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A gas laser oscillating steadily in a single mode is described theoretically using the “generalized Bloch
equations” as the point of departure. The nonlinear susceptibility is calculated without utilizing perturba-
tion techniques, so that the theory retains validity for laser fields of arbitrary intensity. Expressions are
presented for (1) the “gain profile” which exhibits the phenomenon of dual “hole burning,” (2) the power-
tuning characteristics, including the conditions for the appearance of the central tuning dip, and (3) the
frequency of oscillation, in which are displayed the effects of mode pulling and pushing. Emphasis is on a
strongly inhomogeneous line and a high-Q cavity, although some more general results are included as well.
For excitations only slightly above threshold, a comparison is made with the Lamb single-mode theory, and

in all cases agreement is found.

I. INTRODUCTION

HE behavior of a laser oscillator for which the

active material is a gas is characterized in part by
a few very simple but important physical features,
namely, (a) the cavity supports standing wave fields,
(b) atoms are in motion through these fields, and (c)
there is a distribution of atomic velocities. Because a
standing wave is equivalent to the superposition of two
oppositely directed traveling waves, an atom moving
through a monochromatic standing wave field sees two
Doppler-shifted frequency components in its own rest
frame. Consequently, even for a single mode of oscilla-
tion the atomic response is to a two-frequency excita-
tion. Many of the unique properties which characterize
gas lasers can be traced to this aspect of the interaction
between the atom and the electromagnetic field.

In this present paper, this interaction will be handled
through the Schrodinger equation, but interactions
among atoms (e.g., collisions), the pumping mechanism,
and decays will all be treated phenomenologically
through the “generalized Bloch equations.” Solutions
to the Bloch equations for a single-mode laser can be
obtained without resort to perturbation theory.

The relevance of the Bloch equations to a description
of the laser has been recognized previously by other
workers,! and in fact some of the NMR terminology is
already well established in laser physics. What will be
done here will be to incorporate the interaction between
an atom and a single-mode standing wave field into the
Bloch formalism and to show how this leads to a
quantitative description of the laser. As background
material we discuss in Secs. IT and IIT the over-all
formalism and the equations of motion. Steady-state
solutions are derived in Sec. IV.

An important feature of the solutions is the appear-
ance of a saturation factor in which are manifest terms
describing the atomic interaction with both Doppler-
shifted frequency components. This feature receives
further attention in Sec. V, where the gain profile is
calculated explicitly and the behavior of the two holes

1R, P. Feynman, F. L. Vernon, and R. W. Hellwarth, J. Appl
Phys. 28, 49 (1957); Y. Pao, J. Opt. Soc. Am. 52, 871 (1962).
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is discussed in detail. A calculation of the nonlinear
susceptibility as a function of intensity and frequency
is shown to lead to a determination of (a) the power-
tuning characteristic, including the conditions for the
appearance of the central tuning dip (Sec. VI), and
(b) expressions for the actual frequency of oscillation
(Sec. VII). Finally, a comparison is made in Sec. VIII
with the Lamb theory for the special case of weak
fields.

II. FORMALISM

In a gas laser which is operating as an oscillator, an
active material with an inverted population density
provides gain sufficient to overcome losses while a pair
of mirrors at each end of the cavity acts as a feedback
mechanism. For a wave which propagates as exp(—j82),
where 8 is the (complex) propagation constant, the
condition which must be satisfied in order that oscilla-
tions be sustained is that a wave exactly reproduce
itself after one complete pass. Assuming a cavity of
length L and end mirrors having reflection coefficients
71 and 7, the condition for steady-state oscillation can
be expressed as

(1

The propagation constant 8 will be evaluated in
terms of the susceptibility x(w); the latter is defined

according to
P(w) =x(0) E(w), (2)

where E(w) and P(w) are the amplitudes of an applied
electric field and an induced atomic polarization,
respectively:

E(z,t) =3E(w) exp[ j(wi—pB2) 1+c.c.,
P(z,t) =%P(w) exp[ j(wi—B3)]+c.c.

(we ignore the vector character of the electric field).
The susceptibility x(w) is a complex function, reflecting
the fact that P(z,t) and E(z, ¢) will not be in phase.
The plane wave field E(z,f) must satisfy the wave
equation

rre exp(—2j8L) =1.

V2E—eug(9E/08) =0,

in which e=e(1+x) and emo=c% As a result we
438
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find that

B (w) = [1+x(w) Jc2
We modify this expression slightly through the addition
of a loss term —joy to account phenomenologically for

losses between the mirrors (e.g., diffraction, scattering) ;
thus we write

B(w) =B 1+3x () 1—jew, 3)

where Bo=w/c is the free space value of 8, and we have
in addition assumed that x<1. (Typically x is of
order 1078, As will be seen shortly, x~1/Qcav, and
cavity Q’s can easily be of order 108.)

If we separate x into its real and imaginary parts
according to

x(w) =x"(w) +ix" (),

then using the form (3) for f(w) we require that the
condition (1) be satisfied in both magnitude and phase;
hence

nre exp{[Box”’ (w) —2a0]L} =1, (4a)

exp{ —278L[1+3x' (w) ]} =1. (4b)
The condition (4a) can be written equivalently as
X" (@) =1/Q.,
[GAIN]=[LOSS], (5)

(6)

where

Q.= (2wrL/No) (2a0L—1Inryry) 1
and

60 = 21!'/ )\07

where Ao is the wavelength in vacuo. Q, is termed the
“cold cavity Q.” In Eq. (5), the physical interpretation
is, as indicated, that the gain is equal to the loss when
the system is in oscillation. In general the gain x'(w)
is dependent on the field strength (i.e., we have a non-
linear response). If this dependence is known explicitly,
Eq. (5) then allows a determination of intensity as a
function of oscillation frequency. We note that in a
linear theory, for which x”(w) does not depend upon
intensity, no such determination is possible.

The phase condition (4b) leads to an equation which
determines the actual frequency of oscillation. If w, is
the resonant frequency for an empty cavity, satisfying

2w, L/c=2mq (g integer), (7)
then Eq. (4b) can be expressed in the form?
w[1+3x (@) J=w., (8)

where w is the resonant frequency of mode ¢ in the
presence of the gain material. In general the solutions
for w differ from w., the resultant shifts being referred
to as “mode pulling and pushing” effects. The deriva-

2If we define the wave number %(w) according to k(w)=
Bo(w) [1+3x’ (w)], then the phase condition (8) is equivalent to
the requirement that the cavity length L contain an integral
number of half-wavelengths; i.e., that L=1%\g, with A=2x/k.
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tion of Eq. (8), it should be remembered, is based on
the assumption of plane waves for the propagating
waveform.

As should be evident now, the procedure will be to
calculate the complex susceptibility x(w) so that its
real and imaginary parts can be used in conjunction
with Eqgs. (5) and (8). This calculation is the subject
of the following sections.

III. EQUATIONS OF MOTION

In order to calculate the complex susceptibility
x(w), we assume that an atom is in the presence of a
prescribed electric field and ask for the induced atomic
polarization. The susceptibility is then identified by
comparison with Eq. (2).

We shall represent the atom as an isolated two-level
system and postpone temporarily the questions of
decays, collisions, and pumping. The state vector
| s) for a two-level system can be expanded in the form

| s)=exp(—jWit)bi(8) | 1)+exp(—iWat) ba(0) | 2),
9)

where states | 1) and | 2) are eigenstates of a Hamil-
tonian H, with energy eigenvalues W, and W,:

Hy|m)=W,|m), m=1,2. (10)

In the presence of an electromagnetic field, the ampli-
tude coefficients b,,(¢) are governed by a Hamiltonian H':

A=0.+1, (11)

where H, represents the interaction between atom and
field. It is conventionally taken to be of the form

Hi=—(¢/2m) (b-A+A-D)+(¢/2m)A-A. (12a)

However, it has been shown that in order to treat the
atom and the field in a consistent fashion the appro-
priate interaction Hamiltonian should be3

H,=—3%-E, (12b)

where @ is the electric dipole operator. Nevertheless, for
optical frequencies and within the electric dipole
approximation the forms (12a) and (12b) are physically
equivalent. To see this, recall that the part of (12a)
which is linear in the fields can be transformed to the
form (12b), except for a factor wo/w, which is very
close to unity (wo is the atomic resonance frequency,
and w is the frequency of the electric field). The part
of (12a) which is bilinear in the fields leads (again
assuming the electric dipole approximation) merely to
an over-all energy shift, which is without physical

8 E. A. Power and S. Zienau, Phil. Trans. Roy. Soc. 251, 427
(1959). In their derivation of the form (12b) the electric dipole
approximation has been assumed. This means simply that the
spatial variations of the fields are sufficiently slow compared to
atomic dimensions that it is a good approximation to treat the
fields as constants in the integrals for the matrix elements.
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significance, so it can be removed by a simple trans-
formation.
We shall define the following bilinear combinations
O (8) 0¥ (2)
pP= bzb2* - blbl*,

p1a="bib,*.

