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state by higher states. It was observed that the
problem of cascading may complicate the analysis
of data obtained using the beam-foil method and
could result in erroneous conclusions.

Changing foil characteristics have also been ob-
served in the course of these experiments. Aging
of foils in the accelerator vacuum system and un-
der ion bombardment produced apparent changes in
ion-energy loss. Consistent results were obtained
only by using fresh foils for mean-life measure-
ments. It is also evident that the initial popula-
tions of atomic states depend on the thickness of
the foil used.

The actual mechanism of the excitation process
within the foil is not yet fully understood. Due to
the fact that the mean-free paths of the incident
ions are small compared to the foil thickness,
many ion-foil atom collisons will occur. It may
be that the actual final excitation process occurs
at the emergent surface of the foil and if this is
the case, surface contamination would affect the
initial- state populations. Some understanding of
the excitation mechanism may be reached through
polarization studies of the emitted radiation. Pre-
liminary experimental studies in this endeavor
have not thus far revealed any polarization.
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Many regularities and systematic trends among atomic oscillator. strengths have been

stedied using the extensive material which has recently become available for the lighter
elements. The quantum-mechanical background for the existence of these regularities is
discussed, and in particular the relationship between oscillator strength and nuclear
charge as predicted from conventional perturbation theory is reviewed in detail. A num-

ber of characteristic numerical examples are then presented. The regularities are of

great piuctical importance, since they may be exploited to obtain additionaj. oscillator
strengths by simple interpolation techniques as well as to evaluate the reliability of ex-
isting data by the degree of fit into established systematic trends.
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I. INTRODUCTION

Regularities in atomic spectra are commonly
associated with characteristic patterns in the
'wavelength positions of spectral lines, i.e. , the
appearance of spectral series, and with system-
atic trends for a given line or energy level along
an isoelectronic sequence. Both types of regu-
larities have been w'idely studied by spectrosco-
pists' an.d have been extensively exploited for the
acquisition of many additional data.

Systematic trends in spectral line intensities,
on the other hand, have been rarely noted up to
now. Almost all of the few observed regularities
have been found for the relatively simple spectra
of the alkalis and alkaline earths. As early as
1925 Trumpy' observed that the oscillator
strengths for the principal series of sodium, 3s-
nP, decrease with increasing principle quantum
number n in a regular fashion, which may be
approximatelp represented by the expression
"const. x n ". Similar systematic trends were
later also observed' for other series of the alka-
li metals, alkaline-earth metals, and some
other metals, but several anomalies were found,

- too. Theoretically, the "const. x n '" behavior
for oscillator strengths of the various spectral
series of hydrogen was first derived from the
correspondence principle and again immediately
after the development of wave mechanics. 4 It
was also shown then that for hydrogenlike ions
of nuclear charge Z the transition probability A
changes as AZ =Z'AH (AH is the hydrogen value
for this transition), while there is no change in
the f-value: fZ =fH Howeve. r, the first theoreti-
cal attempt to exploit regularities within iso-
electronic sequences of nonhydrogenic systems
for the determination of atomic f values was
undertaken only a few years ago with the develop-
ment of the nuclear charge expansion method, '~'
which has been recently extended to include core
polarization and has been also applied to the de-
termination of photo-ionization cross sections
at the head of spectral series. 7

In view of the scarcity of reliable f -value data,
it is hardly surprising that more trends have
not been detected before. While even now the
f-value data are very far from being complete
and are often not too accurate, our knowledge
has nevertheless reached the stage where it has
become fruitful to search systematically for
those systematic trends which are expected from
general principles of atomic theory. This applies
especially to the lighter elements, for which a
comprehensive table of atomic f values is now
available. ' Thus these spectra have been exten-
sively scanned for regularities.

In the following, some of the most significant
results of the systematic searches will be dis-
cussed' and the quantum mechanical basis for
the regularities will be presented. The three
specific aims of this paper are (a) to show that
many regularities exist and that they are quite
obvious; (b) to provide the essential theoretical
background for further searches of systematic
trends; and (c) to point out the profits derived
from the analysis of the regularities, such as find-

ing additional f values simply by graphical inter-
polation.

II. THEORETICAL PART

A. Systematic Trends of Oscillator Strengths
Along Isoelectronic Sequences

The theoretical behavior of oscillator strengths
along an isoelectronic sequence can be studied
most conveniently from the framework of conven-
tional Rayleigh-Schrodinger perturbation theory,
expanding in inverse powers of the nuclear charge
Z. This Z-expansion method is well known, arid
has been used extensively to study a wide variety
of atomic properties. "" The theory will be re-
viewed here as it applies in particular to the de-
pendence of f values and multiplet strengths on
the nuclear charge. '~'

where the summation within the integrand is tak-
en over all the electrons of the atom, and the
squared matrix element is understood to be
summed over any degeneracies in the two states.
The oscillator strength for the same transition
is given by

f=W(&-&')g

Here g is the statistical weight of the initial
state, and E is the energy in atomic units. '3 The
wave functions and energies will be taken to be
solutions of the usual, nonrelativistic, spin-in-
dependent Schrodinger equation.

[- (-,'~ +Zr -')+ + r -']e=se. (3)
p, p, . gyp pp

It should be noted that the approximation of pure
LS coupling, represented by Eq. (3), is likely
to become questionable for very high stages of
ionization. This point will be taken up later on.

Following Hylleraas, '4 the usual procedure to
obtain Z as a variable is to divide equation (3)
through by. Z2 and scale all distances x by Z and
energies by Z ', so that p = Z~ and e =EZ ' "
This puts (3) into the form

(&.+Z-'V)C = ec

with X =-Z (-,'& +p ')
p, p,

(4)

(5)

p p pp

The Laplacian in (5) is to be taken with re-
spect to the scaled distance p. Equation (4)
is now in the requisite form for perturbation
theory, with Z ' as the expansion parameter and
the entire interelectronic repulsion energy V as
the perturbation. A)so, the zeroth-order Hamil-

The multiplet strength for a transition between
states 4 and 4' is given by

S= l&elZr1@& I',
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tonian is a simple sum of hydrogen atom Hamil-
tonians, so that the zeroth-order equation is
separable. The perturbation solutions now are

C& = Co+ Z '@, + Z

E = ED+ Z q~+Z 62+ ~ ~ ~, (sa)

or
&
E:cpZ + E'yZ + E'o + E'3Z

Because of the separability of the zeroth-order
approximation, fp is a simple sum, over all the
electrons, of hydrogen atom energies

1 -2
Eo Q p

where n& is the appropriate one-electron princi-
pal quantum number.

