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A theory is developed to describe the slow component of the transient decay of transverse spin magnetiza-
tion, and the central component of the slow-passage absorption spectrum, of a system of spins which is
subjected to a periodic and cyclic perturbation. The theory is used to analyze and compare various schemes
for high-resolution NMR of solids, including the spinning of the sample about an axis oriented at the ‘“magic
angle,” the rotating-frame magic-angle experiment of Lee and Goldburg, pulsed versions of the latter, and
a number of new pulsed-NMR experiments recently developed in this laboratory. Attention is focused on
the factors, both theoretical and practical, which are important in obtaining optimal suppression of static
dipole-dipole interactions and quadrupole splittings, and retention of chemical and Knight shifts and scalar
spin-spin interactions. Several new experiments are proposed.

INTRODUCTION

SYSTEM of spins I;, polarized in a strong

magnetic field Hy and having (weak) internal
interactions described by a time-independent Hamil-
tonian H, gives rise to a well-known magnetic reso-
nance absorption spectrum in the neighborhood of
the Larmor frequency wo=vyH,. The structure of this
spectrum depends on 3¢, and its width may be roughly
characterized by a frequency T5~'~ || 3C ||, where by
|| 3¢ || we mean the “size” of the internal Hamiltonian
(in units of angular frequency).

If 3¢ is not static, but changes over a time scale ,
the structure of the spectrum is altered. If the vari-
ations are periodic (e.g., because the sample is rotated
in an inhomogeneous field!), the spectrum develops
sidebands at frequencies Aw,=#/7. When the side-
bands have become well resolved because 7<<T%, the
structure of the central component (#=0) becomes
describable by a time-independent effective Hamil-
tonian 3, which is an average of 3¢ over the modu-
lation.'"? If, on the other hand, the variations of 3C
are random (e.g., because of random atomic motion),
characterized by a correlation time 7., the sidebands
are no longer distinct. However, for 7.&7, the re-
sidual central absorption component again becomes
describable by a time-independent Hamiltonian 3JC
which is an average over the motion In general
[|3¢||<]||3¢c||, and one speaks, perhaps inelegantly,
of “motional narrowing.”

Recently we have developed a class of transient
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NMR experiments™ in which J¢, while in fact static,
can be made in a sense to appear time-dependent.
The time dependence is introduced through the ap-
plication of a train of intense magnetic field pulses.
As the characteristic repetition period 7 of the pulses
becomes small compared to Te, the spin system again
comes to behave over long times as though under
the exclusive influence of a time-independent average
Hamiltonian. This average is under the control of
the experimenter through his manipulation of the
intensities, directions, and timing of the pulses, so
that a wide variety of effects can be achieved. It is
our aim in this paper to put these pulse experiments
into a consistent theoretical context with the other
sorts of averaging effects just mentioned. We con-
centrate for emphasis on the practically useful goal
of achieving averaging which is selective in the sense
of removing the part of 3¢ which corresponds to
direct dipole-dipole interactions (3Cs) while retaining
the often much smaller effects of resonance shifts 3C,
(chemical shifts, Knight shifts, inhomogeneous broad-
ening) and scalar spin-spin coupling (3¢;). That is,
our aim is to seek experimental methods for accom-
plishing ‘“high-resolution” NMR of solids.

ELEMENTARY THEORY OF THE
PULSE EXPERIMENTS

We begin by clarifying, in an idealized context,
the remark made above that the effective spin Ham-
iltonian in pulse experiments can be made to appear
time-dependent in a controlled way, whereas the ac-

(1'; gg)D. Ostroff and J. S. Waugh, Phys. Rev. Letters 16, 1097
7. S. Waugh and C. H. Wang, Phys. Rev. 162, 209 (1967).
(l;g.ns. Waugh and L. M. Huber, J. Chem. Phys. 47, 1862
3J.'S. Waugh, C. H. Wang, L. M. Huber, and R. L. Vold, J.

Chem. Phys. 48, 662 (1968).
J. S. Waugh, L. M. Huber, and U. Haeberlen, Phys. Rev.
Letters 20, 180 (1968).
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tual Hamiltonian is static. Imagine that a é-function
pulse of magnetic field, Py, is applied at time £ to
a spin system initially in the quantum state |f).
The system then develops freely in the rotating frame
under the influence of its internal Hamiltonian 3C
for a time 3, after which it receives a second pulse Ps,
perhaps different from the first, develops freely for
a further interval 7o, etc. The pulses, being arbitrarily
narrow and intense, have effects which can be re-
presented by the instantaneous transformations

Py= exp(—z'oknk~1), (1)

where 6, is the angle through which the resultant
spin I of the system is rotated and n; is a unit vector
denoting the direction of the field pulse in the ro-
tating frame. Immediately before the (n+41)st pulse,
the quantum state of the system is

| ot g; )= {I=I [exp(—iterd) i} | ), (2)

where it is understood that, in writing out the in-
dicated product, % increases toward the left. By re-
peated use of the identity PPy '=1, Eq. (2) can be
rewritten as

[tk =0T 2o} 0T expl(—isein)} [ 8), )

k=1

where

ey= <I=I py-se([T 7). )

Equation (3) expresses the time development in
a time-dependent interaction representation in which
the effective Hamiltonian 3C(f) is time-dependent:
JC(£) =301, 3, * = +.

Now suppose that for some value of # the pulses
have the property that

I1 Pu=1. 5)

Such a sequence will be called a cycle and its duration
2 Te=1
k=1

will be called the cycle time. (This notation is de-
liberately chosen to suggest the correlation time 7,
familiar in problems involving random motions.) We
then have

Lok to)= {g exp(—iseers) } | )= (L) | b). (6)

Suppose in addition that the pulse train is periodic, with
period #, or smaller. Then after N cycles,

| totNte)y=[e(t) IV | ). )

Now, by expanding £(%) in powers of #, raising to
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the Nth power, and regrouping terms, it is possible
to show® that as f,/T, is made arbitrarily small the
system develops over long times Nf according to
a time-independent average Hamiltonian JC:

lim [£(4,) V= exp(—i[f—cNtc), (8)
te/T2-0
N-»o0

fo= g 504 (ra/1) 9)

Equation (8) is just the time-development operator
which would be used to calculate the Bloch decay
of a spin system whose static Hamiltonian was 3C.
According to the Lowe-Norberg theorem, the un-
saturated slow-passage absorption spectrum of the
same fictitious system can be obtained from this
Bloch decay through a Fourier transformation.

A particularly interesting feature of (9) is that
a great deal of control over the form of 3¢ can be exer-
cised by the experimenter through judicious choice
of the pulses P, employed and their timing 74 Thus
one can expect to achieve a wider variety of effects
than are obtained by, e.g., rotating the sample or
allowing nature to modulate 3¢ through random mo-
lecular motion. We have discussed some of these
possibilities elsewhere.??

Because of the periodicity of the pulse trains, one
expects strong periodicities of the actual magnetiza-
tion signal, corresponding to a distinct sideband
structure in the spectrum obtained by Fourier trans-
formation. By restricting our attention to instants
of time separated by # in Egs. (7) and (8), in effect
we suppress these periodicities, which amounts to
selecting the central component of the slow-passage
absorption spectrum. It is helpful to make this selec-
tion experimentally as well as theoretically by sam-
pling the observed transient induction signal at inter-
vals of Z.

The preceding discussion clarifies the general out-
look we have taken toward the design of pulse ex-
periments. It is, however, somewhat incomplete from
the viewpoint of an experimenter, who does not have
ideal é-function pulses at his disposal and who cannot
reach the mathematical limit 4,/ T;—0 expressed in (8).
Effects of finite pulse width and finite 4 are in fact
very important in experimental design, as we shall
see. Therefore, in the next section we proceed to
generalize the above framework to include the pos-
sibility of quite general time variations of the applied
magnetic field.

