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A theory is developed to describe the slow component of the transient decay of transverse spin magnetiza-
tion, end the central component of the slow-passage absorption spectrum, of a system of spins which is
subjected to a periodic and cyclic perturbation. The theory is used to analyze and compare various schemes
for high-resolution NMR of solids, including the spinning of the sample about e,n axis oriented at the magic
angle, " the rotating-frame magic-angle experiment of Lee and Goldburg, pulsed versions of the latter, and.
a number of nevr pulsed-NMR experiments recently developed in this laboratory. Attention is focused. on
thc factors, both theoretical and practical, which arc 1Inportant 1n obta1ning opt1mal suppression of static
d1polc-dlpolc 1nteractlons and quadrupole spllttlngss and retcnt1on of chem1cal and Kn1ght shifts and scalar
spin-spin interactions. Several new experiments are proposed.

IHTRODUCTION

SYSTEM of spins I;, polarized in a stxong
.L magnetic field Hs and having (weak) internal

1Qtcl Rctlons dcscI'lbcd by R t1me-independent HBIIlll-
tonian H, gives rise to a well-known magnetic x'cso-

QRncc Rbsox'ptlon spcctl uIQ ln thc Qclghbol hood of
the Larmor frequency ~o=yIIO. Thc structure of this
spcctx'UIQ dcpcI1(4 on Ky Rnd its width mRy bc roughly
characterized by a frequency 1's '

ll X ll, where by
ll X ll we mean the "size" of the internal Hamiltonian
(in units of angular frequency).

If X is not static, but changes over a time scale ~,
the structure of the spectrum is altered. If the vari-
ations are periodic (e.g., because the sample is rotated
in an inhomogeneous fleldl), the spectrum develops
sidebands at frequencies Boo =st/r. When the side-
bands have become well resolved because v&&T2, the
structure of the central component (rt=o) becomes
dcscribablc by a tlIQc-lndcpcndcDt elective Hamil-
tonian K, which is an average of K over the modu-
lation. '~ If, on the other hand, the variations of K
are random (e.g., because of random atomic motion),
characterized by a correlation time v;, the sidcbands
are Do longer distinct, However, for r/4T2 the re-
sidual central absorption component again becomes
describable by a time-independent Hamiltonian X
which is an average over the motion. 4 In general

II X ll&ll XII, and one speaks perhap»neieg»tiy
of DlotloQRl .Ilarrowlng.

Recently wc have developed a class of txansicnt
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in art by the National Science Foundation.
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4A. Abragam, J.'r&seipks af Nuclear MugweA'sm (Oxford Uni-
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NMR experiments' ' in which X, while in fact static,
can bc made ln a sense to appear time-dependent.
The time dependence is introduced through the ap-
plication of a train of intense magnetic 6eld pulses.
As the characteristic repetition period v of the pulses
bccoIncs small coIQpRlcd to T2, thc splQ system RgRln
comes to behave over long times as though under
thc cxclusivc iQQucnce of R tln1c-1QdcpcQdcnt Rvcx'Rgc

Hamlltonlan. This Rvcl Rgc ls undcl thc conti ol of
tlM experimenter through his manipulation of thc
intensities„directions, Rnd timing of the pulscs, so
that a wide variety of CBects can be achieved. It is
our aim in this paper to put these pulse experiments
into a consistent theoretical context with the other
sorts of RvcI'Rglng cGccts )ust mentioned. Wc con-
centrate for emphasis on the practically useful goal
Of achieving averaging which is selective in the sense
of removing the part of X which corresponds to
direct dipole-dipole interactions (Xs) while retaining
the often much smaller cfkcts of resonance shifts 3:,
(clleIIllcsl shifts, Klllgllt slllfts, lllllolllogelleolls broad-
ening) and scalar spin-spin coupling (X;). That is,
our aim is to seek experimental methods for accom-
plishing "high-resolution" NMR of soli(4.

%c begin by clarif+Dg, ln an idcahzcd context,
the remark made above that the CGcctivc spin Ham-
lltonlaQ lQ pulse experiments can bc made to Rppcax'
time-dependent 1Q R controBed wRy, whereas thc Rc-

' E. D. Ostroff and J. S. Waugh, Phys. Rev. Letters 15, 1097'
(mat ).

fl J. S. Waugh and C. H. Wang, Phys. Rev. I@2, 209 (1961').' J. S. Waugh and L. M. Huber, J. Chem. Phys. 4V, 1862
(j.967).

s J. S. Waugh, C. H. Wang, L. M. Huber, and R. L. Void, J.
Chem. Phys. 48, 662 (19N).

9 J. S. Waugh, L. M. Huber, and U. Haeberlen, Phys. Rcv.
Letters 20, 180 {1968).
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tual Hamiltonian is static. Imagine that a 5-function
pulse of magnetic 6eld, I'J, is applied at time t~ to
a spin system initially in the quantum state I Q).
The system then develops freely in the rotating frame
under the inQuence of its internal Hamiltonian X
for a time r~„after which it receives a second pulse &2,
perhaps diGcrcnt from the first, develops freely for
a further interval v2, ctc. The pulses, being arbitrarily
narrow and intense, have cBects which can bc lc-
presented by thc instantaneous trRnsfolIDRtlolls

Ps exp——(—ilying. I)
where ek is the angle through which the resultant
spin I Of thc systcID Is rotRtcd Rnd ng ls R uQlt vcctol
denoting the direction of the 6eld pulse in the ro-
tating frame. Immediately before the (0+1)st pulse,
the quantum state of the system is

where it is understood that, in writing out the in-
dicated product, k increases toward the left. By re-
peated use of the identity PsPs ' ——1, Eq. (2) can be
re%'rittcn Rs

I
&s+ 2 s&= III J'-)III exp( —sx

Fqua, tion (3) expresses the time development in
R time-dependent lnteractlon lcpI'cscDtRtloD ln which
the effective Harniltonian X(t) is time-dependent:
x(/) =xr, xs, "~.

Now suppose that for some value of ss the pulses
have the property tbat

will be called the cycle Nese. (This notation is de-

hberately chosen to suggest the correlation time v;
familiar in problems involving random motions. ) We
then have

I o+.&=ALII p(- )I I&&= «) I o&

Suppose in addition that the pulse train is periodic, eith
period t, or smaller. Then after E cycles,

I ~,+ M.)= t z(t.)]"I
~,). (7)

Now, by expanding Z(t.) in powers of t„r isiantgo

powel ~ and I'cgI'ouplng terms& lt ls posslb
to show' that as t./Ts is made arbitrarily small the
system develops over long times Ãt, according to
a time-independent average Hamiltonian X;

»m L~(~,)3"= exp( —~lit~, ), (8)
S0lr~o

x= Q xs(re/t, ).

Equation (8) is just the time-development operator
which would be used to calculate the Bloch decay
Of R spin system whose static HamlltonlRIl wRs X.
According to the I.owe-worbcrg theorem, '0 the un-
saturated slow-pRssRgc Rbsolptlon spectrum of the
same fictitious system can be obtained from this
Blocb decay through a Fourier transformation.