Our principal result, .the Z dependence of the
rnultiplet strength and f value, can now be derived
by substituting (7) and (8b) into (1) and (2) and
collecting terms of the same degree in Z

S= SOZ + S~Z + S2Z + ~

f=f, +f,Z '+f,Z '+ ~ ~ ~,

(io)

(iia)

The leading terms here are given by

S, =
I (C, l p IC, ') I'

f0= —', (eo —eo')g 'I (@alp leo' & I'

f, = —,
' g '(e, —e, ') I ( 4', I p I C', ' & I

'

(i2a)

+ —,'g '(e, —e, ') & C, I p I C', ' ) [ ( O', ' I p I C, )

~ &c,'Ipl e, &] . (14a)

The separability of the zeroth-order problem also
implies that C, is simply an antisymmetrized
product of hydrogen atom orbitals, so that S, is
simply given by

where o. is the hydrogenic transition integral and
6 the usual angular factor dependent on the angular
momenta, number of equivalent electrons, etc.
These last comments and Eq. (15) do not apply if
there are any degeneracies in zeroth order, in
which case some modifications are necessary.
For the moment we will restrict ourselves to the
nondegenerate pr oblem.

In this case, Eqs. (10) and (11a) exhibit the ex-
plicit Z dependence for 8 and f. For very large
Z, the multiplet strength goes to zero as Z, or,
equivalently, Z'S approaches a hydrogenlike value
as defined by (15). For the oscillator strength,
one can distinguish between two different eases.
If there is a change in the principal quantum num-
ber of the jumping electron, n -n', then the en-

ergy difference in the lead term, f„ is just the
hydrogen atom level spacing. The oscillator
strength for large Z then asymptotically ap-
proaches the hydrogen f value, with the possible
modification by the angular factor of Eq. (15). Qn
the other hand, if there is no change in the princi-
pal quantum number, n-n, the zeroth-order en-
ergy difference vanishes —Eqs. (9) and (1S) —and
the f value for large Z tends toward zero linearly
with Z

In this latter case, one can still say something
about the way in which the f values go to zero.
Equations (1la) and (14a) become

fr Z +f2 Z +'''r

f '= g '(~ —~, ')~. .

(11b)

(14b)

The first-order energy in Eq. (14b) is given by

e, = (4, I Vlc', & (i6a)

2s»S + 2p»S

Since 2s and 2p are degenerate for hydrogen, both
these configurations have the identical zeroth-
order energy. This degeneracy may be removed
in first order by applying the standard procedures
of degenerate perturbation theory. Any linear
combination of the zeroth-order functions [4P],
will be an eigenfunction of X„and the particular
linear combination is determined by diagonaliz-
ing the first-order perturbation matrix,

I"pq = ( 4', I V I C,~ & . (16b)

The eigenvalues of (16b) are the first order en-
ergies, and the eigenvectors provide the expan-
sion coefficients, i. e. , 4, becomes

c, -Zpc c,p.

The zeroth order multiplet strength is now given
by

8, = IZpqc c' (@,plpl@, ~ ) I'

and the oscillator strength is modified accord-
ingly. . All of the earlier discussion about asymp-
totic behavior applies as before, but with the
difference that one uses (12b) instead of (12a) and
(15), and the eigenvalues of (16b) are to be used
instead of the e, in (16a), i.e, the values of the
a,symptotes must now be determined by a numeri-
cal calculation instead of a table look-up.

and is readily obtainable, since it only involves
computing Slater integrals with hydrogenic or-
bitals. Thus for the case n-n it is possible to
predict fairly easily either the slope of the f-value
curve for Z '-0 or, alternatively, the limiting
value of Zf.

Proceeding now to the case of zeroth-order de-
generacy, this first occurs in the beryllium se-
quence with the well-known configuration inter-
action
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In summary, since Z ' appears from these con-
siderations as the natural independent variable,
regularities should be expected to show up most
clearly in graphs of f (or Z3S) vs 1/Z. One has
considerable assistance from theory here, since
the zero end (Z '-0) of such curves can be de-
termined theoretically, either by looking up al-
ready tabulated data or by doing a relatively minor
calculation. If some fairly reliable data are
available, then it also may be possible to read off
values for other ions from the graph, especially
since this really involves doing an interpolation
rather than an extrapolation. Plotting against
Z ' has furthermore the advantage of compressing
the entire isoelectronic sequence into the region
between 0 and the neutral-atom value vf Z '. Sev-
eral words of caution are in order, however, con-
cerning such graphical predictions.

The first difficulty concerns the readjustment of
the atomic term scheme with increasing nuclear
charge. It is well known that the energy levels
for high stages of ionization are grouped according
to the yrinciyal quantum numbers while for neutral
atoms they often are not. Thus there should be
a substantial amount of level crossing along many
isoelectronic sequences, and in such regions f
value anomalies are a distinct possibility. For
example, for a highly ionized member of the car-
bon sequence, the lowest levels belong to the
terms, 2s'2P', 2s2p', and 2p', followed by the
n=3 terms, such as 2s 2p3s, 2s'2P3P, 2s'2P3d,
2s2p'3s, etc. For neutral carbon, however, most
terms of the first group lie quite high uy, many of
them unbound. As Z is increased, these levels
will move down below those of the second group,
and for those values of Z where they are close to-
gether it is possible to have quite strong pertur-
bations of the f-values as well as the energy lev-
els. It appears from the data, that this adjustment
is normally already realized at moderately low
stages of ionization. '

A second, and closely related problem has to
do with the occurrence of cancellations within the
transition integrand as the radial wave-function
nodes shift inward with increasing Z. This would
give rise to a minimum in the f-values for a given
transition at some particular value of Z, and in-
deed a number of transitions in the sodium iso-
electronic sequence have been found to exhibit
such behavior. The phenomenon is quite similar
to the Cooper minima" in photo-ionization cross
sections which arise frpm cancellations for cer-
tain values of the free-electron energy. While
these minima normally occur in the continuum,
they have frequently been found to occur below
threshold, i. e. , among the discrete level transi-
tions.

Finally. , one should recall that the entire the-
oretical development here has been nonrelativis-
tic, so that there are no allowances for departures
from LS coupling. While for sufficiently large
Z this will become important, it is difficult to
assess just where and to what extent the LS cou-
pling will break down. From the available experi-
mental data and intermediate coupling calcula-
tions, " it appears that one can go to quite high

stages of ionization without seriously disturbing

A great many of the strong lines in atomic spec-
troscopy arise from transitions where the jumping
electron is in a shell by itself, i. e. , where a sin-
gle electron is jumping around outside of a spec-
troscopically inert core. These cases may be
readily treated by some kind of single-particle,
central-potential model, with the well-known
Coulomb approximation" being perhaps the best
known and most generally useful of such models.
It can be expected that for such cases regularities
should exist which derive primarily from the one-
electron nature of the transitions.