THEORY
We describe the system by its spin density ma-
trix p(¢). In addition to its static internal Hamilton-

07T, J. Lowe and R. E. Norberg, Phys. Rev. 107, 46 (1957);
see also Ref. 4, Chap. IV.
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ian 3¢, the system is subject to time-dependent ex-
ternal fields which generate an explicitly time-depen-
dent Hamiltonian 3¢;(f). 3Ci(f) in general will not
commute with itself for different values of ¢ The
time evolution of p from some arbitrary initial time
1=0 is given by

p()=L(1)p(0)L* (1), (10)

with
t
L(t)=T exp (—i / [:fc—l—{}cl(t')]dt’), (11)
0
where T is the Dyson time-ordering operator.

We wish to separate out the part of the motion
of the system which is due to the external fields alone.
This is accomplished by means of an interaction rep-
resentation, which must be time-dependent because
JC; depends on the time.* We write

L(t)y=L()£(®), (12)
where
Li($)=T exp (—-i/ti}cl(t')dt') . (13)
Then, from (11)-(13),
£()=T exp (—i f ts"c(f)dﬂ), (14)
where
5e(t) = L (1)3e L (2). (15)

The derivation of Eqs. (14) and (15), which have
been given by Evans and Powles,”? would be trivial
if the operator exponentials could be factorized. How-
ever, they cannot since the operators do not com-
mute. We indicate a proof of (14) and (15) as fol-
lows: From (11) and (12),

AL(8) /di= —i[3e+35C. (£) JL(2)

dLl(t) d.,e(t)

L)+ Li(t) —

From (13) y dLl(t) /dt= —ml(t) Ll(t) y
so that
—i3CLy (1) L(8) =Li1(¢)dL/dt

or, using (15), which defines J¢(z),
de/dt=—i3e (1)L (1),

whose formal integral is Eq. (14).
We now choose 3C1(¢) to be both periodic and cyclic
over a time Z,:

301 (14 Nt,) =501 (8),

Ly(Nt) =T exp (—i /0 " et dt) =1 17

(16)

17, D. Macomber and J. S. Waugh, Phys. Rev. 140, A1494
(1965) J. Chem. Phys. 45, 985 (1966).
W. A. B. Evans and J. G Powles, Proc. Phys. Soc. (London)
92, 1046 (1967).
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We note in passing that in some cases (17) may be
satisfied over a shorter time than #. The experiment
of Waugh, Huber, and Haeberlen® is such a case.
When this occurs we shall speak of subcycles of du-
ration #,.
By satisfying (16) and (17) we ensure that
5e(14-N1) =3 (o). (18)
That is, the periodicity of 3Ci(¢) is transferred to
3¢(1). Also

p(Nt;) =£(Nt.) p(0) £+ (Nt,)

L(Nt,) = [£(tc) ]N’

which is a consequence of (14) and (18).

To describe the state of the system at any integer
multiple of the cycle time f it is thus sufficient to
calculate the skort-time evolution over 1 cycle. The
1-cycle propagator £(#) is then raised to the Nth
power. To obtain the result in the form of a single
exponential it is convenient to apply the Magnus for-
mula® to £(4,) as given by (14).

(19)
and
(20)

L£(t;) = exp(—1iFt,)

= exp{—it,(+FHO+FHDF+-)}. (21)
Proofs of the Magnus formula have been given by
a number of authors, and it has been exploited
in magnetic resonance problems by Evans,® whose
treatment differs from the present one mainly in that
it does not explicitly exploit the periodic and cyclic
properties mentioned above.

Using (20), and recalling that F is a time-inde-
pendent operator,

L£(Nt,) = exp(—1iFN1,)

= exp{—iNt,(3e+3D 45D +--)} (22)
or, if it is understood that the real time ¢ is restricted
to integer multiples of f, following some initial con-
dition,

£(8) = exp(—1iFt). (23)
3 is the (zero- order) average Hamiltonian of (8).
When £, is ﬁmte, 3 is to be supplemented by the
first-, second-, -+ order average Hamiltonians 3¢®,
3@, eee, It is important to note that all of these
are independent of time. They depend only on the

18 W, Magnus, Commun. Pure Appl. Math. 7, 649 (1954).
( u G). H. Weiss and A. A. Maradudin, J. Math. Phys. 3, 771
1962).

1 D, W. Robinson, Helv. Phys. Acta 36, 140 (1963).

16 X, Kumar, J. Math. Phys. 6, 1928 (1965).

17P, Pechukas and F. C. Light, J. Chem. Phys. 44, 3897 (1966).

B R, M. Wilcox, J. Math. Phys. 8, 962 (1967).

W, A. B. Evans (to be published).
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parameter /. 3¢ and the correction terms are given by®

to
Jo=1t"1 /0 3e(8)dt, (24)

- —1 [t 2 ~ ~
o0 = —2; / ity f [, ()], (25
cv0 0

- te 3 i1
e = (6) [ty f dts j dh
0 0 0

X {[3(1), [ (t), 5e(t)]]
+ [ (1), [ (L), (L)1}, (26)

etc. Each of these terms is Hermitian.'” If 3e(f) com-
muted with itself at different times, 3¢ (which we
shall continue to call ‘“‘the average Hamiltonian’)
alone would suffice to describe the time development
of the system. Such is sometimes the case, e.g., when
JC is an inhomogeneous shift Hamiltonian describing
a distribution of isochromats and 3C;(¢#) consists of
a regular train of 180° pulses (Carr-Purcell method
B%). One then has H=5D=jD=...=0 over
a cycle of two pulses, and the magnetization at in-
tegral cycle times (e.g., echo maxima) does not decay
at all. More often, however, 3C(¢#) does not behave
so simply and the higher-order average Hamiltonians
must be included. In a sense they can be thought
of as quantum corrections to a ‘“‘classical” theory.

To get a rough idea of their relative importance,
consider first the particularly unfavorable case in
which 3¢, 5®, etc., exhibit no averaging but 3¢ is
of the same order of magnitude as JC itself. Then
from the form of (24)-(26) we expect the decay
time associated with 3™ to be of the order of
T2(Ty/t;)™, which becomes rapidly long with increas-
ing » as t,/T, is made appreciably smaller than unity.
A more favorable situation exists if we can arrange
that 3=3CW=...=3c*D=0. We then find

_ te in
GC(")= (__1/) "tc-l/ dln/ dlﬂ_r .e
0 0

% / )R lr) o) (27)

and, since the volume of integration in (27) is
17t/ (n+1)!, the first nonvanishing correction 3C™
will lead to a decay time not shorter than

Tdecay"‘ T2 (”"‘ 1) '(T2/tc) n)

which grows quite rapidly with increasing #» for
t,/To<1. These considerations have been discussed
in greater detail by Waugh and Wang® and Evans®
with reference to a specific pulsed-NMR experiment,
and can be made more precise by means of a formal

20 H, Y. Carr and E. M. Purcell, Phys. Rev. 94, 630 (1954).
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cumulant expansion® of the expectation value of the
magnetization.

We now wish to apply these considerations to
a number of NMR experiments, old and new, whose
primary aim is to eliminate static dipolar line broad-
ening in solids but to retain the structure arising
from interaction of nuclear spins with electrons. In
particular we shall be concerned with the truncated
dipolar and chemical shift Hamiltonians as contrib-
utors to JC:

Jepd = Z Z bij (i I;—31,:1,;),

i<i
bij=""ri; Py (costy;),

GCC(Z) =Wy Z 0zail 2.
T

(28)
(29)

The reason for writing the superscript (z), which
refers to the z-component spin operators appearing
in (28) and (29), will appear later. The quantity
02.i 1 the 2z component of the chemical shift tensor
of spin ¢ in laboratory coordinates, where H, is along
the z axis. In terms of the principal-axis system
(XYZ) of the chemical shift tensor, related to the
laboratory system (xyz) by the Eulerian angles 6, ¢, ¢,

(30)

Introducing the anisotropy Ac and asymmetry pa-
rameter  of the chemical shift by

oxx=—Ac(1—49)+3Tro,
oyy=—Ac(1437)+1Tr0,
0z2=200+%Tro,

0..= sin’d cos’¢ oxx+ sin® sin%e oyy+ cos® ozz.

one has
0= Ac (371)2{4Y2,0(0, ¢)
F0(V/3) [ V2200, ¢)+ Vo260, ) 1} +3Tre.  (31)

The introduction of the spherical harmonics Vi, is
useful when considering the behavior of ¢., under
rotations, as we shall do presently.

