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and of Hulm" (hatched curve), which was examined

by Ulbrich ef ul. , is also shown in Fig. 2. These data fall
below our theoretical prediction, though they exceeded
the original prediction (see Fig. 2) of Ulbrich ef at. by
approximately a factor of 2. That these data fall
below those of Gueths et al. as well as below our own

prediction is not at all surprising; their data were taken
on polycrystalline samples, for which an orientation
effect might easily explain the discrepancy.

COÃCLUSION

We have used the ideas contained in the theory of
Ulbrich et al. , along with the expression derived by
Kadano6 and Martin, together with some plausible
interpretations of experimental data involving the
conduction electrons. We have shown that the theory
of the eGect of superconductivity on the thermal con-

"J.K. Hulm, Proc. Roy. Soc. (London) A204, 98 (1950).

ductivity is in good agreement with existing experi-

mental data. Because our estimation of the distribution
of electronic velocities and energy gap is neither precise
nor immune to criticism, we can not claim decisive
victory over. the E;/E," ratio. However, we can insist
that the present theory does explain this ratio in tin
within the uncertainty of our knowledge about the
thermal current carriers.
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The superconducting properties of the clean superconductor-normal-metal interface are calculated
assuming a constant BCS potential n(z) in the superconductor and zero potential in the normal metal.
We evaluate the local electronic density of states, which is measured in the tunneling experiments, and
6nd the magnitude of the interference-eGect oscillations. The BCS potential is recalculated and is believed
to be nearly self-consistent. The pair amplitude Q+(z)rP+(z) ) and the potential oscillate n cos(z/]) in
the normal metal. We suggest a Josephson tunneling experiment to measure the pair amplitude.

I. INTRODUCTION

E present a solution of perhaps the simplest
~~

problem in space-dependent superconductivity:
the superconductor-normal-metal (SN) interface. "We
consider the planar semi-ininite geometry of Fig. 1
with a superconductor to the left of x=O and a normal
metal to the right. We work at zero temperature,
neglect impurity scattering, and assume that except for
the interaction leading to superconductivity the two
metals are identical free-electron gases.

The superconductivity theory'' is a self-consistent
Geld theory in which the BCS potential h(x) is to be

* Supported in part by the Science Research Council, London.' P. D. Deoennes and D. Saint-James, Phys. Letters 4, 153
(1963).' D. S. Falk, Phys. Rev. 132, 1576 (1963).' J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
106, 162 (19573:108,1175 (1957).' L. P. Gor'kov, Zh. Kksperim. i Teor. Fiz. 34, 735 (1958)
36, 1918 (1959) IEnglish transls. : Soviet Phys. —JETP '7, 505
(1958)$9, 1364 (1959)

determined self-consistently. We begin with a reasonable
guess for this potential (constant in S and zero in N)
and calculate the wave functions (or the Green's
functions) .The potential is then recalculated from these
Green's functions from the self-consistency equation'

h(x) =)I.e(x)F(x),

where Xe is the effective pairing interaction and F(x)
is the pair amplitude

in the usual notation.
The motivation for this work is a desire to calculate

the magnitude of the interference eGect oscillations
found by Tomasch' and by Rowell' in the tunneling

' W. J. Tomasch, Phys. Rev. Letters 15, 672 (1965); 16, 16
(1966).' J.M. RoweO and %.L. McMillan, Phys. Rev. Letters 16, 453
(1966).



W. L. MACMILLAN

I'rG. 1. Starting BCS poten-
tial for the semi-inanite planar
SN interface.

density of states of SN sandwiches. These oscillations~
arise from the interference between incoming and
scattered quasiparticle states where the scattering takes
place at the interface. One Ands a term in the local
electronic density of states at energy E (which is what is
measured in the tunneling experiment) proportional to
cost 2 (E'—A') '~'d/Ses7 where A, d, and es are the energy

gap, the thickness, and the Fermi velocity of the super-
conductor. The energy and thickness dependence of the
oscillations have already been verified experimentally/ '
Here we calculate the magnitude of the osciBations for
the Tomasch geometry (tunneling into the S side of the
SN sandwich) and suggest that the magnitude be
measured experimentally. The calculation of the
magnitude for the Rowell geometry (tunneling into the
N side) was included in a previous paper. '

We have in addition found in the potential and
pair amplitude an oscillatory term proportional to
($/x) 'Is cos(a/f), where ]is the coherence length, which

is the superconducting analog of the Friedel oscillations'
in the Hartree potential. We suggest an experiment, the
measurement of the magnitude of the dc Josephson
current'~" though a tunnel junction placed on the N
side, which, in principle, directly measures the pair
amplitude at the tunneling surface.

The plan of the paper is as follows. In Sec. II we

review the theory of superconductivity and discuss the
scattering states. In Sec. III the single-particle Green's
functions are calculated, and. in Sec. IV the measure-
ment of the electronic density of states by tunneling is
discussed. In Sec. V we calculate the potential and the
pair amplitude and in Sec. VI we discuss the measure-
ment of the pair amplitude by Josephson tunneling.