(13a)
(13b)

The quantity p denotes the population difference, and
p12 may be related to the atomic polarization P (since
P={(s|f|s)) according to

P =ppy, exp( jwol) +c.c., (14)

where
p=(1]2]2) (15)
W= WZ—W1> 0. (16)

Then the Schrédinger equation for this two-level
system takes the form

p=27up12 exp( jwot) E(£) +c.c.,
pr2=jup exp(—jwot) E(2). an

Here, and throughout, we shall ignore the vector
character of the electric field.

The equations of motion (17) will now be modified
to include the effects of pumping, decays, and collisions
through the addition of phenomenological relaxation
terms of the type introduced by Bloch?* for magnetic-
resonance problems. We then have the following “gen-
eralized Bloch equations”:

(18a)
(18b)

For a discussion of these equations within the context of
magnetic resonance we refer the reader to the literature.?
We mention in passing that included here among the
energy-exchange Ti-type processes are (a) decays, (b)
hard collisions, and (c) the pumping mechanism itself.
The inclusion of pumping is not conventional. As a
result both py (the nonthermal equilibrium value of p
when the system is being pumped but is not oscillating)
and T are functions of the pump rate. The T relaxation
term describes those processes which destroy the phase
correlation among atoms, so that the polarization tends
to decay with a time constant 7.

p=2jup12 exp( jusot) E(£) +c.c.— (p—po) /T4,
P12 =jI-lP exp( —jwot)E(f) —plz/T?.-

IV. STEADY-STATE SOLUTIONS AND
HOMOGENEOUS RESPONSE

The equations of motion (18) will be solved for an
atom which moves with a velocity v through the stand-

4 F. Bloch, Phys. Rev. 70, 460 (1946).

5 See, e.g., N. Bloembergen, Nuclear Magnetic Relaxation (W. A.
Benjamin, Inc., New York, 1961) ; N. Bloembergen, E. M. Purcell,
and R. V. Pound, Phys. Rev. 73, 679 (1948). Regarding the
theoretical basis of the Bloch equations, see A. Abragam, T/e
Principles of Nuclear Magnetism (Oxford University Press,
New York, 1961), especially Chaps. VIII and XII; also, C. P.
Slichter, Principles of Magnetic Resomance (Harper and Row,
New York, 1963); R. K. Wangsness and F. Bloch, Phys. Rev.
89, 728 (1952) ; A. G. Redfield, IBM J. Res. Develop. 1, 19 (1957).
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ing wave field

E(z,t) =E cosBz cosw!. (19)

When this field is transformed from laboratory co-
ordinates (z,f) to atomic rest frame coordinates
(¢, t), it assumes the form

E(#,¥) =iE{exp j(wit' —p1) ]

+exp[ 7(wat'+Be2") ]+c.c.}, (20)
with
w1=w(1—'v/c), ,81=ﬁ(1—7)/6),
w=0(l4+v/c),  B=B(1-+v/c). (21)

Thus in its own rest frame the atom sees a different
Doppler-shifted frequency associated with each of the
two traveling-wave components. The expression (20) is
correct to first order in v/c.

With this form for the electric field, the equations of
motion (18) become

p=%juEp[ exp(—jé1) +exp(—jos) ]

+c.c.—(p—po) /Ty, (22a)
pre=%juLplexp( jdr) +exp( jbe) J—p1o/ T, (22b)
where
¢1= (w1—wo) ' =Bz,
b= (wo—wp) I’ +Be3. (23)

We have assumed here that the rapidly oscillating sum
frequency components have a negligible influence
compared to the slowly varying difference frequency
terms (this is the so-called “rotating wave approxi-
mation”).

To obtain solutions to (22) we shall assume, as a
first approximation, that the population difference p is
nearly constant. The conditions under which this
assumption is valid will appear shortly. If p=p©®=
const, then Eq. (22b) can be integrated directly to
yield

piz=1(juE) p® ( exp( j¢1)

Ts 4y (wl —wo)

exp( jos) )
T +5(we—wo)/
(24)

Insertion of this result into Eq. (22a) leads to the
following equation for p:

/) = -—-p(o)[A +Bl COS<¢2_¢1> +Bz Sin (¢2"'¢1) :H‘po/Tl»

(25)
where
AT1=1+4+B1T,
B\Ty=s" ( ! + 1 )
s 14 (e1—wo) 2T4? 14 (we—wo) 2T 52 ?
BQT1=s2< — (w1—wo) T (wo—wo) T2 ))
14 (w1—w0) 2T 14 (we—wo)2T9?
s?=1(wE*ThT3). (26)
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(s?is a measure of the intensity in dimensionless units.)
In considering the meaning of Eq. (25), it is necessary
to recall the conditions under which the relaxation
mechanisms can validly be represented in the phenom-
enological form suggested by Bloch.® The condition
requires that the physical quantity which is subject to
relaxation be described in the sense of a time average
taken over an interval A¢ which is long compared to the
correlation time” but short compared to the relaxation
time. Thus in Eq. (25) each term must be understood
to be averaged over a time interval Af which is much less
than the relaxation time 7. The sinusoidal terms, which
contain the frequency w;—wy, will then average to zero
provided that | wy—w; | is sufficiently large®:
| we—awy | >>(A)L (27)
If condition (27) is satisfied, Eq. (25) then has (physi-
cally) only the stationary state solution p=0, whence

p©@=po/AT. (28)

So we see that the solution (24) is justified provided
that the condition (27) is met. Of course there will be
some slowly moving atoms for which the condition (27)
will not be met. However, we must recall that our
ultimate interest is the net response which is made by
atoms of all velocities, i.e., an integral over the entire
velocity distribution. We shall assume that of the
atoms which contribute significantly to this integral
(which is treated in detail in succeeding sections) only a
small fraction move slowly enough so as not to satisfy
(27). Thus if we assume that Eq. (24) describes the
response of all atoms, we shall be evaluating the
_integrand correctly everywhere except in a small range
of the integration, so that the error induced in the net
integral is a small one.

Thus for atoms of velocity v, the solutions we adopt
are those given by Egs. (24) and (28). The polarization
P is simply related to p» [see Eq. (14)] and it is
immediately evident that a polarization is being
induced at each of the driving frequencies w; and ws.
Because we have formulated the oscillation condition

¢ The validity conditions for the Bloch equations, which shall
be assumed to prevail here, are discussed in, e.g., Abragam (Ref. 5,
Chap. XTI, Sec. TA) and Slichter (Ref. 5, Secs. 5.6-5.8).

7 The correlation time characterizes that part of the Hamil-
tonian which is randomly fluctuating and which is associated with
the relaxation processes. A correlation time may be identified with
the mean time between collisions, but it is to be distinguished

from the relaxation time T, which describes the decay of the
polarization.

81t is possible to treat Eq. (25) by successive iterations,

starting with the solution p=p®, before the time averaging is
performed. The first iteration yields

p(8) =p®[1— (w2—w1) ~}(— By sin (¢2—¢1) +Bz cos(pz—e1))]

and displays the “population pulsation” terms which are seen
to be small if | we—ew: | is sufficiently large. However, we must
note here that (i) the expansion parameter is proportional to the
intensity [cf. Eq. (26) for By and B.] so that the expansion is not
good for high intensities, and (ii) the time averaging is still
required in order to make the solutions compatible with the
validity conditions for the Bloch equations.
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F1e. 1. The real and imaginary \
parts of the susceptibility x(w)= X
X' (w) +x" (w) for an atom having x'
center frequency «’ =wo(1+v/c).

