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A gas laser oscillating steadily in a single mode is described theoretically using the "generalized Bloch
equations" as the point of departure. The nonlinear susceptibility is calculated without utilizing perturba-
tion techniques, so that the theory retains validity for laser fields of arbitrary intensity. Expressions are
presented for (1) the "gain pro61e" which exhibits the phenomenon of dual "hole burning, " (2) the power-

tuning characteristics, including the conditions for the appearance of the central tuning dip, and (3} the
frequency of oscillation, in which are displayed the efFects of mode pulling and pushing. Emphasis is on a
strongly inhomogeneous line and a high-Q cavity, although some more general results are included as well.
For excitations only slightly above threshold, a comparison is made with the Lamb single-mode theory, and
in all cases agreement is found.

I. Dt TRODUCTION

F lHE behavior of a laser oscillator for which the..active material is a gas is characterized in part by
a few very simple but important physical features,
namely, (a) the cavity supports standing wave 6elds,

(b) atoms are in motion through these fields, and (c)
there is a distribution of atomic velocities. Because a
stand. ing wave is equivalent to the superposition of two
oppositely directed traveling waves, an atom moving
through a monochromatic standing wave 6eld sees two
Doppler-shifted frequency components in its own rest
frame. Consequently, even for a single mode of oscilla-
tion the atomic response is to a two-frequency excita-
tion. Many of the unique properties which characterize

gas lasers can be traced to this aspect of the interaction
between the atom and the electromagnetic 6eld.

In this present paper, this interaction will be handled

through the Schrodinger equation, but interactions

among atoms (e.g. , collisions), the pumping mechanism,
and decays mill all be treated phenomenologically
through the "generabzed Bloch equations. " Solutions
to the Bloch equations for a single-mode laser can be
obtained without resort to perturbation theory.

The relevance of the Bloch equations to a description
of the laser has been recognized previously by other
workers, ' and in fact some of the NMR terminology is
already well established. in laser physics. What will be
done here will be to incorporate the interaction between

an atom and a single-mode standing wave 6eld into the
Bloch formalism and to show how this leads to a
quantitative description of the laser. As background
material we discuss in Secs. II and III the over-all
formalism and the equations of motion. Steady-state
solutions are derived in Sec. IV.

An important feature of the solutions is the appear-
ance of a saturation factor in which are manifest terms
describing the atomic interaction with both Doppler-
shifted. frequency components. This feature receives
further attention in Sec. V, where the gain pro61e is
calculRted explicitly and the behavior of the two h01es

is discussed in detail. A calculation of the nonlinear

susceptibility as a function of intensity and frequency
is shown to lead to a determination of (a) the power-

tuning characteristic, including the conditions for the
appearance of the central tuning dip (Sec. VI), and

(b) cxpl'csslolls fol' thc actllal frequency of osclllatloil

(Sec. VII) . Finally, a comparison is made in Sec. VIII
with the Lamb theory for the special case of weak
6elds.

II. FORMALISM

In a gas laser which is operating as an oscillator, an
active material with an inverted population density
provides gain sufhcient to overcome losses while a pair
of mirrors at each end. of the cavity acts as a feedback
mechanism. For a wave which propagates as exp( —jPs),
where P is the (complex) propagation constant, the
condition which must be satis6ed in order that oscilla-

tions be sustained is that a wave exactly reproduce
itself after one complete pass. Assuming a cavity of

length I. and end mirrors having reQection coeKcients
rl and r2, the condition for steady-state oscillation can
be expressed as

rirs exp( —2jpl. ) = i. (&)

The propagation constant p will be evaluated in

terms of the susceptibility x(oi); the latter is defined

according to
P(~) =x(~)E(~), (2)

where E(oi) and P(oi) are the amplitudes of an applied
electric field and an induced atomic polarization,
respectively:

E(s, t) =-,'E(oi) expLj (oit Ps) j+cc— .

P(s, t) =-',P(co) expL j(oot —Ps) j+c.c.

(we ignore the vector character of the electric field).
The susceptibility x(oo) is a complex function, reflecting
the fact that P(s, t) and E(s, t) will not be in phase.
The plane wave field E(s, t) must satisfy the wave

e uatlon
7'E otip(B' E/Bt') =0, —

R. P. Feynman F. L. Vernon, and R. W. Hellwarth, J. Appl
Phys. 28, 49 (1957);Y. Pao, J.opt. soc. Am. 52, 871(1962). ln which o=oo(1+x) and ootio=c '. As a result we
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find that
P'((o) =(o'[1+x((o)]c—'.

We modify this expression slightly through the addition
of a loss term —jo.o to account phenomenologically for
losses between the mirrors (e.g., difFraction, scattering);
thus we write

(3)

where PD
——a&/c is the free space value of p, and we have

in addition assumed that x«1. (Typically x is of
order 10 '. As will be seen shortly, y 1/Q„, and
cavity Q's can easily be of order 10'.)

If we separate x into its real and imaginary parts
according to

x(~) =x'(~)+jx"(~),
then using the form (3) for P(co) we require that the
condition (1) be satisfied in both magnitude and phase;
hence

(4a)rlr2 exp I [POg" (~) 2a07L I =—1,

exp I
—2jPOLl I+2x'(~) 3}= 1. (4b)

The condition (4a) can be written equivalently as

x"(~) = 1/Q

where

and

[GAINj =[LOSS],

Q,= (2vrL/Xo) (2noL —inrir2)

p0=2~/xo,

'If we de6ne the wave number k(co) according to k(co) =
Po(~) L1+b,"(co)$, then the phase condition (8) is equivalent to
the requirement that the cavity length I contain an integral
number of half-wavelengths; i.e., that I.=Qq, with ) =2m/k.

where Xo is the wavelength in vacuo. Q, is termed the
"cold cavity Q." In Eq. (5), the physical interpretation
is, as indicated, that the gain is equal to the loss when
the system is in oscillation. In general the gain g"(~)
is dependent on the field strength (i.e., we have a non-
linear response) . If this depender. ce is known explicitly,
Eq. (5) then allows a determination of intensity as a
function of oscillation frequency. We note that in a
linear theory, for which y" (~) does not depend upon
intensity, no such determination is possible.

The phase condition (4b) leads to an equation which
determines the actual frequency of oscillation. If or. is
the resonant frequency for an empty cavity, satisfying

2&v,L/c=2vrg (q integer), (7)
then Eq. (4b) can be expressed in the form'

~l 1+2x'(~)3=~.,
where or is the resonant frequency of mode q in the
presence of the gain material. In general the solutions
for or differ from or„ the resultant shifts being referred
to as "mode pulling and pushing" effects. The deriva-

where states
~
1) and

~
2) are eigenstates of a Hamil-

tonian Ho with energy eigenvalues W& and W2.

II0
~
m)=W„( m), (10)85=1 2

In the presence of an electromagnetic Geld, the ampli-
tude coef'ficients b„(t) are governed by a Hamiltonian II:

~=Iio+IIi, (11)
where II~ represents the interaction between atom and
Geld. It is conventionally taken to be of the form

Bi —(e/2m) (p ——A+A p)+(e'/2m)A A. (12a)

However, it has been shown that in order to treat the
atom and the field in a consistent fashion the appro-
priate interaction Hamiltonian should be'

Hg ———y, E,

where p is the electric dipole operator. Nevertheless, for
optical frequencies and within the electric dipole
approximation the forms (12a) and. (12b) are physically
equivalent. To see this, recall that the part of (12a)
which is linear in the Gelds can be transformed to the
form (12b), except for a factor ~0/&o, which is very
close to unity (&oo is the atomic resonance frequency,
and co is the frequency of the electric field). The part
of (12a) which is bilinear in the fields leads (again
assuming the electric dipole approximation) merely to
an over-all energy shift, which is without physical

I E. A. Power and S. Zienau, Phil. Trans. Roy. Soc. 251, 427
(1959). In their derivation of the form (12b) the electric dipole
approximation has been assumed. This means simply that the
spatial variations of the Gelds are su%ciently slow compared to
atomic dimensions that it is a good approximation to treat the
fields as constants in the integrals for the matrix elements.

tion of Eq. (8), it should be remembered, is based on
the assumption of plane waves for the propagating
waveform.

As should be evident now, the procedure will be to
calculate the complex susceptibility x(co) so that its
real and imaginary parts can be used in conjunction
with Eqs. (5) and (8) . This calculation is the subject
of the following sections.

III. EQUATIONS OF MOTION

In order to calculate the complex susceptibility
x(~), we assume that an atom is in the presence of a
prescribed electric Geld and ask for the induced atomic
polarization. The susceptibility is then identiGed by
comparison with Eq. (2).

