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The protons from waters of hydration of copper and zinc salts are polarized by saturating the electron-
spin transitions (forbidden) of copper ions at liquid-helium temperatures. The enhancement of the proton
resonance was observed to be due to dipole-dipole interaction with the electron spins (so-called solid-state
effect). The rates of decay and growth of these enhanced proton resonance signals were measured as functions
of the temperature and the intensity of the microwave field applied to saturate the electron-spin transition.
From the measured proton relaxation time (in the range of milliseconds) and its temperature dependence, the
electron-spin relaxation times (in the range of microseconds) and their temperature dependence were
deduced. It was found that the Cu* * ions in the 1: 50 dilute Cu:Zn sample relax through spin-orbit inter-
action (Raman process), and in the 1: 5 Cu: Zn sample through both spin-orbit(Raman)and exchange inter-
actions. The observed small values of the relaxation times for electrons indicate that the protons relax
preferentially through those electron spins which have no phonon bottleneck.

INTRODUCTION

OPPER tutton salts (CuK;SO4:6H;0) have been
investigated by several authors,® to study the
electron spin-lattice relaxation mechanisms present
at low temperatures and the order of the process
(direct or Raman) dominant at liquid-helium tem-
peratures. Gill® reported that in CuK,SO,-6H,0 diluted
with ZnK,SO4-6H;0 in the ratio of 1:10~* the mecha-
nism was found to be of the Van Vleck (spin-orbit)
type, and the process was predominantly Raman from
150 to 4.0°K and direct from 4.0 to 1.3°K. However,
when the dilution was slightly less (i.e., 1.2X107%),
his results could not be explained. The relaxation rate
decreased faster than the first power of the tempera-
ture as the temperature decreased below 4.0°K. It is
possible that the true spin-lattice relaxation time (spin-
phonon interaction time) is masked by the lattice-
bath interaction (phonon-bath interaction time) which
is concentration- and size-dependent. This is known in
the literature as a phonon bottleneck.!? Such a phonon
bottleneck was observed by Giordemine ef al.2 in
Cu(NH,)2S04:6H,0, and by Nash.” A hot Zeeman
phonon with a short mean free path has a very large
probability of being reabsorbed and re-emitted by the
electron spins as it traverses through the crystal be-
fore it collides with the walls. On collision it may give
up its energy to the walls or to the phonons of other
* Part of this work is toward his doctoral thesis.
1 On leave of absence from G.I.D. Labs, Hakkaida, Japan.
! D. M. S. Bagguley et al., Proc. Roy. Soc. (London) A204,
188 (1950); A201, 266 (1950); Proc. Phys. Soc. (London) 65,
594 (1952).
2 B. Bleany et al., Proc. Roy. Soc. (London) A228, 147 (1955).
3 J. A. Giordemaine et al., Phys. Rev. 109, 302 (1958).
4 N. Bloembergen e? al., Phys. Rev. 114, 445 (1959).
5 J. C. Gill, Proc. Phys. Soc. (London) 85, 119 (1965).

¢ T. J. B. Swanberg et al., Physics 30, 1872 (1964).
7 F. R. Nash, Phys. Rev. Letters 7, 59 (1961).
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modes. In such a process it has been suggested that the
electron spin-lattice relaxation time measured will
actually be the lattice-bath interaction time, which is
generally longer than the spin-phonon interaction time
one would measure if the phonons were in equilibrium
with the bath. In other words, the measured relaxation
time will correspond to the phonon diffusion time from
the spin to the boundaries of the crystal. But the elec-
trons belonging to ions close to the surface or on the
surface (lying within a phonon mean free path from
the boundaries) will have a shorter relaxation time,
since the Zeeman phonons in close proximity to the
surface have a very large probability of colliding with
the walls and giving up their energy. Hence these
phonons are in equilibrium with the lattice at all times.
Therefore, a measurement of the relaxation times of
these electrons close to the surface should yield the
true spin-lattice relaxation time (i.e., spin-phonon in-
teraction time), and their temperature dependence
should show what relaxation mechanism and process
are involved at low temperatures. Experimentally,
it is hard to separate the surface electrons from those
farther inside the crystal which have a very long re-
laxation time due to the phonon bottleneck. But the
protons in these samples, which relax by dipole-dipole
interaction with the electron spins, would selectively
prefer a relaxation path of very short time. Therefore,
the protons relax to the lattice preferentially through
the electrons which have shorter relaxation times.
Hence, a study of the spin-lattice relaxation times of
protons at low temperature and their temperature
dependence should give a measure of the spin-phonon
interaction time. In this way one can circumvent the
presence of the phonon-bath interaction time and a
correlation between proton relaxation time and the
electron relaxation time can be achieved. In addition,
479
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F1c. 1. Energy-level diagram of a 3d° electron.

it is possible to deduce (though not with complete
certainty) the mechanism involved in the electron
spin-lattice relaxation.