(1) in terms of traveling waves it is sufficient to know
the response to just one of the traveling-wave com-
ponents which appear in P(#,#). Transforming
P(4, t') to a laboratory reference P(z,¢) and applying
the definition (2) to the w; component we find that
(see Fig. 1)

x (@) ={ jx" /(147 (er—wo) T:1}8, (29)

where, as before, w;=w(1—1/c), and § is the “saturation
factor” which describes how the equilibrium value of
p is reduced from its zero-field value of py to the new
value p©@ [cf. Eq. (28)7]:

p©@ =8,
8§=1/AT, (0<8L1). (30)
xo'’ is the “midband unsaturated gain”:
xo''=p*poT . (31)

Although x(w) is the response to a single traveling
wave, the medium is nevertheless still subject to
saturation by both traveling-wave components of the
standing-wave field, and this is reflected in the satura-
tion factor 8 [cf. Egs. (30) and (26), where we can see
clearly the effects of each traveling-wave component].

The response of atoms belonging to a single velocity
class is said to be “homogeneous” since the response is
shared equally by all atoms and there is nothing to
distinguish the behavior of one atom from that of
another. If now we consider atoms having a spectrum of
velocities, then different velocity groups will be found
to be subject to varying degrees of saturation. In
particular the saturation may be strong for some atoms
and negligible for others. In such a case the response is
said to be “strongly inhomogeneous.” This situation
obtains for some (but not all) gas lasers. The properties
of lasers operating on lines which are homogeneously or
inhomogeneously broadened may show important
qualitative differences. These will be discussed in
detail below.

V. GAIN PROFILE

A discussion of the gain profile is really a digression
from the main problem of finding the complex suscepti-
bility for an ensemble of atoms subject to saturation
and having a distribution of velocities. It is a worth-
while digression, however, because it provides some
physical insight into the nature of the effects to be
described later (i.e., Lamb notch, mode pulling and
pushing).

The “gain profile” is the response to an arbitrarily
weak traveling-wave probe of tunable frequency
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when the system is subject to strong signal saturation
by a standing wave of frequency w,. We are interested
in the imaginary part of the response, x'/(w, ws), as a
function of w, w, being held fixed. The response just to
the weak probe signal is obtained from Eq. (29) with
8=1. To take account of strong signal saturation we
include the saturation factor § evaluated at w=w,.
Finally, we obtain the total response by integrating
over all atomic velocities which are weighted with the
distribution function g(v). Hence we have

X/(w0)= [ dg®ho, 98,0, ()

where %(w,v) is the homogeneous response made by
atoms of velocity v to the weak probe of frequency w:

h(w, v) =xo"/{14+[o(1—v/c) —wPT2}.  (33)

The saturation factor $(ws, v) is given by Egs. (30) and
(26) except that w; and we are to be evaluated at the
frequency w, of the standing wave; thus in place of
Eq. (21) we have

wy=ws(1—2/c),

we=w,(142/c). (34)

To calculate the integral (32) we make a change of
variable from v to " according to

o’ =wo(1+2/c). (35)

Physically w’ represents the atomic resonance frequency
as seen by a laboratory observer. Then we have, to
first order in v/c,

Ww1—wo=ws—w’,

wz—wo=w'-— (ng——w,) ,

(36)
We have assumed that all frequency differences are
reduced from optical frequencies by a factor of order
of magnitude v/c, so that, for example, (v/c)w=(v/c)wo
to first order in v/c. Typically, v/c is of order 10-%.
Then we have

w(1—v/c) —wo=w—0v'.

1 0 dx
” _ X0 f ,
G A 8 1+ (x—8)?

X [1+s2 (Hl—xz + 1+(xl_ A>2>]—1- (37)

For convenience we have defined the following dimen-
sionless parameters:

st=432 2Ty T,
w=(14) P,

w=T2 (o' —w;),
b=Tr(w—ws),
8="To[w— (2wo—ws) ],
A=08;—08,=2T5(wo—ws).

(38)
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We_shall refer to s* as the “dimensionless intensity.”
The distribution g(w’) has been assumed to be nor-
malized according to
/g(w')dw'/Z‘/r:l. (39)
We shall evaluate the integral (37) under the assump-
tion that the distribution g(w’) varies slowly over the
range for which the other factors are significant. This
means that only atoms in a relatively small velocity
range contribute to the integral; this will be the case
provided the width of the response to the weak probe,
2/T,, is small compared to the width of the distribution,
g(w"), i.e., the Doppler width. (As will be seen shortly,
this is a necessary but not a sufficient condition that
the response be strongly inhomogeneous.) The factor
g(«’) may now be taken outside the integral and re-
placed by g(w) since the homogeneous response function
is resonant at x=6; (i.e., ' =w). The evaluation of the
resulting integral is discussed in Appendix A. Here we
consider only the special case for which A>>w; the
physical significance of this condition will appear
shortly. In this case we find that

X" (@, 02) =g(w) (xd"/2T2) [G(s?, &) +G(s?, &) —1]

(A>w), (40)
where

G(s, 8)=1—[ws*/ (w—1) ](*+w?)

and w(s?) is defined above, Eq. (38).

The Doppler curve g(w) is of course centered at
w=wp and is generally taken to be a Gaussian, although
in the absence of thermal equilibrium it need not be.
The function G(s% 8) is unity except in the vicinity of
0=0, where it is Lorentzian shaped with half-width .
Hence the coefficient in Eq. (40) has two ‘“holes,” one
at 8,=0, the other at §,=0, these values corresponding
in frequency to w=w, and w=we~+ (wo—ws) , respectively.
The assumption that A>>w means that 6;—870, so
that the holes in this instance are distinct. The coeffi-
cient G(s?, 6;) +G(s% 8;) —1 then appears as shown in
Fig. 2; thus the gain profile [x"' (v, ws) versus w | follows
the Doppler curve g(w) [see Fig. 3(a)] except at
=0, and w =wp+ (wo—w;) , where, according to popular
terminology, “holes are burned into the gain curve.”
The holes are symmetric about w=wp and are separated
by a frequency difference 2 | wp—w, |. The hole centered
at the actual oscillation frequency w, we call the
“primary hole,” while that at w=wo+ (wo—w,) We refer

(41)

® Hole burning was first described as early as 1947 by N.
Bloembergen; see especially Fig. 2.5, p. 47, of the first reference
in Ref. 5. The earliest discussion with respect to gas lasers was
given by W. R. Bennett, Jr., Phys. Rev. 126, 580 (1962); Appl.
Opt. Suppl. 1, 24 (1962), especially p. 57. Also see Bennett’s
article in Quantum Electronics, edited by P. Grivet and N. Bloem-
bergen (Columbia University Press, New York, 1964), Vol. 1,
especially pp. 450-456. Experimental observation of holes has
been reported by D. Launois and A. Kastler, Compt. Rend.
264B, 868 (1967).
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to as the “image hole.” Obviously the existence of two
holes when there is but a single mode of oscillation
reflects the fact that an atom traveling through a
standing-wave field interacts with both Doppler-
shifted traveling-wave components.

When expressed in the dimensionless units of Egs.
(38), we may describe the holes as being of width 2w
(2w/T. in frequency units) and depth (w—2)/(w—1),
each having an area ms?/(14-s?)'/2. The holes are sepa-
rated by an amount | A |. The condition A>>w means
simply that the separation of the holes is large compared
to their width. Note that the area of the hole is a meas-
ure of the intensity of the cavity field, especially for
weak fields for which s2«1.

Having demonstrated the existence of holes in the
gain curve, we can now state more precisely the condi-
tion, assumed above, that the response be strongly
inhomogeneous. It is simply that the hole width be
small when compared with the full Doppler width. If
this condition is not met, i.e., if the hole width is
comparable to the Doppler width (“weakly inhomoge-
neous” broadening), the signal causes the entire line to
saturate as in a homogeneous response, and in this
limit the concept of a hole, which implies selective
saturation, ceases to be a useful one. We note in this
connection that the hole width 2w/T; increases with
(a) dephasing frequency 1/T5 (“collision broadening”)
and (b} intensity s* (“power broadening”).!® Thus even
though a line may suffer considerable Doppler broad-
ening, this in itself is no guarantee that the response
will be strongly inhomogeneous. The inhomogeneity
can be destroyed by the above effects, whose tendency
is to cause all atoms to saturate equally and thereby to
make the response more nearly homogeneous.!t

If the boles are not well separated, the expression for
x" (v, ws) is not so simple, although it can still be
handled. There is, however, one other special case for
which the gain profile is quite simple, namely, when the
oscillation frequency is at line center (i.e., A=0).
In this case (see Appendix A),

X” (wﬁ wS) ]wa=wo = [XO”g(w)/2T2JG(2SZ’ 60) b (42)

G(s28)) + G(s%,82) - |

Fic. 2. {G(s% &) +G(s% &) —1}
versus w for the case that A>w.