II. THEORY OF NONUÃIFORM
SUPERCONDUCTIVITY

Ke begin with a discussion of the theory of super-
conductivity, emphasizing those aspects of the theory
which will be useful for us. The superconducting state is
a phase of a metal which is characterized by the existence

of bound Cooper pairs of electrons. The formal structure
of the theory put forward by Bardeen, Cooper, and
SchrieGer is rather simple, being a generalization of the
Hartree self-consistent-field (SCF) method. In the
Hartree method one takes account of the scattering of
one electron from the average potential V(x) created by
the other electrons as illustrated pictorially in Fig. 2 (a) .
One chooses a trial Hartree potential, calculates the
electronic wave functions in that potential, and then
recalculates the potential from the self-consistency
equation. In the superconducting state an additional
process must be taken into account; one must allow for
the condensation of two electrons into a bound Cooper
pair LFig. 2 (b) 7 with amplitude A(x) . I't turns out that
one can twist this process around into a single-particle
scattering process from a self-consistent potential A(x)
LFig. 2(c)7. It is evident from that picture that an
electron comes in, is scattered from h(x), and goes out
as a hole. Of course what has in fact occurred is that the
incoming electron has found another electron inside the
Fermi sea to pair with leaving a hole excitation. The
theory of superconductivity is nothing more than a
generalization of the Hartree SCF by including the self-
consistent potential A(x) which scatters electrons into
holes. The excited states of the metal, instead of being
one-electron states, are now mixtures of an electron and
a hole and are described by a two-component wave
fuilCtloi1

where u(x) is the electron amplitude and e(x) is the
hole amplitude. This quasiparticle wave function
satisfies the following wave equation:

L
—(P/2m) V' —@+V(x)7u(x)+A(x) e(x) =Eu(x),

L(M/2m) V'+p, —V(x) 7e(x)+A(x) u(x) =Ee(x),

where E is the energy of the quasiparticle relative to the
chemical potential p, .It is convenient to take advantage
of the small parameter A/Er 10 and to introduce at
an early stage an approximation used. by Andreev. "%'e

choose V(x) to be a constant and assume that A(x) is a

7%. L. McMillan and P. %. Anderson, Phys. Rev. Letters
15, 85 (1966).

8%'. J. Tomasch and T. Wolfram, Phys. Rev. Letters 15, 352
(1966).' J. I'riedel, Phil. Mag. 43, 153 (1952);Nuovo Cimento Suppl.
2, 287 (1958).

+ 9. D. Josephson, Phys. Letters I, 251 (1962); Advan. Phys.
14, 419 (1965).

~~ P. W. Anderson and J. M. Rovrell, Phys. Rev. Letters 10,
230 (1963).

~~ P. W'. Anderson, in Progress in rom Temperature Physics,
edited by C. J. Gorter (Elsevier Publishing Co., Inc. , Amsterdam,
1966), Vol. 5.

a) bl c)

Pro. 2. (a) Electron scattering from the Hartree potential.
(b) Tvro electrons condensing into a Cooper pair. (c) Electron
scattering from the BCS potential into a hole.

n A. F. Andreev, Zh. Eksperim. i Teor. Fis. 46, 1823 (1964)
LEnglish transl. :Soviet Phys. —JETP 19, 1228 (1964)).
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function of x only. Then writing

u(x) =u(x) exp(zlrg x),

v(x) =v(x) exp(zlrp x), (5)

where 6 and 8 are smooth on the atomic scale of length,
we find

(—z5skp. /zN) (d/dx) u(x)+h(x) v(x) =Eu(x),

(z5'k, /vz) (d/dx) v(x) +h(x) u(x) =Ev(x),

by dropping the d'/Cx' term which is of order 6/Er
relative to the d/dx term. The matching conditions on
6 and 8 are simplified because one requires only that the
wave functions be continuous. This approximation
cllmlnRtcs thc scRttcIlng of quasiparticles with posltlvc
k~ into states with negative kp„which is permitted by
momentum conservation but can in fact be neglected.

Now suppose that we have thick planar slabs of a
normal metal and a superconductor in good metallic
contact along the plane, x=0. As our first guess for the
self-consistent BCS potential we might choose

~(x) =S, x&0

Matching the amplitudes of the wave functions at
x=0 we 6nd

a = (0—E)/(0+E), 0 =2Q/(0+E), (13)

and the transInission probability

r =4EQ/(0+E) z, (14)

which goes to unity at high energy where the propagator
modi6cations are small and goes to zero for K= A. The
wave function in the superconductor is

k
kF

Fn. 3. (a) Single-particle excitation spectrum of a supercon-
ductor. (b) Single-particle excitation spectrum of a normal
nmtsl; (---) holes and ( ) electrons.