We have not attempted an experimental check of
Gill’s’ observations that the relaxation rate in these
copper salts increased with the concentration, and his
suggestion that the increase was probably due to the
phonon bottleneck. Furthermore, no experiment was
performed on the size dependence of the relaxation
rates to pin down the existence of such a phonon bottle-
neck. If there were no phonon bottleneck, the nuclei
would relax to the lattice through the surrounding
electrons irrespective of whether the electrons are in-
side of or on the surface of the crystal. The measure-
ments presented nere then would pertain to the elec-
trons of the copper ions in general.

THEORY

Electron Spin-Lattice Relaxation

A Cut+ ion in a tutton salt is in a 3d° state. In a
cubic field A its orbital degeneracy is lifted, giving rise
to a doublet in the ground state (22— 42, 32*—7?) and a
triplet (xy, ¥2, 2x) in a higher energy state [Fig. 1(a) ].
Neither spin-orbit interaction nor trigonal field dis-
tortion can lift the orbital degeneracy of the ground
state.? Tetragonal symmetry splits the doublet into
two singlets [Fig. 1(b)] and the triplet into a singlet
(vy) and a doublet (yz, sx). However, tutton salts
show departures from tetragonal symmetry. A small
orthorhombic field distortion will finally lift the re-
maining degeneracy [Fig. 1(c)]. In tutton salts there
are two Cut + ions in a unit cell and each divalent ion
is surrounded by a distorted octahedron. The magnetic
field applied (Ho) in the a-c plane will make the spectra
of the two ions coincide. The Kramers degeneracy
of the ground state (a?—4? or 3z°—7%) is lifted in the
external magnetic field (H,) as shown in Fig. 1(d).
The following are two possible relaxation processes.

8 W. Low, Paramagnetic Resonance in Solids (Academic Press
Inc., New York, 1960), Suppl. 2, p. 93.
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Direct Process. A direct process is a transition be-
tween the two Zeeman levels, Fig. 1(d) (M,=+3—
M,=—1%), by either absorption or emission of a phonon
of energy hvy which equals the energy difference be-
tween the two Zeeman levels.

Raman or Indirect Process. A Raman process is a
transition between the Zeeman levels due to the scat-
tering of a phonon such that the difference in energy
of the incident and scattered phonon (hwi— hve= /)
equals the difference in energy between the Zeeman
levels. The spin-lattice relaxation mechanism in these
salts is due to the spin phonon interaction of the
type envisaged by Kronig? and Van Vleck.’® The
vibrations of the lattice modulate the electrostatic inter-
action of the paramagnetic ion with the neighboring
diamagnetic ligands, as a result of which there is a
periodic variation of the orbital motion of the electrons
which for the most part is quenched. Therefore, from
time-dependent perturbation theory we define the re-
laxation rate in terms of the transition probability
between the two states | @) and | b):

(2T =Wa=(2r/h) | (@ | Hop | B) [*o(v0), (1)

where p(»p) =phonon distribution at frequency » and
H, ., is the spin phonon interaction Hamiltonian.
Therefore, to calculate the relaxation rate we need to
know (1) p(») and (2) the matrix element of H, .
The latter involves the decomposition of lattice vibra-
tions into normal modes of the lattice and these lattice
modes into those of the individual ligand complex.
This is a very difficult task. Here we attempt an
order-of-magnitude calculation by (a) expressing the
amplitudes of the local variations of the crystal field
in terms of the amplitudes of the lattice vibrations;
and (b) finding the matrix element of these local
variations of the crystal-field perturbation (Vo) which
bring about the spin flip.
The phonon distribution as a function of energy is

p(hwe) = (4a/ ) [ (o)*/v* ]V exp(hwo/kT) =117, (2)

where V is the volume of the crystal, v is the velocity
of sound in the crystal, and T is the temperature of

the crystal lattice.
Direct Process. hvy=26H,, and for kT>>hv, we have

pp (hwo) = (4n /) (28H/v*) VET. (3)
Raman Process. The density of phonons is
(R¥)max
pu(im) = [ plon) p(hos) d (),
0

with the constraint /w;— v, = hvo=28H,. Assuming that
at iwv=FkT the phonon density abruptly drops to zero,
pr(hv) = (16w/3k) (v*/1%) (KT /h)". (4)
Now we turn to the calculation of the amplitude of

