. 20, 1064 (1950) t English transl. : Men of Physics: L. D.
Lamias' I, edited by D. ter Haar (Pergamon Press, Inc. , Oxford,
1965), Part 2, p. 138j."L.P. Gor'kov, Zh, Eksperim. i Teor. Fiz. 36, 1918 (1959}
t English transl. : Soviet Phys. —JETP 9, 1364 (1959)j.

"L.Neumann and L. Tewordt, Z. Physik IS9, 55 (1966).
'4D. K. Finnemore, T. F. Stromberg, and C. A. Swenson,

Phys. Rev. 149, 231 (1966}.
'SR. Radebaugh and P. H. Keesom, Phys. Rev. 149, 209

(1966).

We also plot Eqs. (7) and (8) in Fig. 1 for )(= 1/V2.

The approximate functions H(r) and t)i h(r) —exceed
the numerical ones in the range 0&r&3K(T). For large
r they approach their limiting value much more rapidly
than the true GL solutions; we will therefore obtain
incorrect wave functions for large partial-wave num-

ber p, , but such waves make a minor contribution to
the cross section. Moreover, this "Gaussian" behavior
of the potentials for large r ensures rapid convergence
in the integration of Eq. (5).

Just below the critical temperature the GL param-
eter of clean niobium is 0.76 while that of vanadium

is 0.848.'4" These two metals constitute the only two
clean type-II superconductors presently known and

both have relatively small values of I~:.

The potentials of Eqs. (7) and (8) can be improved
in two ways: (1) Numerical solution of the GL equa-

tions may be employed to obtain very accurate results

for ~ values appropriate for niobium and vanadium.

(2) Higher-order terms of the free-energy functional
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may be kept to obtain a correction to the potentials
for temperatures below the immediate neighborhood
of T,." This latter correction is important in clean
type-II superconductors for small values of ~ as we
point out in the next paragraph.

As the temperature tends to T„where the GI. solu-
tions are valid, the lower critical field H, i of the super-
conductor approaches the upper critical field II,2 and
it becomes increasingly dificult to study the individual
nature of an isolated vortex. At temperatures of 0.9T,
the calculations of Neumann and Tewordt indicate
that the correction to the GI. magnetic Geld at r=o
is equal to +6% for a clean superconductor with
x=1/K2. At temperatures much lower than T. the
vortex potentials for such a superconductor are pres-
ently unknown. We expect however that the approxi-
mate expressions of Eqs. (7) and (8) remain qualita-
tively correct over the entire temperature range.

III. UNCOUPLED CASE

Before solving Eq. (5) we examine its properties in
the absence of the coupling term h(r)r&'&. This corre-
sponds to the limit E)&d, and the solution of the equa-
tion describes the wave function of a normal electron
in the presence of the inhomogeneous magnetic field
due to a vortex. " Since the equations are uncoupled
in this case we need only consider a single component
I,"(r) of the wave function. The other component v,&(r)
satisfies the same equation with the modification

E—+—E; p,—+—p

in the square brackets of Eq. (12). The scalar equation
that must be solved for the electron wave function is

approximation is well suited for this situation, and we
may immediately write down an expression for the
phase shifts"

8„=—', I p I
v —qro+

rp

« I Lq' (t /r-+m")'5" qI-

dr pmv, (r)
i ito (q'r' —W')'" (17)

Substituting the potential of Eq. (7) into Eq. (17)
and introducing the new dummy variable of integration

r-=-,'rZ-~, (18)

we obtain the tabulated integral'8

dr exp( —r~)
8p=

r (TN —p2) I/2

= —sgn(t)-'~er«(I r I),
where p= p/2qX and erfc(s) is the complementary error
function

where the transverse component of momentum q is
given by

q= (pr' k—'+2mE) ", (15)

and ro, the classical turning point of the trajectory, is
a root of

q=
I t/ro+mv, (ro) I. (16)

The integrand in Eq. (14) is expanded in powers of
nzv, and only the leading, nonvanishing term is retained,
so that

[2mE+d'/dr'+r 'd/dr —(p/r+mv )' erfc(s) = 2v='t' exp( P)dt—(20)

+p, ' k'5u, o(—r) =0 (12)

with the boundary condition that I,"(r) be square
integrable at the origin.