We shall represent the atom as an isolated two-level
system and postpone temporarily the questions of
decays, collisions, and pumping. The state vector
~
s) for a two-level system can be expanded in the form

I s) =exp( —jWit) bi(t) I 1)+exp( —jW2t) b2(t)
~ 2),
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p= ~2~2 blbl p (13a)

signi6cance, so it can be removed by a simple trans-
formation.

%e shall de6ne the following bilinear combinations
b (1)b„*(1):

ing wave field

E(s, 1) =E cosh cosa'.

When this 6eld is transformed from laboratory co-
ordinates (s, 1) to atomic rest frame coordinates
(z', t'), it assumes the form

(13b) Z(s', 1') =-'„EIexpt j(o)it' —&is') ]
The quantity p denotes the population difference, and
Pio may be related to the atomic polarization I' (since
P = (s

~ P ~
s)) according to

E=PPio exp(j o)ol) +cc.
where

with
+exp' (M&t'+P&s')]+c c },. . (20)

P12 jpP exp( —j~o&) &(t) —pio/+2. (18b)

For a discussion of these equations within the context of
magnetic resonance we refer the reader to the literature. '
VVe mention in passing that included here among the
energy-exchange T&-type processes are (a) decays, (b)
hard collisions, and (c) the pumping mechanism itself.
The indusion of pumping is not conventional. As a
result both po (the nonthermal equilibrium value of p
when the system is being pumped but is not oscillating)
and T~ are functions of the pump rate. The T2 relaxation
term describes those processes which destroy the phase
correlation among atoms, so that the polarization tends
to decay with a time constant T2.

IV. STEADY-STATE SOLUTIO5S AND
HOMOGENEOUS RESPONSE

The equations of motion (18) will be solved for an
atom which moves with a velocity ~ through the stand-

4 F. Bloch, Phys. Rev. 'N, 460 I'1946).
~ See, e.g., ¹ Bloembergen, Nuclear Magnetic Relaxation (%;A.

Benjamin, Inc., New York, 1961);N. Bloembergen, E.M. Purcell,
and R. V. Pound, Phys. Rev. 'D, O'l9 (1948). Regarding the
theoretical basis of the Bloch equations, see A. Abragam, The
Pr&sci ples of Nuclear Magnetisrw (Oxford University Press,
New York, 1961), especially Chaps. VIII and XII; also, C. P.
Slichter, Principles of Magnetic Resonance (Harper and Roar,
Neer York, 1963); R. K. Wangsness and F. Bloch, Phys. Rev.
89, 228 (1952);A. G. Redaeld, IBM J.Res. Develop. 1, 19 (1957).

no=—~~—~~&0.

Then the Schrodinger equation for this two-level
system takes the form

P =2j @pi& exp( jooot) Z(t) +c.c.,

pio =JAP exp( —jMol) E(1).
Here, and throughout, we shall ignore the vector
character of the electric field.

The equations of motion (17) will now be modified
to include the eGects of pumping, decays, and collisions
through the addition of phenomenological relaxation
terms of the type introduced by Bloch' for magnetic-
resonance problems. Ke then have the following "gen-
eralized Bloch equations":

P =2jPPio em( j«1)&(1)+cc —(P—Po)/I'i, (18a)

Thus in its own rest frame the atom sees a diferent
Doppler-shifted, frequency associated with each of the
two traveling-wave components. The expression (20) is
correct to first order in v/c.

%ith this form for the electric 6eM, the equations of
motion (18) become

P =oi~&P»L«p( —jdi)+exp( —j42)]
+c.c.—(p —po) /Ti, (22a)

p12 4jp'~p[exp( jdi) +exp( jd2)] p12/22 (22b)

wliere
Qi= (Ni —cdo) 1 —Pie,

4o= (~o—~o) 1 +Poz

Ke have assumed here that the rapidly oscillating sum

frequency components have a negligible inhuence
compared to the slowly varying difference frequency
terms (this is the so-called "rotating wave approxi-
mation") .

To obtain solutions to (22) we shall assume, as a
6rst approximation, that the population diRerence p is
nearly constant. The conditions under which this
assumption is valid will appear shortly. If p=p&0) =
const, then Eq. (22b) can be integrated directly to
yield

exp( jyi) exp( jyo)
Pi2=4 2PE P, . +~ ~

~

+j(~i—&o) 22 +j (&o &oo)—
(24)

Insertion of this result into Eq. (22a) leads to the
following equation for p.

A Ti ——1+BiTi,

SyT] =s +
&+( — )'&' &+( — )'&') '

—(ooi—&o) 2o (ooo —
&A) 2o

BgTj =s2 , , +1+(ooi —oro}'To' 1+(ohio
—uo) 'To'j

s'=-'(p'~2'i72) ~
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(s' is a measure of the intensity in dimensionless units. )
In considering the meaning of Eq. (25), it is necessary
to recaH the conditions under which the relaxation
mechanisms can validly be represented in the phenom-
cnological form suggested, by Bloch.' The condition
requires that thc physlcRl quRntlty %'hich ls subject to
relaxation be described in the sense of a time average
taken over an interval ht which is long compared to the
correlation time~ but short compared to the relaxation
time. Thus in Eq. (25) each terra must be understood
to be averaged over R time interval ht which is much less
than the relaxation time T1.The sinU. soidal terms, which
contain the frequency ~2—co1, wiH then average to zero
provided that

i o1&—oII
~

is sufficiently large'.

( Ms MI [ ))(kf)

If condltlon (27) 1s satlsfied, Eq. (25) thell has (pllys1-
cally) only the stationary state solution p=0, whence

P"~ =PP/ATI.

So we see that the solution (24) is justified provided
that the condition (27) is met. Of course there will be
soIlle slowly IllovlIlg atoIlls fol' wluch tile coIldltlo11 (27)
will not be met. However, we must recall that our
ultimate interest is the net response which is made by
atoms of all velocities, i.e., an integral over the entire
velocity distribution. %e shaH assume that of the
atoms which contribute signi6cantly to this integral
{which is treated in detail in succeeding sections) only a
small fraction move slowly enough so as not to satisfy
(27). Thus if we assume that Eq. (24) describes the
response of RH atoms, we shall be evaluating the
integrand correctly everywhere except in a small range
of the integration, so that the error induced in the net
integral is a small onc.

Thus for atoms of velocity e, the solutions wc adopt
are those given by Kqs. (24) and (28) .The polarization
I' is simply related to prs Lsee Eq. (14)] and it is
immediately evident that a polarization is being
Induced Rt, cRch of thc dx'Ivlng frequcncics m1 Rnd m2.
Because we have formulated the oscillation condition

fl The validity conditions for the Koch equations, vrhich shall
be assumed to prevail here, are discussed in, e.g., Abragam (Ref. 5,
Chap. XD, Sec. IA) and Slichter (Ref. 5, Secs. 5.6-5.8).

~ The correlation time characterizes that part of the Hamil-
tonian %which ls randoInly fluctuating and which ls associated %lith
the re]axation processes. A correlation time may be identihed wreath
the mean time between collisions, but it is to be distinguished
from the relaxation time Tg, vtrhich describes the decay of the
polar1zat1on.

sIt is possible to treat Eq. (25) by successive iterations,
starting vnth the solution p=p(0), before the time averaging is
pexformcd. The erst iteration yields

(+-~)+24 o (+—~»)S
and displays the "population pulsation" terms vrhich are scen
to be small if ) cd —

cubi ] is sufficiently large. However, we must
note here that (i) the expansion parameter is proportional to the
intensity Lcf. Eq. (26) for 8& and Bqg so that tphe expansion is not
good for high intensities, and (ii) the time averaging is stiH
required in order to make the solutions compatible vrith the
validity condit1ons for the Bloch equations.

FXG. i. The real and imaginary
parts of the susceptibility x(cy) =
x (cy) +Jy (co) f01 an atom having
center frequency ru' c=oo(1+s/c)

(1) in terms of traveling waves it is suflicient to know
the response to just one of the traveling-wave com-
ponents which appear in P(s', f') . Transforming
P(s', f) to a laboratory reference P(s, f) and applying
the definition (2) to the co1 component we find that
{see Fig. 1)

X(~) = f Jxs"/L1+J(~I—») 2'sjI» (29)

where, as before, o&I=to(1—s/c), and S is the "saturation
factor" which describes how the equilibrium value of
p ls x'cduccd from its zero-6cM value of po to thc ncw
value ptsI Pcf. Kq. (28)j:

p(o) —
pop

S=1/ATI (0&S&1).
xo" is the "midband unsaturated gain":

Xo =p po~2

Although x(r0) is the response to a single traveling
wave, thc medium is nevertheless still subject to

t t bybtht li g- p t fth
standing-wave 6eld, and this is rejected in the satura-
tion factor S Lcf. Eqs. (30) and (26), where we can see
clearly the effects of each traveling-wave componentj.