T
wot(wo = ws)

w

10 Broadening effects have received considerable attention in the
literature. See, e.g., W. R. Bennett, Jr., e al., Phys. Rev. Letters
18, 688 (1967); P. T. Bolwijn and C. Th. J. Alkemade, Phys.
Letters 25A, 632 (1967) ; A. Szoke and A. Javan, Phys. Rev. 145,
137 (1966) ; P. W. Smith, J. Appl. Phys. 37, 2089 (1966); R. L.
Fork and M. A. Pollack, Phys. Rev. 139, A1408 (1965); B. L.
E}yorfﬁy, M. Borenstein, and W. E. Lamb, Jr., sbid. 169, 340

1968).

11 A third mechanism which can prevent hole burning is cross
relaxation, in which there is an exchange of excitation between
atoms of neighboring velocity groups. In this paper we make no
attempt to consider such effects.
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F16. 3. Gain versus frequency for (a) two distinct holes
(A>w) and (b) one hole at line center (A=0).

where d=T2(w—wo) and G(s%8) is as given by Eq.
(41). Hence when w, =wy there is a single hole located at
W=wo (5o=0) Of Width 21(’}0, depth (wo—Z)/(wo-— 1),
and area 2ms?/(142s2)1/2, where

wo= (1+42s2) 1241, (43)

Evidently as the oscillation frequency is brought
toward line center the two holes merge into a single hole.
Associated with this overlap is a reduction at line center
of the output power. The general expressions for power
versus tuning will be derived in Sec. VI, but we can give
here a simple explanation for the existence of the central
tuning dip (the so-called “Lamb notch”).’? The inten-
sity s? is determined from the condition (5) that the
gain at the oscillation frequency be equal to the loss,
ie., that x”(w,) =Q;, where x”'(w;) means the re-
sponse to the saturating signal itself:

X' (@) =x"(w, w,) !w=am

(44)

Hence the gain at the frequency of oscillation saturates
by an amount which allows the “gain=loss” condition
to be satisfied. This is illustrated in Fig. 3 for the two
cases that (a) the holes are well separated (intensity
s’) and (b) ws=wo (intensity s@). Except for the
variation of the envelope g(w) the “gain=loss” condi-
tion would require the equality of the hole depths in the
two cases. As we saw above, the expression for the hole
depth is (w—2)/(w—1), where for case (a) w is given
in Eq. (38), and in case (b) w=1w, [Eq. (43)7]. Hence
the equality of hole depths means that

812 = 2302,

i.e., the intensity at line center is reduced by a factor of
2. Inclusion of the variation of g(w) modifies this result
and, as we shall see, allows for the possibility of a
threshold for the appearance of the Lamb notch.

VI. POWER-TUNING CHARACTERISTIC

We have already indicated in Sec. II that the
““gain=loss” equation (5) can be used to determine the
power-tuning relationship once the gain x”(w,) is
known explicitly as a function of intensity E? and
frequency of oscillation w,. We write o, to indicate that
we are now interested in the response to the strong

2 An explanation for the Lamb notch in terms of the holes
of the gain curve was first given by W. R. Bennett, Jr., Appl.
Opt. Suppl. 1, 24 (1962), especially p. 59.
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saturating field itself. In calculating x”’(w,) it is possible
to apply Eq. (44) to the results of Appendix A for
x" (w, w,), but it turns out to be simpler from the point
of view of interpretation to treat this integral inde-
pendently. The integral in question is similar to that
given above in Eq. (37) except that we now take
w=ws (i.e., 51=0> .

x0”’ /‘” () dx
Ty )8 1

1 1 —1
X [IJ” (1+x2 + 1+(x—A>2>] - )

For the Gaussian g(w'), we write
g(") =2T3* exp[ — (T3*)*(o' —wo)¥/7],
where 1/T5* is a measure of the Doppler width, and the

amplitude has been chosen to satisfy the normalization
requirement (39). Then we have

XII (ws) —

(46)

17

X'(0) = 2 [ augtw

1424300

X (14-224-3A%) 2 — 02 A24-252 (14-u24-1A?) (47)
for which the variable of integration is
n=x—1A=To(' —wp) (48)
and
g(w) =2T5* exp(—4o’), (49)

where (4ma)? is the ratio of the hole width 1/7 to the
Doppler width 1/T*:

T/ Ty= (4re) 12, (50)

The integral (47) is evaluated in Appendix B for
arbitrary values of « and also for the limiting cases of
a>>1 (the homogeneous limit) and a1 (the strongly
inhomogeneous limit). It is the latter case we discuss
here.

For the case that the Doppler width is large compared
with the hole width we find

X' (ws) =x0" (4ma) 2 exp(—al?) 9(s*, A7), (51)
with
9(s?, &) = (1+¢/nN[2(\+7) I (52)
and [see Appendix B]
A=2T5(wo—ws),
¢=1+34%
r=[c(+2s*) 1",
A=2-4s2—¢. (53)

We call g(s%, A?) the ‘“‘inhomogeneous saturation
factor” since it assumes the value unity for zero fields
and is less than unity for nonzero fields. The oscillation
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condition (5) can then be written

R(A)4(s? A%) =1, (54)
where
R(A) =R, exp(—adl?),
Ro=x0"Qo(T5*/ T2) = p2poT2Qs. (55)

R(A) is the ratio of the unsaturated gain to the loss,
and Ry is this ratio at line center. Obviously the thresh-
old condition for sustaining oscillations is

Ro>1. (56)

In Eq. (55), the coefficient Ty*/T: is a measure of the
fraction of the homogeneous packets under the Doppler
curve which may be saturated. Figure 3(a) illustrates
the meaning of Eq. (54), in which R(A)g(s? A?)
signifies the ratio of the saturated gain to the loss. The
Gaussian without holes represents the unsaturated
gain. At w=uw;, the unsaturated gain is saturated down
until the saturated gain is equal to the loss.

From the oscillation condition (54), it is now possible
to obtain s?(A) for a strongly inhomogeneous line as

follows:
s2(4) = (r—¢2) /2, (57)
where 7 satisfies
()R —7?) =4r% (1—¢) (58a)
or, equivalently,
SR (r+8)2=r*(r+3¢) (r—¢) 452 (58b)

We can verify immediately that oscillations cease
when r=¢, for which Eq. (58b) requires that R=1.
Physically this means that when the detuning is such
that the unsaturated gain is equal to the loss there can
be no saturation [ie., 9(s? A%)=1], which in turn
implies null intensity fields. Hence the amount of
detuning A* which quenches oscillation satisfies

R(A%) =1. (59)

Equivalently, this is the condition for threshold with
detuning.

Another trivial solution to Eq. (58a) occurs at line
center, { =1, for which r=R=Ry, so that at A=0

5$*(0) =3(Re—1). (60)

Although the general solution for s?(A) as given by
Eqgs. (57) and (58) involves the root of a fourth-degree
equation, this complexity is really necessary only to
describe the behavior in the region near A=0, where the

52
Fic. 4. s? versus A for in-
creasing excitations Ry, illus-
trating the appearance of the
Lamb notch.
o a
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holes of the gain curve partially overlap. In the special
cases that (a) the holes are well separated and distinct
(A>w), or (b) the holes overlap completely (A=0),
the expression (52) for 9(s?, A?) assumes quite simple
forms:

(a) limg(s? A?) = (1+45%)72, (61)
ADw
(b) lim g(s?, A%) = (14-2s2)—152, (62)
A0
Hence from Eq. (54) we have
s2(A)=R*—1, A>w (63)
and (again)
s2(0) =% (R?—1). (60)

We see from these results that if R(A) were flat instead
of Gaussian [i.e., if we had R(A) =R, for all A7, then
the intensity s? would drop by a factor of 2 at line center.
This effect derives from the fact that the line saturates
more strongly at line center than away from line center
[as per Egs. (61) and (62)]. If account is now taken
of the variation of R with A [Eq. (55)7, it is possible to
explain the observed behavior of the central tuning dip:
For excitations slightly above threshold (i.e., Ry a
little larger than unity) there is no Lamb notch. As the
excitation is increased a threshold is reached for the
appearance of the Lamb notch (see Fig. 4).

