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Spin Relaxation and Transport in Magnetic Alloys
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The spin susceptibility for an interacting electron gas is derived, including a fully microscopic treatment

of spin relaxation and transport effects due to nonmagnetic impurities. The corresponding macroscopic

equations for the paramagnet resemble the relaxation-to-equilibrium phenomenological model, with the

spin relaxation time given by the spin-orbital scattering rate appearing in the self-energy, multiplied by
renormalization factors. In the ferromagnetic region, the spin diffusion constant is found to be much smaller

than in previous estimates. The consequences for paramagnons are brieQy discussed.

I. INTRODUCTION

GOOD knowledge of the frequency and wave-

.I number —dependent spin susceptibility is impor-
tant for understanding many physical situations such
as magnetic resonances. This susceptibility should in-

clude transport effects such as spin difFusion and spin
relaxation as well as correctly describing the interaction
between electrons. At present there exist phenomeno-

logical models for this susceptibility but relatively little
work has been reported which critically examines the
various models from microscopic principles. It is our

purpose here to calculate the spin susceptibility, in-

cluding a fully microscopic treatment of uniform elec-
tron exchange, spin difFusion, and relaxation by ran-

domly distributed impurities for ferromagnetic and
paramagnetic metals.

The spin susceptibility for pure metals has been
derived in the random-phase approximation by WolfP
and by Izuyama, Kim, and Kubo. 2 In their calcula-
tions, the magnetic electrons are assumed to comprise
one band and to interact with a short-range screened
Coulomb potential. Our approach here is similar but
we include in addition the inQuence of a small concen-
tration of nonmagnetic impurities following the work
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of de Gennes' on the static susceptibility. The impurities
lead to a randomization of directed particle momentum
due to ordinary scattering processes and hence difFu-

sion. In addition, spin-orbital scattering processes lead
to a randomization of the particle spins and thus cause
spin relaxation.

The ferromagnetic spin susceptibility in the presence
of ordinary scattering processes has been discussed
from a phenomenological viewpoint by Hirst' and. by
Kaplan. 5 They argue that the spin diffusion constant
is decreased by the action of exchange polarization but
that spin diffusion should still characterize the long-
wavelength spin susceptibility. However, as we show

here, the long-wavelength spin susceptibility for this
situation contains spin-wave propagation but essen-

tially no diffusion. As known from previous work, ' the
impurity spin diGusion constant in the paramagnetic
range approaches zero at the ordering point and our
result shows that it vanishes throughout the ferro-
magnetic. region except for a negligibly small term pro-
portional to an external magnetic field.

The situation is slightly different when the effects of
spin-orbital scattering are included. In addition to an
infinite-wavelength broadening of the spin resonance,
one finds a slight contribution to the difFusion constant
proportional to the spin-orbital scattering rate. How-
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by
A. (p, cp; q, cpp)

d p
g(q, cpp) =-',pss Trodi, dcd A. (p, cp; q, cop). (1)

The vertex cl(p, cp; q, cpp) is determined by the usual
set of diagramse and the corresponding integral equa-
tion

+(P, ~;q ~p)

d'p'dcp'
=G(p, cp) ci+iV, , A. (y', cp'; q, cop)

ds 1

+I; N(p —p')A. (y', cp; q, cpp)N(p' —p)
(2pr) '

XG(p+q, ~+~p) (2)

In this equation all functions are understood to be 2&(2
matrices. The Grst term in this equation is the un-
renormalized vertex. The second term represents the
vertex correction due to the screened Coulomb inter-
action V,.The third term represents the correction due
to impurities of concentration e; and scattering ampli-

~ B. Giovannini, M. Peter, and S. Koid6, Phys. Rev. 149, 251
(1966), and references therein.' A. A. Abrikosov and L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz.
35, 1558 {1958};42, 1088 (1962} /English transls. : Soviet
Phys. —JETP 8, 1090 (1959);15, 752 (1962)$.

ever, this contribution is very small and does not appear
to be experimentally important.