x&0 (7) v(x) = exp(zQx/fzvF, )+{0—E)/(0+E)
where 6 is the bulk energy gap of the superconductor.
Our next task is to set about solving for the wave
functions of (6) with this potential. In the supercon-
ductor there are two solutions with energy E

exp(+zQx/Ave. ), x(0 (8)E+0
0 (Es gz) 1/s

=z{h'—E")'~',

corresponding to the two degenerate quasiparticle states
in the excitation spectrum of Fig. 3(a). For E) LL the
states are propagating plane wave states and for E&d
the states decay exponentially with x. In the normal
metal LFig. 3(b) j there are two solutions, the electron

(10)

&& exp( —zQx/Svp, ),
u(x) =[5/(E+0)jLe px( Qz/xfzvr)

—exp( —zQx/fzvr, )). (15)

The interference between the incoming and outgoing
waves produces a term proportional to cos(20x/Svs, ) in
the amplitude of the wave function and leads to the
Tomaseh-Rowell oscillations in the electronic density
of states.

The vanishing of the transmission probability for
E=h has an amusing consequence for certain 6nite
geometries. Consider the BCS potential of Fig. 4(a) in
which h(x) =5 for —d(x(0 and vanishes otherwise.
A quasiparticle in S with energy slightly greater than 6
will be nearly perfectly reQected at both interfaces and
the eigenstates will be virtual bound states. According
to (15) the wave function approximately vanishes at
both interfaces and is

and the hole

i exp( —zEx/5vp. ).
u(x) =v(x) = sin(Qx/5vp, ),

with the eigenvalue condition

(16)

In order to And the wave functions of the system we
must match the solutions at x=0. Suppose we wish to
find the transmission probability of a quasiparticle in
the superconductor approaching the interface. ID S the
wRve fuDctlon ls R llDCR1 combination of the lDcoIDlDg
quasiparticle 4+ and the outgoing quasiparticle%' and
in N there is the outgoing electron%', .

Qd/Svpe =rzzl'.
The spacing between the energy levels is

dE/du =)(E az)/E]'I—z(tv~, ~/d),

and the width of the levels is

I'= (dE/drz) T,

so that the virtual hound states are well de6ned when-
(12) ever T«1, that is, for (E—6)/d«1.
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where the field operator is a two-component spinor

a
@() I

A()
~

&yet(x) &

(21)

-dy 02

Fro. 4. {a) Finite geometry with virtual bound states in S.
(h) Equivalent geometry with reflecting plane (tunneling surface)
at x=-,'d.

How might these levels be observed' The geometry
of Fig. 4(a) is equivalent to that of Fig. 4(b) with a
perfectly reRecting plane at x= ——', d. The virtual bound
states would then appear in the local electronic density
of states at the rejecting plane and could be observed in
a tunneling experiment. Note that only the a=odd
levels have a Gnite amplitude at x= —-', d, so that the
spacing between the levels observed in the tunneling
experiment would be

dE/dl =$(H~ —A') /Ej'"(tivoe2w/d), (20)

which is identical to the period of the interference-effect
oscillations. Of course the two efI'ects are not distinct.
The interference eGect oscillations require only one
reflection from the SN interface and produce a smooth
oscillation in the density of states whereas the virtual
bound states require many coherent reQections from
both the SN interface and the tunneling surface and
produce sharp structure in the density of states. In
superposed 61ms it seems likely that the electron mean
free path is short enough to destroy the many coherent
reflections necessary to produce the virtual bound
states, and thus one will observe only the smooth
oscillation s.

III. CALCULATION OP SINGLE-PARTICLE
PROPERTIES

In this section we calculate the single-particle
properties, for example, the local electron density of
states, of the SN geometry of Fig. 1.%e could proceed as
in Sec. II to compute the eigenfunctions and eigenvalues
of (4) with appropriate boundary conditions and then
perform the sum over states to And the density of states.
It is, in fact, simpler to write the single-particle Green s
functions which then provide the desired information.
Another advantage of the Green's-function method is
that one can use the "strong-coupling'"~' form of the
theory, which is known to be accurate for metals,
instead of working with the BCS model.

We work with the Nambu" spinor Green's functions,

&4 Y. Nambu, Phys. Rev. 11'7, 648 {1960).
~ G. M. Eliashberg, Zh. Kksperim. i Teor. Fiz. 38, 966 (1960)

[English transl. : Soviet Phys. —JETP 11, 696 (1960)j.
u J.R. Schrieffer, Theory of Supereou(tue~ttpety (W. A. Benjamin,

Inc. , New York, 1964).

and the Green's function is a 2X2 matrix de6ned by

G(x, t, x', t') = —i(0
~
2'Ie(x, t) et(x', t') I ) 0), (22)

where
~ 0) is the ground state in the Heisenberg repre-

sentation and T is the Wick time ordering operator,
The 1i component of G is the ordinary electron Green's
function and the 12 component is the Gorkov's
"anomalous" Green's function. The problem is trans-
lationally invariant in the y and s directions and it is
convenient to Fourier transform the Green's function
in those coordinates and in the time variable

o(4, o, a, x') fezp( Br (x x—')+is(—t t')]—
XG(x, t, x', t')dydsdt. (23)