If we ignore the superQuid velocity function in Eq.
(12), an exact solution is obtained in terms of Bessel
functions of half-integral order. The asymptotic value
of the exact wave function will therefore behave as
follows:

No" (r) 3~„~ (qr) cos8„—F~„~ (qr) sin8„, (13)

where F~„~ (qr) is the Neumann function which diverges
at the origin. In order to simplify notation in the re-
mainder of this paper the absolute value brackets about
p in the Bessel functions will be made implicit.

Except for a small group of states with

k~ (pr'+ 2mE) '"
traveling in a narrow cone about the s axis, the wave
function varies rapidly over a length interval which is
much shorter than the penetration depth. The WKB

' Hide Yoshioka, J.Phys. Soc. Japan 21, 948 (1966).

To obtain the scattering amplitude it is necessary
to construct incoming plane-wave states from the
partial-wave functions of Eq. (12).At distances larger
than

I p I/q the leading term in Hankel's asymptotic
expansion for the Bessel functions simpliaes Eq. (13)
and we may write

I,"(r) (2/vqr)'t'cos(qr ',
I p I

v ——o'—v-+$„)
= (2/v qr) '" cos(qr ——,

'
I
t

I
v —~v+8„+~or sgnp),

where the integral wave number / is given by

t @+2~

(21)

(22)

)&exp[i (kp+b~+4v sgnt) 5uo'(r), (23)
17 M. L. Goldberger and K. M. Watson, Collison Theory (John

Wiley R Sons, Inc. , New York, 1964), Chap. 6, p. 324."I.S. Gradshteyn and I. M. Ryshik, Table of Integrals Series
and Products (Academic Press Inc. , New York, 1965).

Incoming plane-wave states are constructed by sum-
ming an infinite series of partial-wave functions with
the appropriate constant coefficients

uo(r) ~o-'» Q 8'~ (2v.)
—'
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+eel:i(qr —-'~)]r "'f(4) I, (24)

where the scattering amplitude is simply

&(y) = (2sq)-'I' Q [exp[2i(b(+ ',s sg-n/) $—1]e"e

= (2 q)
'" '"Z [ %L2 (~+-' g p) j—1le*"'

(25)

The term ~x sgnp which is added to the phase shift is
identical with that which occurs in a study of the
Bohm-Aharonov (BA) effect, for a flux line of strength
cs/e. "In a study of Aux lines with an even number of
quanta of circulation this contribution is absent since
the wave function u~(r) remains invariant under 27r

rotations about the s axis.
The differential scattering cross section is equal to

the absolute magnitude of the square of the scattering
amplitude

(26)

The total integrated cross section diverges as a result
of the BA eGect. For very small scattering angles we

may ignore the phase shift 8„ in Eq. (25) and. the
resulting sum is elementary. The di6'erential scattering
cross section for small angles is given below:

lim do/~2/s qy'.

The transport cross section remains 6nite and is
evaluated from Eqs. (25) and (26). With the notation

5„=t)„+',s sgnp=-x'm erf(p), (28)
we have

@(da/d4) (1—co~)

=2q ' g sin'(5~~ —8„). (29)

The phase shift 8„ is a continuous and slowly varying
f ct f the bl p,. T g d pp . t
we may employ the definition of the derivative to write

~)) =2q ' Z (&./d. )'. (30)

From Eq. (28) it is easy to show that

db„/dy =~'I 2 'e2xp( —p~) /—(2') . (31)

» Y. Aharonov and D. Bohm, Phys, Rcv, 115, 428 (1959).

where N~'(r), 8~, and sgn/ are equal to Ng(r), 8» and
sgnp for the value of p, prescribed by Eq. (22).

In the asymptotic region we may employ Eq. (21)
to obtain an explicit representation for the wave func-
tion

I (r)~e-'1e(2s)-'

)& Ig i)"e"&(2/s qr) "' cos(qr —xs
I
i

I
s —r's)

+I I
& 10 p& (33)

which is too small to explain the anomaly discussed in
the Introduction.

Ke may also obtain a measure of the asymmetry of
the scattering by calculating the integrated cross sec-
tion averaged over sin f:

~ (du/dy) sing

=f Q Sill(28~ —2bp+g) . (34)

Making the same approximations as in the cab'ulation
of the transport cross section we have

oi 2q 'Q—d8/dp= —sq ' (35)

This cross section is small but Qnite and of the order

~p), which in niobium and vanadium is 12 and 7 A,
respectively. ""The sign of the cross section indicates
that the electrons prefer to rotate against the super-
Auld motion.