In general, for complex atoms a one-electron
jump specified by nl-n'l' gives rise to a large
number of lines, the transition array, and the
equivalent one-electron f value is then actually
a mean f value averaged over the entire array.
Regularities which derive from the one-electron
models refer to this "transition array" f value.
To connect this f value, fT, with the line and
multiplet values normally observed, one needs
first the following relations:

The total strength of a transition array, Sy, is
related to the multiylet strength, S~, and the line
strength SL, by

The relations between the corresponding f values
are given by,

fL = (SL/ST) ~& T/&L)(ggrL)f T,

and

f =(S /SP(gory )(gag )f . (20)

The g's here are the statistical weights of the
initial line, multiplet or array, as the case may
be, and the X~ and X y represent average wave-
lengths for the multiplet and array, respectively,
obtained from weighted averages of the energy
levels. In many cases, the wavelength ratios in
Eqs. (19) and (20) are close to unity. The ratios
SM/ST and SL/S Z are readily available in the
literature for the case of LS-coupling. " The
foregoing considerations depend on the assump-
tion that the transition integral, o, is approxi-
mately constant throughout the array, a condi-
tion which has been found to be generally ful-
filled.

The partial f sum rules readily suggest them-
selves as starting points to look for possible
regularities. In particular, the Wigner-Kirk-
wood" sum rule for transitions of the type
nl -n'l+1 states that

the f values for LS-allowed transitions. At any
rate, any multiplet strengths that one might inter-
polate for large Z should represent the correct
starting point for an intermediate coupling calcu-
lation.

B. Regularities Based on One-Electron .

Model Considerations
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Z,f,f
1--- ~(1+1)(2l+3)(2I+1) '. (21)

Here, the sum is to be taken over all states, n',
including the continuum as well as all possible
lower states (which may be filled shells). For
the most common types of transitions, one finds

ns -n'P:

ns n'd:

nd-n'f: (22)

~nI-3
«n I (23)

for large n'. Since the high-lying single-excita-
tion levels of a complex atom should approach hy-
drogenlike behavior, one may expect f values for
spectral series generally to decrease according
to Eq. (23) for large enough n', i.e. , n "f should
approach a constant. This prediction, of course,
requires some modification if quantum defects
are not small, namely, that n' should be replaced
by n*, the effective quantum number.

Finally, even more exact hydrogenlike behavior
can be expected to prevail for transitions between
levels with both large l and large n. In such ex-
cited states thewave functionof the outer electron
does not penetrate the core at all, and for all in-
tents and purposes the electron sees the core only
as a point charge. In these cases then, not only

should the previously discussed regularities hold,
but the absolute f values should correspond almost

If now a single transition overwhelmingly domi-
nates the series, then the f value for this transi-
tion will be given approximately by the sum rule,
Eq. (21). Such a situation may be expected to pre-
vail when the l and l+1 wave functions overlap
very strongly and are radially separated from the
core, e. g. , (n+1)s-(n+1)p, where the core elec-
trons occupy the shells with principal quantum
number n. An obvious case in yoint is the reso-
nance line of the alkali atoms. Thus, for example,
the 3s-3p transition in sodium with f= 0. 98 soaks
up essentially all the oscillator strength, the same
being true for the other alkalis. If the corre-
sponding transition dominates the sum in Eq. (21)
as one proceeds along columns of the periodic
table (in the above example 4s-4P for K, 5s-5p
Rb, etc. ), the sum rule then provides a method
for estimating f values for homologous atoms.

It is now important to realize that the ratios
SI,/S& and SM/SZ in Eqs. (19) and (20) are the
same for homologous atoms, as long as the cou-
pling scheme does not change. Since the wave-
length ratios, X&/XL and X&/XM, should also be
quite similar, we may conclude that, for homolo-
gous atoms, even the individual line and multi-
ylet strengths will be approximately the same for
the dominant transition array in analogous spec-
tral series.

Another place where one may expect to find one-
electron model regularities is in the behavior of
f values along a spectral series. It is well known
that, for the hydrogen atom, oscillator strengths
for any given series fall off as n ', i. e. ,

exactly to the purely hydrogenlike values.
Just as with isoelectronic sequence regularities,

however, a word of caution is in order with re-
spect to possible perturbations, e. g. , those due
to foreign terms. Series perturbations are well
known in atomic spectroscopy, and it is always
yossible for the one-electron regularities dis-
cussed here to be seriously disrupted by such ef-
fects.

III. ILLUSTRATIVE EXAMPLES

A. Z dependence offvalues

We have confined our studies to the isoelectronic
sequences of the lightest elements from helium to
magnesium, since only for these sequences are
sufficient amounts of reliable data for lower as
well as higher ions available at this time.

Up to now about 100 cases with sufficient numeri-
cal data on nuclear charge dependence have been
found. The material has been always critically
selected and has been normally taken from the
data evaluation and compilation now in progress
at The National Bureau of Standards, ' with some
recent additions to the already published tables.
In some instances the data are not too reliable,
b'ut normally they should be within 50% (often much
less) of the true values. The studies were car-
ried out with graphical methods, since Eqs. (10)
and (lla) lend themselves readily to this most in-
structive type of presentation.

It appears that practically all the curves obtained
by plotting f (or Z'S) versus 1/Z may be conve-
niently grouped into three classes according to
their shapes. This classification appears to have
also physical significance, since there is a clear
correlation between each type of curve and the
particular behavior of the transition integral
(Table I). The most commonly encountered curve
(class a of Table I) exhibits a dependence of f value
on nuclear charge which is well approximated by
a parabola, and for the higher ions, by a straight
line. Thus a quadratic approximation to Eq. (11a)
appears to represent the "basic" f-value depen-
dence on Z. Such a curve is usually encountered
when there is no interference of any kind in the
transition integral, or when configuration inter-
action has a uniform effect along the entire se-
quence. The Z-expansion method'~' provides a
good theoretical representation for this type of
transition. A second kind of curve (class b) shows
a maximum near the neutral end of a sequence.
This appears to occur when there is cancellation
in the one-electron transition integral, 0, or
when configuration interaction dominates for. the
neutral atom. In the latter ease, configuration
interaction produces an interference in the transi-
tion integral. It should be noted that configura-
tion interaction can also act to enhance the f value,
and if this were to happen for the neutral atom
one would simply get a curve of type a, with per-
haps a somewhat exaggerated. rise at the neutral
end. If enhancement were to occur somewhat
further along the sequence, a curve of type b wouM
be produced, but with the maximum being caused
by configuration interaction. No clear and out-
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TABLE I. Correlations between the functional dependence off value on nuclear charge Z and the dominant physical
mechanism acting on transition integral.