G satis6es the following wave equation in x with a
similar equation in x':

((Erp (—(5'/2m) (d—s/dx')+IJ, )rs —Z(E x)j
XG(ki, E, x, x') =8(x x') rp, —(24)

where ro is the 2X2 unit matrix and Tg T2 and 7g are the
Pauli matrices and te, =te —fiske'/2ers. According to the
strong-coupling theory the matrix self-energy is of the
form

Z(E, x) = (Z(E, x) 1)Ero+y(E—, x) rt, (25)

where Z is the renormalization function and (t is the
pairing self-energy. One writes

Z (E, x) =4(E, *)/Z(E, *) (26)

and A(E, x) plays the role of the BCS potential. The
self-consistency equations for Z and P are given in

Sec. V. As in Sec. II we take (t and Z constant and equal
to their bulk values in 5 and (t(=0, Z= 1 in E.

Z(E, x) =Z(E), x(0
x&0

y(E, x) =4(E), x&0

=0, x&0. (27)

The Green's function is made up of products of
solutions (in x and x') of the wave equation with

the appropriate incoming or outgoing boundary
conditions. In S for fjxed 8 and k& there are four
solutions, proportional to exp(+iks~+iZQx/St(s, ),
with Q =[Es—lP (E)O'Is. As discussed in the Sec. II one
can ignore the mixing of the exp(&iko~) components
and simply match the amplitude of the waves at the
interface. Consider 6rst the exp(iko, x) components.
The solution with outgoing boundary conditions to the
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right is LEqs. (12) and (13))
1e.„,&+i(x) = exp(ikp, x) ! e xp(iZQ x/Sv i.)E+0

+(0-E)l(0+E) l

&b/(E —0) i! exp( —iZQx/fivi, )

x&O (28)

and the solution with incoming boundary conditions
to the left is

4'; &+i(x') = exp(iki, x') ! e xp(iZ Qx/f' ivy),E+0 )
*'&o. (29)

The Green's function for x'&x&0 is proportional to the
direct product of these solutions plus the appropriate
term from the exp( —iki ~) components,

G y.„,&+&(x)@;.&+& t(x')+%.„&-&(x)%;.&-»(x'). (30)

Putting these pieces together we 6nd

G(ki, E, x, x') =i/2%vi, n

X expPiki, (x—x') j expLiZQ(x —x')/Svg, g

easily verified that G is properly normalized. A similar
calculation yields G in N.

G(ki. , E, x, x') =ijfi»,

(o o)
X expLiki, (x—x') ] expr iZE(x—x') /Svy, ]!

(O 1)
(0 (E—0)/6)

+ expLiZE(x+x') /Svi, ]!
(o o )

(1 O)
+ expr ik—v, (x x'—)] expLiZE(x —x') /5vi;]!

to o)
o o)

!+ exp! iZE(x+x') /avp, 7!
((E—0)j~ o)

O«*'x. (32)

According to the usual considerations the local
electronic density of states is proportional to the
imaginary part of the local (x=x') Green's function
(this is the ordinary Green's function, the 11 com-
ponent of G).

E(ki, E, x) =(Im/v. )Gn(ki. , E, x, x). (33)

((E+0)
x! !

—expLiZQ( —x—x')/Svi. f
(E—0))

From (31) and (32) we find

Ãs(ki, E, x) = (v.5vi, )
—' Re {E/0 —$(E—0) /0 j

X exp( —2iZQx/Svi, ) I, x&0 (34)

(35)NN(ki, E, x) =(v5vi, ) ', x)O.

There are two contributions to the Green's function
in S. The 6rst contribution is from waves propagating
directly from x' to x )the first and third term of (31))
which is just the Green s function for the uniform super-
conductor. The second contribution is from waves
originating at x' which scatter from the SN interface
and then propagate to x. Similarly there are two con-
tributions to the local electronic density of states (34),
the bulk contribution (E/0) and the scattering con-
tribution L(E—0) exp(2iZQ/fivi )/0). The oscillatory
scattering term, which is of primary interest here, arises
directly from the interference between the electron parts
of the incident quasiparticle state 4+ and the scattered
quasiparticle state 4 . In the normal metal an incident
hole state 0 I, is scattered into an electron state%', which
has no overlap with 4'q and there is no interference
effect, no scattering contribution in (35) .

—
exp[iZQ (—x—x') /Svi, ]

( (E—0)
!x!

(~(E—n)/(E+0) (E-0)$
x'(x&0,

(31)

G satisfies the homogeneous wave equation in x and x'
for x/x' since it is made up of products of solutions.
The normalization is Axed by requiring that the change
in slope at x=x' be equal to 2m/fi' so that G satisfies
(24). One finds G for x&x'&0 from (31) by inter-
changing x and x' and transposing the matrices. It is

IV. TUNNELING EXPERIMENT

((E-0) ~(E-0)/(E+0))
x! +exp( iki.(x —x')g—

(E—0) )
((E—n)

X e~[iZQ(x —x') jav,.]!