IV. PHASE SHIFTS

The scattering theory of the coupled set of equations
constitutes a two-channel problem. In a normal. metal
it is well known that there are particle excitations
above the Fermi surface and holes below which possess
the same energy. The superconducting interaction mixes

the particle-hole configurations near the Fermi surface
and the physical distinction between particles and holes
is lost. It remains possible, however, to talk of single-

particle excitations that have wave vectors whose mag-
nitude is in excess of or less than pr. Superfh)id motion
or a local depression of the order parameter in a super-
conductor permits particlehke and holelike excitations
to couple so that a scattering event may involve a
change of channels.

In the uniform case, Eq. (5) red.uces to

IZ+ (2rrl) 'r")$d'/dr'+r 'd/dr p,'r '+p '—k']-
—Dr&') Iw, &o))'(r) =0, (36)

which has the two real solutions

w, &)'(r) = $„(qr)
N(E)

e(Z)

Kith this result we obtain the transport cross section

~~= r'(2') 'f exp( t')d—l

0

=sq-'I'( —,') (8qh)-'

= 1.4/q'X,

where the summation over p, is approximated by inte-
gration since the number of partial waves involved is
so large. In niobium, for example, pr), (T) is equal to
HP at 7=0 and increases as T tends to T, where it
diverges. '4 Ke have the order-of-magnitude result
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t&,&»"(r) = J„(qr),
(E)

N(E)

N(E) —
f 1[/+ (E2 g2) &/2E-&

1 }
&/2

e (E) —
f 1[] (E2 +2) &/2E-lj }&/2 (38)

The coupling angle x„is found to be nonzero for scatter-
ing of clcctlonlc cxcltatlons by R vortex. As ln the cRse
of normal electrons we evaluate the Sesscl functions
for qr))

~
p,

~

and introduce the integral wave number
/ given by Eq. (22):

.'( )-(2/~q )'" o x

X cos(qr--', ~
/

~
~ ,'m+//i&" +—,'—s sgn/)-

are the BCS coherence factors. e The tv' momenta q
and g are given by

q'= p
'—k'+2m(E2 —6')'/'

q~= p '—k' —2m(E' —LV)'/2

The potentials of Eqs. (7) and (8) couple the two
channels and introduce a phase shift in the asymptotic
wave functions. From Fetter's work one can show that
the real solutions of Eq. (5) behave as follows in re-
gions remote from the core of the vortex" ":
u i'(r) cosy g[J (qr) cos/«'& —F (qr) sinb„&u]

+sinx„&&[J„(qr) cosh„&'&+ F„(qr) sin/&„&'&g,

t&&,"(r) —sinx„r/[J„(qr) cosi&„&2& F„(qr—) sinb„&»j
+cosx„g[J„(qr) cos/I„&'&+ F„(qr) sin/&„&'&j. (40)

The normalization vector r/ has components N(E) and
e(E) and

8 =~(l)g

group velocity for waves of momentum q is equal to

&/, =dE/dq= q(E' LV—)"'/esE, (43)

C, '(r) =i ~'~ fu/, '(r-) sing) exp[i(/&i&'& gs —sgn/) j
+«/, '(r) cosxi exp[i(iip& ,'w s—gn—/) 7

~i ~'~(2/sqr)'/'&& cos(qr —
~~ [/ f s —~~s)

—(2/s qr) '/'r/e —i™exp[ i (qr —',s )5i—m -Tgm'

—(2/n-qr) '/'&& exp[ i (qr ',s—) jim T—gm-'. (46)

We have introduced the T matrix in Eqs (45)
(46) without preceding its introduction by a formal
dc6nition. In the simple treatment of this paper it
may be regarded simply as a symbol to abbreviate the
following expressions:

vr Tn'= co—s'xi exp(i&&&&'&) sin/&i&"

+sin'xi exp(ibP&) sinl&P&

—s T22' ——sin'xi exp(Qi'&'&) sin/&i'&'&

which ls posltlvcq whereas that foI' wRvcs of II1OIQcn-

tum g is equal to

&/ =dE/dq = q(E—' 6'—) '/'/mE

which is negative.
It follows that the waves carrying energy inward

towards the s axis have the functional form e '~"r-'I2

and exp(iqr) r '/'; the corresponding wave functions
are given by

C '(r) =i~'~ fm '(r) cosxi exp[i(/»&'&+~s sgn/) j
—w, '(r) sing) exp[i(bp&+-,'s sgn/) $}

i~ '~ (2/mqr) '/'r/ cos(qr —-,'~ / f s —-',s)
—(2/s qr) '/'» exp[i(qr —-4s ) )Ar Tn'