Characteristics.
off value

dependence on 1/Z

Number of observed cases with the following physical mechanisms present:
Little or no Strong Cancellation
configuration configuration in transition
interaction interaction integral

Class a. parabola (approx.
straight line for
higher Z)

b. curve with maximum 0

C. curve with minimum 0 0

Calculations with and without configuration mixing show that for two of the three cases the effects of configuration
interaction are quite moderate, i.e. , the values change by about 2.0-30%, and in the third case by about 70%.

Maximum is caused in these cases by cancellation at the neutral end of isoelectronic sequence and by the asymptotic
behavior f 0 for 1/Z 0.

standing examples of an enhancement effect have
yet been found. Curves showing a minimum (class
c), with the f values increasing again at the neu-
tral end, have also been found. So far, these
curves can be attributed simply to cancellation in
the one-electron integral, apparently for those
values of Z near which the integral changes sign.
Finally, the combined effects of configuration in-
teraction and other interference effects may oc-
casionally give rise to curves with anomalous be-
havior, which, e.g. , may show both a maximum
as 'mell as a minimum. However, we have ob-
served only one anomalous curve as yet (for the
boron transition 2s 2P P-2s 3s S)

Table I shows the statistics on the empirically
found correlations between the various types of
curves and the apparent cause for their shape.
These correlations are so strong for the three
classes of curves that this may be of significant
aid in predicting the shapes of future curves if the
effects which are important for particular transi-
tion integrals are known. Before presenting now
some characteristics examples, it should be
pointed out that, not unexpectedly, f values and
energy levels show close correlations in their
nuclear charge dependence with regard to pertur-
bations. In particular, it is observed that when
configuration interaction occurs, the yerturbation
effects for f values as well as energy levels are
largest for the lowercmembers of an isoelectronic
sequence while for the higher members the per-
turbations become rapidly smaller.

In the following, some characteristic examples
for the various types of curves are discussed.
First three curves are presented where the de-
pendence of f value on nuclear charge is very
nearly given by a parabola:

(a) Some of the most accurate data are available
for the 28-2p transitions of the lithium sequence.
For these lines, configuration interaction effects
are negligible. The overall dependence of f value
on 1/Z, shown in Fig. 1, is thus well represented
by a parabola and for the higher ions by a straight

line, which goes to zero for 1/Z-O as required by
Eq. (11b). For this graph, one experimental and
three theoretical sources were chosen from the
substantial amount of available material. The
three theoretical methods are variational calcu-
lations for the ions Li I throughp VI,"self-con-
sistent-field (SCF) calculations for F VII and Ne
VIII,"and nuclear-charge expansion calculations. '
The experimental data have been obtained from
lifetime measurements with the beam-foil excita-
tion method. '3 For C IV the estimated theoretical

I

Li-sequence

2s S -2p P'

0.8—

0.6

0.4

0.2

O.I 0.2 0.3

FIG. 1. Oscillator strengths versus 1/Z for the prin-
cipal resonance line of the lithium isoelectronic sequence.
The solid line represents simply the best fit through the
data.
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0.6—

Be sequence

2s2p P —2p P

—-- Cohen and Dalgarno (charge expansion, limited conf. int. )

Weiss (SCF with conf. int. )
~ Weiss (SCF without conf. int. )

Veselov (hydrogen-like wavefcts. , no conf. int. )

0.4

and experimental errors are indicated by error
flags. The experimental error given is simply
the standard deviation of the mean value; thus the
slight discrepancy is probably of no particular
significance. The otherwise very close agree-
ment between experiment and theory may be con-
sidered as an indirect experimental proof of Eq.
(11b) since the experimental values are obtained
with no knowledge or assumptions about any pos-
sible nuclear-charge dependence of the f value.
The solid line drawn through the data points is
simply the best estimated fit and may be used to
obtain f values for very highly charged ions by just
reading these off the curve.

(b) As a second example for a curve of type I the
transition 2s2P'P'-2P"P of the Be sequence is pre-
sented. This transition, in contrast to the previous
one, may be expected to show some configuration
interaction effects, especially since there are
equivalent electrons present in the upper level. But
closer inspection shows that no configuration inter-
action is possible in the m=2 shell since the only
other even-parity configuration 2s' does not have
a 'P state. Configuration interaction reduces there-
fore to the normally much smaller interactions with
states of higher n, and one should thus expect a
nuclear-charge dependence similar to those cases
with negligible configuration interaction. As Fig.
2 shows, this seems to be indeed borne out by the
various available theoretical as well as experi-
mental data. The theoretical sources used are SCF
calculations with and without configuration mixing,
done by one of us, nuclear-charge expansion cal-
culations, ' and calculations based on hydrogenlike
wave functions. '~ The two experimental data are
both from lifetime measurements. "~" It is im-
portant to note that the value for Be I, obtained
theoretically from a full configuration- interaction
treatment, smoothly joins the theoretical values
for B II, C II, etc. , which were done without con-
sideration of configuration interaction. This fact
clearly indicates the insensitivity of this transition
against configuration-mixing effects.

(c) As was mentioned in the beginning of this sec-
tion, the class-I dependence of f value on nuclear

I.O

BORON SEQUENCE

2s 2p'P' —2s2p P
——Cohen and Dalgarno (Charge expansion,

limited conf. int. )

Heroux (Lifetime)
Weiss (SCF with conf. int. )

Weiss (SCF without conf. int. )

Kelly (SCF-Slater without Conf. int.

j'
/

)

/

t

0.6—

-val
0.4

charge may be also obtained if a considerable con-
figuration-interaction effect influences the transi-
tions over the whole isoelectronic sequence to ap-
proximately the same degree. This apparently
happens in the case of the boron sequence transi-
tions 2s'2P 'P -2s2P"P, where calculations based
on SCF wave functions but without considering con-
figuration-interaction effects ~~" differ along the
whole isoelectronic sequence by an almost constant
amount from those for which the full configuration-
mixing treatment is included (Fig. 3).'7 These
latter calculations in turn agree closely with the
nuclear-charge expansions' in which only limited
configuration interaction is included, namely, the
mixing of the 2p' state with the 2s'2p state. Ap-
parently most of the change of f value originates
from this particular admixture. The experimental
datum point for N III comes from a lifetime mea-
surement performed with the beam-foil excitation
technique" and is in excellent agreement with the
theoretical results based on configuration mixing.
This example demonstrates two pointh: conven-
tional SCF calculations cannot be considered re-
liable in situations where configuration interaction
is expected even when they give smooth and reason-
able Z-dependence plots, and secondly, an approxi-
mately linear relationship between f value and 1/Z
may also be obtained for cases with significant con-
figuration inter action.