A particularly interesting feature of (9) is that
a great deal of control over the form of X can be exer-
cised by the experimenter through judicious choice
of the pulses EI, employed and their timing vI, . Thus
one can expect to achieve a wider variety of effects
than are obtained by, e.g., rotating the sample or
allowing nature to modulate X through random mo-
lecular motion. We have discussed some of these
posslbllltlcs else%'herc. '

Because of the periodicity of the pulse trains, one
cxpccts strong pcrlodicltlcs of thc actual magnctiza-
tloD slgDRl, corrcspoQdiDg to R distinct sidcbRDd
structure in the spectrum obtained by Fourier trans-
formation. By restricting our attention to instants
of time separated by t, in Eqs. (7) and (8), in effect
wc suppI'css these pcriodicities, which amounts to
sclcctlDg thc ccntlal component of tlM slow-passage
absorption spectrum. It is helpful to make this selec-
tion experimentally as well as theoretically by sam-

pling thc obscrvcd tI'RDslcQt 1QductloQ slgQRl Rt 1Dtcr-

vals of 5,.
The preceding discussion clarifies the general out-

look we have taken toward the design of pulse ex-
periments. It is, however, somewhat incomplete from
the viewpoint of an experimenter, who does not have
Ideal 8-function pulscs at his dlsposRl Rnd who CRDQot

reach the mathematical limit t,/7's-% expressed in (8) .
EGccts of 6nitc pulse width, Rnd 6nite $, Rrc ln fact
very important in experimental design, as we shall
scc. Thcl cfol c, ln thc Qcxt scctlon %c pI'occcd to
generalize the above framework to include the pos-
sibility of quite general time variations of the applied
magnetic field.

THEORY

Wc describe the system by its spin density ma-
trix p(/). In addition to its static internal Hamilton-

'0 I. J. Lowe and R. E. Norherg, Phys. Rev. 10'r, 46 (195'l);
see also Ref. 4, Chap. IV.
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ian X, the system is subject to time-dependent ex-
ternal fields which generate an explicitly time-depen-
dent Hamiltonian Xr(t). Xr(t) in general will not
commute with itself for diferent values of t. The
time evolution of p from some arbitrary initial time
t=0 is given by

We note in passing that in some cases (17) may be
satisfied over a shorter time than t, . The experiment
of Waugh, Huber, and Haeberlen' is such a case.
When this occurs we shall speak of slbcycles of du-
ration t, .

By satisfying (16) and (17) we ensure that

with
p(t) =I.(t)p(0)Lt(t),

t

f(t) Texp( =—t [X+X (f)]df ~,
0 )

(10) (18)

That is, the periodicity of X&(t) is transferred to
X(t). Also

where T is the Dyson time-ordering operator.
We wish to separate out the part of the motion

of the system which is due to the external 6elds alone.
This is accomplished by means of an interaction rep-
resentation, which must be time-dependent because
3'.~ depends on the time. " We write

where
L(t) =L,(t)Z(t),

t

L (I) = T exp (
—e X (f)df) .

(12)

(13)

Then, from (11)—(13),

(14)

where
x(t) =L (t)XL,(t). (15)

' J. D. Macomber and J. S. Waugh, Phys. Rev. 140, A1494
(1965); J. Chem. Phys. 45e 985 (1966).

"W. A. B.Evans and J. G. Povrles, Proc. Phys. Soc. (London)
92, 1046 (1967).

The derivation of Eqs. (14) and (15), which have
been given by Evans and Powles, " would be trivial
if the operator exponentials could be factorized. How-
ever, they cannot since the operators do not com-
mute. We indicate a proof of (14) and (15) as fol-
lows: From (11) and (12),

dL(t)/dt= —ifX+X,(t) jL(t)
dLt (t) dZ (t)gt+Lrt

dt dt

From (13), dLr(t)/dt= —ixr(t) Lr(t) t

so that
—ixL, (t)z(t) =L, (t) dz/dt

or, using (15), which defines X(t),
dz/dt= ix(t) z(t), —

whose formal integral is Eq. (14).
We now choose Xr(t) to be both periodic and cyclic

over a time t, :
x,(tylA, ) =x,(t), (16)¹c

I. (Ãt)=?'exp( —t. X (t)dt) 1. (t))
0

and
p(M, ) =g (ts)rt, )p(0) 2+(M, )

z(l)l't. ) =P (t.)7", (2o)

which is a consequence of (14) and (18).
To describe the state of the system at any integer

multiple of the cycle time t, it is thus sufhcient to
calculate the short-time evolution over 1 cycle. The
1-cycle propagator Z(t, ) is then raised to the Eth
power. To obtain the result in the form of a single
exponential it is convenient to apply the Magnus for-
mula" to Z(t, ) as given by (14).

g(t, ) = exp( —iFt,)

= exp I it, (X—+X")+X(s)+ ) I. (21)

Proofs of the Magnus formula have been given by
a number of authors, '~" and it has been exploited
in magnetic resonance problems by Evans, " whose
treatment differs from the present one mainly in that
it does not explicitly exploit the periodic and cyclic
properties mentioned above.

Using (20), and recalling that F is a time-inde-
pendent operator,

Z(1A, ) = exp( —iFEt, )

= exp I
—ill)'t, (X+X&'&+X's)+ ) I (22)

or, if it is understood that the real time t is restricted
to integer multiples of t, following some initial con-
dition,

Z(t) = e~(—iFt). (23)

"W. Magnus, Commun. Pure Appl. Math. V, 649 (1954)."G. H. Weiss and A. A. Maradudin, J. Math. Phys. 3, 771
(1962).

16 D. W. Robinson, Helv. Phys. Acta 36, 140 (1963).I K.. Kumar, J. Math. Phys. 6, 1928 (1965)."P. Pechukas and F. C. Light, J.Chem. Phys. 44, 3897 (1966)."R.M. Wilcox, J. Math. Phys. 8, 962 (1967).
"W. A. B. Evans (to be published).

X is the (zero-order) average Hamiltonian of (8).
When t, is finite, X is to be supplemented by the
erst-, second-, ~ ~ ~ order average Hamiltonians 3C&'&,

gC(2&, ~ ~ ~ . It is important to note that all of these
are independent of time. They depend only on the
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x(t) ct,

C t,g

x&»= — ct, ct,[x(t,), x(t,)$, (25)
2~c 0 0

x&'&= (6t,)-' Ch3 de df~

x I [x(t,), [x(tp), X(tl)] ]

parameter I, X and the correction terms are given by" cumulant expansion" of the expectation value of the
IQRgnCtlZRtlon.

%e now wish to apply these considerations to
a number of NMR experiments, old and new, whose
primary aim is to eliminate static dipolar line broad-
ening in solids but to retain the structure arising
from interaction of nuclear spins with electrons. In
particular wc shall be concerned with the truncated
dipolar and chemical shift Hamiltonians as eontrib-
utols to X:

Xll'*' ——Q Q b;1(I,~ I;—3I„I.;),
+[X(t), [X(tp), x(t) jlI, (26)

b,;=y%r;; 'Pp(cos8;;—), (28)
etc. Each of these terms is Hermitian. 'r If X(t) com-
muted with itself at different times, X (which we
shall continue to call "the average Hamiltonian")
alone would su%.ce to describe the time development
of the system. Such is sometimes the ease, e.g., when
X is an inhomogeneous shift Hamiltonian describing
a distribution of isochromats and Xl(t) consists of
a regular train of 180 pulses (Carr-Purcell method
8"). One then has X=X "&=X&@=~ ~ ~ =0 over
a cycle of two pulses, and the magnetization at in-
tegral cycle times (e.g. , echo maxima) does not decay
at all. More often, however, X(t) does not behave
so simply and the higher-order average Hamiltonians
must be included. In a sense they can be thought
of as quantum corrections to a "classical" theory.

To get a rough idea of their relative importance,
consider 6rst the particularly unfavorable case in
which X, X~», etc. , exhibit no averaging but X is
of the same order of magnitude as X itself. Then
from the form of (24)—(26) we expect the decay
time associated with X&"& to be of the order of
Tp(Tp/t, )", which becomes rapidly long with increas-
ing e as t./Tp is made appreciably smaller than unity.
A more favorable situation exists if we can arrange
that X=X&»=" =X&=»=0. %c then fnd

X(e) ( t) nt —1

Ctl X(t.)X™(t,. 1) ~ ~ X(tl) (27)

and, since the volume of integration in (27) is
tg + /(lp+ 1) !, tile first llollvalllslllllg col'lectloll Xl"1
will lead to a decay time not shorter than

2'~-.~2'p(~+ 1) '(&1/t. )"i

which grows quite rapidly with increasing I for
t,/2'p(1. These considerations have been discussed
in greater detail by Waugh and Wang' and Evans"
with reference to a speci6c pulsed-NMR experiment,
and can be made more precise by means of R forrnal

o H. Y. Carr and E. M. Purcell, Phys. Rev. 94, 630 I'1954).