—(2/~qr) "r/e" exp[ —i(qr —-',m)fkrT2&' (45)

+ (2/xqr) "&& sinxi

X cos(qr —-',
~

/
~
s ——,'s —8&&"+-',s sgn/)

&~12 &T21

+cos xi exp(zl&i ) slnI&i

&&&, '(r) —(2/s. qr) '/'r/ sing&

X cos(qr ,'f /
~
s —-',—s.+-/&i&'&+-,'s sgn/)

+ (2/s qr) '/'r/ cosxi

X cos(qr —z ~
/

~
s ——,'~—&/P&+-,'s. sgn/). (42)

Linear combinations of these two functions, C,'(r)
and C, '(r), are chosen so as to obtain new functions
with incoIQing wave llIQlted to a slQglc channel. Thc

~ A. L. Fetter, Phys. Rev. 140, Ai92i (1965).
"Fetter has calculated the reaction matrix for a spherical

potential in an infinite superconductor. The modi6cations re-
quired to treat a cylindrical potential are not very great and we
omit the details here.

= sin&&i cosX&[exp(i/&i&n) sin/& &'

—exp(/I4&2&) simp&g, (47)

where the phase shifts 8)&'& and 8)'~'& are given by

/&i&o /'&i&o+ ,'s s——gn/- (48)

bf'&@=bg&'& ——,'m sgnl

with i ru~ning from 1 to 2.
The matrix elements T11' and T22' pertain to scatter-

ing in the q and g channels, respectively, and are
Rejected by the BA CGect. The elements T12' and T21'
exist because of the coupling between channels and
have no term —„'x sgn/ present in them.
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Cp(x} (2m) 3" expLi(ks —Et) je @~IiJ exp( —iq r)

+»i expLi(qr ——,'s)]g(y —s) r—"
+g expL i(g—r ,'m)—jf—2(y)r- & }, (51)

where the scattering amplitudes are

f~(0) ="'(2/xV)" Z (—ix&»")c'"' (52)

f2(y) =e"~(2/xg) '~' g ( i~7»~)—e'~4,

The scattering cross section is equal to the radial
Qux of outgoing single-particle excitations per unit
angle divided by the total incoming Qux. The quasi-
particle density is equal to the inner product of the
wave function with itself:

p„=et(x)e(x) (55)

and satisfies the conservation equation

with the current density

j = (2')-'I@'(x)r&'&7'4 (x) —
I V%'(x) jr&"0 (x)

2i(%) A(r—)%'t(x) e(x) }. (57)

One may verify Eq. (56) by carrying out the time de-
rivative of p„and employing Eq. (1) where necessary.

%e evaluate the scattered current for the wave func-
tion of Kq. (50). The magnetic potential term may
not be ignored because of the 1/r term, but the super-
Quid velocity function will make no contribution when

r is sufliciently large. The result of this calculation is

(i.) = v(E' —~')'"L If~(4) I'+
I g(4 —x) I'1/~E(2x)'

(58)

The incident Qux of quasiparticles is equal to the group
velocity divided by the volume of the system which
in continuum normalization is (2~)3. We have already
calculated the group velocity in Kq. (43) so that the
diGerential scattering cross section may be immedi-

ately written down:

«./d&= lf~(&) I'+ I g(4 —~) I'. (59)

To obtain incoming plane-wave solutions of the prob-
lem one must evaluate the right-hand side of Eq. (3),
and this gives us

C', (x)~(2s) '"expI"i(ks Z—i) jc @~—
Ig exp(iq r)

+~ expI. i(v» —l )3f (e)»-'"

+0 expL i—(V» l—)3(V/V) "g(4 —)» "} (5o)

The subscript e is employed to denote this function
since in second quantization the o6-diagonal compo-
nents of the corresponding operator are proportional
to the electric charge density operator. The current
density 1s

j,= (2')-'I% t(x) 7'O(x) —LV'@t(x)]4 (x)