Various other contributions to 3¢ could be included
as well. As we have shown earlier a first-order
quadrupole splitting 3Cq has the same space and spin
symmetry as 3Cp, so that whatever conclusions we
draw about the latter will be true of the former as
well. Electron-coupled spin-spin interactions will ap-
pear through their scalar parts 3C;¢P=J,I;-I; only.”
Since this operator is invariant to rotations in co-
ordinate or spin space, it will be unaffected by any
of the averaging schemes we shall discuss. Because
of these simplifications we will not sacrifice much
generality by confining our specific attention of 3Cp
and JCc. It is important to keep in mind, however,
that coupling effects among different parts of 3¢ may

2R, Kubo, J. Phys. Soc. Japan 17, 1100 (1962) ; C. H. Wang,
Ph.D. thesis, M.I.T., 1967 (unpublished).
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occur_in the higher-order average Hamiltonians
JeW, 3@ etc.

ROTATING SAMPLE EXPERIMENT

For some years it has been known that the effects
of dipolar interactions could be removed by rotating
the (solid) sample at a sufficiently high angular
velocity w about an axis making the “magic angle”
tan~V2 with Ho.2? The behavior of the time-depend-
ent magnetization has recently been treated in detail
by Evans and Powles® for short times and by Clough
and McDonald? and Evans® for long times. The

3ep () = 2 2 bii(t) (Ii I[;—3L.l.5),

1<j

bij (1) =3 (¥h) ri;[V2 sin(2au;) cos(Bij+wt)+ sin’a; cos(28:5+2wt) ],

COHERENT AVERAGING EFFECTS IN MAGNETIC RESONANCE

457

well-known results are easily rederived by use of the
present theory. We content ourselves with making
a few points which will form the basis of contrasts
with other types of experiments.

Of course, in the rotating sample experiments the
spatial parts of the Hamiltonian are made explicitly
time-dependent, and there is no need of an inter-
action representation of the type introduced in the
previous section. Therefore we drop the tildes (~)
on the time-dependent operators for the present. The
cycle time becomes just the period of rotation: {,=
2r/w. We have

(32)

(33)

where a;; and B;; specify the imitial orientation of r;. Also

3o (t) =wo Y, 1,4 Tro+terms oscillating with « and 2.

(34)

From the definition of the average Hamiltonian we immediately have that

Fep=0,

G.C(,':wo Z Izi%Tr(Si.

(35)
(36)

Equations (35) and (36) state that the average Hamiltonian has the same form as in a liquid.

Inserting (33) into (25) one finds

- te ta
Fop®=—2i > > > > [(1:1,—31..1.)), (Ii"Ij’_slzi’Izi’)]tc_l/ df2/ dhy bij(1) by (1) #0.  (37)
0 0

<j i<t

This form can be used to obtain the leading (second-moment) term in the Bloch decay G.(#) of a spinning

sample. One obtains

I 3 te t2 2
Go(t) =1—3F I2(_T+1) IDIPD (t;lf d'fzfo dll[bij(fz)+bij'(f2)]bﬁ'(l1)) +-ee

0

T

Equation (38) reduces to a result of Clough and
McDonald? [their Eq. (41)], which they obtain by
a generalization of the method of Lowe and Norberg,
if we insert /=% and assume that all spins are in
equivalent positions. Evans and Powles®? have criti-
cized this result on the ground that it applies only
to the envelope (0, f, 24, +++) of the actual signal.
The same criticism, of course, applies to our for-
malism. However, it misses the point if in fact the
experiment is performed to measure chemical shifts
in solids: if this is to be done one must choose #,<T%,
and the slow beat arising from the chemical shifts
will necessarily be well defined by the large number
of points for which the theory is valid.

28§, Clough and I. R. McDonald, Proc. Phys. Soc. (London)
86, 833 (1965).

(38)

MAGIC-ANGLE EXPERIMENTS IN
THE ROTATING FRAME

1. Lee-Goldburg Experiment

In this (LG) experiment® a strong steady rf field
2H, coswt is applied to a sample shifted off resonance
by AH,, so that in the rotating frame the spins ex-
perience a field H,= (H?>+AHy?)'? which makes an
angle {= tan='(Hy/AH,) with the z axis. The per-
turbing Hamiltonian, in the tilted rotating frame,
takes the form

361(£) = wel.1; (39)

which leads to a cyclic behavior for #=2r/w, Per-

We= "’YHe:

% M. Lee and W. I. Goldburg, Phys. Rev. 140, A1261 (1965).
2 A. G. Redfield, Phys. Rev. 98, 1787 (1955).
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forming the transformations prescribed by (15) one
obtains in the rotating frame

iep (= Z Z bii{ (31,1 ,;—1;-1;) Py(cost)

i<i

— (I o+ 1.:1 ;) 3 sing cosé cosw,t
+ (Il 41 :1,7) 3 sing cosé sinwt
+ (Lpsl pj—Iyil,5) 3 sin% cos2w,t

- (Ixi[yj_,"[yilzj)% sin2$ sinZwet} (40)
and
&c(t) =wp Z Gozi
X {1 i cosE— (I; coswet— I,; sinw,t) sing}. (41)

By satisfying the magic-angle condition tané=
tang,=V2Z, one obtains in the tilted rotating frame

3p=0,
t'.f.CC'=' 3_1/2‘4’0 Z o'zzilzi-

(42)
(43)

To this degree of approximation the dipolar inter-
actions are eliminated and the chemical shifts reduced
by the common scale factor V3.

Note that, unlike the rotating sample experiment,
the LG method preserves the full spatial anisot-
ropy of the chemical (or Knight) shift. We shall
find the same to be true of a number of pulse ex-
periments to be discussed shortly. This distinction
arises because the vanishing of JCp in the rotating
sample experiment depends on exploiting the trans-
formation properties of 3Cp under rotations in space,
whereas the rotating-frame methods exploit corre-
sponding transformation properties of 3Cp under ro-
tations in spin space. The famous magic angle &,
for which Py(costn,) =0, arises in both because 3Cp is
a second rank spherical tensor operator with respect
to both spatial and spin coordinates.

The anisotropy of the shifts contains useful infor-
mation, and could be regarded as making the various
rotating-frame experiments potentially more fruitful
than the high-resolution NMR spectra of liquids.
There may be situations, particularly when the sam-
ple is complex and not a single crystal, when the
extra information constitutes an embarrassment of
riches. In such a case one could suppress the shift
anisotropy by performing one of the rotating-frame
experiments and simultaneously spinning the sample at
the magic angle, preferably making the spinning period
an integral multiple of the cycle time #.. Note that the
spinning rate need not ordinarily be so extremely large
as in the pure rotating sample experiments: The
rotating-frame experiment is relied upon to suppress
the dipolar broadening, leaving only the (usually
smaller) anisotropy of the chemical shift to be re-
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moved by sample spinning. We shall make this as-
sertion more concrete in a later section.