For the paramagnet we extend previous work' to
include the effects of spin-orbital scattering. For long
wavelengths our result is, to a good approximation,
equivalent to the phenomenological relaxation-to-equi-
librium model. ~ The spin relaxation time in this model
is equivalent to the spin-orbital scattering rate which
appears in the self-energy, modi6ed by a renormaliza-
tion factor. This renormalization factor tends to zero
as the ferromagnetic instability is approached. From
our approach, we derive the proper macroscopic equa-
tions which characterize the paramagnetic system.

II. PARAMAGNETIC SPIÃ SUSCEPTIBILITY

The spin susceptibility in the paramagnetic regime
with ordinary impurities has been considered previ-
ously. %e study here the addition of spin-orbital scat-
tering into the problem, calculate the dynamical spin
susceptibility, and 6nally determine the corresponding
macroscopic spin equations. The standard diagram-
matic approach is used in our calculations with both
ordinary and spin-orbital scattering described by the
methods of Abrikosov and Gor'kov. ' The interaction
between the electrons is treated in the ladder approxi-
mation. The spin-susceptibility tensor is defined in
terms of a vertex function

( o)-'=~'ll &(0)] dfl
I
o(p-p') I',

(rt) r=rc;s[X(0)] dQ
I b(y —p') I' sin'8 (6)

with X(0) =mph/2s' being the density of states. It
is easy to verify from Eq. (2) that the susceptibility
is isotropic in the absence of a magnetic 6eld which
leads to

x(q, cpp) = 2pssE(0)

XX; ' (q, ) /[1 —1V(0) V,x; no™(q, o) ], (I)
where x; p~"~(q, cpp) is the normalized susceptibility
determined from Eqs. (1) and (2) with the exchange
vertex correction term dropped.

It is convenient to introduce the function

J(cp, q, cdp) = [2s$(0)] ' dsp

, G(y, cp)
2s. '

where

XG(y+q, cp+cpp)

z E(cp)+E(pp+ppp)+g
2ppq K(pp)+K(cp+ppp) —

ct
'

E(cp) = i/2l+ (sgnM) (Pp'+2prccp) '" (9)

and i= @sr is the mean free path. Equation (2) is then
solved by the following ansatz:

~(p ~; q, ~p) =G(p, ~) G(p+q, ~+~p)

X[~.6+~„(p/p, ) (4 p)], (10)
with the result

X.6+X„p(6 p) p;s= 4+(~./r, )S(~)4y (X,/r, ')J (~) 6

+(~./o")~( )P(4 P)P~ '—(~./ )~( )P(4 P)P '.

(11)
In deriving this equation, we have made use of the

tude N(p —p'), which is given by

N(P —P') =o(p—P')1+ib(p —P')P~ 'Lp ~P'] d (3)
The 6rst term proportional to the unit matrix describes
ordinary impurity scattering, while the second term
describes spin-Rip scattering due to spin-orbital inter-
action. Inpractice,

I b(p —p') Is«
I cc(y—y') I'andhence

we will neglect terms of the order
I

b IP.

The function G(p, cp) is the electronic Green's func-
tion which in the case of no external Geld is given by

G(p cp) = [cp—(p' —pss)/2m+(i/27) sgncp]-'1. (4)

The lifetime r consists of two parts,

1/r =1/rp+ 1/rt,
where



fact that only the s-wave part of the vertex is impor-
tant for qt&&I.' The additional lifetimes vq', so" appear-
ing in Eq. (11) are deGned by

(r,') '=I; PN(0)I f do ( s(p —-y') Ps)n'),

1/rp" = 1/rp 3—/rp' (12)

For the sake of simplicity we take a(p —p') and
b(p —p') to be a constant. Then rp'=3rp and (rp")-'=0.