—2i(e/c) A(r)%'t(x)r~'&4'(x) }; (61)

however, a conservation equation similar to Kq. (56)
is not satisied by these two functions except in special
cases. In particular, eigenstates of the energy operator
will satisfy the conservation equation in regions where

the energy gap is a constant and where there is no
superQuid motion. Since the density function p, appears
in calculations of transport properties it is useful at
this time to introduce a cross section «,/dQ which

in a scattering event is equal to the radial Qux of
outgoing current j, per unit angle divided by the total
incoming Qux of the same current. %e evaluate the
radially scattered current for the wave function of
Eq. (50) and ignore interference terms between chan-

nels. These have an oscillatory dependence on the radial
coordinate of the form expI i(q —g) r$ which will aver-

age out to zero over some 6nite length except in the
low-energy limit when q equals q. The radial compo-
nent of the current in the region r~~ is

(J.).=~ '(2~)-'cC Ifi(4) I'—
I g(4 —x) I'3, (62)

while the incident flux is (2s) 'g/ns. The differential

scattering cross section becomes

«./~4= Ifi(4) I'—
I g(4 —~) I'. (63)

Because of the BA eGect the total integrated cross
sections o„and 0., diverge. However, their difference

A similar expression can be derived with the wave func-
tion of Kq. (51). However, we will have no need for
it in the remainder of this paper, and we do not calcu-
late it here.

On a length scale p» ', the order parameter and
superQuid velocity are smooth and slowly varying func-
tions. It follows from conventional scattering theory
that the amplitudes fq (p) and f2 (p) are narrowly peaked
in the forward direction. The same argument applies
to the distribution of wave vectors g and q for particles
changing channels in a scattering event. However, the
difkrence in sign of the group velocity for the two
channels causes energy and momentum to be carried
in the opposite direction from that of the incident
beam. This fact is reflected in the amplitude g(P —~),
which is peaked about P= ~.

%e may introduce another density function p, which
18 given by

p, =% t (x)7 ~N%'(x) .
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remains finite and may be calculated:

~ /do„/dy d—o./~j

(64)

We have shown that in the high-energy limit E»A,
the transport cross section is very small. The first term
on the right-hand side of the lower of Eqs. (65) and
(66) is of the order pr ' or less for all E, while the cross
section 0; is very large in the low-energy limit E&A,
as we shall show in the next section. To a good ap-
proximation therefore,

The transport cross sections are also finite: O„II~—0'p;I ~~20;. (67)

and

d4 (do„/o4)(1 —cosp)

dp»L
I fl(qb) I'—

I g(&t) I'](1—cosp)+2&r, (65)

~(do, /d&t ) (1—cosp)

The appearance of this rather large cross section 0;
for excitations to change channels is strictly a super-
conducting e6ect which does not occur when 6=0
or E»5.

V. CALCULATIONS

Up to now only the scattering theory of super-
conductivity has been discussed and the particular
differential equation introduced in Sec. II remains to
be solved. We begin the solution of Eq. (5) by intro-
ducing the change in dependent variable

R p(r) =r'&'C p(r) (68)

so that the wave equation contains no first derivative
(66) in r:

fE Izv, (r)/r h—(r) r&'&+ (2—m) 'r&'&I d'/dr'+ S'(r) jIRpp(r) =0, (69)

where the square of the coordinate-dependent wave ForthepositivesigninEq. (74) therealandimaginary
vector is components of u satisfy the equations

Sz(r) —
P 2 l'pz pzp 2+1( 2 (mv )2

We assume a real solution of the form

(70)

and

m'S(r) da—,'"/dr = $E zzv, r '+6(—r) &&a
&'& (75)

with
R p(r) =S(r)-"Lg(r) o' +g*(r)v-' j (71)

where

m 'S(r) da, &'&/dr =-$E zzv, r ' A(r) ]a&—,&l& (—76)

dr S(r)+-,'zr
rp

(72) a&'&(r) =a &"(r)+za &'&(r) (77)

and r) rp In the W. KBJ approximation the exponen-
tial functions of Eq. (71) are solutions of Eq. (69) in
the absence of the first three terms in the curly bracket.
To include these we introduce the envelope vector g(r)
which we assume is slowly varying compared to p.
With this assumption in mind Eq. (71) is substituted
into Eq. (69) and only first derivatives of g are iMpt
so that one arrives at the simplified result"

We shall use the superscripts (1) and (2) to denote
the functions a(r) that acquire a positive or negative
sign in Eq. (74). Since the wave function must be
finite at the origin one must impose the condition that
a(r) be real at rp as required by the WKBJ theory of a
linear turning point.