The response of atoms belonging to a single velocity
class is said to be "homogeneous" since the response is
shared. equally by all atoms and there is nothing to
distinguish the behavior of one atom from that of
another. If now we consider atoms having a spectrum of
velocities, then different velocity groups will be found
to be subject to varying degrees of saturation. In
pRrtlculax' tIle saturation may bc stlong fol soQM atoms
and ncgllglblc for others. In such R CRsc thc rcsponsc ls
said to be "strongly inhomogcncous. " This situation
obtains for some (but not all) gas lasers. The properties
of lasers operating on lines which arc homogeneously or
inhomogeneously broadened may show important
qualitative differences. These will be discussed in
detail below.

V. GAIN PROFILE

A discussion of the gain pro6le is really a digression
from the main problem of 6nding the complex suscepti-
bility for an ensemble of atoms subject to saturation
and having R distribution of velocities. It is a worth-
while digression, however, because it provides some
physical insight into thc nature of the c&ccts to be
described later (i.e., Lamb notch, mode pulling and
pushing) .

Thc gain px'061c ls thc rcspoIlsc to RD arbltrarlly
YvcRk tx'Rvellng-%Rvc probe of tunable frcqucncy m
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when the system is subject to strong signal saturation
by a standing wave of frequency ~,. %e are interested
in the imaginary part of the response, x"(co, co,), as a
function of cv, ~, being held 6xed. The response just to
the weak probe signal is obtained from Eq. (29) with
S= j.. To take account of strong signal saturation we
include the saturation factor S evaluated at ~=~,.
Finally, we obtain the total response by integrating
over all atomic velocities which are weighted with the
distribution function g(e) .Hence we have

dctg(s) k(a), e) $(sr„e), (32)

c0,—~,=~' —(2cdo —c0,),
c0 (1—'v/c) —Gl0 =(0—co ~ (36)

+e have assumed that all frequency diGerences are
reduced from optical frequencies by a factor of order
of magnitude s/c, so that, for example, (s/c)(o = (s/c) a)0

to Grat order in s/C. Typically, % is of order 1W.
Then we have

X"(~ ~.) =
2 ~

g(~'}
1+( ),

For convenience we have de6ned the following dimen-
slonless parameters:

s'=—-',p'E'T~T2,

w=—(1+s') '@+1

x—=T2(~' —c0.),
~I—=T2(~—~e) ~

~I=—225~ —(2«—ca )ji
6—=81—62=222(~o &s) ~

where h(~, s) is the homogeneous response made by
atoms of velocity e to the weak probe of frequency +.

h(~, s) =x,"/I1+f ~(1—~/c) —~,arm I. (33)

TIM satlll'RtloI1 factol' S(M, 5) ls glvell by Eqs. (30) Rnd

(26) except that &ol and co2 are to be evaluated at the
frequency co, of the standing wave; thus in place of
Eq. (21) we have

a)I——~,(1—s/c),

(og ——a), (1+e/c) . (34)

To calculate the integral (32) we make a change of
variable from e to ~' according to

cd =G&0(1+5/C). (35)

Physically +' represents the atomic resonance frequency
as seen by a laboratory observer. Then we have, to
first order in %,

y —(OO=COq —67
&

Ke, shall refer to s' as the "dimensionless intensity. "
The distribution g(cd'} has been assumed to be nor-
malized according to

g(co') dc0'/2m =1. (39}

Vk shall evaluate the integral (37}under the assump-
tion that the distribution g(rv') varies slowly over the
range for which the other factors are signi6cant. This
means that only atoms in a relatively small velocity
range contribute to the integral; this will be the case
provided the width of the response to the weak probe,
2/T2, is small compared to the width of the distribution,
g(co'}, i.e., the Doppler width. (As will be seen shortly,
this is a necessary but not a sufhcient condition that
the response be strongly inhomogeneous. ) The factor
g(a&') may now be taken outside the integral and re-
placed by g(c0) since the homogeneous response function
is resonant at @=81 (i.e., co'=co) . The evaluation of the
resulting integral is discussed in Appendix A. Here we
consider only the special case for which h&&m; the
physical signi6cance of this condition will appear
shortly. In this case we hand that

9 Hole burning was erst described as early as 1947 by ¹

Bloembergen; see especially Fig. 2.5, p. O'E, of the 6rst reference
in Ref. 5. The earliest discussion with respect to gas lasers was
given by %. R. Bennett, Jr., Phys. Rev. 125, 580 (1962); Appl.
Opt. Suppl. 1, 24 (1962), especially p. 57'. Also see Bennett's
article in Queetues E/ectrorizcs, edited by P. Grivet and ¹ Koem-
bergen (Columbia University Press, New York, 1964), Vol. 1,
especially pp. 450-456. Experimental observation of holes has
been reported by D, Iaunois and A. Kastler, Compt. Rend.
2{i43,868 (1967).

(h))w), (40}

G(~', 8) =—1—Lws'/(w —1)j(P+w') ' (41)

and w(s') is defined above, Eq. (38) .
The Doppler curve g(co) is of course centered at

co =coo and is generally taken to be a Gaussian, although
in the absence of thermal equilibrium it need not be.
The function G(s', 8) is unity except in the vicinity of
5=0, where it is Lorentzian shaped with half-width m.
Hence the coefficient in Eq, (40) has two "holes, "one
at bed=0, the other at 82=0, these values corresponding
in frequency to co =co, and ~=coo+ (&uo

—a&,), respectively.
The assumption that A&&m means that 8j—82+0, so
that the holes in this instance are distinct. The coeK-
cient G(s', 8l)+G(s', 82) —1 then appears as shown in
Flg. 2; tlllls tile gRII1 pl'oflle LX (co cg ) vel'slls M] follows
the Doppler curve g(co) Lsee Fig. 3(a)] except at
co=~, and co =Ma+(c00 —co.), where, according to popular
terminology, "holes are burned into the gain curve. '"
The holes are symmetric about ~ =coo and are separated
by a frequency difference 2

~
coo—co, ~. The hole centered

at the actual oscillation frequency co, we call the
"primary hole, "while that at ca =coo+ (coo—c0,) we refer
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l

I"zo. 2. (G(s', Si) +G(r', ~s) —& l
versus or for the case that d &&m.

Q(aes, ) ~ G(sa, &a) -1
lI

t I
I I

CstO Calo+ ( Calo

I Broadening effects have received considerable attention in the
literature. See, e.g. , W. R. Bennett, Jr., et a/. , Phys. Rev. Letters
18, 688 (1967); P. T. Bolwijn and C. Th. J. Alkemade, Phys.
Letters 2SA;, 632 (1967);A. Sz5ke and A. Javan, Phys. Rev. 145,
137 (1966); P. %. Smith, J. Appl. Phys. 3'7, 2089 (1966); R, L.
Fork and M. A. Pollack, Phys. Rev. 139, A1408 (1965); B. L.
Gyorffy, M. Borenstein, and %. E. Lamb, Jr., i'. 109, 340
(1968)."A third mechanism which can prevent hole burning is cross
relaxation, in which there is an exchange of excitation between
atoms of neighboring velocity groups. In this paper we make no
attempt to consider such eGects.

to as the "image hole. " Obviously the existence of two
holes when there is but a single mode of oscillation
reAects the fact that an atom travebng through a
standing-wave 6eld interacts with both Doppler-
shif ted traveling-wave components.

When expressed in the dimensionless units of Kqs.
(38), we may describe the holes as being of width 2w
(2w/T. in frequency units) and. depth (w —2) /(w —1),
each having an area ms'/(1+s')'12. The holes are sepa-
rated by an amount

~
6 . The condition b))w means

simply that the separation of the holes is large compared
to their width. Note that the area of the hole is a meas-
ure of the intensity of the cavity 6eld, especially for
weak fields foi which $~(gi.