9 R. deL. Kronig, Physica 6, 33 (1939).
1 T, H. Van Vleck, Phys. Rev. 57, 426 (1940).
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the variations of local crystal field. If we let ¢ be the
amplitude of a lattice mode with a frequency » then
27*M ¢%?=hv, where M is the mass of the crystal. The
crystal field at the site of the Cu*+ ion is dependent
only on mutual displacements of the central ion and
the surrounding ligands; therefore, the longer the wave-
lengths of the lattice mode are, the smaller these
mutual displacements are. For wavelengths A\ of the
lattice modes that are long compared with the inter-
atomic distances R one can write the displacement
SR as

0R=2mwRq/\o= (R/v) (2hw/M)""?,

where v=Ag. Let A be the crystal-field energy of the
central Cu™+ ion in an undistorted cubic field. Then
the magnitude of the variation of this crystal-field
energy due to the mutual displacement (6R) of one or
several of the surrounding ligands is

[9(A)/ORJSR~(A/R)SR~(A/v) (2hw/M)¥2.  (5)

Direct Process. Replacing hvy by 28H, and taking
the square of the amplitude, which is what we need
in Eq. (1), we have

Wab(ditect) « (A2/ %) (4.3H/ M ) . (6)

Direct Process.
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Raman Process. Replacing hv by kT (as the Raman
process is most effective at sv=kT'), and raising it to
the fourth power, we have

Wab@aman) < (44%/v*) [(kT')*/M?], (7

since the process involves an incident and a scattered
mode. Finally, we turn to the evaluation of the matrix
element of the periodically varying local field pertur-
bation Vo, which is a function of %, y, 2 coordinates of
the electron and of proper symmetry with respect to
surrounding ligands. The ground-state wave functions
| @) and | ) may either be | 22— 92 a) or | a2—42, B)
admixed with other wave functions through the
perturbing Hamiltonian H'=\L-:S+g8H(L+S) or
| 322—72, @) or | 322—7%, B), which are also admixed
through the same perturbation. a denotes a spin-up
state of the electron (parallel to Hy) and 8 denotes a
spin-down state of the electron (antiparallel to Hy). It
is well known that the so-called Van Vleck cancellations
occur in some cases if one carries out the admixture only
to the first order. This is true with a ground-state wave
function like | 322—72). Therefore, the wave functions
are mixed to the second order to evaluate the matrix
elements of the crystal-field perturbation. We assume g
is a scalar and equal to 2.

¥, =| #*—3?% a)+ (i/A) [M-26Ho— (BHo/ A) (A\+28Ho) ] | xy, o)

W =| w*—y%, B)— (i/ A)[(\—28Ho) (1+B8Ho/A) ] | xy, 8)

Vo =| 35212, o)+ (V3iN2/2A%) | xy, a)— (V3iN/2A) (14-28H—\/24) | y2, B)

— (0N/24) (14-28Ho/ A+3)/24) | yz, B)— (N/A2) (3A+BHo) | 22, B), (8)
= (1N/28) (1= 28Hy/A+3)/24) | yz, @)+ (N A) (1A—26Ho) | 2y, ), (9)
— (V3\/24) (1428Ho/A—)\/24) | x, 8), (10)

V5 =| 3g2—1%, B)— (V3i\Y/24%) | 2y, B)— (V3iN/24) (1—28Ho—)/24) | 32, )

| (Wa® | Vo | Wa®) [2=(4N8H/A)? | (i | Vo |4) %

where ¢ and j refer to the unperturbed eigenstates of
the electron in a noncubic field (i.e., H'=0).

| (W | Vo | W) P=2(2VENSHo/A)? | (i | Vo 5) %
(12b)

Therefore, the relaxation rate of Cut+ ion in a direct
process can now be given to an order of magnitude by
combining Egs. (3), (6), (12a), and (12b):

(2Ty)'=Wa
_ 2r (4m 28H, A2 (48Ho\(4NBHo\?
T (h3 » VkT)L2 ( M )]( A? )

(12¢)

ugG, ETFa.ke, Paramagnetic Resonance (W. A. Benjamin, Inc.,
New York, 1962), p. 122.