Using Eq. (11),we Gnd

A.= $1 rp 'J—(o)-) (1—{Brl)-'J(o)))$-'

~ = —iJ( )/ Xi—o 'J( ){1—(3 ) 'J( ))j '

(13)

G (p ~) =E~—(P'/2~)+(p~'/2)N)+(i/2r) sg»3-I

(18)

and p); is the radius of the Fermi sphere of spin )r. The
spin susceptibility is then no longer isotropic but sepa-
rates into longitudinal and transverse components. In
terms of the vertex given by Eq. (10) this means that
two independent elements A,**, A,+ and correspond-
1ngly Ay ~

Ap+ characterize the vertex A.. Using this
separation in Eq. (2), one Gnds that the longitudinal
susceptibility is unaffected by the external magnetic
Geld to order (p)+—pr )'/pr'. The transverse suscep-
tibiHty is found to be described by Eqs. (13) with J(o))
replaced by

x. -' (q ~p)

J(o)') L1—(3rl)-'J(o)') j
1—r IJ(~)D—(Brl)-'J(~') j

The procedure for handling this integral is the same
as used previously (Ref. 6) and consists in dividing the
region of integration into three diGerent parts:

(a) —~ &~&—o)p,

(b) —o)p&o) &0,

(c) 0&o)&~.

The contributions from regions (a) and (c} give the
static susceptibility plus terms of order q'/p)' which
are dropped. The frequency dependence arises from
region (b). Combining these we Gnd the result to be

x -' (q~p)

15
io)pJ{0; q, o)p) ii —(3rl)-'J(0; q, o)p) j

1—rp 'J(0; q, or()) $1—(3rl) 'J(0; q) o)p) j '

where J(0; q, o)p) is obtained from Eq. {9) and is
given by

J(0; q, o)p)

= (i/2p) g) lnt)'{o)p+i/r+pFq)/{o)p+i/r sl g) j. (16)—
Before we discuss this susceptibility it is worthwhile

to consider the eGects of a static external magnetic
Geld. When the Md is swwitched on, say, along the s
axis, the electronic Green's function must be written as

G(p ~) =s(1+«)G+(p ~)+p(1—«)G-(p, ~), (1&)

J+-(~ q ~p)=i2~&(0) j '
(2 ),G+(P ~)

XG (p+q, o)+o)p)

ln
i E+{o))+E {o)+ppp)+q

19
2p) g E+(o))+J (o)+o)p) —q

'

E.=i/2l+ (Sgno)) (p) .'+2INo)) 'I'. (20)

The corresponding transverse spin susceptibility is then
given by Eq. (7} together with

X' n'™(q,~p)=1

io)pJ(0; q, o)p-6) fi—(Brl)-'J(0; q o)p—6))
1—(rp)-'J(0; q, o)p—6) ii—(Brl) 'J(0; q, o)p —d)]

(21)

The frequenCy 6 appearing in XI,no™(q,O)p) iS the
energy required to fhp a particle spin in the action of
thc molecular GcM, (p))+ —p)) ) /2t)p) wlllcll 111 tllc para-
magnetic region is given by III=o)lii —Ã(0) V,j ',
where aI, is the free-electron spin-resonance frequency.
Ill 'tllc 111111't g+)1 alld rk((1, tllc susccptlblllty llas 'tile

asymptotic form

x+-(q, ~p)

=2I) 'X(0)L1—E{0)V.+(' /2 g)S(0) V g-' (22)

which is the result given by the free-electron picture at
Q(p)) and o)p/gol)((1. Tile abscllcc of polarlzatlon effects
result froxn the assumption vh&QI. If this restriction is
relaxed the situation is more complicated and the log-
arithrn in Eq. (16) must be retained. In the small
momentum range ql+41 a straightforward expansion of
Eq. (21) leads to the result

2 "&(0) '~L1-&(0)V.jii-'~((1-'I')/(1+I') )(1-1/.v) j- ~x+-(q ~p) =
1—E(0)V, iv(1—&(0)V.)+~p—~1,
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&C . . 23')
(4/3„+Dqs) L1—X(O) V.]