Having demonstrated the existence of holes in the
gain curve, we can now state more precisely the condi-
tion, assumed above, that the response be strongly
inhomogeneous. It is simply that the hole width be
small when compared with the full Doppler width. If
this condition is not met, i.e., if the hole width is
comparable to the Doppler width ("weakly inhomoge-
neous" broaderiing), the signal causes the entire line to
saturate as in a homogeneous response, and in this
limit the concept of a hole, which implies selective
saturation, ceases to be a useful one. Ke note in this
connection that the hole width 2w/T2 increases with
(a) dephasing frequency 1/T2 ("collision broadening" )
and {b; intensity s' ("power broadening" ) .IThus even
though a line may suGer considerable Doppler broad-
ening, this in itself is no guarantee that the response
will be strongly inhomogeneous, The inhomogeneity
can be destroyed by the above eGects, whose tendency
is to cause all atoms to saturate equally and thereby to
make the response more nearly homogeneous. '~

If the holes are not well separated, the expression for
x"(u, &o, l is not so simple, although it can still be
handled. There is, however, one other special case for
which the gain profile is quite simple, namely, when the
oscillation frequency is at line center (i.e., 6=0).
In this case (see Appendix A),

x"((g, (g,) ~„, ,=Lye"g(a))/2T2jG(2s', be), (42)

i, GAIN

(b}
Ii GAIN

LOSS LOSS

ore ohio or +(ohio-ops)

Fro. 3. Gain versus frequency for (a) two distinct holes
(h»n) and (b) one hole at line center (6=0) .

VI. POWER-TUNING CHARA. CTERISTIC

Rlr'eRdy indicated 1n Sec. II th Rt the
"'gain =loss" equation (5) can be used to determine the
power-tuning relationship once the gain g"(~,) is
known explicitly as a function of intensity E' and
frequency of oscillation or, . Ke write or, to indicate that
we are now interested in the response to the strong

~ An explanation for the Lamb notch in terms of the holes
of the gain curve was irst given by W. R. Bennett, Jr., Appl.
Opt. Suppl. I, 24 (1962), especially p. 59.

where 80=T2(&o—
o&0) and G(s', 8) is as given by Eq.

(41). Hence when ~, =rue there is a single hole located at
or=cue (be ——0) of width 2wo, depth (we —2)/(we —1),
and area 2ms'/(1+2s') 'I' where

wo = {1+2s')'I'+1. (43)

Evidently as the oscillation frequency is brought
toward line center the two holes merge into a single hole.
Associated with this overlap is a reduction at line center
of the output power. The general expressions for power
versus tuning will be derived in Sec. VI, but we can give
here a simple explanation for the existence of the central
tuning dip (the so-called "Lamb natch"). "The inten-
sity s' is determined from the condition (5) that the
gain at the oscillation frequency be equal to the loss,
i.e., that x"(co,) =Q. ', where x"(a&.) means the re-
sponse to the saturating signal itself:

x"(~.)—=x"{~,~.) I-- „ (44)

Hence the gain at the frequency of oscillation saturates
by an amount which allows the "gain=loss" condition
to be satis6ed. This is illustrated in Fig. 3 for the two
cases that (a) the holes are well separated (intensity
srm) and (b) M~ =(oe (lntenslty se ) . Except for the
variation of the envelope g(&a) the "gain=loss" condi-
tion wouM require the equality of the hole depths in the
two cases. As we saw above, the expression for the hole
depth is (w —2)/(w —1), where for case (a) w is given
in Eq. (38), and in case (b) w =we $Eq. (43)g. Hence
the equality of hole depths means that

$1 =2$0 r

i.e., the intensity at line center is reduced by a factor of
2. Inclusion of the variation of g(s&) modi6es this result
and, as we shall see, allows for the possibility of a
threshold for the appearance of the Lamb notch.
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saturating field itself. In calculating x"(ra, ) it is possible
to apply Eq. (44) to the results of Appendix A for
x"(~, s&,), but it turns out to be simpler from the point
of view of interpretation to treat this integral inde-
pendently. The integral in question is similar to that
given above in Eq. (37) except that we now take
kl =M' (i.e., 8i=0):

dx
x"(~)=2 T

1+x' 1+(x—A)'

For the Gaussian g(~'), we write

g(~') =2'* exp) —(T2*)'(~'—so)'/"j, (46)

where 1/T, * is a measure of the Doppler width, and the
amplitude has been chosen to satisfy the normalization
requirement (39).Then we have

fl

x"((o,) = dl g(N)
2ZTp

condition (5) can then be written

R(S)~(s2, S2) =1,

R(~) =Ro exp( —ale),

R.=""e.(T-.*/T ) ='.T.O' (55)

R(b) is the ratio of the unsaturated gain to the loss,
and Eo is this ratio at line center. Obviously the thresh-
oM condltlon for sustRlnnlg osclllatlons ls

(56)

In Eq. (55), the coeKcient T2*/T2 is a measure of the
fraction of the homogeneous packets under the Doppler
curve which may be saturated. Figure 3(a) illustrates
the meaning of Eq. (54), in which R(6)d(s', LV)
signi6es the ratio of the saturated gain to the loss. The
Gaussian without holes represents the unsaturated
gain. At so=co„ the unsaturated gain is saturated down
until the sRtuI'Rted gMn ls equRl to the loss.

From the oscillation condition (54), it is now possible
to obtain s'(A) for a strongly inhomogeneous hne as
follows:

s'(6) = (r' —t')/2f (57)

( +t)'(Ã' ")=4-"f (1 f)-
for which the variable of integration is

N=S 2A=Tg(G) —Mo)

or, equivalently,

gR'(r+g) 2=r2(r+3g) (r—g) ~4f y' (58b)

1+Q+4lV where r satis6es
(1+I'+-'5') '—I'iV+2s'(1+cP+~ir9)

g(N) =2T'* exp( —4nu'),

where (4~a)'I' is the ratio of the hole width 1/T2 to the
~oppler width 1/T2*.

T2*/Ti= (4~n)"'. — (50)

tegrg (47) is evaluated lil Appeildlx 8 foi
arbitrary values of n and also for the limiting cases of

g))1 (the homogeneous limit) and n((1 (the strongly
inhomogeneous limit). It is the latter case we discuss

here.
por the case that the Doppler width is large compared

with the hole width we 6nd

x"(~.) =xo"(4~~)'" exp( —~~') &(~', ~'), (51)
with

~(",A) =(1+&/")F29+ )l-'"

and [see Appendix 8]
5=2T2(MO M, ),

Ke can verify immediately that oscillations cease
when r=g, for which Eq. (58b) requires that R=l.
Physically this means that when the detuning is such
that the unsaturated gain is equal to the loss there can
be no saturation Pi.e., 8'(s', ') =1], which in turn
implies null intensity 6elds. Hence the amount of
detuning 6*which quenches oscillation satis6es

"(0)=2(Ro' —1). (60)

Although the general solution for s'(5) as given by
Eqs. (57) and (58) involves the root of a fourth-degree
equation, this complexity is really necessary only to
describe the behavior in the region near 6=0, where the

(59)

Equivalently, this is the condition for threshold with
detuning.

Another trivial solution to Eq. (58a) occurs at line
center, )=1, for which r=R=RO, so that at ~=0

f=1+—„'LV,

=E~(~+2")3",
X=2+s' —g.

g(p, ~&) the "inhomogeneous saturation
factor» since it assumes the value unity for zero 6elds
and ls less than unity for nonzero 6elds. The osciOation

S
Ji

I'IG. 4. s2 versus 6 for in-
creasing excitations Eo, illus-
trating the appearance of the
Lamb notch.



THEORY OI A SINGLE-MODE GAS LASER

holes of the gain curve partially overlap. In the special
cases that (a) the holes are well separated and distinct
(d,&)w), or (b) the holes overlap completely (6=0),
the expression (52) for d(s', 6') assumes quite simple
forms:

No
Lomb
Notch Lomb

Notch
No
Lomb
Notch

(a) limd(s', LP) =(1+s') 'I',
~)&w

(b) lim d(s', dP) = (1+2s') '".

(61)

(62)
/ I

l Rc 1.T

d,»m

s'(0) =
p (Rp' —1).

Hence from Eq. (54) we have

s'(5) =RP —1
and (again)

maximizes o., (Rp) and satisfies
(63

(60) 3(R —1)'(R +1)=4.

FIG. 5. a versus Ro, and the conditions {64) for
the Lamb notch. R =1.7.

(66)

pie see from these results that if R(5) were flat instead
of Gaussian Li.e., if we had R(h) =Rp for all &$, then
the intensity s' would drop by a factor of 2 at line center.
This effect derives from the fact that the line saturates
more strongly at line center than away from line center
Las per Eqs. (61) and (62)). If account is now taken
of the variation of R with A LEq. (55)], it is possible to
explain the observed behavior of the central tuning dip:
For excitations slightly above threshold (i.e., Rp a
little larger than unity) there is no Lamb notch. As the
excitation is increased a threshold is reached for the.
appearance of the Lamb notch (see Fig. 4).