FIG. 5. Tomasch geometry with a
tunnel junction placed on the S
sj.de of an Sg sandwich.

s
In this section we discuss the tunneling experiment

and show that one measures the local electronic density
of states at the tunneling surface weighted by the
angular distribution of the tunneling electrons. We then
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calculate this "tunneling density of states" for the SN
sandwich for both random and specular tunneling.

The geometry that we have in mind is the Tomasch
geometry (Fig. 5) where one has a normal metal M, an
insulator I, a superconductor S of thickness d in good
metallic contact with a normal metal N, One measures
the current I through the insulator or its derivatives
versus voltage V. The electrons penetrate the insulating
barrier by the quantum-mechanical tunneling process.
We make use of the tunneling Hamiltonian method'~ in
which this barrier penetration is accomplished by an
eGective Hamiltonian that removes an electron from the
left-hand metal near the tunneling surface and injects it
into the right-hand metal near the tunneling surface. Sy
treating this Hamiltonian in lowest-order time-depend-
ent perturbation theory one finds that the current is
proportional to the density of occupied electron states
on the left (near the surface) times the matrix elements
of the Hamiltonian squared times the density of avail-
able electron. states on the right (near the surface). If
the left-hand metal is in the normal state, the density
of occupied states is constant for energies below the
Fermi energy and zero above. For this case the first
derivative of I versus V is directly proportional to the
density of available states of the SN sandwich at the
tunneling surface and weighted by the angular distribu-
tion of the tunneling electrons. We define the tunneling
density of states

gr(V) = (dI/dV) s/(dI/dV)N (36)

to be the 6rst derivative dI/dV versus V for the SN
sandwich in the superconducting state normalized to
dI/dV for the SN sandwich in the normal state. This
tunneling density of states is then equal to the weighted
average of the electronic density of states at the tunnel-

ing surface
~/2

Xr(E) = Es(k~ sin8, E, —d)D(8) sin8 d8, (37)
0

where D(8) is the normalized probability distribution
of the tunneling electrons (for the normal state of the
SN sandwich), 8 is the angle between the electron
momentum and the normal to the surface and we omit
the factor (s5v~, ) ' from Es as found in (34). For the
case of specular tunneling the electron distribution is
Gaussian about 8=0, reflecting the fact that the barrier-
penetration probability is largest for electrons traveling
normal to the surface.

D. (8) =I8 exp (—P8'/2), P 40. (38)

For the case of tunneling with random scattering we
take

D...,(8) =1. (39)

By substituting (34) and (38) or (39) into (37) we

~7 M. H. Cohen, L M. Falicov, and J. C. Phillips, Phys. Rev.
Letters 8, 316 (1962).

find for the tunneling density of states

Xg (E) =Re f (E/0) —[(E—0)/Q]8(2ZQd/hap) I, (40)

where the interference factor for specular tunneling is
OO 8$

(y) —Pe~ expc (iy —P)x]—
I g2

(41)

=e' /L1 —(iy/P) 3,

and for random tunneling

&..-.(y) = g'kgb

g2
' (42)

00

FIG. 6. Calculated tunneling density of states for the Tomasch
geometry (Fig. 5) rvith specular tunneling and d=4$ (—)
and for the bulk superconductor (- ——).

The interference factors are unity for y =0 and fall o8
as (exp iy)/iy for large y.

The tunneling density of states is plotted in Fig. 6 for
specular tunneling with d=4(%vs/2ZA). For E(h one
is observing the tails of the normal metal states that
decay exponentially into the superconductor with a
characteristic length Sv~/Z(LP —E')'I' that becomes
shorter as the energy is lowered; the density of states
is unity for E=6 and oscillates about the bulk density of
states with period 8E=mlvp(1 6'/E. ')'I'/Z—d as pre-
dicted earlier and verified experimentally. The amplitude
of the oscillations is of order unity for E near 6 and falls
off as E ' at high energy.

There are two strong-coupling effects: (a) According
to the theory, 6 and Z are energy-dependent leading to a
weak energy dependence of 8E/(1 —5'/&) '~' which has
probably been observed. ~ Of course the Fermi velocity
that enters the theory is the quasiparticle Fermi
velocity ep/Z which contains the renormalization due to
the electron-phonon interaction. This renormalization
is henceforth suppressed. (b) For electron energies
comparable to typical phonon energies, the electron
states are severely broadened by phonon emission. The
imaginary part of Z becomes important and the
magnitude of the oscillations is reduced by the factor
exp[ —2Z&Qd/Ssz] which is just expL —d/l q(E) j, where

l~b(E) is the electron mean free path due to phonon
emission.
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V. SELF-CONSISTENT POTENTIAL AND
PAIR AMPLITUDE

Having discussed the calculation of the wave functions
for a particular BCS potential, we now turn to the
recalculation of the potential as the 6rst step toward
self-consistency. We will 6nd that the new potential is
Ilo't vcl'y different fro111 thc assumed potcIltlRl (7) RI1(l Is
therefore very nearly self-consistent. In addition we
show that on the N side the potential and the order
parameter oscillate with distance from the SN interface

F(x) Ar —I'I (P/x) '—(g/x) 'I' cos(x/g xs7r)—j, (43)

Where $ iS the COherenCe length )rII)I /2h, WhiCh iS I~s.

longer than the usual coherence length $0. This oscilla-
tion of the order parameter is the analog for the super-
conductor of the Friedel oscillations about a discon-
tinuity in the Hartree potential for tbe normal metal.
An experiment is proposed for the observation of this
order-parameter oscillation.