+C' =+p ~ &~~Sr"(e)

The reason for writing the superscript (g), which
refers to the s-component spin operators appearing
in (28) and (29), will appear later. The quantity
0 ' ls thc ss component of thc chemical shift tcnsoI'
of spin i in laboratory coordinates, where Ho is along
the s axis. In terms of the principal-axis system
(XFZ) of the chemical shift tensor, related to the
laboratory system (xyg) by the Eulerian angles 8, P, f,
ogg = sill 0 cos Q o'xx+ sin 8 sill $ 0'rr+ cos 8 ogg (30).

Introducing the anisotropy 60 and asymmetry pa-
rarneter y of the chemical shift by

oxx= —ho(1 ——,'1!)+-',Tro,

o rr = —Ao (1+-,'lt) + lp Tro,

ogg=2ho+-', Tro.,
onc hRS

o.,=ho(-', g.) '"I4Fp,p(e, P)

+~(V' ')[I'., (&, ~-)+I', (8, ~) jI+—-.'T" (»)
The introduction of the spherical harmonics F2 is
useful when considering the behavior of a„under
rotations, as wc shall do presently.

Various other contributions to X could be included
as wcB. As we have shown earlier, ~ a first-order
quadrupole splitting Xq has the same space and spin
symmetry as KL, so that whatever condusions we
draw about the latter will be true of the former as
well. Electron-coupled spin-spin interactions will ap-
pear through their scalar parts XJ&'&~=J;;I; I; only. ~

Since this operator is invariant to rotations in co-
ordinate or spin space, it will be unaGcctcd by any
of the averaging schemes we shall discuss. Because
of these simpli6eations we will not sacrifice much
generality by conining our specific attention of X~
and Xg. It is important to keep in mind, however,
that coupling CBects among different parts of X may

"R.Kubo, J. Phys. Soc. Japan 17, 1100 (1962); C. H. %ang,
Ph.D. thesis, M.I.T., 1967 (unpublished).
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occur in the higher-order average Hamiltonians
X&", X~2&, etc.

For some years it has been known that the eGects
of dipolar interactions could be removed by rotating
the (solid) sample at a suKciently high angular
velocity 60 about an axis making the magic angle
tan V2 with Ho."The behavior of the time-depend-
ent magnetization has recently been treated in detail
by Evans and Powles" for short times and by Clough
and McDonald" and Evans" for long times. The

well-known results are easily rederived by use of the
present theory. Ke content ourselves with making
a few points which will form the basis of contrasts
with other types of experiments.

Qf course, in the rotating sample experiments the
spatiu/ parts of the Hamiltonian are made explicitly
time-dependent, and there is no need of an inter-
action representation of the type introduced in the
previous section. Therefore we drop the tildes (~)
on the time-dependent operators for the present. The
cycle time becomes just the period of rotation: f,=
2s./co. We have

(32)

b;;(t) = i2 (y%) r,; 'LV2 sin(2n, ;) co (ist;,+ad)+ sin'n;; cos(2it, ;+2&8)j,
where n;; and. P;; specify the initial orientation of r,;. Also

Xc(t) =m, p I„.3Tro;.+terms oscillating with ~ and 2or. (34)

From the de6nition of the average Hamiltonian we immediately have that

(36)

Equations (35) and (36) state that the average Hamiltonian has the same form as in a liquid.
Inserting (33) into (25) one 6nds

dt2 dti »;(t2) b;; (ti) WO. (37)

This form can be used to obtain the leading (second-moment) term in the Bloch decay G, (t) of a spinning
sample. One obtains

Equation (38) reduces to a result of Clough and
McDonald" Ltheir Eq. (41)$, which they obtain by
a generalization of the method of Lowe and Norberg, '0

if we insert I=2 and assume that all spins are in
equivalent positions. Evans and Powles" have criti-
cized this result on the ground that it applies only
to the envelope (0, t„2t„~~ ~ ) of the actual signal.
The same criticism, of course, applies to our for-
malism. However, it misses the point if in fact the
experiment is performed to measure chemical shifts
in solids: if this is to be done one must choose 3P,', &T2,
and the slow beat arising from the chemical shifts
will necessarily be well de6ned by the large number
of points for which the theory is vahd.

~~ 8. Clough and I. R. McDonaM, PI'oc. Phys. Soc. (London)
8O, 838 (&965).

xi(t) =(dgIgj Qlg= —7') (39)

which leads to a cyclic behavior for t, =2m/a&, . Per-

"M. Lee and %'. I. Goldburg, Phys. Rev. I40, A1261 (1965).
'4 A. G. Redheld, Phys. Rev. 98, 1787 (j.955).

MAGIC-ANGLE EXPERIMENTS IN
THE ROTATING FRAME

1. Lee-Goldburg Exyeriment

In this (LG) experiment" a strong steady rf field
2H~ comt is applied to a sample shifted oG resonance
by AIJO, so that in the rotating frame the spins ex-
perience a 6eld H, = (Him+AH02)ii' which makes an
angle f= tan '(Hi/AHO) with the s axis. The per-
turbing Hamiltonian, in the tilted rotating frame, "
takes the form
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—(I„I„+I.;I„)3 sin/ cos) cosid. t

+ (Ig,I.,+I„I»)3 sin/ cost sin~, t

+ (IgiIgj Iz,I»—) 2 Sill $ COS2cgz]

(IgiIgj+IgiIgj) $ Sill $ Sln2COzt}

Sec(t) =(o0 Q 0,.;
X {Igi cosf—(Ig; cosG)zk —Ig; slnid j) 81n)}. (41)

By satisfying the magic-angle condition tan/=
tan) =%2, one obtains in the tilted rotating frame

(42)
zg

+c=3 &0 g 0'zziIzi (43)

To this degree of approximation the dipolar inter-
actions are eliminated and the chemical shifts reduced

by the common scale factor K3.
Note that, unlike the rotating sample experiment,

the LG method preserves the full spatial anisot-

ropy of the chemical (or Knight) shift. We shall
6nd the same to be true of a number of pulse ex-
periments to be discussed shortly. This distinction
arises because the vanishing of X~ in the rotating
sample experiment depends on exploiting the trans-
formation properties of KD under rotations in space,
whereas the rotating-frame methods exploit corre-
sponding transformation properties of XD under ro-
tations II1 spill space. Tile falllolls lllaglc sllgle
for which P2(cos) ) =0, arises in both because Xn is
a second rank spherical tensor operator with respect
to both spatial and spin coordinates.

The anisotropy of the shifts contains useful infor-

mation, and could be regarded as making the various
rotating-frame experiments potentially more fruitful
than the high-resolution NMR spectra of liquids.
There may be situations, particularly when the sam-

ple is complex and not a single crystal, when the
extra information constitutes an embarrassment of
riches. In such a case one could suppress the shift
anisotropy by performing one of the rotating-frame
experiments and simultaneously spinning the sample at
the magic angle, preferably making the spinning period
an integral multiple of the cycle time t,. Note that the
spinning rate need not ordinarily be so extremely large
as in the pure rotating sample experiments: The
rotating-frame experiment is relied upon to suppress
the dipolar broadening, leaving only the (usually
smaller) anisotropy of the chemical shift to be re-

forming the transformations prescribed by (15) one
obtains in the rotating frame

Rn (t) = g g fl,;{(3I„I„I;~—Ij)PI(cos))

moved by sample spinning. Ke shall make this as-
sertion more concrete in a later section.