To obtain an analytic description we merely note that
a Lamb notch is present or not present according to
whether

(d'/dh') s'(6) ~a=p

is positive or negative. From Eqs. (57) and (58), we
find that

n, —o.&0eo(Lamb notch),

o,—n(0p=p(no Lamb notch),
where

(3Rp+1) (Rp —1)

8Rp'(Re+1) ' (65)

n, defined in Eq. (50), represents the ratio of (un-
saturated) hole width to Doppler width. The curvature
in sp(&) at &=0 depends on a,—n and is determined by
two competing effects. Saturation (represented by o.,)
and the associated phenomenon of holes which overlap
at line center lead to a power dip at 6=0, but this must
be strong enough to overcome the curvature of the
Gaussian (represented by n) which of course is in the
opposite sense. The conditions (64) are illustrated in
Fig. 5, where it is seen that as the excitation R0 is
increased starting from R0=1 we initially have no
Lamb notch, but at RO=R, we reach the Lamb-notch
threshold. The function n, (Rp) plotted in Fig. 5 is of
course a universal curve and applies to all single-mode
laser lines which are inhomogeneously broadened.
For a fixed value of cx the most pronounced Lamb
notch should occur for the excitation Rp=R, where R

For R we have approximately

=1.7
and

n, (R„)=0.025.

(67)

(68)

~ In a strict sense it is not correct to describe the homogeneous
limit of collision broadening or power broadening with results
which are based upon, the inhomogeneous approximation (51).
Nevertheless we can expect Eqs. {64) and {65) and Fig. 5 to
provide a valid qualitative description for large values of 0, and/or
Ro. In Appendix 3 we consider the gain function x"{~,) without
making the approximation of a strongly inhomogeneous line and
thereby are able to verify directly that for (a) a»1 or (b) s'»1
the power-tuning characteristic does not display a Lamb notch.

"However, in some instances the mechanism responsible for
producing a homogeneous response may be cross relaxation; see
Ref. 11.

16 M. A. Pollack, T. J. Bridges, and A. R. Strnad, Appl. Phys.
Letters 10, 182 {1967).

There are two circumstances identifiable in Fig. 5 for
which the Lamb notch is not present: (a) when n& 0.025,
and (b) assuming n(0.025, if Rp has been increased
beyond R until n, &n. In both instances the&inter-
pretation is that the hole widths in the gain profile have
been increased to the point that the response is essen-
tially homogeneous, in case (a) through collision
broadening, and in case (b) through power broad-
ening, "as discussed in Sec. V. Thus it is not diQicult to
understand why gas lasers need not show a central
tuning dip in their power-tuning characteristic. In
fact the dip has been reported only in a very few cases,
of which the He—Ne laser is the most famous. Pre-
sumably the Lamb notch can be obtained on other
laser lines as well if an attempt is made to avoid exces-
sive collision or power broadening so that the first of
conditions (64) can be satisfied. "

The variation of the Lamb notch (short of extinction)
with the parameters of the system can also be deter-
mined with reference to Fig. 5; the discussion of course
must relate to the basic parameters Ro, T2, and T2*.
(Incidentally, the dependence of these parameters on
the system parameters such as pressure, discharge
volta. ge, etc., is not generally a simple one. ) For example,
it has been reported'5 recently that an increase in
pressure is accompanied by a diminution of the central



tunjQg dip. Yo explain this behavior we note that higher
pressures result in higher mean collision frequencies,
sp that the respoQsc bccoIQes Glorc ncally hoIQogeneous.

H a Lamb notch is observable at excitation Rg=E,
further increase jn go should cause the dip to diminish
and eventually to djsappcar. This kind of behavior has
apparently not been reported jn the literature; it would
be an interesting way to observe the CGects of power

broadening.
In the llmlt of 0.—&0 thc response is strongly in-

hompgcncpus and the Lamb notch is more readily
iscernible. In fact the case of 0'=0 corresponds to a

flat distribution R(A), and in this limit, as we saw

)Eqs. (63) s,nd (60)j, the intensity at line
center ls always reduced by a factor of 2.

For excitations not far above threshold (E—1(&1)
1t ls possible to develop tllc sollltloI1 fol' s (6) as a powcl
series in E—i. Ke obtain, to second order in g—1,

z'(6}= [R—r) }+,(rr —r)+ ").
)+1 2f 12

This expression js appropriate to a Strongly inhomogc-

neous l.ine since it is based on the solutions (57) and

(5g) ~c may note that thc 'two special cases coIIsldered

earl1cr In Fqs. (63) Rnd (60) do not Involve R—1 to
higher than second order even if g —1 is not a small

&uantjty ~e conclude then that the contributions to
(69) bcyo„d second order are either negligible or else

they vanish if either (a) h»w(f»1) or (b) ~=0(f'=1).
The result (69) becomes 111 these two cases:

h»ur (69')

(69")

As would be anticipated, these forms are equivalent to
th~~e of Eqs. (63) and (60), respectively. For small

c,'tat1ons the I,amb-notch conditions (64) remain the

same except that 0., is given approximately by

n. —,
' (Ep —1). (70)

If it were desired. to have the power output function

wjthput Dlaking the approximation of a strongly
mhomogeneous line )which leads to Eq. (51)], it would

P/

be necessary to use the exact expression for x (o),)

LEq. (39)$ in Eq. (5). This then yields an implicit
transcendental equation for s'(6) .

As was noted earlier, the solutions (57) and (58)
assume the much simpler form (63) if or, is not in the

reg joQ where the two holes overlap appreciably. The
result (63) can also be obtained by constructing a

simpler theory which ignores the standing-wave nature

of the oscillatjons and assumes instead a single traveling

wave. m Such a theory in CGect takes account of the

primary hole but not the image hole Lit is constructed
by dl'opplllg 'tile sccolld tcl'111 of J3g, Eq. (26)j.Although
it leads to the correct power output for dj&&m, a single-
hole theory cannot predict the central tuning dip.
However, it does illustrate the fact that the image hole
has a negligible inQuence on the gain at the oscillation
frequency co„and hence on the intensity s', except near
line center, where it overlaps the primary hole (as
shown in Fig. 3). On the other hand, as will be seen in
Sec. VII, the image hole has important CGects when
accounting for phase shifts, whereas the primary hole
is of no consequence in this regard. This diGerence in
behavior derives from the fact that for packets near
resonance the net phase-shift contribution is negligible
because the homogeneous dispersion function y'(M)
LEq. (29)j is odd about the center frequency. Thus the
lIQpoI'taQt contllbutlolls to tlM phase shift coIQc from
packets well removed from resonance where, due to the
long-range character of y'(or), a homogeneous packet
may contribute phase shift but no gain.

VIL FREQUENCY OP OSCILLATION

Sp far wc have used thc Q1agnltudc part pf the oscjlla
tion condition to determine the intensity as a functipn
of tuning. As we saw earlier, there is also a phase
condition associated with Eq. (1); this was given in
Eq. (8) and determines the actual frequency of oscil-
lation.

Application of the phase equation requires a knowl-
edge of the real part of the susceptibility x'(or, ). It is
Qot possible to calculate g' from y" using the Kramers-
Kronig relations because these apply only to a linear
response. The Kramers-Kronig equations do have a
nonlinear analog, "but they are not too useful and shall
not be employed here. Instead we calculate x'(o), )
directly. The expression for g'(or, ) is obtained using the
homogeneous response (29) to the strong saturating
signal of frequency ~,.Thus co~ and co2 are again given by
Eqs. (34) . The integral in question then is

Xo Xdg
g( ')

X 1+s',+, (71)

where x and II1 arc ss defined In Fqs (3g) a„d g(„r);
given In Eq (46) . This expression is to be compared to
the one we had earlier fEq. (45) g for g"(or.) . The only
difference is the extra factor of —x in the numerator.
As shown in Appendix C, the exact evaluation of (71)
involves expressions similar to those found in the exact
evaluation of y" (or,). However, in the inhomogeneous
limit, x"(o),) can be evaluated by an approximation
t namely, the factoring of g(or') out of the integral, as

&6 p ~ S 'th IEFF J QuantuIn Electron. 2 62 (1966) ~

og t s paper is tata, Inount to the result (63),
» N. Bloembergen, Eon-rinsed Opus (%. A. Benjamin, Inc.,

Nevr York, 1965), p. 45.
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discussed in Appendix 3j which is not applicable to the
integral (71) because of the difference in behavior
between the functions x(1+x') ' and (1+x') ' As
a result, even in the inhomogeneous limit the expression
for 7t'(~, ) is more involved than that for 7t" (&o,) .