The first-order correction to the average Hamilton-
ian, 3p®, is obtained straightforwardly from (25),
putting #,=2m/w,. One recovers just what LG, in
their paper,® call the “nonsecular” dipolar effects 3Cs,
which are important if H; is not very large. It is
this term which limits at present the degree to which
dipolar effects can in practice be suppressed. Note
that the critical expansion parameter ¢,/2rTo= Hioo/ He,
where the local field Higo= (v73)

Another important practical problem, to which LG
paid a good deal of experimental attention, is asso-
ciated with inhomogeneity of Hy, which arises from rf
currents in a coil whose dimensions are not very
large compared to the sample. An inhomogeneity of
H; has two effects:

(i) It leads to a nonuniformity in the magnitude
of H,, and thus to a spreading of isochromats which
were in phase at the beginning of the experiment.
The importance of this effect can be seen in liquid
samples, where other sources of decay are absent.

(ii) If H, is relatively homogeneous, it leads to
a failure to satisfy the magic-angle condition every-
where in the sample, so that #p>%0. An element of
sample for which ¢=§,—6, 6<1 has

3—{31)=\/753CD(Z),

which leads to a decay time of the order of Ty/(V2s).
For a sample with mean square inhomogeneity de-
scribed by (8?)ay, one expects

Tdecay’\’TZ/ (\/j (52>av) 1z,

2. Tilted Coil Modification

The second type of inhomogeneity effect can be
ameliorated by deriving AH, and H; from suitable
currents in one and the same coil.® Suppose the coil
is tilted so that its axis makes an angle a with the
direction of Hy, which is set on exact resonance. The
coil is now excited simultaneously by a dc current
I4 and an oscillating rf current I, which give rise
to proportional magnetic fields Hg, and Hy. These
lead to secular Zeeman interactions in the rotating
frame corresponding to a longitudinal field H.=
Hg. cosa and a transverse field H,=%H;sina. It is
H, and H, which must be adjusted to obtain the
magic-angle condition. This can be done by satisfying

(Hrf/szc) tana-:\/f. (44)

Since Hye and H,s have the same geometrical in-
homogeneity over the sample, the magic-angle con-
dition (44) is everywhere maintained. (Note, how-
ever, that only variations in the magnitude, but not
in the direction, of the coil field are fully compen-
sated.)
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3. Pulsed Analog of the LG Experiment

We recently suggested,®? and have since carried
out, an experiment which is identical to the tilted
coil modification of the LG experiment except that
H, is periodically pulsed. The pulsed version has the
practical advantage that the free precession signal
can be observed “continuously” in the gaps between
the pulses, thus making the entire history of the
magnetization available in one shot, as it were. It is
easily verified, for cycles of three or more pulses and
any repetition rate, that 3¢ is the same as in the
steady LG experiment. JC® depends on the details
of the cycle. The values of 3¢® for the LG and
a three-pulse cycle can be compared as follows in
terms of the operators 3C® defined by Lee and
Goldburg:

Je® (LG) = (£/36m) {[3W, S I3 [5e, se-27},
3™ (3 pulse)
= tc(36x3v3) —H{[5eW, 5o A[HD, 3@
+ (1/32) ([5e®, Sew4-[5eeD, fee=T) }.

A detailed calculation of the comparative effects on
the decay time of the induction signal for finite #,
seems unwarranted. A consideration of the orders of
magnitude of the matrix elements which contribute
to the second moment suggests that the decay times
resulting from 3@ should be very nearly the same
for the two experiments. The effect of JCW is ex-
pected to depend strongly on £ but not on the num-
ber of pulses contained in a cycle. This means that
the importance of the “nonsecular” correction §C®
depends on the average value of H,. In the pulsed
experiment using pulses of width f, and repetition
time 7 one must then increase the peak pulse field
by the factor r/f, over that in the steady LG ex-
periment in order to obtain comparable results. Since
the power required to maintain a field H, is propor-
tional to Hg?, the average transmitter power then
becomes proportional to 7/#,.

Figure 1(a) shows the Bloch decay (F resonance)
of a single crystal of CaF,, observed following a 90°
pulse of 60-G rotating field at 54.0 MHz. Figure 1(b)
shows the decay observed during the application of
a train of 120° pulses (f,=1.6 psec, r=14 usec) ap-
plied along the magic-angle direction. These condi-
tions correspond to an average effective field

(H,)ov=21/3vt=6.0 G.

which is only slightly less than the steady field H.~
6.4 G employed by Lee and Goldburg,® also on
a sample of CaF,. The decay time exhibited in Fig. 1(b)
is therefore nearly as long as theirs (LG, Fig. 2).

% J. S. Waugh, L. M. Huber, and E. D. Ostroff, Phys. Letters
26A, 211 (1968).
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Fic, 1 (a) Bloch decay of the ®F resonance in a single crystal
of CaF,. (b) Smoothed envelope of sampled magnetization in a
pulsed analog of the Lee-Goldburg experiment using the tilted
coil method.

In this experiment we employed the scheme out-
lined in subsection 2 to compensate the inhomogeneity
of H;, which was produced in a coil only 6 mm in
diameter and 1 cm in length. As each rf pulse was
applied to the coil by a 100-W transmitter, a video
current pulse of the same width was simultaneously
applied by a Hewlett-Packard 214A pulse generator.
The pulser was prevented from loading the rf trans-
mitter by placing a 54.0-MHz notch filter in the line
between the pulser and the coil. The orientation «
[cf. Eq. (44)] of the coil in the Zeeman field was
adjusted to meet the magic-angle condition and was
roughly 45°.

The traces of Fig. 1 were obtained using a phase-
sensitive receiver followed by a sample-and-hold cir-
cuit which captured the induction signal following
each pulse and held it through the next one. The
output of this device was filtered with a time con-
stant ~7 to smooth the staircase signal obtained.
The transient was then digitized in a Fabritek Model
952/1062 averager and read out on an XV plotter.

4. Magic-Angle Cycles with Periodic Reversal of H,

Consider a situation like that of Subsec. 3, except
that at the end of each cycle the direction of H, in
the rotating frame is reversed. For simplicity imagine
that the original cycle (now a subcycle) consisted
of three equally spaced 120° pulses, although any
larger number would do. The full cycle now consists
of six pulses, as diagrammed in Fig. 2. If H, is chosen



460

+120° +120° +120° -120° ~-120° -i20°

”(x) W ) )| p | k)

|
1 .

F16. 2. Pulse cycle for a pulsed analog of the Lee-Goldburg
experiment, employing penodlc reversal of the effective field. Each
pulse rotates the magnetization by 120° about the (111) direction
in the rotating frame. Instead of a three-pulse subcycle of 120°
pulses, a four-pulse subcycle of 90° pulses, etc., could have been
used. The symbols 3@, etc., between the pulses denote the

transformed effective Hamiltonians 3¢ which can be thought of as
acting during the indicated intervals, and whose average is JC.

along the (111) and (TT1) directions of the rotating
frame, the effective Hamiltonian 3C takes on a suc-
cession of algebraically simple forms, denoted by
@, 3e® and 3¢, and indicated in the appropriate
intervals in Fig. 2. The superscript notation is a short-
hand for the transformations induced by the pulses:
a 120° pulse along the (111) direction,

Pu= exp[— (2ir/3V3) (L+1,+1.) ],

induces the transformation I,—I,, I,—I,, I,—I, on
every spin operator in 3C. The original Hamiltonian
of Egs. (28) and (29), written with component oper-
ators I, to denote space quantization along the Hy,
is abbreviated 3¢ to indicate that fact. The trans-
formed versions 3 are correspondingly labeled 3¢®
or 3@, We shall make use of this notation ex-
tensively.

_From an examination of Fig. 2 it is clear that
3Cp vanishes, inasmuch as LIyl 1o =115
The chemical shifts do not:

Ho=1% {3(30(’)"{"3@0(”)4‘3(30(’)}

%;wo Z Uzzi(lxi+lyi+lzi)' (45)
Equation (45) is more easily interpreted if trans-
formed to a tilted frame with its z axis along the
(111) direction. In this frame

/=3 3 0onil i (46)
i

This corresponds to an apparent precession of the

spins about the (111) direction of the rotating frame,

each at a rate corresponding to its chemical shift

field reduced by the factor V3.