The 6rst-order correction to the average Hamilton-
ian, Xn"&, is obtained. straightforwardly from (25),
putting t, =2 z/r&o. . One recovers just what LG, in
their paper, " call the "nonsecular" dipolar effects 3C„
which ale important 1f H1 ls not vely large. It ls
this term which limits at present the degree to which
dipolar eGects can in practice be suppressed. Note
that the critical expansion parameter t./21r T2——K«/P„
where the local field HI« (yT2——) '.

Another important practical problem, to which LG
paid a good deal of experimental attention, is asso-
ciated with inhomogeneity of H~, which arises from rf
currents in a coil whose dimensions are not very
large compared to the sample. An inhomogeneity of
Hg has two effects:

(i) It leads to a nonuniformity in the magnitude
of H„and thus to a spreading of isochromats which
were in phase at the beginning of the experiment.
The importance of this e8ect can be seen in liquid
samples, where other sources of decay are absent.

(ii) If IIO is relatively homogeneous, it leads to
a failure to satisfy the magic-angle condition every-
where in the sample, so that KD/0. An element of
sample for which $=& b, K&—1 has

which leads to a decay time of the order of T2/(z/28).
For a sample with mean square inhomogeneity de-
scribed by (8'), , one expects

Tg„,„Tg/(v2 (8').„)'".

2. Tilted CoH Modi6cation

The second type of inhomogeneity eftect can be
ameliorated by deriving AHO and Hj from suitable
currents in one and the same coil.' Suppose the coil
is tilted so that its axis makes an angle 0. with the
direction of Ho, which is set on exact resonance. The .

coil is now excited simultaneously by a dc current

I~, and an oscillating rf current I,g, which give rise
to proportional magnetic Q.elds Hq, and H, g. These
lead to secular Zeeman interactions in the rotating
frame corresponding to a longitudinal field H, =
IIq, cosa and a transverse 6eM H, =~~H,qsina. It is
H, and H, which must be adjusted to obtain the
magic-angle condition. This can be done by satisfying

(II,I/2IIq, ) tanig=V2.

Since Hq, and H, g have the same geometrical in-

homogeneity over the sample, the magic-angle con-
dition (44) is everywhere maintained. (Note, how-

ever, that only variations in the magnitude, but not
in the direction, of the coil field are fully compen-
sated. )
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3. Pulsed Analog of the LG Exyeriment

We recently suggested, '" and have since carried
out, an experiment which is identical to the tilted
coil modi6cation of the LG experiment except that
H. is periodically pulsed. The pulsed version has the
practical advantage that the free precession signal
can be observed "continuously" in the gaps between
the pulses, thus making the entire history of the
magnetization available in one shot, as it were. It is
easily verified, for cycles of three or more pulses and
any repetition rate, that X is the same as in the
steady LG experiment. 3'.('& depends on the details
of the cycle. The values of K('& for the LG and
a three-pulse cycle can be compared as follows in
terms of the operators K(@ dered by Lee and
Goldburg:

Xu&(LG) = ([/36s) f[Xii) Xi—n$+r[X™is)X(—»]I
X&"(3 pulse)

h

fQO csee

(a)

(b)

= t, (36X3%3)-'I [x™&'&,x&-»$+-'[x~-», a™e&»]

+(1/K2) ([X'",X&"j+[X&-",X&—»]) I.
A detailed calculation of the comparative effects on
the decay time of the induction signal for finite 7,
seems unwarranted. A consideration of the orders of
magnitude of the matrix elements which contribute
to the second moment suggests that the decay times
resulting from X('& should be very nearly the same
for the two experiments. The eGect of K~'& is ex-
pected to depend strongly on t, but not on the num-
ber of pulses contained in a cycle. This means that
the importance of the "nonsecular" correction 3'.("
depends on the average value of H, . In the pulsed
experiment using pulses of width t„and repetition
time v one must then increase the peak pulse 6eld
by the factor r/t„over that in the steady LG ex-
periment in order to obtain comparable results. Since
the power required to maintain a field H, is propor-
tional to B.', the average transmitter power then
becomes proportional to r/t„.

Figure 1(a) shows the Bloch decay ("F resonance)
.of a single crystal of CaF2, observed following a 90'
pulse of 60-G rotating field at 54.0 MHz. Figure 1(b)
shows the decay observed during the application of
a train of 120 pulses (t„=1.6 @sec, r=14 psec) ap-
plied along the magic-angle direction. These condi-
tions correspond to an average effective field

(Z,), =2s/3yt=6. 0 G.

which is only slightly less than the steady field II,
6.4 G employed by Lee and Goldburg " also on
a sample of CaFs. The decay time exhibited in Fig. 1(b)
is therefore nearly as long as theirs (LG, Fig. 2).

"J.S. Waugh, L. M. Huber, and E. D. Ostro6', Phys. Letters
26A, 211 {j.968).

Fin. 1 (a) Bloch decay of the "F resonance in a single crystal
of CaF~. (b) Smoothed envelope of sampled magnetization in a
pulsed analog of the Lee-Goldburg experiment using the tilted
coil method.

In this experiment we employed the scheme out-
lined in subsection 2 to compensate the inhomogeneity
of H&, which was produced in a coil only 6 mm in
diameter and 1 cm in length. As each rf pulse was
applied to the coi1. by a 100-W transmitter, a video
current pulse of the same width was simultaneously
applied by a Hewlett-Packard 214A pulse generator.
The pulser was prevented from loading the rf trans-
mitter by placing a 54.0-MHz notch 61ter in the line
between the pulser and the coil. The orientation n
[cf. Eq. (44)j of the coil in the Zeeman fmld was
adjusted to meet the magic-angle condition and was
roughly 45 .

The traces of Fig. 1 were obtained using a phase-
sensitive receiver followed by a sample-and-hold cir-
cuit which captured the induction signal following
each pulse and held it through the next one. The
output of this device was @tered with a time con-
stant ~7. to smooth the staircase signal obtained.
The transient was then digitized in a Fabritek Model
952/1062 averager and read out on an XF plotter.

4. Magic-Angle Cycles with Periodic Reversal of H,

Consider a situation like that of Subsec. 3, except
that at the end of each cycle the direction of H, in
the rotating frame is reversed. For simplicity imagine
that the original cycle (now a subcycle) consisted
of three equally spaced 120 pulses, although any
larger number would do. The full cycle now consists
of six pulses, as diagrammed in Fig. 2. If H, is chosen
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~ l20o +120o +l20O -120' -l20' "l20O

~(z) ~(x) ~(y) ~(z) ~(y) ~(x)

tc

FIG. 2. Pulse cycle for a pulsed analog of the Lee-Goldburg
experiment, employing periodic reversal of the effective 6eld. Each
pulse rotates the magnetization by 120' about the {111)direction
in the rotating frame. Instead of a three-pulse subcycle of 120'
pulses, a four-pulse subcycle of 90' pulses, etc., could have been
used. The symbols X('), etc., between the pulses denote the
transformed effective Hamiltonians X which can be thought of as
acting during the indicated intervals, and whose average is X.

along the (111) and (11T) directions of the rotating
frame, the eRective Hamiltonian 3C takes on a suc-
cession of algebraically simple forms, denoted by
K' ', K'», and 3C", and indicated in the appropriate
intervals in Fig. 2. The superscript notation is a short-
hand for the transformations induced by the pulses:
a 120 pulse along the (111) direction,

I u&= expL —(2in'/3&3) (I jI„+I,)],
induces the transformation I,—+I„, I„—+I„ I,—+I, on

every spin operator in X. The original Hamiltonian
of Eqs. (28) and (29), written with component oper-
ators I, to denote space quantization along the Ho,
is abbreviated 3C~') to indicate that fact. The trans-
formed versions X& are correspondingly labeled X('
or X~~~. We shall make use of this notation ex-

tensively.
From an examination of Fig. 2 it is clear that

X» vanishes, inasmuch as I„I„+I„,I»+I„I„=I,'I, .
The chemical shifts do not:

X =-'{X '*'+X &"'+X &*&I

= scop Q o„;(I„+I„,+I„). (45)

Equation (45) is more easily interpreted if trans-
formed to a tilted frame with its s axis along the
(111) direction. In this frame

Xo'-3-'t'~p Z „,I„. (46)

This corresponds to an apparent precession of the
spins about the (111) direction of the rotating frame,
each at a rate corresponding to its chemical shift
field reduced by the factor K3.