We find (see Appendix C for details) that

x'(~, ) =xe"(a/~) exp[ —(a/~) ']g (s', S'}M (s', S'),

(72) ~~-(cu,-coo)

X (~, ~)

LOSS

with
M(s' LV) =A(s', 6'}—B(s' 6'),

where, to first order in 1/o (1/o =a'Is),

(73)
Fxo. 6. The gain function x"(co, au,) versus co. Each curve

represents a different value of unsaturated)gain xo". In (a)athe
gain is at threshold for oscillations at ca,. In (b)[and)(c) xs" has
been raised above threshold.

Q2(Q 2

r —t' 4x 8x '"', t'2y
g(s& g~) = s.its +

r+f ~ o o j
6') he' (74)

g2(g 2B(s', 6') =4x/o,

and

2x
B(s', 6') = — dtf e"',

0

5'=s4(1+s') '

x=[-, (r+X) ]'",
y=[-', ( -x)]'",
o'=1/n =br(T /2'*)'.

(75)

(76)

All other quantities were defined earlier [Eqs. (52)
(53)j. For a strongly inhomogeneous response

a))1.
The gross behavior of the dispersion function X'(ou, )

is dominated by the factor (6/o) exp[ —(6/o)'$, the
remaining factors being slowly varying by comparison.
Hence x'(te, ) qualitatively resembles the homogeneous
dispersion function 7t'(x) =x(1+x') '.

The phase condition (8) is most conveniently handled
when expressed in terms of the cavity Q(Q. ) and the
atomic line Q(Q,), the latter being defined through

Q~=&o/(~~)n=s(teo2s ), (77)

since the Doppler width (ha&)n may be defined as
2/2's*. Combining Eqs. (72), (51), and (5) the phase
Eq. (8) maybe written

.—.=( /2 )(Q./Q. )( ./ )( .—o)M(', ~')-

(78)

So far the only approximation that we have made is
that the response be strongly inhomogeneous. However
the solutions to Eq. (78) of greatest interest are those
for which the cavity Q is sufficiently large that the
actual oscillation frequency co, is not far removed from

~/~
limM(s' 6') =——
s2~ (80}

Hence if only the primary hole were present we shp~
have power-independent mode pulling and no mode
pushing. This power-independent pulling arises from
the phase shift which is to be associated with the un-
saturated gain (curve a of Fig. 6). (Note that 111 this
linear regime the real and imaginary parts pf
susceptibility satisfy the Kramers-Kronig relations. )

' An expression for pulling appropriate to a strongly inhon, o
geneous Doppler broadened line was given earlier by A. IavanE. A. Bailie, and %.L. Bond DD. Opt. Soc. Atn. 52, 96 (1962), intheir footnote 9] and is equivalent to Eq. (79) when M(s', a')
is taken to zero order in s', as in Kq. (80).

the cavity resonant frequency ~,. This will be the case
provided that

(~/2w) (Q./Q. )M(s', ~') &&1.

Then, to 6rst order in this small quantity, we have

~ =~+(~/2w) (Q./Q. )M(s', ~') l.. .(~.—~s). (79)

Tp lpwest order o,, =or, . The correction term alters ~,
either away from or toward toe according as M(s', 5')
is positive or negative; these solutions corresppnd,
respectively, to mode pushing (M) 0) or mode pulling
(M(0). From the form (73) we see that the terms
A (s', 6') are pushing terms while B(s', 6') represents
pulling (both A and B are themselves always positive,
1/o being assumed small) .

In analyzing the behavior of the mode-pulling and
-pushing solutions, it is possible to identify the inQuence
pf the primary and image holes which appear in the
gain profile. If in calculating x"(o&, te, ) we had used a
saturation factor S which took account of interactions
with only one traveling-wave component instead of
both [in which case Bi, Eq. (26), would contain one
term and not two), then the gain profile would show a
primary hole but no image hole. In such a truncated
theory the evaluation of 7c'(to, ) would be as in Eq. (72)
except taken jn the limit of g'~0'
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In this single-hole theory the effect of increasing
(through pumping) the midband unsaturated gain
yo" is to cause a hole to be burned in the gain curve at
br =to, (curves b and c of Fig. 6, but temporarily ignoring
the image hole); nevertheless the total amount of
phase shift at ~ =co, is not influenced by the size of the
hole, i.e., it is independent of intensity s . We can see in
a general way how this behavior comes about. The total
phase shift at or=co, is the sum of contributions from
the various homogeneous packets whose center fre-
quencies are distributed under the Doppler curve and
whose responses x'(tp) are of the form shown in Eq.
(29) and in Fig. 1. Note that for each homogeneous
group of center frequency ~s'=top(1+p/c) the strength
of the response is the same for 7r'(tp) as for X"(tp), in
each case being proportional to yo" S and to the weight-
ing factor g(tp') as well. Because of the odd symmetry
of 7t'(tp) the net phase shift at pi=to, is positive (nega-
tive) if to, is greater (less) than tpp. If the gain xp" is
increased, two things happen: (a) Packets which are
well removed from the hole contribute net additional
phase shift; (b) on the other hand, because of the even
symmetry of the hole itself, those packets close to
~=+, which formerly contributed some net phase shift
there no longer do so since the contributions from one
side of the hole cancel those from the other side, These
two efI'ects oppose each other, and apparently they
cancel exactly in the single-hole theory.

If now we take account of the saturation which
occurs at the image hole, then obviously those atoms
which in the absence of saturation were able to supply
additional phase shift as xo" was increased can no
longer do so. Thus the image hole causes a reduction in
the amount of added phase shift, and hence a reduction
in the amount of pulling; i.e., the presence of the
image hole leads to mode pushing. This is the origin of
the statement that "holes repel each other. " These
arguments are identical to those given by Bennett
(in Sec.9 of the first of Bennett's papers cited in Ref. 9)
except that the discussion there refers more generally to
any second hole, not just the image hole, as here.

In summary then (a) there is a residual amount of
pulling associated with the unsaturated gain, (b) the

primary hole by itself does not alter this pulling, and

(c) the presence of the image hole modifies the pulling

by introducing a power dependence LEq. (80) being
replaced by (75)$, but generally the more important
effect is the introduction of the power-dependent

pushing terms (74). Whereas for the gain the primary
hole is a major inQuence and the image hole a negligible

one (except near line center), for the phase shift the
situation is reversed. Also, it is to be noted from Eqs.
(74) and (75), which are expansions in powers of 1/o,
that the leading term in A (s', 6') is zero order in 1/o,
whereas B(s', 5s) appears at least to 6rst order. Thus
for a strongly inhomogeneous line (o» 1) the pushing
terms may even dominate.

For weak fields the coefficient M(s', 6') can be

expanded to first order in s' by using the result

lim (r f—)/(r+g) =s'/2l .
82+

Then we And that
a /rr xl/'2 4/o

lim M(s', dP) = —— dri es'+s'
8 &(& 0 2f'

(81)

4/o 6/o

+ dpi e" . (82)
p 0

As expected, the lowest-order contribution to pushing
is 6rst order in s', whereas for pulling there is a zero-
order contribution. Hence for weak 6elds we can expect
the pulling terms to dominate. In the approximation
that the power-dependent terms are negligible we may
write

LL/o.

lim M(s' a') =——
,2~

dri es —— (80')

if 6/o«1 (i.e., if cp, is not in the wings of the Gaussian) .
Then the frequency condition (79) becomes

~.=~.+(2/w) (Q./Q. ) (~p —~.) (83a)

This result is formally similar to the mode-pulling
equation which is appropriate to a homogeneous line
of width 2/Ts.

~.=~ + (Qb/Q. ) (~p —~.),
where Qb= ,'oipT, is the-"homogeneous line Q." In
(83a) Q, of course pertains to the full Doppler line
Lcf. Eq. (77) J.

VIII. DISCUSSION

Lamb" has earlier given a complete theory for a gas
laser which is based on a perturbation expansion for the
atomic polarization and is thus valid for weak fields
(s'«1). Whereas we consider pumping, collisions, and
decays all phenomenologically (through the formalism
of the Bloch equations), Lamb considers pumping
directly, neglects collisions, and considers decays
phenomenologically. All of Lamb's results for a single-
mode laser can be recovered if we take the present
results for a strongly inhomogeneous line and consider
excitations only slightly above threshold. For purposes
of comparison it is necessary to make the following
correspondences" ":

O~Xp

Tl~ab/Va7bq

Ts~f/V~
"W. E. Lamb, Jr., Phys. Rev. 134, A1429 (1964).
'0 In Lamb's paper, Ref. 19, K is the "relative excitation, "

and ~ are the decay constants of the two states, and p~=
-', (y,+yq). In terms of the lifetimes r(= 1jy) we can also write
TI =-', (v~+~), Tg=2~~~f/(v. ~+~).