So far everything is the same as in the simpler
three-pulse experiment of Subsec. 3. An important
difference appears, however, when we calculate the
first-order correction to 3¢. This is easily done from
the definition (25) with reference to Fig. 3, which
shows the domain of integration. The result, for the
dipolar effects alone, is

Fp® = (—it/36) [ (5o ®+3Cp™), 3ep]
= (—1t,/12)[3Cp, 5p@]=0. (47)

Thus, for nonzero pulse spacing, this experiment is
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expected to be much better than the cw or pulsed
LG experiments at getting rid of dipolar broadening.

If chemical shifts are present, 3¢ retains a cou-
pling term between 3Cp and 3Cc:

Go® = — g (it,) [ic, 362, (48)

For the usual case in which ||3Cc || < |l3Cp || this
correction will be relatively .small. To eliminate it
from importance in comparison to JC, one need only
make 7 sufficiently small compared to some preces-
sion period Ty in the chemical shift field, not to
the precession period 7. in the dipolar local field.

The second-order average Hamiltonian 3¢® does
not vanish. Its dominant dipolar part is

5ep® = (1,%/1296) [ (3ep®@ —3ep®), [3ep®, 3ep@] |. (49)

Whether (49) or (48) will dominate the observed
decay depends, of course, upon the relative magni-
tudes of the dipolar and chemical shift fields and
upon the pulse spacing which can be achieved.
Another contrast between the present experiment
and the preceding ones lies in the fact the net pre-
cession angle of a spin after one full cycle is zero,
even if the pulses are mot perfect 120° pulses, so long
as they are all alike in intensity. Thus the first type
of effect of H; inhomogeneity (cf. Subsec. 1)—the
spreading of isochromats—is cancelled. The situation
can be likened to the contrast between the Carr-
Purcell experiment® and its modification by Meiboom
and Gill.2® The second type of effect—failure to main-
tain the magic-angle condition throughout the sam-
ple—can be corrected as outlined in Subsec. 2.
When the pulses have finite width, the situation
between the pulses is still the same as if they had
been infinitely sharp, and 3C is the same as given
in (45). During the pulses we have exactly the LG
situation, with the same type of average Hamiltonian.
An experiment with finite pulses thus has no new
properties. The cancellation of 3p® and the avoid-
ance of dephasing of the isochromats can in fact be
achieved in a cw experiment of the LG type, if the
direction of H, is reversed at intervals of #2m/w.
This can be accomplished either by reversing H.
directly, as outlined above, or by reversing the phase

Y O Fic. 3. Domain of integra-
XX  tion for evaluation of I
Pty a | ! under the conditions of Fig. 2.
b Contributions from regions
(y) 0 0 ! L ON €8
20 I labeled O vanish identically.
22 0 : Contributions from the two
regions labeled a cancel, as do
y) a (9 I .
2 [ those from the two_regions
e 9 { labeled b [cf. Eq. (47)].
PO _}

26 S, Meiboom and D. Gill, Rev. Sci. Instr. 29, 688 (1958).
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of the rf field H; and simultaneously changing the
spectrometer frequency from between two values
which lie below and above resonance by +Aw=
+vyAH, The two frequencies Z=Aw could be con-
veniently obtained as the two possible selectable
single sidebands of a balanced-mixer suppressed car-
rier modulator.

MULTIPLE 90° rf PULSES

We consider here a type of experiment which has
the convenience that only pure rf pulses are required
to eliminate dipolar effects. Out of the many possi-
bilities, we restrict ourselves to the special situation
in which (i) all pulses are 90° pulses; (ii) each is
applied along the Zx or £y axis of the rotating
frame, i.e., a maximum of four carrier phases, each
differing by 90° from its neighbors, need be provided
in the laboratory; (iii) there are 2* pulses in a full
cycle, » being an integer; (iv) each 27-pulse cycle
contains 277 2-pulse subcycles.

The reason for restriction (iv) is an experimental
one. For every pulsed-NMR spectrometer there exists
some minimum pulse spacing f, for which it is pos-
sible to detect the free-induction signal between the
pulses. The minimum is set by a variety of technical
limitations, including rise and fail times and widths
of the pulses and recovery time of the sensing system.
The more pulses are contained in a cycle, the longer
the cycle time must therefore be. We have seen that
the criterion for unimportance of the higher-order
average Hamiltonians is that #/7: be small. There-
fore it would appear that there is little to be gained
by using long and elaborate cycles, however desirable
they might appear from the viewpoint of their prop-
erties for fixed #. If, however, the full cycle possesses
subcycles having “useful” properties, it again becomes
advantageous to work with long and sophisticated
cycles. To see this, consider a simple case in which
a cycle, having the properties

Je=50=0,
- te t3 t2 ~ ~ ~
@t ] dty [ ity [ dy (1) R ()5e(h),  (50)
0 0

and made up of # subcycles of equal duration {,=¢/n,
such that over a subcycle

30,=0, 5¢,®50. (51)

The domain of integration of 5® is shown in Fig. 4
for #=3: its volume is 3. Without the existence
of the subcycles having the property (51), we would
estimate_the decay time T,® of the magnetization
due to 3¢? to be of the order of
ToP~TyX6(T3/t:)2. (52)

Now the integration volume of Fig. 4 is made up
of cubes, prisms of types a and b, and tetrahedra
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Fic. 4. Domain of integration of 3¢® in an illustrative cyclic
experiment containing three subcycles of equal length (see text).

of type c. The triple integrals (50) over all cubes
and prisms contain at least one factor of the type

(1)t ~ -
11 / R(t) dt=1¢,=0,

ts

(53)

leaving a nontrivial integration volume of
nt3/6=13/6n2,

leading to a revised estimate of the decay time
T3® of
T28(2)NT2X6(T2/ts)2= n2T2(2), (54)

which is longer than the estimate of (52). It is like-
wise longer than the decay time

Ty0~TyX2(To/t,), (55)

which would have been obtained by repetition of the
subcycle alone, as long as £,<To.

One can say roughly that, even though the sub-
cycle does not itself give optimum narrowing, it does
achieve a partial narrowing, or increased decay time
T,®. The criterion for efficacy of the full cycle then
becomes 1, <T2® rather than f,<T,. One can thus
envision long cycles which build up their effects
stepwise through a cascade of sub-subcycles, sub-
cycles, etc.

1. Two-Pulse Cycles

It is easy to see (cf. Fig. 5) that there is no two-
pulse cycle which assures 3Cp=0. For an arbitrary
pulse, the form of Pi'3Cp?P; can be written down
explicitly. It is then clear that no choice of the di-
rection n; or rotation angle 6; of the pulse [cf. Eq. (1)]
will make 3Cp®@ and P;%Cp?P; cancel.

The best that can be done is to use a train of
equally spaced 90° pulses, alternately along the +x
and —x directions_of the rotating frame’ (WH ex-
periment). Then [3Cp, I, ]=0. If the ¥ component of
magnetization is observed, the leading (second-mo-
ment) term @, in the decay

Go(t) =14alHa*+- -+
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F16. 5. General two-pulse cycle.

does not contain any dipolar contribution. If there
are chemical shifts, the decay time is lengthened until
the beat corresponding to the largest shift difference
becomes apparent, but essentially no further.”3:%

2. Four-Pulse Cycles

An experiment of this type (WHH) has recently
been reported,® using 90° pulses in the —x, +x, y, —y
directions successively (cf. Fig. 6). Note that the
—x,+x and y, —y pulse pairs constitute subcycles
of the type discussed above. From (24) we obtain

e=45Cp+%Cc,

Fep=1t,"1{3p@ (h+1;) +3o@t,+3Cp @1},  (56)
which vanishes if
htty=tl=t=3%,=1,. (57)
Under the last condition,
Ho=}wo Xkl ook (Lt Lyit-Tar) 5 (58)

which is the same result obtained in the LG experi-
ment and its pulsed modifications. The effective shifts
are scaled down by a factor of V3.