Next, two plots will be presented where configu-
ration interaction strongly influences the f-value
data. These are curves categorized as class b in
Table I.

(d) Accurate theoretical as well as experimental
material is available for the 2s'2P 'P'-2s2p' 'D transi-
tions of the boron sequence (Fig. 4). These transi-
tions again do not involve a change in principalquan-
tum number so that the f value goes to zero for 1/Z.
The experimental data are all obtained from life-
time measurements performed either with the beam-

0.2 0.2

0
0 0.05

I

O.IO

i/z-
O.I5

I

0.20
I

0.25 0
0 0.04 0.08 O.I2
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i I

O.I6

BI
, I

0.20

FIG. 2. Oscillator strengths versus 1/Z for the
2s2p P -2p P transitions of the beryllium isoelectron-
ic sequence.

FIG. 3. Oscillator strengths versus 1/Z for the
2s 2p2P -2s2p P transitions of the boron sequence.
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BORON SEQUENCE
/

2s 2p P'-2s2p D
/

/
cI Weiss (conf. interact. wavefcts. )

x Lawrence and Savage (Lifetime) /
o Heroux(Lifetime)
~ Bickel (Lifetime)

—-—.—Cohen a. Dalgarno /
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FIG. 4. Oscillator strengths versus I/Z for the
2s 2p P -2g2P D transitions of the boron isoelectron-
ic sequence. The broken curves represent the best fits
for the theoretical and experimental data.
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foil excitation technique" ~" or the phase-shift tech-
nique. " The error flags given are the experimental
errors estimated by the authors and do not include
any systematic errors due, for example, to cascad-
ing. Extensive superposition-of-configuration cal-
culations, carried out by one of us, ' are quite
close to the experimental results, while the nuclear-
charge-expansion calculations of Cohen and Dalgar-
no, ' which include configuration interaction only to
a very limited degree, provide fairly good results
only for ions of higher charge. The dominant con-
figuration interaction here is the mixing of 2s'3d
with 2s2p'. Since these levels separate rapidly
with increasing Z, the effect should be expected to
die out fairly soon along the sequence, and this is
exactly what is observed.

(e) The 3s3p'P' 3s3d'D trans-itions of the Mg se-
quence may serve as a second example for curves
of Class b. In this case we have plotted Z'S versus
1/Z (Fig. 5) for reasons to be given later. As was
shown earlier (Eq. 10), for Z'S a finite value is ob-
tained at infinite Z even though this transition in-
volves no change in principal quantum number. The
numerical value of Z'$ for infinite Z has been taken
from the nuclear-charge-expansion calculations of
Crossley and Dalgarno. ' All other adopted data for
this transition originate from theoretical sources,
too, and involve the SCF approach, with configura-
tion mixing included in various degrees of refine-
ment. ' '~ Two authors" ~" have also calculated
values in the basic SCF approximation without con-
sidering configuration mixing, in order to have a
measure by what amount the results are changed
by configuration interaction effects. These data
are included in Fig. 5 and show even more dras-
tically than Fig. 3 that a smooth Z dependence ob-
tained with data from just one or several similar
methods indicates only that the methods are con-
sistently applied, but does not reflect at all on the
accuracy of the data. Therefore, great caution
has to be exercised in the judgment of the reli-
ability of data coming from just one or several
similar sources.

(f) Next, we turn to an example for a Z depen-

2500—

~~ Al IIFe~ K 5ZI siz
~

Mgj:
I I I I I I I I I

0 0 04 006 0&8
I/Z ~

FIG. 5. Z2S versus I/Z for the 3s3P P'-3s3d~D tran-
sition of the magnesium isoelectronic sequence. The
solid line gives the best fit through the data.

0.02

dence of class c. Z-dependence curves exhibiting
minima are probably caused simply by- a very pro-
nounced cancellation effect in the transition integral
for a particular ion within an isoelectronic sequence.
It appears that drastic cancellation effects are
normally encountered only for transitions involving
principal quantum numbers at least one larger than
the ground state. Material for such moderately or
highly excited transitions has been, with few excep-
tions, available only on the Li and Na sequences.
Examples are the 3s-4P transitions of the Na se-
quence given in Fig. 6. The data for this graph are
taken from central field approximation calculations
for Na I;" from calculations using a scaled Thomas-
Fermi potential for Mg II, Cl VII, and" CaX; from
SCF calculations for Al III and Si IV "'~ and finally
from the Coulomb approximation" for S VI. It is
observed that the minimum for Mg II is smoothly
approached from both directions. The calculations
based on the scaled Thomas-Fermx potential as
well as the Coulomb approximation indicate that
indeed just for this ion the positive and negative
contributions to the transition integral very nearly
cancel. By studying the f-value behavior in the
spectral series 3s-np for the ions Na I, Mg II, Si
III, etc. , one finds furthermore that Mg II shows
a most pronounced anomalous series behavior,
while the neighboring ions show much less evident
anomalies in their corresponding series. This
comes out clearly in Table II where the f-value
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Na-SEQUENCE
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FIG. 6. Oscillator strengths versus 1/Z for the
3s S-4p P transition of the sodium. isoelectronic se-
quence.

f-value ratios Na I Mg II Al III Si IV

3s-3p 3s-4pf /f

3s-4p 3s-5p

69 41GG

0.23

24.4

The data are all taken from Ref. 8.

ratios f3+ +p/f3s („+1) for the first few members
of these serves are tab ated for Na &, Mg &, Al
III, and Si IV.