~~ A similar interpretation of TI and T& was made by W. E.
Lamb, Jr. Lin Lectures iN Theoretica/ Physics, edited by W. K.
Brittin and B. W. Downs (Interscience Publishers Inc. , New
York, 1960), Vol. II; see especially pp. 472-477, where the
homogeneous response is derived for a traveling-wave excitation.



The correspondence of the mean decay rate y~
with the dephasing frequency T2 ' is Dot surprising,
since it has in fact been suggested by several authors"
that the Lamb theory couM be extended so as to take
account of coHisions by just such a generalization.

Assuming the relations (84) we find that the power-
tuning characteristic as given by Lamb" in Eq. (L96)
is equivalent to the above result (69} taking only the
term linear'4 in E—I; i.e.,

s'(~) =t2f'/(f'+&) j(~—&). (85)

Similarly, the condition for threshold" with detnning,
Eq. (L97), has its counterpart here in Eq. (59), which
says merely that at threshold the unsaturated gain and
the loss have a unity ratio.

Tllc conditions (64) dcscrlblng tile till'csllold fol' the
RppeRI'RQcc of thc ccntx'Rl tuDlng dip RI'c fouQd to I'cducc
to those given in Eqs. (L99) and (L100) provided that
n, is taken to lowest order in Ep—I, as in Eq. (70) .

The frequency conditions given in Lamb's paper in
Eqs. (L89)-(L93) correspond to our results (79) and
(82) except that Lamb does not include power-
dcpcndcllt telllls which go Rs 1jo'; 80 fol. C0IIlpR118011 wc
take (82) in abbreviated form:

4
hm M(s', LP).= ——

dry s"'+ss . (86)
2i

HcDcc LRDlb 8 power-dependent tcx'IQ describes mode
pushing only, while jUst thc lcRdlQg powcl-lndepcndcQt
term is included for mode pulling. Departures from
I.amb's results can be expected whenever we fail to
satisfy s'«1 and 0.&&1. As we have already seen, when
$2 18 not SIQall thc mode-pushing efkct CRQ bc signiacant
and possibly dominant.

An important difference between the present theory
Rnd that of Lamb is that the use of a phenomcnological
relaxation time Ty to include the effects of pumping
allows for a very simple treatment of excitation. It is of
course also a grosser description, no attempt having
been made here to determine the dependence of Tg on
thc cxcltatlon Eo.

Another difference from the Lamb theory concerns
the equations which determine the amplitude and
fI'cqucncy of osclllatloD. In thc LRQ1b pRpcI', thcsc
cquRtlons Rlc RI'I'lvcd Rt by InlposlDg a self-consistency
requirement on the electric fields, considering that they
induce an atomic polarization which in turn acts as a
source term for the fields. An alternate approach is to

"Including Lamb, Ref. 19, Sec. 21. For further discussion of
collision eGeets see Ref. 10.

~ Equations referring to Ref. I9 wBI be indicated by a prefix
L, as in (L96).~ A calculation extending Lamb's theory to second order in
R—1 (6fth order in Schrodinger perturbation theory) eras per-
formed by K. Uehara and K. Shimoda, Japan. J. Appi. Phys.
4, 921 (1965).Their result does not agree mth the second-order
terms of our expression (69). A higher-order calculation was also
made by %. Culshaw, Phys. Rev. 154, 329 (I967)."Threshold conditions were erst discussed by A. L, Schawlow
and C. H. Townes, Phys. Rev. 112, 1940 (1958).

calculate the explicit dependence of the nonlinear
susceptibility upon both the intensity and frequency of
oscillation; then the oscillation condition (I) provides
the desired equations. This latter method is the one
used here. It was also used earlier by Lamb" in dis-
cussing the equations of motion appropriate to an atom
at rest in a monochromatic field (or, what is mathe-
matically equivalent, an atom in motion which interacts
with but one traveling-wave component of the standing-
wave field) .

Although the Lamb theory is based on a third-order
pcl tulbRtlon expansion) Lamb 8 papcx' docs Rlso
contain a discussion (see Secs. 16-19) of the case of
strong 6elds. In particular the expressionss (L183) is
analogous to our result (30); in both cases these
equations Show the effects of saturation by each of the
two traveling-wave components. In. order to obtain
Eq. (L183) it was necessary to neglect the population
pulsations and to make a plausible assumption for the
rate constant. In our treatment the time-dependent
terms of the population difkrcnce werc averaged to
zero (cxccpt fol' slowly 1110vlllg RtoII18) bccallsc, 11Rvlllg
chosen to represent the relaxation processes in the
phenomenological mannex' of Sloch, we merc then
forbidden, as a matter of self-consistency, to describe
cvcnts whicl1 took plRcc ovcl time lntclvals less thRQ
ht (sce discussion of Sec. IV). Also, the fact that we
have Included punlplQg In the TI rclaxatlon tcHIl
pl'ovldcs RQ MkIltlonRl sIIQpll6catlon. Fol thc InhoIQogc-
neous response Lamb's Eqs. (L185) and (L186)
iBustrate how the saturation cGects are different when
the holes are weD separated and when they overlap
completely. Thc difference, of course, is a factor of 2,
Rs WC llRVC also 8110W11 1Il Eqs. (61) Rlld (62) .

Finally, it should be pointed out that the question of
the magnitude of the dimensionless intensity s' can be
phrased in very simple and practical terms. I et us say
that a characteristic value of s' is its value when the
cavity is tuned to the center of the Doppler line. Here
the inhomogeneous saturation factor is (1+2s') 'I',
floIll Eq. (62) ~ This Illllllbel InRy bc cvRlllRted lf 1t ls
known how far the cavity must bc detuned to reach
threshold, since the ratio of unsaturated gain at the
detuning threshold to its value at line center is also
equal to the saturation factor for central tuning. The
flcqucDcy depcQdcQcc of thc UDsRtulRtcd gain 18 of
course a Gaussian Lace Eq. (51}j. Thus, for example,
if it is possible to detune from line center by an amount
of the order of the Doppler half-width, so that the
unsaturated gain falls by a factor of, say, 2, then we
have s'=I.s at line center. The condition, therefore,
that a characteristic value of s' be much less than unity
means simply that the detuning thrcshoM IQust be small
compared to the Doppler half-width.
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APPENDIX A: EVALUATION OF GAIN PROFILE

h+ is complex (}I(r), then Reh~)0. If h~ is real
(}1)r), it is also positive.

Although the expression (A4) is correct, it is not a
lesult which can be ieadlly lnterpr eted. However there
are two special cases for which the integral (A2) can
be evaluated in a straightforward fashion. These are
(i) A»w, and (ii) 6=0. [See Eq. (38) for definitions
of 6, m, etc., and the accompanying text for the physical
interpretation. )

Tile lntcgl'Rl fol' tile galll pl'ofilc X ((0, (dg) WRS glvcll
in Eq. (37). In this Appendix, we shall discuss its
evaluation for a strongly inhomogeneous line, for which

g(~') varies slowly in the region where the other factors
are significant so that it can be removed from the
integrand as g(co). Then the integral in question is

X"((o, (o,) = (X2"/22.2'2) g(o&) E(s', 6, hl), (A1)
with

dS
E~s2 6 5~=

1+(R—hl) '

x 1+s',+1 (
)-, I (A2)

The saturation factor S(x) of Eq. (A2) can bc
written

S(x) = {1+s2[vI(2}+v2(x)]}-I,

vI(x) =(1+x2) ',

v2(x) =[1—(x—6)']-'. (A7)

If 6 is a large quantity, the two Lorentz-type functions,
which are peaked at x=0 and x=A for vI(2,") and v2 (x),
respectively, are widely separated so that in the region
whel e sy is signi6cant 52 vanishes, and conversely.
Hcllcc wc Rl'c lcd to Rppl'oxlnlRtc S(x) by

S(R}=[1+s2vl(x) ] '+[1+s'v2(2:}]-I—1. (AS)

[See Eq. (38) for definitions of 2:, 6, and 8I.]By making

the change of variable x-+e, with

I=X—-6,2 7

the integral for E can be written in the form

00 dl

Now the evaluation of E is quite simple:

dx
E(s', l, 81}= S(g).1+ x—hl'

This leads directly to the result. (40) .