To construct a"&(r) we replace the superscript (1)
in Eqs. (75) and (76) with (2) and introduce the new
boundary condition

I
—iS(r)/m]r&z (dg/dr) = (E—Izv, /r)g —h(r)r"&g. a,&'&(rp) =0.

We proceed to carry out the sum

(7g)

! a(r)
g(r) =

I (74)

"See Ref. 8, Eq. (I21).

If g is a solution of Eq. (73), &r&"g* is still another
and we may express the components of g in terms of
the complex function a(r)

a&'& (r) = —a &" (r) gian"'(r) (79)

after solving the equations.
Some exact consequences of Eqs. (75) and (76) are

derived by studying the solutions at large r. In the
limit r-+~, the superQuid velocity function vanishes
and the order parameter equals its value in the field-
free state. We may easily solve the differential equation
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l.5—

I.O -I.O

With a('&(r) we may construct the second wave func-
tion of Eq. (40) with the coupling angle x= ~rr.

Unlike the coupling angle y„ the phase shifts 0„&"

and 8„(2) are rapidly varying functions of the energy E
and the partial wave number p, in the range E) A. The
quasiparticle momentum, however, may be restricted
to the value pr, and we write

0.5 -0.5
kr= pr sine, (86)

0 0
I.O I.5 2.0 I.O l.5 2.0

E E

FxG. 2. The phase shifts 8„(') and b„(2) as a function of energy
in units of the order parameter n{T) for

~ p /Pr& {T) equai to
0.5, 1.0, and 1.5 at 0=-,'x, where p, is the partia -wave index.

I (r) =sl (E' /&.') "S(r)-'d—r (81)

and a") is a real constant. In the Meissner state the
phase shift l»„" must vanish and Eqs. (80) and (81)
become exact for all r&ro. In general 8„&" will not be
zero and as E tends to 6 the phase shift 8„(') must
approach +sis for all p in order that Eq. (81) may
remain finite. The complex function u('&(r) is calcu-
lated with the help of Eqs. (77), (80), and (81)

a('&(r) =a('&[8/(E —6)]i"Iu(E) exp[((I (r)+(& ('&)]

+s(E) expL —'(f (r)+4(")]I (82)

Combining Eqs. (71) and (82) and comparing with

Eq. (40) we see that x„ is equal to -', e.. In the high-

energy limit Eqs. (80) and (81) are valid for all r and
one may rederive the WEBJ results of Sec. II.

In calculating (s(s&(r) for large r proper considera-
tion must be paid to Eqs. (78) and (79).

a ("(r)=a("[(2+6)/(E—5)]'"sin[I (r)+i& ('&]

(83)

for the real and, imaginary parts of a"'(r) to obtain

a;("=a(" sin[I (r)+l&„('&]

and

'"= '"I (E+~)/(E-~)]'"- [I ( )+~.'"], (80)

where

where 8 is the polar angle of the trajectory of the
particles with respect to the external 6eld.

We have solved Eqs. (75) and (76) on the IBM
360/67 digital computer at the Stanford Computation
Center. The goal of our erst computational eBort was
to plot the phase shifts b„(') and b„&2) as a function of
energy for typical values of p and 0. Some results are
plotted in Figs. 2 and 3 where energy is measured in
units of /&. (T) We em. ploy"

and
/&, (T) =3.2T, (1 T/T, ) 'I'—

X(T) =0.52$p(1 —T/T, ) '", (88)

1.5 -I.5

I.O -1.0—

1

4
p. &0

where $(&= (&r/s-6 is the coherence length.
A peculiar resonance is observed in all of the phase

shifts in the low-energy limit prescribed by E=A. In
particular the phase shift 8„&" is equal to ——,'x sgnp for
all partial-wave numbers p, and polar angles 0, while

the other 8„&') is identically zero. In Schrodinger theory,
a resonant phase shift must be attributed to the char-
acteristics of the scattering potential. In the Bogoliubov
problem the resonance previously described exists for
a whole class of potentials. The strength and spatial
extent of the potentials does not determine the posi-
tion of the resonance in the energy spectrum but only
its width. The group velocity of the waves vanishes

identically in the low-energy limit and the medium

itself contributes to the resonance.
In the high-energy Hmit the two phase shifts merge

and 0.5 -0.5
u "&(r)= —a('& cos[I'(r)+8 ('&], (84)

where a&2) is a real constant. As E tends to 6 the phase
shift l&„('& must vanish in order that a„('& (r) may remain
finite. The complex function a('&(r) is constructed and
exhibited on the following line:

(s(si (r) = g(s&[p/(jF g) ]r/s

&& I
—N(E) exp[s(I'(r)+~. '")]

+e(&) eR L
—sG (r)+~."')]I (»)

1.0 1.5 2.0 1.0 1.5 2.0

~ See Ref. 10, Chaps. 4 and 6.