Condition (57) still leaves some latitude in the
pulse spacing. However, we readily deduce that

o= — Fi(31,[0®, fec T3, 0091 (24—1) ). (59)

The last commutator, and with it all terms quadratic
in 3Cp, drops out if f=f=3%f. It was this timing
that was employed in the WHH experiment.® What
remains of (59) is precisely the same as the expres-
sion obtained for 3® in the six-pulse magic angle
experiment (Subsec. 4 of the preceding section).
Moreover,

$ep® = (t/72)[ (3o —3ep™), [3ep®, 5ep®]],  (60)

which is—apart from a factor 3 and a change of

sign—also the same as in the magic-angle experiment.
The discussion given there thus applies to the pres-
ent case.

An important difference appears, however, when
we consider the possibility of finite pulse width #,.
Consider, for example, a 90° pulse in the —x direc-
tion, having
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The calculation of 3p(f) during the pulse is easily
done from (15). The result is conveniently expressed
as a correction Cp(—x) which represents the difference
between the average of the true 3Cp during the pulse
and the average that would have been obtained over
the time #, if the pulse had been a §-function at ¢{=0:

Cp(—x)= Z<Z bij{5 (Lyilyy— I oil -5)
+ 3/m) (Laiyit1yilss) }-

The corresponding correction terms for the other
pulses (4%, +vy, —v) used in the cycle are obtained
from (62) by replacing all the I, operators by —1I,,
+1I,, —I,, respectively. In calculating 3¢ for the
whole cycle we must recall, however, that the Ham-
iltonian, and so also the correction terms, must be
further transformed by all pulse operators preceding
them in the cycle [cf. Eq. (4)]. Thus

Fep= (tu/ts) {Cp(—x)
+ P 1Cp (%) Pr+Pi P 'Cp (+y) PoPy
+P1_1P2_1P3—’C1)(—'y) PstPl} . (63)

(62)

Performing the indicated transformations, and remem-
bering the subcycle property PoPy=1, we have

CR:D= (tW/tc) (6/77') Z Z bi}'

<J
X EIzi(I:cj_I—ij) +Izj(lxi+Iyi) ]'

A similar calculation for the chemical shifts gives

3-60=%0)0 Z U'zm{[l'}' (Stw/lc) (4/7""-1)]

(64)

X (Tgit Iyt 1)+ (3t/te) (4/m—1) L3}, (65)

The result of (65) represents harmless changes of
the scaling factor away from its ideal value of V3,
and of the axis of the chemical shift precession away
from its ideal (111) direction. However, the damping
represented by (64) would be very serious were it
not for the fact that a correction mechanism exists
consisting of an adjustment of the pulses away from
the “ideal” 90° condition. Suppose that we have

yHil,=a=3ir+e <1,

The calculation of 3Cp is entirely straightforward

-X X y -y

;{,(x)

F1c. 6. General four-pulse cycle containing two two-pulse
subcycles, not necessarily of equal length. All pulses are 90°
pulses,
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and gives
=3JCp? cos?a+31 sin2a

X 2 20 bif{ LTyt L) + LTt L) }

i<j
ICpDe+e Z Z bs;
<
X {Iz'i(Izj'l'ij)+Iz1'(Im'+Iw')}- (66)
By proper choice of e,
e=—(6/m)t,/1,, (67)

the term in (66) linear in ¢ can be made to cancel
the effects of finite pulse width. For our experiments®
with f,~1 psec, #.=36 psec, this corresponded to use
of about an 87° pulse. The adjustment is quite critical.

If the rf field H, is inhomogeneous, the necessary
adjustment cannot be made for every part of the
sample. The result is a superposition of different
decays for different parts of the sample. Those parts
for which the correction is not made decay relatively
rapidly, leaving progressively slower decays for those
parts for which JCp lies progressively closer to zero.
When the complete decay is Fourier transformed, the
result is a line shape with a sharp peak and broad
skirts, reminiscent of an exchange-narrowed line shape.
This behavior was evident in our original experiments.?

The above considerations put a great premium on
homogeneity of Hy—a premium which runs counter
to the desirability of high filling factor and large rf
fields. One wonders whether there is not some more
direct way of removing the effects embodied in (64)
and (66) without resorting to trickery to make them
cancel one another. The fact that the operators I,
and I, enter linearly in (64) and (66) in fact sug-
gests a way of accomplishing this aim by use of an
eight-pulse cycle composed of two complementary
WHH cycles.

3. Eight-Pulse Cycles

Consider the eight-pulse cycles of Fig. 7 (the HW
cycles), each made up of a four-pulse subcycle fol-
lowed by a similar one in which all rf carrier phases
have been reversed. As before each four-pulse sub-
cycle consists in turn of two two-pulse subcycles.
Since, for each four-pulse subcycle, p=3p®=0,
the same is true of the eight-pulse cycle as a whole.

-X X -y y y -y X -X
-X X -y y X -X y -y
-x x oy -y -y y x -X
-x x oy -y X -x -y y
] | | !
st fa] e [B6] t ]t |
l 1
t—- t

c
F1e. 7. The HW cycles. The labels =, =y above the (90°)

pulses refer to their directions in the rotating frame. Four inde-
pendent ways of choosing the sequence are indicated.
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Fic. 8. An eight- pulse cycle having three different spacings.
The version with #/t,=2, suggested by Evans (see Ref. 27),
eliminates the second-order average dipolar coupling.

Similarly, since 3p® has the same value for each
four-pulse subcycle, Eq. (60) also gives the correct
result for the full cycle.

The average shift Hamiltonian is somewhat changed,
however. One easily finds

Feo= 1 (500" —FCe@ 430 ® — 50w+ 250¢(?)

=%580(z)=%w0 Z O'zziIzi; (68)
which is reduced from that in the WHH experiment
by a further factor of V3. Offsetting this disadvantage
is a cancellation of effects of finite pulse width and
inhomogeneity of Hj, mentioned above in Subsec. 2.
The only remaining inhomogeneity term is the one
quadratic in e. One expects

<C‘CI)('z> )av= (52>av3CD(z)-

We now turn to a different eight-pulse cycle, shown
in Fig. 8, which contains the same two-pulse sub-
cycles as before. The effects of finite #, and H; in-
homogeneity do not disappear, but

Fep® e [ (3o ®), [505, 3¢5=] IT3 (/¢ )~ 2],
(10)

which vanishes if #/f =2. This version of the cycle
has been suggested by Evans.?” For it 3¢ takes the
same form as for the WHH cycle, i.e., the reduction
factor for the shifts is restored to V3.

(69)

4. Sixteen-Pulse Cycles

Again we are prompted to seek an expanded cycle
which combines the advantages of the HW cycles
(cancellation of #, and H; effects) with those of
Evan’s cycle (vanishing of 3¢5®). It will not sur-
prise the reader at this point to learn that this can
be done by means of a 16-pulse cycle (cf. Fig. 9).
The properties of this cycle are easily derived from
the properties of the two-, four-, and eight-pulse sub-
cycles which it contains, and we shall simply sum-
marize the results:

(i) 3p=0 over every four-pulse subcycle, (ii)
SCD(I)—GCD(2)-0 over every eight-pulse subcycle (note
that 3p®0 over the four-pulse subcycle, so that
the present situation may in fact be a step back-
ward!), (iii) effects of finite #, and H; inhomogeneity
are cancelled, but only over the full 16-pulse cycle,
(iv) GCC—JSCC as in the HW cycles.