(A9)

1+~IA2+N2

(1+lA2+N2)2 N2A2+2s2(1+IA2+N2)

Kvaluation of this integral is most readily performed

with the technique of contour integration, the result

being
E(s', 5, 81) =m+2s2(Ep E),. —

(t —h,2) (1+h, )
hg2 —71 ' kg[(82——2'A) 2+ (1+Ised) 2]

The second denominator of (A3) has four simple poles,
two of which have residues which contribute to the

integral; these are located at I=jh~, where

In this case, the saturation factor S(x) becomes
(without approximation)

S(2:) =[1+2s2vI(2:)] ' (A10)

and, the integral (A9) is again very simple; the result is
given in Eq. (42) .That the result (A4} for arbitrary 6
reduces to (42) when b, =0 can be shown readily. To
show that (A4) reduces to (40} when A»w is not
trivial, but it can be verified. )However, when A»w by
far the simplest approach is to use the approximation
(AS).

APPENDIX 8: GAIN FUNCTION y,
" (rs,)

The integral for X"(I0,} was established in Eqs.
(47)-(50} as

cd

x"(~,) = (4nn}'I2 dN exp( —4ng2}

7 =2+s'—
r—= (f2+2s21 }'I'=72+71,

=t1+ ~A.
2 (A5)

&&(1+I'}/[(f'+N2)2 I'A2+2s'(t—+~'}] (B1}

where, as before,

It is a simple matter to show that (}I+r))0, so that if In the limit of a strongly inhomogeneous hne (n((1}
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we may factor the slowly varying exponentiap6 as
exp( —nil) [since the response function (45) is resonant
at x =0, i.e., I=—,'A; the form (31) obtains only after
making the transformation (48) and a few obvious
algebraic simplificationsj. Then we can write

x"((0,) =x(r"(4rrn)"' exp( —nest)d(s', A')

where

(«&1),
(83)

o
N2

The change of variable @'=xbrings this into the stand-
ard form for the Stieltjes transform of ~'I' exp( 4nx)—
which is given in the Bateman Tables. '~ Ke then have

J(n, ~) =« "'e~(4 ~) Kr«L(4 ~)I"j (8&)

provided that
~

argc
~
(rr, where

Errc(xI =2 -'"f Ct cxp( rr)—
=1—Erf(s).

This allows us to evaluate x"(or,) for arbitrary n
according to

x"(~.)
" 4m "' ( —h '

exp(4nh ') Erfc[(4n)'"k ]h+' —k '
((, k

h+'—
cxp(4rrpr') Errc((4 rrcrr4 (Bp)

h+

[See Kq. (A5) for de6nitions of h~.j
We should note that if the exact result (39) is taken

in the limit of a strongly inhomogeneous line (n((1)
we do not recover the earlier result given by Eqs. (83)
and (35), which were derived on the basis of a cruder
but nevertheless useful approximation.

Ie This factored form should not be considered as the leading
term in a power-series expansion of the exponential about I=—~A since the higher-order integrals would all diverge.

~~ TaNes of Ietegra/ Truesfornzs, edited by A. Erddlyi I'McGraw-
HiQ Book Co., New York, j.954), Vol. II. See especially p. 217,
item (18).

' f'+I'
s(s&, A2) = (84)(/+I') '—e'LP+2s'(f'+I')

which can be evaluated directly to give

s(s', A2) = (1+1/r)/[2(), +r)]rr'. (85)
[The parameters X and r were de6ned above, Kq. (A5) .J
This is the result shown in Eqs. (51) and (52) .

We can evaluate the integral (31) for arbitrary
values of n by factoring the denominator (there are
poles at I'= —h~') and expanding the result into two
partial fractions. The basic integral which must be
evaluated ls

The homogeneous limit of large 0. can be recovered
immediately from the integral (81) by recognizing that

hm (4n/rr) '" exp( —4nu') =5(N), (810)

so that the I, integration is tr'vial and yields

l1m x"(~.) =xe"/(1+»')
Q~OD

(811)

so that from {39)we 6nd

lim g"(or,) =xo"/2s'. (813)

In this limit, the power output [which comes from
Eq. (5)$ becomes

~'(A) =k(xe"Q.) (s'»1) .
Hence for su%ciently high intensity the power-tuning
characteristic is Rat, and, as anticipated" on the basis
of the power broadening of the holes in the gain pro&le,
there is no Lamb notch in this limit.

APPENDIX C: PHASE FUNCTION g'(or, )
The integral for g'(or, ) was given in Eq. {/1). If we

make the transformation (48) and use the form (49)
for g(N) we can express X'(or, ) as

x'(~.) =kA(xo"/~) (4~n)'"
CO I'—1'

X dg exp( —4ne') (I'+f')' —I'6'+2s'(N2+i )

(Ci)
In. obtaining this form, terms of the numerator which
.are odd in e were dropped since they will not contribute
to the integral. Notice that removal of the exponential
outside the integral will not destroy the convergence
properties of (C1), although from the unsymmetrized
form (71) it would appear that the resultant integral
would diverge. Despite the favorable convergence

ll
lim y" (or,) =

1+2s +T2 (orx oro)

As expected, in the homogeneous limit the response is
Lorentzian. The associated power output is parabolic
and of the form 2s'=x(r"Q, —1—xtLP. The result (811)
is also obtainable from (29) if the homogeneous
saturation factor 8 is evaluated for atoms of zero
velocity.

Finally, We 111elltlo11 tile llmltlng fol'nl Of X (Orrr) fo1'

s')&1. %e have, for s'&&1,

bmh+ =2$
~

limk '=f',

lim Erfc[(4 ) '"h+j = [exp( —4nh+') /(4rrn) I"k+),
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properties of the symmetrized integral (Ci) it is still
not valid to approximate x'(~,), in the limit of a
strongly inhomogeneous response (a«1), by factoring
the exponential outside the integral as eras done for
x"(~,) in Appendix B. In the latter case, the dominant
factor in the response is (1+x') ' [see Eq. (45)], so
that for a slowly varying exponential we could say that
this factor behaves something like a 8 function, and in
this sense we are justi6ed in removing the exponential.
However, in the integral (71) the dominant factor is
x(1+@8) '; the behavior of this function is significantly
diferent, and therefore a more careful treatment of the
1ntegral 1s required.

The integral (C1) is very similar to the integral
(81) that we had for X"(80,) and may be evaluated for
arbitrary values of a by the same techniques discussed
in Appendix B.%'e 6nd that

X'(cu,) = 2))—[X-o"(4)rn) 'I'/(h+' 7i 8—) $

X exp(4ah ') Erfc[(4n)'"h $
t+h '

h

exp(4~k+8) Krfc[(4~) iI8h+j ~. (C2)
l'+h+'

)h+.

[See Eq. (A5) for de6nitions of hg.j Although g'(80, )
is always real, the expression (C2) involves complex
quantities k~ whenever «))),. We can express x'(cv, )
entirely in terms of real quantities'8 by considering

separately the cases of r &X and r&) . For convenience
in applying the result to Kq. (78) we write X'(80,) in

the form

X'((d, ) =X()"(5/(«) exp[ —(6/(r) qd(s', Le) M(s', A8),

(C3)

The fGnctlon Krfcc,x+Jp} separRtes into IeRI Rnd imaginary
parts according to

8 ( ( +is) = 8 ( ( ) —(8 "') -"J 8» " '
8*»

0

where [d(s', 6') is given in Kq. (52)j
M(s', 68) =-',n'" exp[488(1+s') j

«()), (C4)

M(s', 6') =8«'18 exp[4a(1+s') j
2x I« g

X Ecic —
(

co»8 sy+ —sio8 sy)0. &r+f

yL 8"/-»'j J 8» ssi (S )

« f . 4—)ix x t'4gx
X sio —8 sy + —co»~ —8 sy)«+1 0. y ( 0

(Cs)
with

0' =—1 Ay

x'=——', («+)~),

y8—=-,'(« —)i),

If+=—exp[4(x P8—«') u'] Er fc (27'+/(«)

+exp[—4n()~' —«')'"] Erfc(2h /0) . (C7)

To obtain the inhomogeneous limit ((x«1) we expand
these results to first order in 1/0. As an additional
simpli6cation we assume that the intensity s' is not
extraordinarily large, so that as'(&1 also."In taking the
limit of small 88., care must be taken not to treat nl, for
example, as a small quantity since over the full Doppler
width f' can assume values as large as 1/a. When Eqs.
(C4) and (C5) are taken to first order in 1/0, these
expressions reduce to those given in Kqs. (73)—(75).
The condition that rg& X is equivalent to 6'~& 60', where

A()' ——s'/(1+s8) .

ll "For an inhomogeneous line the hole width may typically
—J(2x "2}e *' dq t,"f'cos2xq. be ~~ of the Doppler width, in which case u is of order 10 ";

0 see Eq. (50).