We begin with a discussion of the self-energy equations
(the self-consistency equations) of the theory of super-
conductivity. The interaction between electrons takes
place via the exchange of virtual phonons and the
screened Coulomb term. Both interactions are short
ranged in space'8 with range of order the interatomic
distance or the screening, length, much shorter than the
coherence length. It is therefore a good approximation
to consider a 8-function interaction in real space. How-
ever the phonon contribution is highly retarded in time
leading to a strong energy dependence of the self-energy
equations. The self-energy, within second-order self-
consistent perturbation theory (Fig. 7), is

Im
(f(E, x) =, dE' GI, (E', x, x—)

o X

a(x)=V(x)
&cO

dE' — G12(E', x, x), (47)

X*(x)=LE+(0, 0, x) —)((*]/Z(0, x)
= ()1-I*)/(1+&). (48)

Here ) is the dimensionless electron-phonon coupling
constant and X~ is just the E(0) V of the BCS model.
Tllc 1Iltcgl'Rl of (47) Is cllt off Rt. E,o ill order to cul'c tllc
logarithmic divergence. Equations (47) and (24) are
just Gor'kov's equations for the SCS model with an
energy cutoG.

In order to recalculate the BCS potential h(x) we
take the expressions for G12 from (31) and (32) and
perform the energy and angular integrals. Introducing
the pairing amplitude or order parameter F(x),

where
a(x) =V(x)F(*),

Im
F(x) = dE —GI, (E', x, x),

0

(49)

(50)

we 6nd in S

squared times the phonon density of states. The
Coulomb term is represented by a pseudopotential p,

with an energy cuto6 at a typical phonon energy. %e
take 0.'6 and p,

*equal to the bulk value in S and zero in
N. The self-consistency equation for 6=())/Z is then

Im
A{E,x) =$Z{E,x)] ' dE' —G12(E', x, x)

0 7r

&&fE+(E, E', x) —)s*j. (46)

The dominant contribution to the integral is from low
energy and we write approximately

&«~'(E E' ') —&'~ F (x) = Re "dE

(Z(E, x) —1)E= dE' —G11(E', x, x) X-(E,E', x),
hE exp( 2iQx/5—I)I cos8)

d cos9
Q Q (E+Q)

where the kernel for the phonon-induced interaction is

E+(F, Kx)=/ d a'G(ro, .x)

XL(E'+ E+co—ib)-Ia (E'—E+o)—il))-Ij, (45)

and 0.'6 is an averaged electron-phonon matrix element

X g X

FIG. 7'. Phonon and Coulomb contributions to the matrix self-
energy for the superconducting state.

dy E—0
exp(iy

~
x

~ Q/$h) dQ
y'

s ~By
=Fbulk

2 18{y)& (51)

I (y) =E(1/y)+(1/y') 3 "+-' L& "'('y)/yj (52)

The integral de6nitions of the Hankel function above
and of the Bessel function below are from Janke and
Emde, "and numerical values are to be found therein.

"E.Jahnke and F. Emde, Taks of k'Negfjogs (Dover Publi-
@ P, Morel and P. Vf, Anderson, Phys, Re@. 125, |$73 (1%i2). catjons, Inc. , New York, $945), p. $50,
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FrG. 8. Pair amplitude for the SN interface at zero temperature.
The oscillatory term which appears at larger distances is not
visible on the scale of this graph.

the potential (for finite X*).In S this singularity occurs
for in6nite wavelength and there are no oscillatory
terms. The physical origin of these oscillations in the
potential is therefore somewhatdiGerentfrom the Friedel
case where the oscillations arise from the momentum-
space cutoG in the occupation number. The Friedel
oscillations a cos(2k') have a wavelength comparable
to the characteristic length kg ' of the normal metal
they persist unmodi6ed in the superconducting state.
The oscillations in the BCS potential have a wavelength
comparable to the characteristic length of the super-
conducting state, the coherence length.

The recalculated BCS potential (Fig. 9) is just lh,
e

times F(x) in S and zero in N. This potential is not very
diGerent from the assumed potential, indicating that the
potential is now nearly self-consistent. A quantitative
measure of that difference is

ln N we 6nd similarly

FN(x) = ae f dr

I —0,
d cos8 exp(2iEx/Sop cos8)

where

—&(y)
~ls y

I~(y) '=-(y') '-2wL&i(y)/y] (54)

For reasonable values of x/$ the integrals of the oscil-

latory terms in (51) and (53) converge and the cutoff
is unnecessary. However, for very small y both I8 and

I~ diverge logarithmically. The proper limit for x=0 is

F(0) =2~I:ln(2E.e/~)+kj, (55)

which is somewhat greater than one-half the bulk value

Fb„)g——6 ln(2E~/6) . (56)

In (51) and. '(53) we cut off Is and I~ for y~2E,O/h.