So far everything is the same as in the simpler
three-pulse experiment of Subsec. 3. An important
difference appears, however, when we calculate the
first-order correction to K. This is easily done from
the definition (25) with reference to Fig. 3, which

shows the domain of integration. The result, for the
dipolar eRects alone, is

X»&'& = (—it,/36) L (X»&*&+X»&"&),Xn&']

= (—it,/12) LX», Xg)&']=0. (47)

Thus, for nonzero pulse spacing, this experiment is

tl
~(x)

o o
b

~(z) /o

I

b I

~ (x)
I

I

FIG. 3. Domain of integra-
tion for evaluation of X(')
under the conditions of Fig. 2.
Contributions from regions
labeled 0 vanish identically.
Contributions from the two
regions labeled a cancel, as do
those from the two regions
labeled b Pcf. Eq. (47lg.

tc

"S. Meiboom and D. Gill, Rev. Sci. Instr. 29, 688 {1958).

expected to be much better than the cw or pulsed
LG experiments at getting rid of dipolar broadening.

If chemical shifts are present, K('& retains a cou-

pling term between XL) and X~..
x&»= —,', (it, ) I

x„x&*&]. (48)

For the usual case in which II Xo II « IIX
correction will be relatively. small. To eliminate it
from importance in comparison to X, one need only
make r suKciently small compared to some preces-
sion period T2o in the chemical shift Geld, not to
the precession period T2 in the dipolar local Geld.

The second-order average Hamiltonian K(') does
not vanish. Its dominant dipolar part is

Xn&'& = (tP/1296) [(X»&*&—X»&"&), LX»'*', X»'"'] j. (49)

Whether (49) or (48) will dominate the observed

decay depends, of course, upon the relative magni-
tudes of the dipolar and chemical shift Gelds and
upon the pulse spacing which can be achieved.

Another contrast between the present experiment
and the preceding ones lies in the fact the net pre-
cession angle of a spin. after one full cycle is zero,
e&&em if the pmlses are not perfect IZO' pidses, so long

as they are all alike in intensity. Thus the Grst type
of effect of II& inhomogeneity (cf. Subsec. 1)—the
spreading of isochromats —is cancelled. The situation
can be likened to the contrast between the Carr-
Purcell experiment" and its modification by Meiboom
and Gill."The second type of eRect—failure to main-

tain the magic-angle condition throughout the sam-

ple—can be corrected as outlined in Subsec. 2.
When the pulses have Gnite width, the situation

betmeee the pulses is still the same as if they had
been infinitely sharp, and 3C is the same as given
in (45). airing the pulses we have exactly the LG
situation, with the same type of average Hamiltonian.
An experiment with finite pulses thus has no new

properties. The cancellation of KD(" and the avoid-

ance of dephasing of the isochromats can in fact be
achieved in a cw experiment of the LG type, if the
direction of H, is reversed at intervals of +2'/&p, .
This can be accomplished either by reversing H,
directly, as outlined above, or by reversing the phase
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of the rf field III and simultaneously changing the
spectrometer frequency from between two values
which lie below and above resonance by &hoo=
+ybHO. The two frequencies &ha could be con-
veniently obtained as the two possible selectablc
single sidebands of a balanced-mixer suppressed car-
rier modulator.

MULTIPLE 90' xf PULBES

Ke consider here a type of experiment which has
thc convenience that only pure rf pulses are required
to climina. tc dipolar effects. Out of the many possi-
bilities, we restrict ourselves to the special situation
II1 wlllcll (1) Rll plllses Rl'C 90 pulsCSi (11) CRcll ls
applied along the +x or ~y axis of thc rotating
frame, i.e., a maximum of four carrier phases, each
differing by 90 from its neighbors, need be provided
in the laboratory; (iii) there are 2" pulses in a full
cycle, e being an integer; (iv) each 2"-pulse cycle
contains 2" ' 2-pulse subcycles.

The reason for restriction (iv) is an experimental
one. For every pulsed-NMR spectrometer there exists
some minimum pulse spacing t, for which it is pos-
sible to detect the free-induction signal between the
pulscs. The minimum is set by a variety of tcchnical
limitations, including risc and fail times and widths
of the pulses and recovery time of the sensing system.
The more pulses are contained in a cycle, the longer
the cycle time must therefore be. We have seen that
the criterion for unimportance of the higher-order
average Hamiltonians is that t,/Ts be smalL There-
fore it would appear that there is little to be gained
by using long and elaborate cycles, however desirable
they might appear from the viewpoint of their prop-
erties for axed t,. If, however, the full cycle possesses
subcycles having "useful" properties, it again becomes
advantageous to work with long a,nd sophisticated
cycles. To scc this, consider a simple case In whK:h
a cycle, having the properties

X=X&"=0

X{'~ t Ct Ct dtXt Xt Xt, 50

and, made up of e subcycles of equal duration t.= t./n,
such that over a smbcyck

X,=o, X,(»ao. (51)

The domain of integration of X(@ is shown in Fig. 4
for @=3: its volume is ~t,'. Without the existence
of the subcycles having the property (51), we would
estimate thc decay time T2&'& of the magnetization
duc to X{@to be of the order of

TsIs&~TsX 6(1's/t, )'.

Now the integration volume of Fig. 4 is made up
of cubes, prisms of types a and b, and tetrahedra

, '( b )
I

Pro. 4. Domain of integration of 3'.(~) in an Blustrativt: cyclic
experiment containing three subcycles oi equal length (see text) .

of type c. The triple integrals (50) over all cubes
and prisms contain at least one factor of the type

{53)

leaving a nontrivial integration volume of

Nt, '/6= f,'/6N',

leading to a revised estimate of the decay time
Tg, &@ of

T„&'& Try 6{Ts/t, ) '= I'Ts&sl, (54)

wlllch ls lollgcI' tllR11 tllc cstllllR'tc of (52). It ls hkc-
wise longer than thc decay time

Ts&'& Ts&&2(Ts/i, ), (55)

which would have been obtained by repetition of the
subcycle alone, as long as t, &T2.

One can say roughly that, even though the sub-
cycle does not itself give optimum narrowing, it does
achieve a partial narrowing, or increased decay time
T2&'&. The criterion for dBcacy of the full cycle then
becomes t,&T2' rather than t, &T2. One can thus
envision long cycles which build up their c8ects
stepwise through a cascade of sub-subcycles, sub-
cycles, etc.

1. Two-Pulse Cycles

It ls easy to scc (cf. Flg. 5) 'tllat there ls Ilo two-
pulse cycle which assures X~=0. For an arbitrary
pulse, the form of Eg 'Xg)'Ej can be written down
explicitly. It is then clear that no choice of the di-
rection nl or rotation angle HI of the pulse Lcf. Eq. (1)g
will make Xg) ' and Py 'Xg)&'9'y cancel.

The best that can be done is to use a train of
equally spaced 90' pulses, alternately along the +x
Rlld s dlrcctlons of thc 1'0'tR'tlllg frame (WH ex-
periment). Then PKo, I,j=0. If the x component of
magnetization is observed, the leading (second-mo-
ment) term os in the decay

G, (i) =1+asP+a4t'+ ~ ~
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I
~(z)

I
l
I

I

I

tl
lI-
I

Fxo. 5. General two-pulse cycle.