To obtain an analytic description we merely note that
a Lamb notch is present or not present according to
whether

(@*/da?)s*(4) |a-o

is positive or negative. From Eqs. (57) and (58), we
find that
a,—a> 0 (Lamb notch),

a,—a<0&(no Lamb notch), (64)

where
(3Ry+1) (Ro—1)
8R?(Ro+1)2

a, defined in Eq. (50), represents the ratio of (un-
saturated) hole width to Doppler width. The curvature
in s?(A) at A=0 depends on a,—a and is determined by
two competing effects. Saturation (represented by «,)
and the associated phenomenon of holes which overlap
at line center lead to a power dip at A=0, but this must
be strong enough to overcome the curvature of the
Gaussian (represented by «) which of course is in the
opposite sense. The conditions (64) are illustrated in
Fig. 5, where it is seen that as the excitation Ry is
increased starting from Ro=1 we initially bave no
Lamb notch, but at Ry=R, we reach the Lamb-notch
threshold. The function a.(R,) plotted in Fig. 5 is of
course a universal curve and applies to all single-mode
laser lines which are inhomogeneously broadened.
For a fixed value of @ the most pronounced Lamb
notch should occur for the excitation Ry=R,,, where R,,

ae(Ro) = (65)
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T16. 5. a; versus Ro, and the conditions (64) for
the Lamb notch. R,=1.7.
maximizes o, (Ry) and satisfies
3(Rn—1)*(Rp+1) =4. (66)
For R,, we have approximately
R,=1.7 (67)
and
ae(Ry) =0.025. (68)

There are two circumstances identifiable in Fig. 5 for
which the Lamb notch is not present:(a) when o> 0.025,
and (b) assuming «<0.025, if Ry has been increased
beyond R, until a,<e. In both instances the}inter-
pretation is that the hole widths in the gain profile have
been increased to the point that the response is essen-
tially homogeneous, in case (a) through collision
broadening, and in case (b) through power broad-
ening,’® as discussed in Sec. V. Thus it is not difficult to
understand why gas lasers need not show a central
tuning dip in their power-tuning characteristic. In
fact the dip has been reported only in a very few cases,
of which the He-Ne laser is the most famous. Pre-
sumably the Lamb notch can be obtained on other
laser lines as well if an attempt is made to avoid exces-
sive collision or power broadening so that the first of
conditions (64) can be satisfied.4

The variation of the Lamb notch (short of extinction)
with the parameters of the system can also be deter-
mined with reference to Fig. 5; the discussion of course
must relate to the basic parameters Ry, T,, and Ty*.
(Incidentally, the dependence of these parameters on
the system parameters such as pressure, discharge
voltage, etc., is not generally a simple one.) For example,
it has been reported” recently that an increase in
pressure is accompanied by a diminution of the central

. In astrict sense it is not correct to describe the homogeneous
limit of collision broadening or power broadening with results
which are based upon the inhomogeneous approximation (51).
Nevertheless we can expect Egs. (64) and (65) and Fig. 5 to
provide a valid qualitative description for large values of a and/or
Ro. In Appendix B we consider the gain function x/(w,) without
making the approximation of a strongly inhomogeneous line and
thereby are able to verify directly that for (a) a1 or (b) s&>1
the power-tuning characteristic does not display a Lamb notch.

1 However, in some instances the mechanism responsible for
Il)lr(;dlﬁmg a homogeneous response may be cross relaxation; see

ef. 11,

® M. A. Pollack, T. J. Bridges, and A. R. Strnad, Appl. Phys.
Letters 10, 182 (1967).
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tuning dip. To explain this behavior we note that higher
pressures result in higher mean collision frequencies,
so that the response becomes more nearly homogeneous.

If a Lamb notch is observable at excitation Ry=R,,
further increase in Ry should cause the dip to diminish
and eventually to disappear. This kind of behavior has
apparently not been reported in the literature; it would
be an interesting way to observe the effects of power
broadening.

In the limit of o—0 the response is strongly in-
homogeneous and the Lamb notch is more readily
discernible. In fact the case of a=0 corresponds to a
flat distribution R(A), and in this limit, as we saw
above [Egs. (63) and (60)], the intensity at line
center is always reduced by a factor of 2.

For excitations not far above threshold (R—1«1)
it is possible to develop the solution for s2(A) as a power
series in R—1. We obtain, to second order in R—1,

\ X ot m 1),
F@W=g & ”<H5@+D“R v+e-)

(69)

This expression is appropriate to a strongly inhomoge-
neous line since it is based on the solutions (57) and
(58). We may note that the two special cases considered
earlier in Eqs. (63) and (60) do not 1nyolve R—1 to
higher than second order even if R—1 is not a small
quantity. We conclude then that the contributions to
(69) beyond second order are either negligible or else
they vanish if either (a) A>w({>>1) or (b) A=0(¢=1).
The result (69) becomes in these two cases:

$2(A) =2(R—=1)+(R-1)%, A>w
$2(0) = (Ro—1) +3(Ro—1)*

As would be anticipated, these forms are equivalent to
those of Eqgs. (63) and (60), respectively. For .small
excitations the Lamb-notch conditions (64) remain the
same except that a, is given approximately by

aE(R—1). (70)

If it were desired to have the power output function
without making the approximation of a §trongly
inhomogeneous line [ which leads to Eq. ‘(51) it xxould
be necessary to use the exact expression for.x (foé,.)
[Eq. (B9)] in Eq. (5). This then yields an implicit
transcendental equation for s2(A).

As was noted earlier, the solutions (57) and (58)
assume the much simpler form (63) if w, is not in the
region where the two holes oYerlap a.ppreaa,bly.. The
result (63) can also be obtained by constructing a
simpler theory which ignores the standlng—wave nature
of the oscillations and assumes instead a single traveling
waves Such a theory in effect takes account of the

(69"
(69")

16 . Smith, IEEE J. Quantum Electron. 2, 62 (1966).
Equféio? (S)mt)f this paper is tantamount to the result (63).
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primary hole but not the image hole [it is constructed
by dropping the second term of By, Eq. (26) J. Although
it leads to the correct power output for A>w, a single-
hole theory cannot predict the central tuning dip.
However, it does illustrate the fact that the image hole
has a negligible influence on the gain at the oscillation
frequency w,, and hence on the intensity 2, except near
line center, where it overlaps the primary hole (as
shown in Fig. 3). On the other hand, as will be seen in
Sec. VII, the image hole has important effects when
accounting for phase shifts, whereas the primary hole
is of no consequence in this regard. This difference in
behavior derives from the fact that for packets near
resonance the net phase-shift contribution is negligible
because the homogeneous dispersion function x'(w)
[Eq. (29)Jis odd about the center frequency. Thus the
important contributions to the phase shift come from
packets well removed from resonance where, due to the
long-range character of x'(w), a homogeneous packet
may contribute phase shift but no gain.

VII. FREQUENCY OF OSCILLATION

So far we have used the magnitude part of the oscilla-
tion condition to determine the intensity as a function
of tuning. As we saw earlier, there is also a phase
condition associated with Eq. (1); this was given in
Eq. (8) and determines the actual frequency of oscil-
lation.

Application of the phase equation requires a knowl-
edge of the real part of the susceptibility x’(w,). It is
not possible to calculate x’ from x'’ using the Kramers-
Kronig relations because these apply only to a linear
response. The Kramers-Kronig equations do have a
nonlinear analog,!” but they are not too useful and shall
not be employed here. Instead we calculate x'(w,)
directly. The expression for x’(w,) is obtained using the
homogeneous response (29) to the strong saturating
signal of frequency w,. Thus w; and w; are again given by
Egs. (34). The integral in question then is

"
Xo

X () == 72 [ gla!)

1 1 -1
Xb+sﬂ+w+1+m—mg]’(“)

where x and A are as defined in Egs. (38) and g(') is
given in Eq. (46). This expression is to be compared to
the one we had earlier [Eq. (45) ] for x”/(ws). The only
difference is the extra factor of —x in the numerator.
As shown in Appendix C, the exact evaluation of (71)
involves expressions similar to those found in the exact
evaluation of x”(w,). However, in the inhomogeneous
limit, x"'(w,) can be evaluated by an approximation
[namely, the factoring of g(«’) out of the integral, as

7 N. Bloembergen, Non-Linear Optics (W. A. Benjamin, Inc.,
New York, 1965), p. 45.
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discussed in Appendix B] which is not applicable to the
integral (71) because of the difference in behavior
between the functions x(14%?)~! and (1+4x?)~L As
a result, even in the inhomogeneous limit the expression
for x’(w,) is more involved than that for x"/ (w,).