+(V3)/24) (1—28Hy/A—N/A) | 2z, @), (11)
(12a)

if p=M/V=density of the crystal>~2 g/cc at 4.2°K
for Cut + jon using the following values: A= —695 cm™,
A=8700 cm™, §="7700 cm™ [Fig. 1(c) ], Hy=2800 Oe,
we calculate 73”1 sec.

The relaxation rate is temperature-dependent and
is proportional to the first power of T and inversely
proportional to fourth power of H,.

Raman Process. In a Raman process we need to
calculate the matrix elements of the type

Wa® | V1| 3)(i | V2| Tp®)
E.pﬁ(‘)—Ei+hV1
(Ta® | Vo | 3)(5 | Vi | WD)
Eyg®— E;— hv, ’
where V; and V; are the local crystal-field perturbations

(13)
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and | ¢) is an intermediate state. For instance, | %) is
| y2, a) plus other eigenstates mixed into it through
the spin-orbit and Zeeman perturbations. Denoting
such a perturbed state by ¥,® we have in the first
order

Vo ® =] yz, a)— (A/2€) | 2y, B)— (iN/24) | 2*—3%, B)
— (3iN28) | 32—, B)—i[ (\H28H) /2] | 2, o),
(14)

Vp® =] yz, B)+ (A 2e) | xy, a)— (iN/24") | 2*— 3y, B)
+(—V3iN/24") | 32—, B)+[i(A\—28H) /€] | 2, B),
(15)

where A’=A—§ and A>>8>>>e. With the assumption
vy~ hwiehye~kT, Eq. (13) will result in

DT/l [ G| Vo |7) PRIV D[ (16)

Combining Egs. (4), (7), and (16), and noting that
our estimates are only to an order of magnitude, we
have for

( 2Tl) 1= Wab(Raman)
ST ERICYY o
IR EVEAVYA 7N WA
If one uses ¢=250 cm™ as deduced from hyperfine
interaction constants by Bleaney? T will be the order

of 1000 sec. But in the absence of orthorhombic dis- -

tortion, the degeneracy in ¥z, zx remains and results
in e~0, thereby shortening the relaxation time T}
enormously, as can be seen from (17), where € is in
the denominator. 73 has no dependence in magnetic
field but it is inversely proportional to 7°.

Nuclear Spin-Lattice Relaxation

In the dipolar Hamiltonian for a system of nuclear
(I) and electronic (.S) spins, the term

Cop=(—%S.1, sinf cosd e~*¢) A (18)

appears, where A =vry#*/r* and r is the distance be-
tween the nuclear and electron spin and 6 and ¢ refer
to the direction of the vector r with respect to the
external magnetic field Hy, taken to lie in the z direc-
tion. 7 and yg are the gyromagnetic ratios of the
nucleus and electron, respectively. This operator Cop
may induce the flip of a nuclear spin without the
accompanying flip of an electron spin—a process in-
volving much less energy than any other process
allowed by the bilinear coupling of two spins.!? Abragam,
Bloembergen, and others have shown that this term

12 A, Abragam, The Principles of Nuclear Magnetism (Clarendon
Press, Oxford, England, 1961), p. 380; N. Bloembergen, Nuclear
Magnetic Relaxation (W. A. Benjamin, Inc., New York, 1961),
p. 386.
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(18) leads to a nuclear relaxation time T given by
3 vyt . T

— ——— sin®f cosS(S+1) ——
2 . oSS T
where 7 is the longitudinal electron relaxation time
and wr is the Larmor frequency of the nucleus. If
wem>>1, which is the case in most samples, this process

is seen to dominate the relaxation of nuclei. Equation
(19) is conveniently written

1/Ty'=Cr,

(TY)7'= (19)

(20)

In samples where the ratio of paramagnetic impu-
rities to nuclei is low,  becomes very large, and ex-
tremely long values of 7% are calculated, in dramatic
contradiction to observed nuclear relaxation times.
The discrepancy between theory and experiment is
resolved by assuming a spin-diffusion process of spin
flip-flops between nearest-neighbor nuclei in the lattice.
The diffusion process conserves energy as 7>7,, 7
being the so-called critical radius, and enables nuclei
far removed from paramagnetic centers to communi-
cate with the electronic spins. Spin diffusion is usually
described by an equation of the form

dp/dt=DAp, (21)

where p is the nuclear polarization in a small region
in space and D is the diffusion constant, of the order
Wa?, where W is the probability of nearest-neighbor
flip-flop and @ is the distance between nearest-neighbor
nuclei. de Gennes,® Bloembergen,? etc., have solved
Eq. (21) and find the relationship between the ob-
served nuclear relaxation time and C of Eq. (20) to
bel3