FIG. 3. The phase shifts B„(~) and h„(@ as a function of energy
in units of the order parameter a{T) for

~ y ~/prx{ T) equal to
0.5, 1.0, and 1.5 at |)I=-,'7r, where p. is the partial-wave index.
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The potentials of a vortex are large and we have not
employed the Born approximation as is usually done
for scattering by atomic potentials. We have also exam-
ined a model for a vortex in which the depression in
6(&) has a square-well appearance and the superfluid
velocity is limited to the confines of the well. Such a
model can be solved analytically and the results may
be compared with the more realistic calculations pre-
sented here. The bound-state spectrum agrees qualita-
tively with that of Caroli, de Gennes, and Matricon. "

Forgan and Gough have estimated a vortex cross
section of 40 L from their measurements of the anomaly
in the ultrasonic attenuation near H,I.' More recently,
Sinclair and I.eibowitz have observed a much larger
effect in vanadium which suggests a cross section of
200 A. near T, for the attenuation of longitudinal sound
waves propogating in the direction of the external

field. '7 In order to compare calculations with experi-
ment it is necessary to obtain a transport theory of
superconductors in the presence of vortices. We are
carrying out such a program and hope to publish the
results soon.
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Ultrasonic Investigation of the Isolated-Vortex State near
H„ in Vanadium*
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Ultrasonic attenuation in the mixed state of vanadium has been investigated near H,J, where the vortex
density is low. The expected rise toward the normal-state value of attenuation at H& is preceded by an
initial absorption decrease as the vortices penetrate. The unexpected dip is interpreted in terms of a reduction
in the quasiparticle mean free path, a result of the scattering of quasiparticles by vortices. The scattering
width of a vortex was found to be {2.4&0.4) )&10 cm for temperatures near T„in good agreement with the
theoretical determination 2.1&(10 cm. The apparent width decreases at lower temperatures. Similar
measurements have been made in niobium. The scattering width is found to be considerably greater in

vanadium, and its temperature dependence is in the opposite direction. A further feature of the present
results observed even at rather low 6elds was the faster-than-linear dependence of the reciprocal attenuation
on the internal field.

l 1HE attenuation of ultrasonic waves in a pure.. type-II superconductor near II,& shows an unex-

pected decrease as the field initially penetrates. This
was first demonstrated in experiments in niobium. ' We
believe that the attenuation provides a sensitive test
for the vortex properties, and present here results of a
detailed investigation of the field dependence of the
attenuation. This behavior shows a systematic trend
with temperature.

The vanadium sample was the same one as that used

by Radebaugh and Keesom' for their demonstration

* Supported in part by the Advanced Research Projects Agency.
f Present address: Bellcom, Inc., Washington, D.C.
' E.. M. Forgan and C. E. Gough, Phys. Letters 21, 133 (1966).
'N. Tsuda and T. Suzuki, J. Phys. Chem. Solids 28, 2487

(1967).
'R. Radebaugh and P. H. Keesom, Phys. Rev. 149, 209

(1966); 149, 217 (1966). The reader is referred to these papers
for a complete description of the superconducting properties of
vanadium, and of this particular sample.

of the intrinsic type-II behavior of vanadium. Longi-
tudinal 150-Mc/sec sound waves were propagated
axially through the central core (diam 0.1 cm) of the
cylindrical sample (length 1.9 cm, diam 0.7 cm). A

magnetic Geld was applied along the sample axis and

swept linearly in time. The voltage appearing across a
short coil (length 0.3 cm), wound centrally on the
sample, was integrated to give the total Aux within the
coil. With a correction for the Aux within the air gap
between coil and sample, the average magnetic Geld

within the central region of the sample was determined
from measurements in the normal and mixed states.

The magnetization through the sample was not
expected to be constant since the demagnetizing coeQi-

cient for a cylindrical sample is not uniform. This
consideration led us to propagate the sound wave only
through the central core of the sample, so that the
attenuation level was determined only by the Geld

within this core. Thus, the eBect of the nonuniformity in