At this point, it is of interest to point out that.
analyses of the kind presented here have occasion-
ally even revealed inconsistencies in the normally
much more accurate atomic energy level data and
have led to their improvements. Examples are the

. SsSP 'P'-SsSd'D transitions of the Mg sequence,
for which a smooth Z'S versus 1/Z plot was pre-
sented in Fig. 5. If these same data, including
those given by 'Froese for Fe XV," are converted
from S into f values by applying the available ener-
gy level values', "~" one obtains the rather ragged
f -value dependence of Fig. 7. Since f and S are
essentially related through the energy level differ-
ence E —E'[Eg. (2)], one has to look into'the Z
dependence of E and E' as the source for the rag-
ged f-value behavior. While a Z-dependence plot
of the lower state E(3s3p'P') produces a smooth
curve, the analogous plot for the upper level E'
(3s3d'D), given in Fig. 7, shows that this level
appears to be wrongly classified for PIV, K VIII,
and Ca IX. For Si III, a similarly erroneous clas-
sification existed until recently when' a new clas-
sification" placed the 3d'D level about 20% higher
than the older value. " New approximate energy
levels for the higher ions may be then obtained for
this case from the requirement that the Z-depen-
dence of the f-values should smoothly connect the
lower ions via Fe XVto the asymptotic value at in-
finite Z. The energy level dependence which does
just that is indicated with the broken line in Fig. 7.

TABLE II. Ratios f /f ( )
for some mem-3s-np 3s-(m+ 1)p abers of the 3s-np series of the Na sequence.

h, Iteiss, SCF with conf. int.

+ Zare, SCF-Slater with conf. int.

0 Froese, SCF with conf. int.

0 Steele and Trefftz, SCF with conf. int

I

I

I

I

I

~+

MgI
I

0.08

f-value

FeXZ CajX. P~
I II I I I I

0.04 0.06
I/Z~

0 I I

0 0.02

FIG, 7. (a). E/Z versus 1/Z for the Bs3d'D and
3s3d D levels of the magnesium isoelectronic sequence.
The energies E are taken with respect to the ground
state. (b) . Oscillator strengths versus 1/Z for the
3d3p~P -3d3d~D transitions of the magnesium isoelec-
tronic sequence.

B. Regularities Based on One-Electron
Model Considerations

(a) Homologous Atoms

It was shown in the theoretical part that for
homologous atoms the f values for analogous indi-
vidual lines in the dominant transition arrays of
spectral series should be approximately equal.
Since this result hinges yrimarily on the fulfill-
ment of the partial f -sum rule, an extensive test
of how well the available data support the sum rule
appears to be in order. This rule has been often
applied by astrophysicists to obtain approximate
f-value data, even for complex atomic systems,
but it seems to have been tested only for such
simple systems as H, He, and the alkalis.

We have thus computed —whenever there were
sufficient individual data available —the average
f values f7 for dominant transition arrays of the
ns-n'P, nP n'd, and nd n'f se-ries in the light-er
elements, and have compiled them in Table III.
The dominant transition arrays are usually those
where n' equals n, but for all 2P-nd series the
first transition goes necessarily to n =3, and for
the 3p-Sd transition of Li the energy difference is
so small that —in the spirit of the sum rule —Sp-
4d is the dominant transition of the Sp-nd series.
Because of the energy degeneracy one has also to
set n'=n+1 for all hydrogen transitions. All the
listed f& values are those selected from the criti-
calNBS data tables' and are considered to be
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TABLE Ill. Average f values fZ for some common
&x ansition arrays

I. s-p transition arrays:

(a) One equivalent electron in lower level

Sum-rule prediction f (ns-nP) = 1

I (2s-3P) 0.435
(3s-4p) -- 0.485

I (4s-5p) 0.544
(5s-6p) —0.608

He I (2s-2P) 0.48
He I (3s-3P) 0.81
He I (4s-4p)
Li I (2s-2p) o.75
B I (3s-3p)
C I (3s-3p)
N I (3s 3p) 087

(3s-3p) —O.90
0 I (3s-3p) 0.97
O Ir (3s-3p) —0.97
Ne I (3s-3P) 0.85
Na I (3s-3p) 0.98
Al I (4s-4p) 1.41
Si I (4s-4p) —1.15
Ar I (4s-4p) 1.05
K I (4s-4p) —O.96

(b) Two equivalent electrons in lower level

Sum-rule prediction f (ns-np) = 2

Be I (2s 2 -2s2p)

Mg I (3s -3s3p)

Ca I (4s -'4s4P)

1.36

1.85

1.80

II. p-d transition arrays:

Sum-rule
H

H

He
Li
Li
B
C
N

N

Na
Al
K

prediction f (np-n'd) ~ 1.1
I (2p-3d) 0.696
I (3p-4d) 0.618
I (2p-3d) 0.711
I (2p-3d) ~ 0.67

(3p-4d) —o.53
I (3p-3d) 0.90
I (3p-3d) 0.94
I (3p-3d) 0,95

rr (3p-3d) —o.75
I (3P-3d) 0.83
r (4p-4d) —o.71

(4p-4d) —O.96

IG. d-f transition arrays:

Sum-rule prediction f (nd n'f) ™1.4-
H I (3d 4f) 1.02-
He I (3d 4f) —1.02-
Li I (3d 4f) 1.01-
Na . I (3d-4f) 1.00

All data are from the critical data compilation in Ref.
8. Since the listed numbers are from numerous different
sources, and are often averaged, it was not feasible to
quote all the individual authors, and we have to refer to
Ref. 8 for details.

fairly accurate, with uncertainties in the majority
of cases estimated not to exceed 25%. The data
which involve primarily experimental sources are
set in italics. Judging from these examples we
may conclude that the application of the partial
f-sum rule may normally provide f values good
within 50% for lines of dominant transition arrays.
Excepted from this estimate are still the very
complex atomic systems.

It is seen from Table III that the values from
the f-sum rule tend to be in the majority of cases
higher than those for the dominant transition ar-
rays and may be regarded as upper limits. This
has been taken into account in a number of appli-
cations. For example, Allen ' has adjusted his
f sum rule values by multiplying them with a factor
of 0. 7 before applying them to the leading transi-
tion arrays.

Next we shall investigate how closely the f values
for analogous transitions in homologous atoms a-
gree with each other as predicted in Sec. II. B.
Table IV contains the available examples for mul-
tiylets of second and third row atoms of the period-
ic table (and Ca) for which the estimated uncer-
tainties are smaller than 50%.4' All data from
experimental sources, or averaged values con-
taining experimental data, are underlined. Also
given are estimates of the uncertainties according
to Ref. 8. By inspecting Table IV it is seen that
for 39 of the 52 transitions listed, that is for 75%
of the lines, the f values agree within the esti-
mated error limits. Taking the s-P transitions
separately, Ne and Ar excepted (see below), one
finds even 100% agreement. Several disagreements
observed for p-d transition can be definitely traced
to cancellation in the transition integrals, e.g. ,
for 4P P-4d P' of Si l, 4PSP-4d D' of S I and, to
a lesser extent, 4p'P-4d5D' of S I; in other cases,
insufficient data do not allow definite conclusions
at this time. The disagreements between some Ne
and Ar f values appear to be mostly due to changes
in the coupling scheme, which lead a redistribu-
tion of the individual line strengths, but leave the
totals-p strength nearly unaffected. Thus for
groups of lines starting from a given level a strong
disagreement in one direction is usually balanced
by a similarly strong deviation in the other direc-
tion. However, the average f value for Ar 4s-4p
appears to be about 25% higher than that for Ne
3s-3P, as seen from Table III. Also in all other
s-p comparisons one observes that the third-
period elements have slightly larger fvalues than
the second-period elements.