1/Tr=4xNbD, (22)
where N is the concentration of paramagnetic impurities
per unit volume and b= (0.68) (C/D)¥4 In paramag-
netically dilute samples where the 6 dependence of C
has been shown to average out, and at sufficiently
low temperatures and high magnetic fields where
wr>>1 Eq. (22) can be written

(3/207r)vs2712h2]1/4, (23)

wrT

Tr1= (8.54) ND#4 [

Thus Tr« ()14

Experimentally, the power to which = is raised in
Eq. (23) is found to vary with concentration, going
to % at low N. In order to investigate this exponent,
it is useful in double-resonance experiments to have
the relationship of the spin-diffusion theory to polari-
zation experiments. Defining the polarization time T
as the time necessary for the nuclear polarization to
obtain an enhanced value el,, where I, is the initial

1 P, G. de Gennes, Phys. Chem. Solids 3, 345 (1958).
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TasrE I. Some physical properties of the Cu™ * salts investigated.

Sample
concentration
u:Zn) Electron:

Sample Cu-ZnK;(SOy) 2+ N Size proton

No. 6H,0 (ions/cc) value (mm) ratio

1S 1:50 5.4X10% 2.44 9.1X12.5X3.2 1:600

2S 1:10 2.7X10% 2.44 9.7X13.0X%3.3 1:120

3S 1:5 5.4X10% 2.44 9.0X11.5X3.6 1:60

value of the polarization, we find was used to detect nuclear magnetic resonance, which
" was presented on a fast-rising oscilloscope (Tektronix-
1/Tp=4xNTHD, (24) 540 B). Polarization curves, plotting magnetic field

where V and D have the same definitions as in Eq. (22)
and I'=W, (constant). Here, W, is the direct transi-
tion probability for an electronic spin flip induced by
the time-varying field H;. Through the term W, in
Eq. (24) we see that the spin-diffusion theory pre-
dicts that the polarization time will vary inversely
as the one-half power of the applied microwave field.
Thus, the variation of 7', with microwave power (P)
provides an approach to the determination of the ex-
ponent of I'in Eq. (24) and hence an approach to
experimental verification of the spin-diffusion assump-
tion in paramagnetically dilute crystals.

EXPERIMENTAL

The double-resonance technique was used, in which
one observes the dynamic polarization of the protons
by saturating the electron spin resonance (ESR) with
intense microwave fields. The microwave frequency
was 9.2 kMc/sec at 2850 G for the CuK,SO;-6H,0
(g§=2.44) for all three dilutions, Table I. The proton
resonance frequency which was scanned for resonance
was 12.6 Mc/sec at 2850 G. The rf field used was 2 mG
and the microwave field the sample sees is about 7 mG
(15 db) at which the ESR has been saturated. An
amplitude modulation of the external field Hy at 80 cps

60

50
Proton

Signal 40
Enhancement | o

ic Field
(gauss)

3000 3200 3400

F16. 2. Polarization curve of the protons in 1/50 Cu-
doped ZnKs(SO4)2+6H;0 at 1.65°K.

(abscissas) versus the proton signal enhancement were
obtained for some samples (Fig. 2). The enhancement
is due to the solid-state effect. The separation of the
enhancement peaks in all samples corresponds to the
width of the ESR line. All the samples were in direct
contact with liquid helium.

The relaxation and polarization times were meas-
ured at the positive maximum enhancement field by
switching the microwave power (P) off and on (by
switching the reflector voltage of the klystron). All
relaxation times measured were at various rf levels of
the Pound oscillator. Polarization times were measured
at various microwave levels to study the spin-diffusion
processes. The temperature at which these samples
were studied was varied from 4.2 to 1.6°K. All samples
were run twice to anneal the crystals at very low
temperatures.

DISCUSSION

The polarization rate of protons in 1:50 dilute sam-
ple was found to be proportional to the fourth root
of the microwave power incident on the sample. This
indicates that the nuclei relax entirely through spin
diffusion and the relaxation times of the electrons as cal-
culated using the Eq. (23) at 4.2°K and 2.0°K are
given in the last column of Table II. The electron
spin-relaxation time varied inversely as the eighth
power of temperature. Therefore, the electrons must
be relaxing through the spin-orbit interaction by the
Raman process in the temperature range of 4.2 to 2°K.
The relaxation times of the electrons are in the micro-
second range even at liquid-helium temperature. It
seems that the degeneracy of the state is not com-
pletely removed by orthorhombic distortion. This de-
generacy can explain the shortness of relaxation times
since the smaller the value of e due to the orthorhombic
field distortion the faster the relaxation rate [Eq. (17) ].