The calculation of XI&(t) during the pulse is easily
done from (15). The result is conveniently expressed
as a correction CI& (—x) wlllcll I'eplesellts the difference
between the average of the true 3'.D during the pulse
and the average that would have been obtained. over
the time t„ if the pulse had been a 8-function at t=o:

C (-~) = P gb, , {;(I„,I-„, I„I-„)

does not contain any dipolar contribution. If there
are chemical shifts, the decay time is Lengthened until
the beat corresponding to the largest shift difference
becomes apparent, but essentially no further. ''"

An experiment of this type (WHH) has recently
been reported, ' using 90 pulses in the —x, +x, y, —y
directions successively (cf. Fig. 6). Note that the
—x, +x and y„—y pulse pairs constitute subcycles
of the type discussed. above. From (24) we obtain

X=XI&+Xcg

Xl&——t I{XIl'&((1+AD )+XI&l*&t,+XI&l»t j, (56)

+ (3/Ir) (I„I„;+I„;I„)j. (62)

The corresponding correction terms for the other
pulses (+x, +y, —y) used in the cycle are obtained
from (62) by replacing all the I„operators by I„, —
+I„I„resp—ectively. In calculating X for the
whole cycle we must recall, however, that the Ham-
iltonian, and so also the correction terms, must be
further transformed by all pulse operators preceding
them in the cycle Lcf. Eq. (4)). Thus

XI&
——(t„/t, ) {CI& (—x)

+II +8(+&)II+II I k +D(+$)IRII

+I'I IPk IEk 'CI&( —y) PkPkI'I j. (63)
which vanishes if

f1+4=4= ~4= k &g=&'

Under the last condition,

XC k'k&0 g ggggk(Igk+Igk+Igk) ~

Performing the indicated transformations, and remem-

(57) bering the subcycle property EkI'I ——1, we have

X~=(f„/~,)(6/~) P gf„
X P-(I.g+Igg)+I*g(I*'+Ig')). (64)

which is the same result obtained in the LG experi-
ment and its pulsed modifications. The effective shifts
are scaled down by a factor of %3.

Condition (57) still leaves some latitude in the
pulse spacing. However, we readily deduce that

A similar calculation for the chemical shifts gives

Xc= 3~o 2 ~-'{l:1+(3~-/~. ) (4/~ —1))

X (I„+I„;+I„)+(3t./t. ) (4/~ —1)I„j. (65)

The result of (65) represents harmless changes of
the scaling factor away from its ideal value of V3,
and of the axis of the chemical shift precession away
from its ideal (111) direction. However, the damping
represented by (64) would be very serious were it
not for the fact that a correction mechanism exists
consisting of an adjustment of the pulses away from
the "ideal" 90 condition. Suppose that we have

Xo&= —-',i{3k,LXl', Xc)+LX'"',Xl*')(26—&.) j. (59)

The last commutator, and with it all terms quadratic
in Xg), drops out if tg ——ta

——~t,. It was this timing
that was employed in the WHH experiment. ' %hat
remains of (59) is precisely the same as the expres-
sion obtained for K&) in the six-pulse magic angle
experiment (Subsec. 4 of the preceding section) .
Mrovr

which is—apart from a factor i~ and a change of
sign —also the same as in the magic-angle experiment.
The discussion given there thus applies to the pres-
eIlt case.

An important difference appears, however, when
we consider the possibility of finite pulse width t„.
Consider, for example, a 90 pulse in the —x direc-
tion haviilg

~(z) (x)

Pro. 6. General four-pulse cycle containing two two-pulse
subcycles, not necessarily of equal length. A11 pulses @rq 90'

(61) plllses.

oe e, y%4=a= g~+e, k((1.
Xl&& = (t,k/72) [(XI&l*&—XI&'"'), LXI&l», XI&l') ], (60)

The calculation of 3'.~ is entirely straightforward
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and glvcs

Xr}=Xr}t*}cos Q+ s sin2rr

x g p b;; II.;(I„+I.;)+I.;(I„+I.;) I

-x
t~

t~ „t t~
I

FxG. 8. An eight-pulse cycle having three diGerent spacings.
The version with r~/t, =L suggested by Evans (see Ref. 211,
eliminates the second-order average dipolar coupling.

&& II**(l*r+1.~)+1*~(1*'+Is')I (66)

s= —(6/~) ~ /~. (67)

x

-x

y
X

X

X

-x y

x
«x

-y

I l
Zt, tl Zt, tl

0 t
C

Fxo. T. The H% cycles. The labels &x, &y above the I'90')
pulses refer to their directions in the rotating frame. Pour inde-
pendent @rays of choosing the sequence are indicated.

the term in (66) linear in s can be made to cancel
the effects of 6nite pulse width. For our experiments'
with $ ~I yacc, $,=36 pscc, this corlcspondcd to usc
of about an 87 pulse. The adjustment is quite critical.

If the rf 6eld Bj is inhomogeneous, the necessary
adjustment cannot be made for every part of the
sample. The result is a superposition of diGerent
decays for diferent parts of the sample. Those parts
for which the correction is not made decay relatively
rapidly, leaving progressively slower decays for those
parts for which 3'.~ lies progressively closer to zero.
When the complete decay is Fourier transformed, the
result is a line shape with a sharp peak and broad
skirts, reminiscent of an exchange-narrowed line shape.
This behavior was evident in our original experiments. o

The above considerations put a great premiuIn on
hoIQogcnclty of IIy—a premium which Iuns countcl'
to the desirability of high filling factor and large rf
6elds. One wonders whether there is not some more
direct way of removing the effects embodied in (64)
and (66) without resorting to trickery to make them
cancel one another. The fact that the operators I,
and I„enter linearly in (64) and (66) in fact sug-
gests a way of accomplishing this aim by use of an
eight-pulse cycle composed of two complementary
%HH cycles.

3. Eight-Pulse Cycles

Consider the eight-pulse cycles of Fig. 7 (the HW
cycles), each made up of a four-pulse subcycle fol-
lowed by a similar one in which all rf carrier phases
have been reversed. As before each four-pulse sub-
cycle consists in turn of two two-pulse subcycles.
Since, for each four-pulse subcycle, 3'.~——3'.~&"=0,
the same is true of the eight-pulse cycle as a whole.

Similarly, since 3'.~(2~ has the same value for each
four-pulse subcycle, Eq. (60) also gives the correct
result for the full cycle.

The average shift Hamiltonian is somewhat changed,
however. One easily 6nds

L( Xle} X (x}+X (v} X (s}+2X (z})

= sXc = so}o Q o'sziIsip (68)

which is reduced from that in the %HH experiment
by a further factor of V3. OGsctting this disadvantage
is a cancellation of CGects of 6nite pulse width and
lnhomogcnclty of Hi Incntloncd above ln Subscc. 2.
The only remaining inhomogeneity term is the one
quadratic in e. One expects

(Xn&'}).v= (e') Pen&' (69)

%c now turn to a diferent eight-pulse cycle, shown
in Fig. 8, which contains the same two-pulse sub-
cycles as before. The CGects of 6nite t and Bq in-
homogeneity do not disappear, but

Xn' [(Xr}"—Xr} }),LXD'"', Xr}']]P(t/i) —2),

which vanishes if t~/t =-,. This version of the cycle
has been suggested by Evans. " For it Xg takes the
same form as for the WHH cycle, i.e., the reduction
factor for the shifts is restored to v3.

"W. A. B. Evans (private communication).