We find (see Appendix C for details) that

X' (ws) =xo" (8/0) exp[ — (A/0)*]d (s*, A*) M (5%, &%),

(72)
with
M(S2, A2) =4 (327 AZ) “3(521 A2)’ (73)
where, to first order in 1/0 (1/6=al?),
2 2=f_:_§(1/2_f_1f.6> A2< A2
A(S ) A ) 7’+§' ™ - ) &0
— 4 8 2ylo
A(s2,A%) = r=¢ [W1/2_ i + _ff dn e” (?2 “ﬂ)} ,
r+¢§ v g Jy I
A2> A (74)
B(s2, A?) =4/, A< A
2 2y/o .
B, M)== [ dne’,  a>AF  (75)
¥
and
Ad=s4 (1452,
e=DHrHN) 7,
y=[hr—N) %,
o?=1/a=4n(T:/T:*)2 (76)

All other quantities were defined earlier [Egs. (52)
and (53)]. For a strongly inhomogeneous response
a>1.

The gross behavior of the dispersion function x’(c,)
is dominated by the factor (A/o) exp[ —(A/0)%], the
remaining factors being slowly varying by comparison.
Hence x'(ws) qualitatively resembles the homogeneous
dispersion function x'(x) =x (14?1

The phase condition (8) is most conveniently handled
when expressed in terms of the cavity Q(Q.) and the
atomic line Q(Q.), the latter being defined through

Qe=wo/ (Aw)p =% (woT*), (77)

since the Doppler width (Aw)p may be defined as
2/T5*. Combining Eqgs. (72), (51), and (5) the phase
Eq. (8) may be written

we—we=(0/27) (Qa/Qe) (ws/wo) (ws—wo) M (2, A?).
(78)

So far the only approximation that we have made is
that the response be strongly inhomogeneous. However
the solutions to Eq. (78) of greatest interest are those
for which the cavity Q is sufficiently large that the
actual oscillation frequency w, is not far removed from
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Fic. 6. The gain function x”(w,ws) versus w. Each curve
represents a different value of unsaturated¥gain x,”. In (a)fthe
gain is at threshold for oscillations at w,. In (b)fandj(c) xo”_has
been raised above threshold.

the cavity resonant frequency w,. This will be the case
provided that

(0/2m) (Qu/Qe) M (5%, A K1,
Then, to first order in this small quantity, we have

ws=we+ ("/27") (Qa/Qc)M(sz: A2) Iw,wc(wc_wo) . (79)

To lowest order w,=w.. The correction term alters w,
either away from or toward wo according as M (s?, A?)
is positive or negative; these solutions correspond,
respectively, to mode pushing (M>0) or mode pulling
(M<0). From the form (73) we see that the terms
A(s?% A?) are pushing terms while B(s?, A?) represents
pulling (both 4 and B are themselves always positive,
1/ being assumed small).

In analyzing the behavior of the mode-pulling and
-pushing solutions, it is possible to identify the influence
of the primary and image holes which appear in the
gain profile. If in calculating x’(w, w;) we had used a
saturation factor § which took account of interactions
with only one traveling-wave component instead of
both [in which case By, Eq. (26), would contain one
term and not two], then the gain profile would show a
primary hole but no image hole. In such a truncated
theory the evaluation of x'(w,) would be as in Eq. (72)
except taken in the limit of!8 s2—0;

4 Alo
lim M (s, A? =—-f 3
lim (s% A?) vA dn et (80)

Hence if only the primary hole were present we should
have power-independent mode pulling and no mode
pushing. This power-independent pulling arises from
the phase shift which is to be associated with the un-
saturated gain (curve a of Fig. 6). (Note that in this
linear regime the real and imaginary parts of the
susceptibility satisfy the Kramers-Kronig relations.)

18 An expression for pulling appropriate to a strongly inhomo-
geneous Doppler broadened line was given earlier by A. Javan
E. A. Ballik, and W. L. Bond [J. Opt. Soc. Am. 52, 96 (1962) in
their footnote 97 and is equivalent to Eq. (79) when i/ (s2 ,AZ)
is taken to zero order in s? as in Eq. (80). ’
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In this single-hole theory the effect of increasing
(through pumping) the midband unsaturated gain
xo’ 1s to cause a hole to be burned in the gain curve at
w=w, (curves b and c of Fig. 6, but temporarily ignoring
the image hole); nevertheless the total amount of
phase shift at w=uw, is not influenced by the size of the
hole, i.e., it is independent of intensity s2. We can see in
a general way how this behavior comes about. The total
phase shift at w=w, is the sum of contributions from
the various homogeneous packets whose center fre-
quencies are distributed under the Doppler curve and
whose responses x’(w) are of the form shown in Eq.
(29) and in Fig. 1. Note that for each homogeneous
group of center frequency o' =wy(1+4v/¢c) the strength
of the response is the same for x'(w) as for x''(w), in
each case being proportional to xo”" § and to the weight-
ing factor g(«’) as well. Because of the odd symmetry
of x'(w) the net phase shift at w=w; is positive (nega-
tive) if w, is greater (less) than wo. If the gain xo” is
increased, two things happen: (a) Packets which are
well removed from the hole contribute net additional
phase shift; (b) on the other hand, because of the even
symmetry of the hole itself, those packets close to
w=w, which formerly contributed some net phase shift
there no longer do so since the contributions from one
side of the hole cancel those from the other side. These
two effects oppose each other, and apparently they
cancel exactly in the single-hole theory.

If now we take account of the saturation which
occurs at the image hole, then obviously those atoms
which in the absence of saturation were able to supply
additional phase shift as x,”” was increased can no
longer do so. Thus the image hole causes a reduction in
the amount of added phase shift, and hence a reduction
in the amount of pulling; i.e., the presence of the
image hole leads to mode pushing. This is the origin of
the statement that “holes repel each other.” These
arguments are identical to those given by Bennett
(in Sec. 9 of the first of Bennett’s papers cited in Ref. 9)
except that the discussion there refers more generally to
any second hole, not just the image hole, as here.

In summary then (a) there is a residual amount of
pulling associated with the unsaturated gain, (b) the
primary hole by itself does not alter this pulling, and
(c) the presence of the image hole modifies the pulling
by introducing a power dependence [Eq. (80) being
replaced by (75)7, but generally the more important
effect is the introduction of the power-dependent
pushing terms (74). Whereas for the gain the primary
hole is a major influence and the image hole a negligible
one (except near line center), for the phase shift the
situation is reversed. Also, it is to be noted from Eqs.
(74) and (75), which are expansions in powers of 1/,
that the leading term in 4 (s%, A?) is zero order in 1/g,
whereas B(s?, A?) appears at least to first order. Thus
for a strongly inhomogeneous line (¢>>1) the pushing
terms may even dominate.

For weak fields the coefficient M (s%, A?) can be
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expanded to first order in s? by using the result
Um (r—¢)/(r+{) =s4/2¢. (81)
82<<1
Then we find that
. 4 Alo 1/2
lim M (s? A?) = — ——/ dn er s [Lﬂ
£2K1 A 0 2?
4/ [l A 2 Al
+ﬁ dn e’ (— —n> - ~/ dn e"g]. (82)
& Jo a AJy

As expected, the lowest-order contribution to pushing
is first order in s2, whereas for pulling there is a zero-
order contribution. Hence for weak fields we can expect
the pulling terms to dominate. In the approximation
that the power-dependent terms are negligible we may
write

4 Alo
lim M (s%, A?) = — — f dn ety — 4 (80")
250 AJy o

if A/o<1 (i.e., if w, is not in the wings of the Gaussian).
Then the frequency condition (79) becomes

ws=we+ (2/7) (Qa/Qe) (wo—w;) . (83a)

This result is formally similar to the mode-pulling
equation which is appropriate to a homogeneous line
of width 2/T,:

ws=we+ (Qn/ Q) (wo—wse), (83b)

where Qp=3woT> is the ‘“homogeneous line (Q.” In
(83a) Q. of course pertains to the full Doppler line
[cf. Eq. (77)].