In the sample of 1:10 dilution the polarization rate
is proportional to the square root of the microwave
power. The nuclear relaxation is neither entirely due
to spin diffusion nor due to the direct interaction with
the electron spin. Hence it is not possible to use either
formula (23) or (19) and we cannot draw any conclu-
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TaBLE II. Polarization and relaxation rates of nuclei as functions of microwave power and temperature.

Slope of log T~ Temperature Nuclear relaxation Electron-spin-
Sample Dependence of polarization versus logT" dependence of times at relaxation times at
(Cu:Zn) rate on microwave power (least-squares  electron-spin- 4.2°K 2.0°K 4.2°K  2.0°K
dilution Pat2.0°K. fit). See Fig. 3. relaxation rate (msec) (usec)
1:50 Proportional to P02 2(4.2to 2°K) T8 145 1600 0.3 11
1:10 Proportional to P06 2.5 e 20 150 eee cee
1:5 Proportional to P07 1.2 708 8 22 0.3 0.8

3 In evaluating the electron relaxation times Eq. (23) was used for the
1:50 sample and (19) for the 1:5 sample. The flip-flop transition probability

sions about either the relaxation process of the electron
or the electron spin-relaxation time.

In the sample of 1:5 dilution the power dependence
of the polarization rate indicates that most nuclei
relax by direct interaction with the electron spins.
The electron spin-relaxation times are evaluated using
Eq. (19) and they are extremely short, in the range of a
few microseconds. The relaxation time varies inversely
as the first power of temperature. Apparently this
process is direct, as seen from Eq. (12c). But (12¢)
yields a relaxation time which is very long and cannot
explain the measured small value of 75. A Raman
process can explain the small value of 77 but fails to
account for the temperature dependence. This dis-
crepancy can be explained if one takes into account
the exchange interaction that usually predominates in
samples containing high concentrations of paramag-
netic ions.

In such samples the existence of two different re-
laxation mechanisms at very low temperatures leading
to different temperature dependences of 7 has been
established.!4:15

414

T= Temperature in °K of the sample

(@ Ta* Relaxation time of protons in millissconds

334

20 030 040 Log T°K 050 080

F1c. 3. Relaxation time of protons versus temperature in
dilute crystals. Cu/Zn=(a) 1/5, (b) 1/50, (c) 1/10. The base
of the logarithms is 10.

“¥ 7. C. Gill, Proc. Phys. Soc. (London) A79, 58 (1962).
1 J. H. Pace ef al., Proc. Phys. Soc. (London) A75, 697 (1960).

W was estimated using the linewidth of the proton resonance at liquid-
helium temperatures. All the experimental results are within 209, error.

It has been proposed by Al’tshuler®:1” that two elec-
tron spins S; and S, will interact via a Hamiltonian
JS;+S,, where J is the exchange integral. J is concen-
tration-dependent and large if interelectronic distances
are small. This interaction is found to be a powerful
relaxation mechanism in medium- and high-concen-
tration samples. It is temperature-independent and
gives rise to very short relaxation times. Therefore it
seems probable that the electrons in the 1:5 sample
relax to the lattice through both relaxation mechanisms,
one due to the spin-orbit interaction (indirect ~7-9)
and the other due to the exchange interaction (tem-
perature-independent). This would explain the short-
ness of relaxation times observed and their slow de-
pendence on temperature.

CONCLUSIONS

The double-resonance technique is apparently useful
in the study of relaxation phenomena. It should also
be an aid in the study of the phonon bottleneck, by
allowing one to differentiate the electrons with phonon
bottleneck from those without it in high-concentration
samples. Finally, it should be emphasized that the
temperature dependence of the relaxation rates alone
does not exclude the likely existence of relaxation
mechanisms for the electrons other than the spin-orbit
and the exchange interactions. In very dilute samples
(although the salts investigated were of moderate
concentration) the relaxation mechanism may involve
some electron spin-spin cooperative process and a
more detailed study of the concentration dependence
of the relaxation rates at very low concentrations should
resolve this question.
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