To sum up, for many lines of the dominant trans-
sition arrays in homologous atoms the f value-
agreements are quite impressive and may there-
fore be used to predict additional fairly reliable
f values, probably within 50%, by simply drawing
analogies with existing data.

Since these comparisons have yroved to be so
successful for the dominant transition arrays, it
is tempting to extend them to other transitions in
homologous atoms. Such comparisons are pre-
sented in Table V. For the great majority of
lines again good agreement is observed, which
is quite unexpected. Nevertheless, extrapolations
to other homologous atoms for these and similar
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TABLE 1V. Comparison off values for homologous atoms in leading transition arrays.

Transition f value Error f value Error

Boron (n= 2) Aluminum (n= 3)

(n+1}s—(n+1)p

(n+ 1)p —(n+ 1)d

2$2PO

P- P

1.07

0.90 25%

1,41

0.71

25%

25/p

Carbon (n=2) Silicon (n= 3)

np(n+ 1)s -np(n+ 1)p

np(n+ 1)p -np(n+ 1)d

3PQ 3g)

3Po 3P

3Po 3$

iPO

iPo 1$

iP iao

3D 3+0

iP ipo

0.50

0.31

0.10

0.42

0.11

0.63

0.70
0.26

50%

50%

50%

50/p

25/o

25%

25/o

0.61

0.39

O.13

0.67

0.12

0.48

0.32
0.00021

50lo

50/o

50/o

50/o
»0%

Nitrogen (n= 2) Phosphorus (n= 3)

np'(n+1)s-np (n+1)p

np (n+].)p-np (n+1)d

4P 4g)o

4P 4Po

4P-4$

2P 2PQ

2$0 -2P

0.36

0.23

0.088

0.318

0.945

25%

25%

25/p

10/o

0.57

0.36

0.13

0.39

0.30

50%

50%

50%

50%

50/p

Oxygen (n= 2) Sulfur (n= 3)

np (n+1)s —np (n+1)p

np (n+1)p-np (n+1)d

5$0 5P

3g) 3P

5DO

3P 3ao

0.922

0.898

0.90

0.75

10%

1Olo

25%

25%

0.22

0.059

50%

50%

50 jp

& 50%

Fluorine (n= 2) Chlorine (n= 3)

np4(n+ 1)s -np'(n+ 1)p 4P 4P0

4P 4g) o

4P 4$o

2P 2g) 0

2P 2$0

P- P'

0.29

0.53

0.11

0.53

0.11

0.34

50%

50%

50%

50%

0.30

0.57

0.12

0.58

0.11

0.36

solo

50%

50%

50%

50%

Neon (n=2) Argon (n=3)

np (n+1)s —np (n+ 1)p
b

s2 —2p

1S2 —2p2

1S2 —2p3

1S2 2p4

1s2 —2p6

1s2 —2pe

0.123

0.164

0.265

0.158

0.228

0.047

10lo

10%

25%

10%

10%

10%

0.134

0.173

0.436

0.161

0.3.25

0.039

25%

25%

25%

25%
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TABLE IV. (Continued)

Transition
b

1s3 —2p2

lss —2p4

ls3 —2pv

ls3 —2pio

ls4 - 2p2

ls4 - 2p3

1S4 —2p4

1s4 —2p5

ls4 - 2pe

1s4 —2p7

ls4 - 2p8

ls4 - 2pio

1s5 —2p2

1ss —2p3

1s5 —2p4

1sg —2p6

ls5 —2p7

lss - 2pe

lss - 2pip

f value

0.273

0.394

0.246

0.073

0.034

0.157

0.018

0.114

0.050

0.170

0.245

0.077

0.040

0.056

0.014

0.122

0.027

0,373

0.085

Error

10%

10%

10%

10%

10%

25%

10%

10%

10%

10%

10%

25%

10%

10%

10%

f value

0.342

0.561

0.095

0.057

0.016

0.120

0.0002

0.122

0.075

0.274

0.415

0.084

0.030

0.030

0.003

0.242

0.031

0.509

0.160

Error

250/

25%

25%

25%

25%

25%

25%

25%

25%

25%

25%

25%

25%

25%

25%

Beryllium (n= 2) Magnesium (n= 3) Calcium (n= 4)

ns(n+1)s - ns(n+1)p 3g 3~o

ig i~o

1.13

1.15

25%

25%

1.41

1.24 25%

1.38

1.00

50%

50%

All data are from the critical data compilation in Ref. 8. Since the listed numbers are from numerous different

sources, and are often averaged, it was not feasible to quote all the individual authors, and we have to refer to Ref. . 8

for details.
bPaschen notation.

transitions should be done with great caution,
since the f values are often much smaller than
those for the dominant lines, and cancellation
seems to occur more often. It may be of interest
to note that for transitions which exhibit strong
configuration effects no meaningful comparisons
are available as yet.

(b) Hydrogenlike Transitions

An inspection of Table III shows very close
agreement with the hydrogen values for 3d-4f
transitions and slightly worse agreement for anal-
ogous P-d transitions. This gradual approach to
hydrogenic values for transitions between higher
excited states with larger values of l is of course
to be expected, since electrons in high-lying
spherical orbits have little interaction with the
core. In such cases, the "Bohr" radius is so
great that it is a good approximation to represent

the core simply as a point charge, as in hydrogen.
Nevertheless, the closely hydrogenlike behavior

of the relatively low-lying 3d-4f transitions for
atomic systems smaller than Mg is rather unex-
pected. One may thus extrapolate that for these
atoms and their isoelectronic ions, all 3d-4f and
higher transitions involving more circular orbits,
such as, e. g. , 4f 5g, may be simply rep-resented
by the corresponding hydrogen f values. This is
of considerable practical importance, since
transitions such as 3d 4f are quite prom-inent in
atomic spectra. For the next group of atoms
through K, where the core electrons occupy the
shells through n =3, one may similarly expect
hydrogenlike f values for 'transitions such as
4f-5g, etc.