4. Sixteen-Pulse Cycles

Again we are prompted to seek an expanded cycle
which combines the advantages of the H%' cycles
(cancellation of t and Bt effects) with those of
Evan's cycle (vanishing of Xn&s}). It will not sur-
prise the reader at this point to learn that this can
be done by means of a 16-pulse cycle (cf. Fig. 9).
The properties of this cycle are easily derived from
the properties of the two-, four-, and eight-pulse sub-
cycles which it contains, and we shall simply sum-
marize the results:

(i) X}}=0 over every four-pulse subcycle, (ii)
Xr}t }=Xr&o}=0over every etght-PUlse sul}cycle (note
that K~&'~/0 over the four-pulse subcycle, so that
the present situation may in fact be a step back-
ward. ), (iii) effects of fmite t and IIt inhomogeneity
are cancelled, but only over the full I6-pulse cycle,
(iv) Xc=stXo as in the HW cycles,
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PULSE EXPERIMENTS IN THE PRESENCE
OF MOTION OP THE SPINS

j.. VfHH Exyeximent vrith Sample Spinning

dipolar interactions and using the abbreviations

3r~t.I~is etc

X;,+7,,+Z,;=0,
we obtain

(71)

(72)

We have mentioned. several times the usefulness of
subcycles which by themselves accomplish partial re-
moval of dipolar broadening. There is no need for
the full cycle and its subcycles to belong to the same
class of experiments: One could, for example, super-
pose a relatively slow Carr-Purcell train of 180 pulses
on any of the experiments mentioned above, and
thereby remove chemical shifts and inhomogeneity
e8ects. Perhaps more interestingly, as mentioned ear-
lier, the anisotropy 60. of the chemical shift could be
removed by rotating the sample about the magic-angle
direction while at the same time performing, say, a
WHH experiment to remove the main part of the
dipolar broadening. We proceed to analyze that experi-
ment, both for its intrinsic interest and for the insight
it provides to the situation where there is random
motion of the spins.

Denote the duration of the WHH cycle by t, and
the period of rotation by t, =2~/co, . For the sake of
simplicity we shaH assume the longer of these times
to be an integral multiple of the shorter, although
this is not really essential. Regardless of the relative
magnitudes of t„and t„Xi(t) is always periodic
wodge t„and the nuclear signal can be conveniently
detected at intervals of t,. X(t), however, is periodic
only over the longer of the two times, which becomes
the full cycle time. R™ can be found by combining
Eq. (33) and the form of X for the WHH experiment as
indicated in Fig. 6. Restricting ourselves to purely

Xn(t) = Z Z b' (t) Q* (t)

vrith

= F... t~+r & t & t}+3r
=Z;;, t},+3r& t& t},+4r
=X;;, tI+4r&t(tI+6r.

Here r = 6t, and I~ is the starting time of the 0th
WHH cycle. b,, (t) is given by Eq. (33).

We wish now to examine Xi}(t) averaged over both
t, and t„. The average over the longer time will give
the average Hamiltonian X~. Where necessary we
shall also examine the 6rst correction %DO&. We dis-
tinguish three cases: (i) t,=et„ri) 1; (ii) t,= t„
(iii) t,=mt„m) 1. Notice that b;;(t) as given by (33)
consists of two linearly independent terms, one acco-
ciated with cos(P;,+&a„t) and the other with cos(2P,,+
2ar„t). To keep the algebra as compact as possible
we shall drop the second of these. Whatever general
conclusions we can reach about the behavior of the
system for a specific value of t,/t„will also hold
for 2t,/t„.

a. Slow SPiNNieg awd Rapid Emlsiwg: t„=nt,
The average of X(t) over the subcycle time

depends on tI, and will be denoted by X(k). From
Eqs. (72) and (73),

};;(t}dt)

The integrals in (74) are of the type

tfo+vr

cos(P;,+sr, t) dt

tfb+6w

+X;, b, , (t)dt
t fr+4m

b;, (t) dt

= a;; (I/2rr) sin[2 (}—p) p] Icosrt;, q cosf2 (ti+})pg —sinvy;, }},sinI ~~ (ti+})p] I, (75)

%jx=Pij+ roc&'
Xg&(k) arises from the X,; terms:

Xi}(k)= —Q Q ag sinrt "},X,+0(1/ri'). (76)
30 s(j

u;;= 2'l"y'Sr;;-' sin2;;. Thus Xn(k) does not vanish as in the pure WHH
experiment, but is smaller than Xg) itself by a factor

The only quantity characteristic of the KHH cycle of the order of e. Over the full cycle t„ the average
is P=s./3e. For N))1 the largest contribution to Hamiltonian does vanish. This is a consequence of



the fact Lcf. Eq. (75)1 that

g cosy@~= g sinn;;q ——0, n& 1.
k=0 k~

According to Eq. (N) the decay of magnetization
is slowed by the pulsing alone, and the criterion for
full removal of dipolar broadening becomes

(78a)

1RtlMr than fg/QT2 Rs ln thc puI'c sample splnnlng
experiment. The chemical shifts, while scaled down
by the customary factor of VS, are not otherwise
RGected by the pulse cycle. To remove their anisotropy
ho (whose range of values may be characterized by a
decay time T~,), one must choose

(78b)

Conditions (78) may not be dificult to achieve in
samples whose linewidth is dominated by dipolar
1QtCrRctlons.

Since satisfaction of (78) sends X~ to zero, we
must investigate K~&'& to learn about the limiting
decay time of the nuclear signal. A conclusion as to
its order of magnitude can be reached with the aid
of Flg. 10. Thc vR1Uc of

xylo& = — dt2 dt's I xn(t2), xn(tI) $
2~. 0 0

ls thought of Rs IQRdc up of contlibutlons from the
various zones shown in the figurc. The contribution
from each square of side t.=t„/I does not vanish,
since it depends on tI,. In order of magnitude it is

LXn(tg), Xg) (tg) gdtmdty
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FIG. N. Domain of integration of XD(~) for s=4 in an experi-
ment for which the sample is rotated once about the magic direc-

tion for each four cycles of a four-pulse experiment. The spin

part of 3'.@(I) is indicated for each interval in the notation of

Eq. (73). The spatial part of 3.'~ changes continuously.

I&Tg/t, ; t„&T2. (78c)

For this special situation 3'.~ does rot Mask. From
Eqs. (74) and (75),

Xn=(1/4n) Q Q (I;;—l';;)a;;

ThRt ls thc cxpellmcQt ls best suit'cd to R sltURtlon

in which AfT is small enough compared to the dipolar
line width that it can bc removed by R relatively
slow rotation, whose period contains many %HH
cycles.

=t' ll xn(&) II'=t'/n' ll xn II'.

The nontllvlRl RlcR of Integration ls pe ~ so wc have

II xn'" ll -(l/2t ) lt'(l/n') ll x~ II'= ll xn II't /8n.

Setting llx~ II =T2 ', this leads to a decay time
of the order of

Tmo "& Tm(8nTg/t, ),
which is to be compared with the decay time for
the pure %HH experiment

T2&'& T2(T2/t, ) '.
'IA'e conclude that spinning the sample does not de-

)( (%3 costa+3 sinP;;). (79)

X~ is in fact comparable in size to X~ itself, so that
combining the two experiments results in largely can-
celling the bene6ts of each. That this should be so
is not surprising: Either experiment can be regarded
as producing a central narrowed spectrum (with
which we have been concerned) and a set of side-
band. s. In the combined experiment the low-order
sidebands arising from pulsing coincide and mix with
those arising from sample rotation, resulting in re-
generation of a secular contribution to the CBective
HRInlltonlRQ RQd thus to RdditlonRl broRdcnlng of
the central component. %C shall return to this point
in a later discussion of random molecular motions.