% W. A. B. Evans (private communication).
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PULSE EXPERIMENTS IN THE PRESENCE
OF MOTION OF THE SPINS

1. WHH Experiment with Sample Spinning

We have mentioned several times the usefulness of
subcycles which by themselves accomplish partial re-
moval of dipolar broadening. There is no need for
the full cycle and its subcycles to belong to the same
class of experiments: One could, for example, super-
pose a relatively slow Carr-Purcell train of 180° pulses
on any of the experiments mentioned above, and
thereby remove chemical shifts and inhomogeneity
effects. Perhaps more interestingly, as mentioned ear-
lier, the anisotropy Ac of the chemical shift could be
removed by rotating the sample about the magic-angle
direction while at the same time performing, say, a
WHH experiment to remove the main part of the
dipolar broadening. We proceed to analyze that experi-
ment, both for its intrinsic interest and for the insight
it provides to the situation where there is random
motion of the spins.

Denote the duration of the WHH cycle by £ and
the period of rotation by f,=2r/w, For the sake of
simplicity we shall assume the longer of these times
to be an integral multiple of the shorter, although
this is not really essential. Regardless of the relative
magnitudes of ¢ and #, 3C;(¢) is always periodic
modulo 1, and the nuclear signal can be conveniently
detected at intervals of #. 3C(¢), however, is periodic
only over the longer of the two times, which becomes
the full cycle time. 3¢ can be found by combining
Eq. (33) and the form of 3¢ for the WHH experiment as
indicated in Fig. 6. Restricting ourselves to purely

fep() =11 2 [Yﬁ ( / bt di— / b1 di—

<j titr ik
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dipolar interactions and using the abbreviations

Zi=1;"1,—3I,1,;, etc., (71)
Xi+Yi+Zi;=0, (72)
we obtain
3ep (t) = ZK]Z bii (1) Qi (1), (73)
with

Qij=Z, e <t<tp+r
=V, htr<t<tt3r
=7, it 3r<i<tyt+4r
=Xy, H4r <i<ty+6r.

Here 7=4f, and {4 is the starting time of the kth
WHH cycle. b;;(#) is given by Eq. (33).

We wish now to examine JCp(¢) averaged over both
t. and .. The average over_the longer time will give
the average Hamiltonian 3Cp. Where necessary we
shall also examine the first correction 3Cp. We dis-
tinguish three cases: (i) f=wnl, n>1; (ii) f=t;
(iii) ¢,=mt., m>1. Notice that b;;(?) as given by (33)
consists of two linearly independent terms, one acco-
ciated with cos(B:;+w,f) and the other with cos(28;;-+
2w.t). To keep the algebra as compact as possible
we shall drop the second of these. Whatever general
conclusions we can reach about the behavior of the
system for a specific value of f/f will also hold
for 2t,/t,.

a. Slow Spinning and Rapid Pulsing: t,=mnl,
The average of 3(f) over the subcycle time f,

depends on # and will be denoted by #C(k). From
Egs. (72) and (73),

L4
IRz dt)
tit37

ti+67 Ut b4t
+X,.,j<f s (1) di— f () di— f ' bij(t)dt>]. (74)

The integrals in (74) are of the type

v tetrr
——— sin2a;; / cos(Bi+wrt)dt
1 /27'ij3 1, 7 bt (ﬁ 7 )

with
Niji= B+ Wrlk,

k4T k37

= a;j(n/2m) sin[§(v—p) ¢]{cosni cos[F (u+v)d]— sinmi sin[3 (ut+r)¢]}, (75)
5ep(k) arises from the X terms:
5.-(:1) (k) = 371*” Z Z Qi sinmjk XQJ+O(1/W2) . (76)
<i

o=wr=1/3n,
@i= 21y ;73 sinou;.

The only quantity characteristic of the WHH cycle
is ¢=m/3n. For n>>1 the largest contribution to

Thus 3¢p(%k) does not vanish as in the pure WHH
experiment, but is smaller than 3Cp itself by a factor
of the order of n. Over the full cycle 4 the average
Hamiltonian does vanish. This is a consequence of
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the fact [cf. Eq. (75)] that

n—1 n—1

E COsn = Z sinn,-,-k=0, n> 1. (77)
k=0 k=0

According to Eq. (76) the decay of magnetization
is slowed by the pulsing alone, and the criterion for
full removal of dipolar broadening becomes

KTy (78a)

rather than 4<T, as in the pure sample spinning
experiment. The chemical shifts, while scaled down
by the customary factor of V3, are not otherwise
affected by the pulse cycle. To remove their anisotropy
Ao (whose range of values may be characterized by a
decay time Ty), one must choose

1<K Tse. (78b)

Conditions (78) may not be difficult to achieve in
samples whose linewidth is dominated by dipolar
interactions. _

Since satisfaction of (78) sends 3p to zero, we
must investigate 3Cp¥ to learn about the limiting
decay time of the nuclear signal. A conclusion as to
its order of magnitude can be reached with the aid
of Fig. 10. The value of

- e t2 ~ ~
3Cp® = _Zt f dlg/ dh [5{31)(f2), JCD(tI)]
rv 0 0

is thought of as made up of contributions from the
various zones shown in the figure. The contribution
from each square of side f,={,/n does #ot vanish,
since it depends on f. In order of magnitude it is

f f [S'EZ(tz), §p () Jdtadty

~? || 8o (k) 1Pt/ || 3ep |2
The nontrivial area of integration is 42 so we have
|| 3ep® || ~(1/2:)362(1/n2) || 3cp ||2= || 3Cp |[*e/ 8.

Setting || 3Cp || =73, this leads to a decay time
of the order of

TZ(I.N)NT2(8WT2/tc) ’

which is to be compared with the decay time for
the pure WHH experiment

Tz(z)N T2 ( Tz/tc) 2.

We conclude that spinning the sample does not de-

'y KXY Y Y YX X X XYy -y Y X
2| oy lzl x [z] xlz| y lz] yle] x|z| x Jz| y
Lo el b T i e e |

1./36 1./18 te /12 ¢

_F16. 9. Sixteen-pulse cycle of 90° pulses, composed of two
eight-pulse subcycles of the type of Fig. 8 with all rf phases re-
versed in the second subcycle.
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F1c. 10. Domain of integration of 3p® for #=4 in an experi-
ment for which the sample is rotated once about the magic direc-
tion for each four cycles of a four-pulse experiment. The spin
part of GNCD(t) is indicated for each interval in the notation of
Eq. (73). The spatial part of 3¢p changes continuously.

grade the WHH experiment as long as, roughly
speaking, ‘

n>Toft,; 8> To. (78¢c)
That is, the experiment is best suited to a situation
in which Ac is small enough compared to the dipolar
line width that it can be removed by a relatively
slow rotation, whose period contains many WHH
cycles.

b. t,=1t,

For this special situation 3Cp does not vanish. From
Egs. (74) and (73),

dep=(1/4m) 2 > (Xi— Vi) as;

1<j
X (\/3- COSﬂij+3 sinﬂﬁ) . (79)

3Cp is in fact comparable in size to 3Cp itself, so that
combining the two experiments results in largely can-
celling the benefits of each. That this should be so
is not surprising: Either experiment can be regarded
as producing a central narrowed spectrum (with
which we have been concerned) and a set of side-
bands. In the combined experiment the low-order
sidebands arising from pulsing coincide and mix with
those arising from sample rotation, resulting in re-
generation of a secular contribution to the effective

* Hamiltonian and thus to additional broadening of

the central component. We shall return to this point
in a later discussion of random molecular motions.