(c) Systematic Trends for f Values In
Spectral Series

The series structure of spectra is most evident
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aTABLE V. Comparison off Values for miscellaneous multiplets of homologous atoms.
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Transition f value Uncertainty f value Uncertainty

np-(n+ 1)s
(n+ 1)p-(n+ 3)s

np'-np(n+ 1)s
np(n+ 1)s-np(n+ 2)p

2p'-2$
2po 2$

3p 3po
ipo iD

0.11
0.018

0.17
0.011

Boron (n= 2)

Carbon (n= 2)

50%
25%

50%
50%

Aluminum (n = 3)

0.12
0.020

Silicon (n= 3)

0.155
0.019

259p

50%

25%
50%%uo

Nitrogen (n= 2) Phosphorus (n = 3)

np3-np2 (n+ 1)s

np3-np2(n+ 1)s'

4$o 4p
2DO 2p
2a0 2D
2po 2g)

0.35
0.11
0.11
0.026

Oxygen (n= 2)

50%

50%

0.31
0.13
0.145
0.071

Sulfur (n= 3)

25%

25%
25%

np4-np'(n+1) s
np (n+1)s-np (n+2)p

np (n+1)p-np (n+2)d
np4(n+1) p-np4(n+ 3)s

np'(n+ 1)s-np'(n+ 2)p

3Q o

5$o 5p
3$0 3p

5ao
5p 5$o

3$ o

1s4-3p3b

1s5 3p3
1s2-3p i

0.031
0.0023
0.0056
0.07
0.015
0.016

0.0051
0.0251
0.0045

Neon (n= 2)

50%
25%
25%
10%
10%
25%

25%
25%
25%

0.11
0.0074
0.0048
0.09
0.018
0.018

Argon (n= 3)

0.0051
0.0036
0.0037

25%
50%

50%
50%
50%

25%
25%
25%

Beryllium (n = 2) Magnesium (n = 3)

nsnp-np 2

nsnp-ns (n+ 1)s

nsnp-ns (n+ 1)d

nsnp-ns(n+ 2)d
nsnP-ns (n+ 3)d

vapo 3p
3po 3$
ipo i$
3p0 3D
ipo ia
ipo fa
ipo iD

0.466
0.034
0.13
0.16
0.19
0.084
0.041

25%
50%
50%

SOlo

50%
50%

0.607
0.139
0.18
0.13
0.11
0.088
0.10

25%
10%
50%
25%
50%
50%
50%

f value Uncertainty

Calcium (n= 4)

nsnp-np
nsnp-ns(n+ 1)s

nsnp-ns (n+ 1)d

nsnp-ns(n+ 2)d
nsnp-ns (n+ 3)d

3po 3p
3po 3$
ipo
3po 3g)
ipo iD
ipo ia
ipo ID

0.52
0.12
~ ~ ~

0.12
0.27
0.044

25%
25%

50%
50%

All data are from the critical data compilation in Ref. 8. Since the listed numbers are from numerous different

sources, and are often averaged, it was not feasible to quote all the individual authors, and we have to refer to Ref. 8

for details.
b

Paschen notation.

in simple atomic systems with one or two valence
electrons, where the number of transitions is
small. Thus, the available experimental mate-
rial is essentially confined to a few series of heli-
um, the alkalis, the alkaline earths, and a few
other metals. Most theoretical investigations
have been confined to these elements or their iso-
electronic ions, too.

As an example for a regular monotonic decrease
of fvalues, the resonance series of Na, Ss npis-
presented in Fig. 8 in a plot of n*sf versus effec-

tive principal quantum number n*. The selected
data are, for the principal resonance line, n =3,
the average of six experimental and theoretical
sources'; for n =4 to n = 6 they are from the cen-
tral field calculations by Prokof'ev. "and for
n = 7 to n = 13 they are an average of the results
of semi-empirical calculations by Anderson and
Zilitis~' and anomalous dispersion measurements
of Fillipov and Prokof ' ev. 4~ (The latter are rela-
tive values put on an absolute scale by the best
fit to Anderson and Zilitis's numbers. ) The
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gree of fit into apparent systematic trends. Such
consistency checks are especially important for
theoretically determined data, for which normally
no error analysis can be carried out. Thus the

study of regularities should prove to be a valuable
research tool for significantly improving our knowl-

edge of atomic transition probabilities.
Among the various regularities, the systematic

trends of f values in isoelectronic sequences appear
to be of the greatest significance because they
readily permit the determination of f values in

highly charged ions, which are of much recent in-
terest in plasma physics as well as space physics
and astrophysics.
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Spins and Nuclear Moments of Sb' ' ~. Sb' ' 7, Sb' ' 8, Sb' ' 9, and Sb' ~ o f

A. D. Jackson, Jr. , E. H. Rogers, Jr. , and G. J. Garrett 5

Palmer Physical Laboratory, Princeton University, Princeton, Nese Jersey
(Received 19 July 1968)

We have measured the spins and hyperfine structures of several antimony isotopes by atomic-
beam magnetic-resonance methods. The isotopes were produced by proton bombardment of
isotopically-enriched tin in the Princeton cyclotron. The experiments gave the following
results:

Sb'"
Sb
Sb118

Sbiis
Sbf2o

Isotope

(31 min)
(2.8 h)
(3.5min)
(38 h)
(16min)

5/2
5/2

5/2

a (MHz)

-307.68 (19)
-23v.e1(15)
~47(13)
-307.16(6)
w20(47)

b (MHz)

-3.v(5)
-5.5(5)

~ 0 ~

-3.8(4)

pl (p~)
(diamagnetic ally corrected)

+3.46(1)
+2.6V(1)
~2.46(V)
+3.45(1)
+2.34 (22)

q(b)

-o.2o(4)
-o.3o(5)

~ ~ ~

-0.21(4)

The experiment on Sb gives g&(Sb) = -1.97060(6). The magnetic moments of these and other
antimony isotopes are discussed in terms of configuration-mixing calculations using matrix
elements of the Hamada-Johnston potential.

1. INTRODUCTION

'theoretical investigations of nuclear structure
have been particularly rewarding in regions of the
periodic table where properties are known for a
large number of related nuclei. In such cases it is
often possible to explain the data with a relatively
small number of parameters which are taken from

theory or from best fits to experimental data. In
view of the overdetermination of these parameters,
the quality of the agreement between experiment
and theory can be a useful measure of the validity
of the nuclear model under consideration. The
numerous isotopes of the element antimony pro-
vided an opportunity for work along these lines.
There are two stable antimony isotopes and 32