FIG. 9. Sixteen-pulse cycle of 90' pulses, composed of two
eight-pulse subcycles of the type of Fig. 8 with all rf phases re-
versed in the second subcycle.

c. Rapid Spinning and Slow PNtsing: t, =mt,

We 1"estI'lct oUl attention to f0+ 3~ foI' which thc
spins remain undisturbed by pulscs for a SUKciently
long time that X~=0 from the spinning alone. X~&'),
which is given in Eq. (37) for the pure spinning
experiment, is, however, modified by the pulses. Gen-
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Pro. 1i. Schematic povrer spectrum of fluctuating dipolar
interactions in a solid arith correlation. time w, .The case for partial
narrowing, r, &T2„&T~ is shovm, vrhere T~, is the transverse
relaxation time of the rigid solid. The numbered regions corre-
spond roughly to the three cases discussed in the text.

eralizing (37) we obtain for tg=3 (and much the
same for larger es)

Ch, Chi f;;(h,)b;.;.(h, )

i&j i~(j~

x ch2 chi f;;(hg) f;; (hi). (80)

Note that X~~'~, while it does not vanish, commutes
with all components of I and therefore does not lead
to any decay. The situation is reminiscent of the
experiment of Ostro6' and Waugh'6 described earlier.
Complications will of course occur if chemical shifts
are included. in 3.'&'&, but the resulting cfkcts on the
decay of magnetization are of a suKciently high
order that good resolution of the chemical shifts
should still be possible.

2. Effects of Random Molecular Motion

The results of the preceding section, where a "mono-
chromatic" molecular motion was superimposed on
R pulse experiment, can be used as a yude to thc
phenomena which can be expected when a random
motion h,Rvlng R wldc fI'cqucQcy spectl um occuls.
We emphasize strongly that the parallel is a crude
one, fraught with dangerous analogies, and that the
following discussion is to be regarded as merely sug-
gestive. We hope to provide a proper discussion in
R futuI'c communlcatlon.

Figure 11 shows schematically the familiar power
spectrum J0(cv) of the truncated dipole-dipole Ham-
iltonian which Quctuates with a characteristic cor-

relation time v;. We imagine R situation in which
the line is partially narrowed from its rigid-lattice
width T2„' to a value T2 ' by R motion which is
relatively rapid (r )T2„') but the situation of ex-
treme narrowing has not been reached {r. '«~). The
value of T2 is determined. by the spectral intensity
at zero frequency Jo(0), or, more precisely" by the
integral of J~(0) over a frequency range of the order
of Tq Rbout au=0.

Imagine that a multiple-pulse experiment (e.g.,
a WHH experiment) is performed with cycle length
t, &T2, We divide the frequency scale into three re-
gions, lettered a—c in Fig. 11, and apply the argu-
ments of the preceding section to them as though
J0(i0) could be regarded. as a superposition of inde-
pendent 8 functions, each corresponding to the spin-
ning of the sample at the corresponding frequency.

The part of Jo(o&) lying in region a, represents dipolar
interactions which arc electively static over a time t„
and are cGectively averaged out by the pulse cycle
as discussed under case 8 of Subsec. I. Note that
for this to be true it is required only that t, '&&Tg ',
not h, '))Tm„-', since it is only the part of Jo{o&) lying
between 0 and Tg-' which was originally static in
the sense of contributing to the linewidth.

Region b, which occupies a width of the order of
T2 ' about co=2~k, ', represents motions which defeat
the line-narrowing tendencies of the pulse experiment,
Rs discussed under cRsc 5 above. Onc can think ln
terms of part of the power spectrum, in the neigh-
borhood of ~=2xt, ', being shifted downward in fre-
quency to thc neighborhood of ~=0, where it con-
tI'lbutcs to 'tllc llncwidtll Rs w'cll as upwRI'd ln
flcqucncy to co=4n.I, However, Rn examination of
Kq. (79) shows that, as a result of the pulse trans-
formations, the spin operator which takes part in
this process is not the ordinary truncated dipolar
operator Zg, but rather the operator Xg—F;j, which
can be reexpressed from its definition {71) as

This operator is familiar in the theory of spin-lattice
I'elRZRtloQ lQ tlM rotatlQg frame Rt exact r'csonRncc.
One is tempted to say that a Fourier component
of X~{'& in the neighborhood of 2+/, ' has much the
SRQM effect on thc pulse experiment Rs R scculRx'

{zero-frequency) component of Kn~~& —K~&», Jm(0),
in a cw experiment. Because the pulsing generates
an upper as well as a lower sideband, one can think.
as well in terms of the component J~(4irh, ') at twice
the frequency of the pulse cycle. The decay time is
therefore expected to be roughly describablc as a ro-
tating-frame spin-lattice relaxation time Tg~, evaluated

~SN. Bloembergen, E. M. Purcell, and R. V. Pound, Phys.
Rev. V3, 679 (1948).



Tmr.E I. Summary of the chief properties of various experiments designed to remove dipolar coupling but
not resonance shifts or scalar coupling from NMR spectra of sohds.

"Expemnent

Shift eGects

&true/&eff

Compensation of

6nlte ' nonuniform
Iso' HIP

Spinning sample

Lee and Goldhurg (LG)
Pulsed LG (PLG)
LG, PLG, tilted coil

PLG @6th II, reversal

WH

WHH
H%'

Evans

f6-pulse

%'HH+spin»ng

Ves

Yes

Yes

Ves

Yes

No

Yes

Yes

Ves

Ves

Yes

No

Ves

Ves

Yes

Ves

Ves

Ves

Ves

Ves

Yes

No

Ves

Yes

Ves

Ves

Ves

No

Ves

No

Ves

Ves

Ves

SUMMARY

The second. equality, involving the mean absolute
value of the rf pulse field, is a consequence of the
use of 90 pulses. Of course the ordinary average rf
6cld in the four-pulse experiment vanishes because
of the use of opposing phases, so the role of Tj, would
not have been so obvious u priori. The above argu-
IQcnts indicate thRt thc 11IQltlng frequency rcsolutloQ
to be expected from the multiple pulse experiment
in thc presence of molecular motion is of the order
of the rotating-frame relaxation time in a rotating
6eld of strength H*. This is a more severe limit than
oQc hRs ln thc ordinary N MR of liquids w'1MI'c lt
is the laboratory-frame relaxation time Ti m'hich

govclns.
The part of Je(cd) in region c is already eliminated.

from any role in hne broadening by the molecular
motion, as mentioned above. If in fact t, &T2„, the
discussion. of case c Subsec. 2 applies, and. the puls-
ing produces some additional narrowing by removal
of 3C~(o. Thus the pulse experiments can be expected
to have some bene6t in situations where partial nar-
rowing through molecular motion has already oc-
curred. A case in point arises in the NMR spectra of
solutions of high molecular weight solutes„such as
proteins. It is well known that the rotationa, l correla-
tion times are often long enough to leave a residue
of static dipolar broadening (Ti& Ts).~ In such cases,
the application of a multiple pulse cycle might well
yield an improvement in resolution, at least if the
more stringent condition Tj,& T2 proves to be obeyed. .

W. D. Phlthps (p1'1vftte colflmufucat1011) ~

Evidently there are many possible experiments,
using applied 6elds which are suitably modulated in
amphtude and direction iQ. the rotating frame, which
have desirable properties of one sort or another in
coQQcctloQ with thc quest for high-resolution NMR
of solids. . Wc emphasize that we have considered here
only certain simple classes of such experiments, where
the 6eld amplitudes are steady or modulated with
square pulses, and. where phase modulation is re-
stricted to the four points of the compass in the
rotating frame. The theoretical framework developed.
here, and illustrated by application to these experi-
ments, is adapted to more general conditions as w'cll.

Doubtless many possibilities vill occur to the reader.
Even within the limited compass we explore here

vie have given scant attention to a number of points
of detail. Most obviously one would vanish to inves-
tigate the cross-coupling cfkcts among dipolar inter-
actions, quadrupole interactions, shifts, and scalar
spin coupling which enter all of the average Hamil-
tonians except the zero-order X itself. The importance
of such CGccts, and the choice among the many ex-
periments to be performed. , will quite clearly depend
oil thc sRIQplc of interest RQd upon how small R pulse
spacing lt ls possible to cIQploy.

In TRblc I %'e summarize thc chief propcI'tlcs of
the various experiments discussed in this paper.
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