The final integration in (51) and (53) is readily
performed by hand and we find the curve for F(x),
normalized by Fb„~q, shown in Fig. 8

l
for 1n(2E~/6) =

2.3$. The pairing amplitude approaches the bulk value

very quickly (exponentially) for x(0, is roughly half

the bulk value at x=0, then drops rapidly for x&0
6nally approachmg

F(x) 6j—'($/x)' —((/x)'~' cosL(x/$) —wj} (57)

for large x. The oscillatory term arises from the singu-

larity in the electronic reQection amplitude for E=A.
For 8&5 an electron in N approaching the interface is
totally reQected whereas for E&5 there is some prob-
ability that the electron will be transmitted into S.
At this energy the incoming and outgoing states have a
phase difference 8&=2hx/far, and an oscillatory term
n exp~ is introduced in the pairing amplitude and 1n

(h$)-' Lh —b, (x)$Cx=0.25/ln(2E, e/6), (58)

which is of order 0.05 to 0.1. %e expect further higher
corrections to d (x) to be of order 10% of the correction
that we have just calculated.

At finite temperatures Eqs. (51) and (53) are modi-
fied by including the usual factor of tanh(E/2T) under
the energy integral. At low temperature the x ' term in

(57) is cut off for x of the order of the thermal wave-

length Sop/2T, whereas the oscillatory term is reduced
only by the factor tanh(h/2T) .

Near T, the Ginzburg-Landau (GL) theory is valid
in the superconductor for distances greater than $e from
the interface. The BCS potential varies over the GL
scale of length

$(T) =0 74&0[T /(T —T)]"'»$0

and (7) is not a good starting function for a self-
consistent"calculation. The calculational procedure used
for T=O, which depends on (7) being reasonably close
to the self-consistent solution, breaks down near T,.
However, following DeGennes and co-workers, ~o we can

l.0

FIG. 9. Recalculated BCS potential for the SN interface
( ) together with the starting potential (- —-).

0 P. G. Deoenness S@p8fCONdSC$$$$fg Of MCPClS CS8 A/10QS

(W. A. Benjamin, Inc. , New York, 1966) .
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0

~(x) = Z(x —*')S(x')d*', x(0 (60)

where the kernel for the clean superconductor is

X~2xT, ~ ds
E(xl = '

Q —expL —(2m+1) I
x

I s/Q,
Amp

(61)
and the range of the kernel is

$,=fir» /27r T,=0.88$p. (62)

Wd will solve the integral equation by iteration taking

make use of the GL theory deep in the superconductor
and use the linearized integral equation for d near the
interface to find the self-consistent h(x) and F(x).
According to the GL theory 8 (x) is of the form' s

h(x) =hb„», (T) tanht'( x+—bf.)/&2&(T) 5 (59)

deep in the superconductor, where b is of order one.
Near the interface h(x) is small, so that we can neglect
higher order terms in d and solve the linear integral
equation

Fro. 11. Possible experimental conf&guration
for studying the pair amplitude in ¹

aI)d
~ deey)= Z (2rs+1) i s'—,expL —(2ts+1)ys5. (66)

The integrals are evaluated in terms of exponentials,
and the exponential integral function and the sums are
easily performed by hand. We treat b as a disposable
parameter which is adjusted to make 6&'& (x) as close as
possible to h&s&(x). The functions fi(y) and fs(y) are
very similar in shape for y& —0.3 and we And by
choosing b=0.6 that 6&'&(x) and 6&'&(x) agree within
is% for x(—0.3&a. Thus it appears that we have found
a nearly self-consistent solution for h(x). The pair
amplitude is proportional to h(x) in the superconductor
and satisfies (60) in the normal metal as well. We find

F
F(x) = ~ x+—b$,+X*), f)I I

—
bfpI

Fbslb(T) X
t

X &—
~2](T)

l*k. fi ()I+&f~ (]I, x&0.

(6't)

0
1

x/g

Deep in the normal metal the asymptotic form for F(x)
ls

F(x)~LFb„ib(T) /V2$(T) 5Vtp(1+0) exp (—x/$, ) /x,

x))$.. (68)

h(x) and F(x) are plotted in Fig. 10 for )&a =1/4.6.