VIII. DISCUSSION

Lamb'® has earlier given a complete theory for a gas
laser which is based on a perturbation expansion for the
atomic polarization and is thus valid for weak fields
(s2<1). Whereas we consider pumping, collisions, and
decays all phenomenologically (through the formalism
of the Bloch equations), Lamb considers pumping
directly, neglects collisions, and considers decays
phenomenologically. All of Lamb’s results for a single-
mode laser can be recovered if we take the present
results for a strongly inhomogeneous line and consider
excitations only slightly above threshold. For purposes
of comparison it is necessary to make the following
correspondences®-2:

RQHSZ,

T 1(‘)'Yab/ YaYs,
TQ‘—’I/ Yabe

» W. E. Lamb, Jr., Phys. Rev. 134, A1429 (1964).

2 In Lamb’s paper, Ref. 19, 9% is the “relative excitation,”
ve and v, are the decay constants of the two states, and ya=
2(va+vs). In terms of the lifetimes r(=1/y) we can also write
Ti=3(ra+m), To=2ren/(ratm).

21 A similar interpretation of 77 and 7 was made by W. E.
Lamb, Jr. [in Lectures in Theoretical Physics, edited by W. E.
Brittin and B. W. Downs (Interscience Publishers, Inc., New
York, 1960), Vol. II; see especially pp. 472—477j, where the
homogeneous response is derived for a traveling-wave excitation.

(84)



175

The correspondence of the mean decay rate ya
with the dephasing frequency 73! is not surprising,
since it has in fact been suggested by several authors?
that the Lamb theory could be extended so as to take
account of collisions by just such a generalization.

Assuming the relations (84) we find that the power-
tuning characteristic as given by Lamb? in Eq. (L96)
is equivalent to the above result (69) taking only the
term linear® in R—1; i.e.,

$*(8) =[2¢/ ¢+ 1) J(R-1). (85)

Similarly, the condition for threshold? with detuning,
Eq. (L97), has its counterpart here in Eq. (59), which
says merely that at threshold the unsaturated gain and
the loss have a unity ratio.

The conditions (64) describing the threshold for the
appearance of the central tuning dip are found to reduce
to those given in Eqgs. (1.99) and (L100) provided that
a. is taken to lowest order in Ry—1, as in Eq. (70).

The frequency conditions given in Lamb’s paper in
Eqgs. (L89)-(193) correspond to our results (79) and
(82) except that Lamb does not include power-
dependent terms which go as 1/¢; so for comparison we
take (82) in abbreviated form:

Alo 1/2
lim M (s?, A?) = — 2 / dyet+s2—.  (86)
82<<1 A 0 2;
Hence Lamb’s power-dependent term describes mode
pushing only, while just the leading power-independent
term is included for mode pulling. Departures from
Lamb’s results can be expected whenever we fail to
satisfy s2&1 and ¢>>1. As we have already seen, when
s?is not small the mode-pushing effect can be significant
and possibly dominant.

An important difference between the present theory
and that of Lamb is that the use of a phenomenological
relaxation time T3 to include the effects of pumping
allows for a very simple treatment of excitation. It is of
course also a grosser description, no attempt having
been made here to determine the dependence of T3 on
the excitation Ry.

Another difference from the Lamb theory concerns
the equations which determine the amplitude and
frequency of oscillation. In the Lamb paper, these
equations are arrived at by imposing a self-consistency
requirement on the electric fields, considering that they
induce an atomic polarization which in turn acts as a
source term for the fields. An alternate approach is to

22 Including Lamb, Ref. 19, Sec. 21. For further discussion of
collision effects see Ref. 10.

% Equations referring to Ref. 19 will be indicated by a prefix
L, as in (L96).

24 A calculation extending Lamb’s theory to second order in
R—1 (fifth order in Schrédinger perturbation theory) was per-
formed by K. Uehara and K. Shimoda, Japan. J. Appl. Phys.
4, 921 (1965). Their result does not agree with the second-order
terms of our expression (69). A higher-order calculation was also
made by W. Culshaw, Phys. Rev. 164, 329 (1967).

2 Threshold conditions were first discussed by A. L. Schawlow
and C. H. Townes, Phys. Rev. 112, 1940 (1958).
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calculate the explicit dependence of the nonlinear
susceptibility upon both the intensity and frequency of
oscillation; then the oscillation condition (1) provides
the desired equations. This latter method is the one
used here. It was also used earlier by Lamb? in dis-
cussing the equations of motion appropriate to an atom
at rest in a monochromatic field (or, what is mathe-
matically equivalent, an atom in motion which interacts
with but one traveling-wave component of the standing-
wave field).

Although the Lamb theory is based on a third-order
perturbation expansion, Lamb’s paper? does also
contain a discussion (see Secs. 16-19) of the case of
strong fields. In particular the expression® (L183) is
analogous to our result (30); in both cases these
equations show the effects of saturation by each of the
two traveling-wave components. In order to obtain
Eq. (L183) it was necessary to neglect the population
pulsations and to make a plausible assumption for the
rate constant. In our treatment the time-dependent
terms of the population difference were averaged to
zero (except for slowly moving atoms) because, having
chosen to represent the relaxation processes in the
phenomenological manner of Bloch, we were then
forbidden, as a matter of self-consistency, to describe
events which took place over time intervals less than
At (see discussion of Sec. IV). Also, the fact that we
have included pumping in the 7Ti relaxation term
provides an additional simplification. For the inhomoge-
neous response Lamb’s Egs. (L185) and (L186)
illustrate how the saturation effects are different when
the holes are well separated and when they overlap
completely. The difference, of course, is a factor of 2,
as we have also shown in Egs. (61) and (62).

Finally, it should be pointed out that the question of
the magnitude of the dimensionless intensity s? can be
phrased in very simple and practical terms. Let us say
that a characteristic value of s? is its value when the
cavity is tuned to the center of the Doppler line. Here
the inhomogeneous saturation factor is (14-2s?)-12,
from Eq. (62). This number may be evaluated if it is
known how far the cavity must be detuned to reach
threshold, since the ratio of unsaturated gain at the
detuning threshold to its value at line center is also
equal to the saturation factor for central tuning. The
frequency dependence of the unsaturated gain is of
course a Gaussian [see Eq. (51)]. Thus, for example,
if it is possible to detune from line center by an amount
of the order of the Doppler half-width, so that the
unsaturated gain falls by a factor of, say, 2, then we
have s2=1.5 at line center. The condition, therefore,
that a characteristic value of s? be much less than unity-
means simply that the detuning threshold must be small
compared to the Doppler half-width.
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APPENDIX A: EVALUATION OF GAIN PROFILE

The integral for the gain profile x”/(w, w,) was given
in Eq. (37). In this Appendix, we shall discuss its
evaluation for a strongly inhomogeneous line, for which
g(w’) varies slowly in the region where the other factors
are significant so that it can be removed from the
integrand as g(w). Then the integral in question is

X (0, 05) = (xo"/20T5) g(w) K(s% A, 81), (A1)
with
o dx
o 14 (x—81)?

X [1-I—s2 ( : Jixg +13 (xl_ A)z)]_l. (A2)

[See Eq. (38) for definitions of #, A, and 6] By making
the change of variable x—u, with

K(S2, A, 51) =

u=x—3%A,
the integral for K can be written in the form
@ du
—o 14+ (u+34—01)°
o 1410
(I8t — a2 (142 A u2) ©
Evaluation of this integral is most readily performed

with the technique of contour integration, the result
being

K(s2, A, 8) =7—2s°

(A3)

K(s% A, 81) =r+2s2(K,—K_),
Kom T (¢—hy?) (14-hy)
T p2—h 2 by (:—3A) 24 (1+he)]

The second denominator of (A3) has four simple poles,
two of which have residues which contribute to the
integral; these are located at #=jk,, where

(A4)

B2 =Nk (N2 =721,
he=[E0HN T3 (= I,

A=2+52—¢,
r= (24252 2=y h_,
r=1+1a2 (A5)

It is a simple matter to show that (\+7)>0, so that if
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hy is complex (A<r), then Rek >0. If k. is real
(A>7), it is also positive.