¢. Rapid Spinning and Slow Pulsing: t.=mi,

We restrict our attention to m>3, for which the
spins remain undisturbed by pulses for a sufficiently
long time that 3¢p=0 from the spinning alone. 3p®,
which is given in Eq. (37) for the pure spinning
experiment, is, however, modified by the pulses. Gen-
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Fic. 11. Schematic power spectrum of fluctuating dipolar
interactions in a solid with correlation time 7.. The case for partial
narrowing, 7.<7T% <7 is shown, where T, is the transverse
relaxation time of the rigid solid. The numbered regions corre-
spond roughly to the three cases discussed in the text.

eralizing (37) we obtain for m=3 (and much the
same for larger m)

Fep®=—%i 3" > > > {[Zij, Zoy]

<j o<yt

+[ Xy Xy 1+ Y]}
ty i
X 41 / dly / dty bij(t2) birjr (1)
0 0

=1 Z 202 2 [T L, Lo L Qi

i<j <!

ty t2
% f iy f dty by ()b (). (80)
0 0

Note that 3Cp®, while it does not vanish, commutes
with all components of I and therefore does not lead
to any decay. The situation is reminiscent of the
experiment of Ostroff and Waugh®® described earlier.
Complications will of course occur if chemical shifts
are included in C®, but the resulting effects on the
decay of magnetization are of a sufficiently high
order that good resolution of the chemical shifts
should still be possible.

2. Effects of Random Molecular Motion

The results of the preceding section, where a “mono-
chromatic” molecular motion was superimposed on
a pulse experiment, can be used as a guide to the
phenomena which can be expected when a random
motion having a wide frequency spectrum occurs.
We emphasize strongly that the parallel is a crude
one, fraught with dangerous analogies, and that the
following discussion is to be regarded as merely sug-
gestive. We hope to provide a proper discussion in
a future communication.

Figure 11 shows schematically the familiar power
spectrum Jo(w) of the truncated dipole-dipole Ham-
iltonian which fluctuates with a characteristic cor-
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relation time 7.. We imagine a situation in which
the line is partially narrowed from its rigid-lattice
width 75! to a value 75! by a motion which is
relatively rapid (7,'> T 1) but the situation of ex-
treme narrowing has not been reached (r;'<Kwp). The
value of T, is determined by the spectral intensity
at zero frequency Jo(0), or, more precisely?® by the
integral of Jy(0) over a frequency range of the order
of T3! about w=0.

Imagine that a multiple-pulse experiment (e.g.,
a WHH experiment) is performed with cycle length
1.<T,. We divide the frequency scale into three re-
gions, lettered a—c in Fig. 11, and apply the argu-
ments of the preceding section to them as though
Jo(w) could be regarded as a superposition of inde-
pendent & functions, each corresponding to the spin-
ning of the sample at the corresponding frequency.

The part of Jo(w) lying in region a, represents dipolar
interactions which are effectively static over a time ¢,
and are effectively averaged out by the pulse cycle
as discussed under case @ of Subsec. 1. Note that
for this to be true it is required only that {~U>Tyt,
not #5571, since it is only the part of Jo(w) lying
between 0 and 7y which was originally static in
the sense of contributing to the linewidth.

Region b, which occupies a width of the order of
Ty about w=2xt?, represents motions which defeat
the line-narrowing tendencies of the pulse experiment,
as discussed under case b above. One can think in
terms of part of the power spectrum, in the neigh-
borhood of w= 21, being shifted downward in fre-
quency to the neighborhood of w=0, where it con-
tributes to the linewidth, as well as upward in
frequency to w=4unt,"'. However, an examination of
Eq. (79) shows that, as a result of the pulse trans-
formations, the spin operator which takes part in
this process is not the ordinary truncated dipolar
operator Zj;, but rather the operator X;;—¥;, which
can be reexpressed from its definition (71) as

Xy—Yy=—3(Lid 1), (81)
This operator is familiar in the theory of spin-lattice
relaxation in the rotating frame at exact resonance.?
One is tempted to say that a Fourier component
of 3¢p‘? in the neighborhood of 2w, has much the
same effect on the pulse experiment as a secular
(zero-frequency) component of 3Cp@—3Cp®, Jo(0),
in a cw experiment. Because the pulsing generates
an upper as well as a lower sideband, one can think
as well in terms of the component Jy(4n?,~1) at twice
the frequency of the pulse cycle. The decay time is
therefore expected to be roughly describable as a ro-
tating-frame spin-lattice relaxation time 77,, evaluated

28 N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys.
Rev. 73, 679 (1948).
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TasrE I. Summary of the chief properties of various experiments designed to remove dipolar coupling but
not resonance shifts or scalar coupling from NMR spectra of solids.

Dipolar effects Shift effects Compensation of
Experiment Xp=0 FHp®=0 FHp®=0 Gtruo/Oett Ac? finite © nonuniform

tw? Hy?

Spinning sample Yes No No 1 No e aee

Lee and Goldburg (LG) Yes No No V3 Yes ces No

Pulsed LG (PLG) Yes No No V3 Yes Yes No

LG, PLG, tilted coil Yes No No V3 Yes Yes Yes

PLG with H, reversal Yes Yes No V3 Yes Yes Yes

WH No No No vz Yes . ves

WHH Yes Yes No V3 Yes Yes No

HW Yes Yes No 3 Yes Yes Yes

Evans Yes Yes Yes V3 Yes Yes No

16-pulse Yes Yes Yes 3 Yes Yes Yes

WHH-spinning Yes Yes No V3 No Yes Yes

at-a field strength H* given by SUMMARY
H¥~ (4w /vt) =2< | Hy| > av. (82) Evidently there are many possible experiments,

The second equality, involving the mean absolute
value of the rf pulse field, is a consequence of the
use of 90° pulses. Of course the ordinary average rf
field in the four-pulse experiment vanishes because
of the use of opposing phases, so the role of 73, would
not have been so obvious a priori. The above argu-
ments indicate that the limiting frequency resolution
to be expected from the multiple pulse experiment
in the presence of molecular motion is of the order
of the rotating-frame relaxation time in a rotating
field of strength H*. This is a more severe limit than
one has in the ordinary NMR of liquids, where it
is the laboratory-frame relaxation time 77 which
governs.

The part of Jo(w) in region c is already eliminated
from any role in line broadening by the molecular
motion, as mentioned above. If in fact {,<Ts, the
discussion of case ¢ Subsec. 2 applies, and the puls-
ing produces some additional narrowing by removal
of 3cp™. Thus the pulse experiments can be expected
to have some benefit in situations where partial nar-
rowing through molecular motion has already oc-
curred. A case in point arises in the NMR spectra of
solutions of high molecular weight solutes, such as
proteins. It is well known that the rotational correla-
tion times are often long enough to leave a residue
of static dipolar broadening (77> T3).% In such cases,
the application of a multiple pulse cycle might well
yield an improvement in resolution, at least if the
more stringent condition 7,> T, proves to be obeyed.

2% W. D. Phillips (private communication).

using applied fields which are suitably modulated in
amplitude and direction in the rotating frame, which
have desirable properties of one sort or another in
connection with the quest for high-resolution NMR
of solids. We emphasize that we have considered here
only certain simple classes of such experiments, where
the field amplitudes are steady or modulated with
square pulses, and where phase modulation is re-
stricted to the four points of the compass in the
rotating frame. The theoretical framework developed
here, and illustrated by application to these experi-
ments, is adapted to more general conditions as well.
Doubtless many possibilities will occur to the reader.

Even within the limited compass we explore here
we have given scant attention to a number of points
of detail. Most obviously one would wish to inves-
tigate the cross-coupling effects among dipolar inter-
actions, quadrupole interactions, shifts, and scalar
spin coupling which enter all of the average Hamil-
tonians except the zero-order 5C itself. The importance
of such effects, and the choice among the many ex-
periments to be performed, will quite clearly depend
on the sample of interest and upon how small a pulse
spacing it is possible to employ.

In Table I we summarize the chief properties of
the various experiments discussed in this paper.
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