VI. MEASUREMENT OF PAIR AMPLITUDE

the starting solution from (59)

6&'&(x) =hb„&b(T) (—x+b$, )/v2t(T) )

=0, x)0. (63)

The first iterate of the integral equation is

FIG. 10. Solid line is the pair amplitude near T, normalized to
unit slope in S. The dashed line is a&s&ix) fand the solid line in
S is 6(') (x); h(x) vanishes in ¹

Since the supercurrent is carried by the pairs, one
might expect to learn something about the pair ampli-
tude by measuring the maximum supercurrent for a
given geometry. Two experimental conhgurations come
to mind. The first is that of the SNS' sandwich (Fig. 11),
where one measures the current carried through the
normal slab. In order to calculate that current one
could compute the total energy of the sandwich as a
function of the phase difference &t,between the 6 of
S and S' and then use the Josephson-Anderson relation

6&'&(x) =

where

J:(x x') 6&'& (x') Cx'—

~2~(T)

(64)

I=dN /dt= (1/ti) (aE/r&y) (69)

to 6nd the supercurrent. The other con6guration is that

S N I S

f (2 f) f (65) FIG. 12. Josephson junction placed on the N side of an SN
(2N+1)s ss p&- ( )y 5 ( ) sandwich to measure the pair amplitude in N at the tunneling

surface.



of a Josephson tunnel junction placed on the N side of
an SN sandwich, the SNIS' geometry (Fig. 12). We
show here that under certain conditions the maximum
supercurrent through the insulator is directly propor-
tional to the pair amplitude at the tunneling surface. In
principle, the measurement of the maximum Josephson
current versus the thickness of the normal metal allows
one to plot F(x)

We calculate the maximum supercurrent using the
tunneling Hamiltonian following Joseph son'2 and
Anderson. "

Hr QT22(——C2)+C2)+C 21+C 2))+h.c.

The total energy to second order,

E +(oIH, IN)&~IH, Io)
n E

contains terms dependent on the phase difference be-
tween SN and S'.

, + &o I
c.+ I m&(m I

c,+ I o&

mm& E„+E
X &o I C. I

m'&(m'
I
c-. I O)+c.c., (72)

where I m) and
I
m') are exact excited states in SN and

S', respectively, and we have replaced T&,' by an
averaged quantity. Now the quantity

g P (0 I
C+

I m)(m I C +
I 0)B(E—E ) (73)

is just the imaginary part of the anomalous Green's
function evaluated at the tunneling surface. Physically,
the tunneling process injects one electron at the tunneling
surface and at some later time injects a second electron
to form a bound pair. We find

, Im G12(E, x, x)
AE2 —2 co& (T') d—E—dE'

E+E'

X Im G21'(E', x, x), (74)

with x at the tunneling surface. Assuming that S' is a
uniform superconductor with energy gap 6' we have

Im G12(E) x, x)
AE2= —2 cosP (T') dEdE'

E+E~

gl

(E&2 +&2) 1/2
(753

Finally the main contribution to the E integral is from
energies less than Kv2/d, so that for Sv2/d((h' we can
neglect E relative to E', in the denominator and find

AE2= —2r cosy (T')F(x=0).

where R is the junction resistance in the normal state.
For the case of a reasonably thick normal-metal 61m
and a reasonably large energy gap in S' the measure-
ment of the maximum Josephson current and junction
resistance determines the pair amplitude at the tunneling
surface. Of course the presence of the tunneling surface
modi6es the pair amplitude from the results of Sec. V on
the semi-infinite geometry. The SN sandwich with a
normal metal of thickness d and specular scattering is
equivalent to the SNS sandwich with a normal metal of
thickness 2d. For d))$ one can superpose the contribu-
tions to F from the left and right superconductors and
we find that F at the tunneling surface for the SN case
is just twice F(d) for the semi-infinite case.

Since the maximum Josephson current between
uniform superconductors is often less than one expects
theoretically, perhaps one should attempt a relative
measurement rather than an absolute one as suggested
by (77). One could measure the current through a
Pb-Al-I-Pb junction relative to an AI-I-Pb junction
made at the same time to 6nd the pair amplitude at the
surface of the Pb-Al sandwich relative to Al.

The pair amplitude is negative at zero temperature
and for d& ], and becomes positive at higher tempera-
tures where the characteristic length becomes longer
because of the temperature dependence of 6 and the
thermal length becomes important. One would expect
an anomaly in the Josephson current at the temperature
where F(d) passes through zero.

VII. CONCLUSION

Ke have presented a very nearly complete solution
of the clean SN problem with semi-in6nite geometry.
Ke have computed the electronic density of states as a
function of energy and distance from the interface and
have found the magnitude of the interference-eGect
oscillations for the Tomasch geometry. Quantitative
experiments for this geometry would be most interest-
ing. A quantitative comparison of experiment and
theory of the oscillations for the Rowell geometry is
contained in Ref. 6. We have also recomputed the BCS
potential and found that the potential is nearly self-
consistent. The pair amplitude is found to oscillate in
the normal metal and a Josephson tunneling experiment
is suggested for its measurement.

The calculation was sufEciently simple so that it can
probably be extended in several directions. One might
want to include the effects of (1) impurity scattering,
(2) re8ection properties of the interface and (3) finite
geometry. The properties of the clean SNS sandwich
could be calculated by the above methods.
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