Although the expression (A4) is correct, it is not a
result which can be readily interpreted. However there
are two special cases for which the integral (A2) can
be evaluated in a straightforward fashion. These are
(i) A>w, and (ii) A=0. [See Eq. (38) for definitions
of A, w, etc., and the accompanying text for the physical
interpretation. ]

A>Sw
The saturation factor 8$(x) of Eq. (A2) can be
written
8(2) = {1+s2[ o () +v2(x) ]}, (A6)
where
n(x) = (1+a?)",
(%) =[1—(x—A)2 ] (A7)

If A is a large quantity, the two Lorentz-type functions,
which are peaked at x=0 and x=A for »(x) and v,(x),
respectively, are widely separated so that in the region
where v; is significant v, vanishes, and conversely.
Hence we are led to approximate $(x) by

8$(x) =[ 145 (%) 11+, (x) J1—1. (A8)
Now the evaluation of K is quite simple:
o dx
K(s% A, 8) = —_ .
aw= [ s, (@)

This leads directly to the result (40).
A=0

In this case, the saturation factor §(x) becomes
(without approximation)

8(x) =[142sn(x) 1

and the integral (A9) is again very simple; the result is
given in Eq. (42). That the result (A4) for arbitrary A
reduces to (42) when A=0 can be shown readily. To
show that (A4) reduces to (40) when A>w is not
trivial, but it can be verified §However, when A>>w by
far the simplest approach is to use the approximation
(A8).

APPENDIX B: GAIN FUNCTION x" (w.)

The integral for x"'(ws) was established in Egs.
(47)-(50) as

(A10)

17 o
X" (w) = 2 (4ret [ du exp(—tan)
™ —c0

X (¢4u2) /L (¢ 4ut)2—u2 24252 (¢ +u?) ], (B1)

where, as before,
=143, (B2)

In the limit of a strongly inhomogeneous line (a<1)
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we may factor the slowly varying exponential® as
exp(—aA?) [since the response function (45) is resonant
at x=0, i.e., #=—%A; the form (B1) obtains only after
making the transformation (48) and a few obvious
algebraic simplifications . Then we can write

X" () =x0" (4m) 2 exp(—adDg (2, &) (a<l),
(B3)
where
_ [ s+
90, ) = /_m * Gror—wstar it oY

which can be evaluated directly to give

9(s%, &%) = (1+5/7) /[2(\+7) ] (BS)

[The parameters A and r were defined above, Eq. (A5).]
This is the result shown in Egs. (51) and (52).

We can evaluate the integral (B1) for arbitrary
values of a by factoring the denominator (there are
poles at #?*=—£,?) and expanding the result into two
partial fractions. The basic integral which must be
evaluated is

[, exp(—dau?)
J(a,c)—ZL du e

The change of variable #?=x brings this into the stand-
ard form for the Stieltjes transform of 72 exp(—4ax)
which is given in the Bateman Tables.?” We then have

J (e, ¢) =mc712 exp(4ac) Erfc[ (4ac)?], (B7)
provided that | arge | <, where

(B6)

Erfc(z) =27712 fm dt exp(—1#)

=1-— Erf(z). (BS8)

This allows us to evaluate x''(ws) for arbitrary o
according to

XII (ws)

7 112 12
= x;z (247"]‘:)2 (g' hh"‘ exp(4ah_2?) Erfc[ (4a) 2]
+ A= .

$—hy?

exp (da;?) Erfc[ (4a) wm) . (B9)

[See Eq. (AS) for definitions of 4.

We should note that if the exact result (B9) is taken
in the limit of a strongly inhomogeneous line (a<<1)
we do not recover the earlier result given by Eqgs. (B3)
and (BS), which were derived on the basis of a cruder
but nevertheless useful approximation.

% This factored form should not be considered as the leading
term in a power-series expansion of the exponential about u=
— 34 since the higher-order integrals would all diverge.

21 Tables of Integral Transforms, edited by A. Erdélyi (McGraw-
Hill I?og%{ Co., New York, 1954), Vol. IL. See especially p. 217,
item (15).
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The homogeneous limit of large @ can be recovered
immediately from the integral (B1) by recognizing that

lim (4a/m)V2 exp(—4au?) =8(u), (B10)
so that the » integration is trivial and yields
lim x"(ws) =x0"/ (§+2s%) (B11)

or

17
Xo

142824 T2 (w, —wp) ?

As expected, in the homogeneous limit the response is
Lorentzian. The associated power output is parabolic
and of the form 252=x¢""Q,—1—%A?% The result (B11)
is also obtainable from (29) if the homogeneous
saturation factor § is evaluated for atoms of zero
velocity.

Finally, we mention the limiting form of x"’(w,) for

s2>1. We have, for s2>1,

lim "’ (ws) =

a->

limh,2=2s?,
limh 2=¢,
lim Erfc[ (4e)?h, ] =[exp(—4ah,?)/(4na)?h, ],
(B12)
so that from (B9) we find
lim x" (ws) =x0"" /252 (B13)
PSSt

In this limit, the power output [which comes from
Eq. (5)] becomes

s2(A) =3 (x""Qc) (B14)

Hence for sufficiently high intensity the power-tuning
characteristic is flat, and, as anticipated®® on the basis
of the power broadening of the holes in the gain profile,
there is no Lamb notch in this limit.

(sz>1).

APPENDIX C: PHASE FUNCTION ¥’ (w,)

The integral for x’(w,) was given in Eq. (71). If we
make the transformation (48) and use the form (49)
for g(#) we can express x'(w,) as

x' (@) =3A(xo"/7) (4mer) 12
w—{
(048) 2 — w2 A +-252 (w2 +-¢)
(C1)
In obtaining this form, terms of the numerator which
are odd in % were dropped since they will not contribute
to the integral. Notice that removal of the exponential
outside the integral will not destroy the convergence
properties of (C1), although from the unsymmetrized

form (71) it would appear that the resultant integral
would diverge. Despite the favorable convergence

X /m du exp(—4au?)
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properties of the symmetrized integral (C1) it is still
not valid to approximate x'(ws), in the limit of a
strongly inhomogeneous response (a<1), by factoring
the exponential outside the integral as was done for
x"'(w;) in Appendix B. In the latter case, the dominant
factor in the response is (142?)~! [see Eq. (45)], so
that for a slowly varying exponential we could say that
this factor behaves something like a é function, and in
this sense we are justified in removing the exponential.
However, in the integral (71) the dominant factor is
#(1442)71; the behavior of this function is significantly
different, and therefore a more careful treatment of the
integral is required.

The integral (C1) is very similar to the integral
(B1) that we had for x”/(ws) and may be evaluated for
arbitrary values of a by the same techniques discussed
in Appendix B. We find that

X' (w0) = —3A0xo" (4ma) /(R —h2) ]

X <H];h_2 exp(4ah2) Erfc[ (4a)?h_]

{ -{};w exp (4ay?) Erfc[(4a)"2h+]> . (C2)
+

[See Eq. (AS) for definitions of /..] Although x’(ws)
is always real, the expression (C2) involves complex
quantities %, whenever >\. We can express x’(ws)
entirely in terms of real quantities® by considering
separately the cases of <\ and > \. For convenience
in applying the result to Eq. (78) we write x'(w,) in
the form

X' (ws) =x0" (8/7) exp[—(8/0)*]9(s% &) M (%, A7),
(C3)

28 The function Erfc(x-+jy) separates into real and imaginary
parts according to

t
Erfc(x+jy) =Erfc(x) — 27712) = / dne™ sin2xn
0

Y
—j(2x12) g2 / dn e” cos2an.
0
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where [4(s2, A?) is given in Eq. (52)]
M (52, A?) =3n1"2 exp[4a(1+s?)]
Atr\V2 r—¢
X [(}\_r) Bt H+] . r<x (Ch)
M (s?, A?) =72 exp[4a(1+5?) ]
X {Erfc [%a_c:l (t—g’ cos8axy+ z sinSaxy)
r+¢ ¥

a

2yla
— 2712 exp[ —4a?/o%] / dn exp(n’)
0

X I:Z:g sin (@c —Saxy) + % cos <4_no_c ——8axy>]} ,
r+¢ o y o
>\ (C5)

with

?=1/a,

w=5(r+)N),

y=3(r—)\), (Co)
and

H,=exp[4a(\2—72)Y?] Erfc(2hy /o)
+exp[ —4a(N—72) V2] Erfc(2k_/o). (CT)

To obtain the inhomogeneous limit (a<<1) we expand
these results to first order in 1/0. As an additional
simplification we assume that the intensity s? is not
extraordinarily large, so that as?&1 also.?® In taking the
limit of small @, care must be taken not to treat af, for
example, as a small quantity since over the full Doppler
width ¢ can assume values as large as 1/a. When Eqgs.
(C4) and (C5) are taken to first order in 1/o, these
expressions reduce to those given in Egs. (73)-(75).
The condition that rS\ is equivalent to A2S A¢?, where

AP =5/ (1+4s2). (C8)
2 For an inhomogeneous line the hole width may typically

be i of the Doppler width, in which case « is of order 107%;
see Eq. (50).