(4/3r, +Dq') $1 N(0)—V.j—soio
'

Equation (23) is only valid near the pole of y+ (q, «) .
It is seen from the structure of Eq. (23) that the
damping and diffusion effects vanish as the ferro-
magnetic instability is approached. Ke note from Eq.
(24) that for very pure metals the reduction of the
diffusion constant as function of Inagnetic Geld can be
quite important.

It is interesting to consider the macroscopic equa-
tions which correspond to the spin susceptibility de-
scribed above. For the moment we assume that no
static external magnetic Geld is applied and consider
the Gnite-Geld case later. Ke introduce the angular
distribution function

=st 4n'$(0) )-' do~dp p'G(p, oo) G(p+q, oi+«)

&&5~.(p, , «)+s~.(p ~ «)7
From Fq. (1) it follows that the susceptibility is the
angular average of this quantity:

x«, -.) =2"~(0) (nQ» ( )

The equation for f(Q) is obtained from the vertex
equation (2) by multiplying both sides by a factor
sg4irsE(0) 1 ' and doing the integrals over frequency
and ( p ~. This leads to the result

f(Q; q, «) =L1+F(0)V.(f(Q))j 1—
«—spqx+s r

1—(3ri) -'J(0)
1—( o) '~( ) (1—(3 ) '~( ) )

'

where
x= cos(p q/ I p II q I ).

The quantity J(0) is eliminated in this equation by
relating it to (f(Q) ), with the result

(,—qo, x)y(Q) = —q;xL1+ X(O) V.(/) j
+ (4'/3~i) t 1—(/) (1—&(0)V.)j

-('/)LI(Q)-(nj (28)

The susceptibility calculated from this equation agrees

where y is given by

&=4/3.i+Dq'L(1-'I')/(1+I") 3, (24)

I'=X(0)V,76, and D= ssrvp. In the absence of an ex-
ternal field Eq. (23) reduces to

2''E(0)
X+ (q) o)

=x.—;.--(o, 0) (1--q), (31)

V. P. Silin, Zh. Eksperim. i Teor. Fix. 33, 1227 (1957)
LEnglish trsns1. :Soviet Phys. —JETP 6, 945 t 1955)g.

with the one calculated from Kqs. P) and (21) except
for terms of the order (so/ri)s, which is the desired
accuracy. If vi '=0, Eq. (28) is identical to the linear-
ized Boltzmann equation for the spin susceptibility in
the presence of exchange and ordinary impurity scatter-
ing, which can be deduced from Silin' together with
the proper solution of the collision integral. Our result
above represents the proper extension to include the
presence of spin-orbital interaction.

Passing on to the case when a static magnetic Geld is
applied along the s axis, the same procedure yields the
following equation for the transverse spin suscepti-
bility:

(« 6 q—si x—)f(Q) = —(qos x+6) L1+X(0)V,(f)$
+(4'/3 ) L.1—(S)(1—&(0)V.)j

-('/)Lf(Q)-(f)j. (»)
The corresponding susceptibility agrees with the one
calculated from Kqs. (1) and (2) to the desired accu-
racy. The longitudinal susceptibility is found to satisfy
Eq. (28), in agreement with our previous discussion.

III. FERROMAGNETIC SPIN SUSCEPTIBILITY

In this section, we study the susceptibility trans-
verse to the direction of the spontaneous magnetization
PE(0) V,)1j.Repeating the procedure of Sec. II for
the ferromagnet we again must break up the vertex
equation into longitudinal and transverse components
as discussed in the paragraph following Eq. (16). Sub-
stituting this vertex into Eq. (2) one obtains the same
equations as (7) and (14), with J(oJ) replaced by
Kq. (19). The two Fermi momenta p&+, p& are ob-
tained by the self-consistency condition

(2~) '(P~+' P~ ') =~~+ (—V./«-') (P~+' P~ ') (3o)—-
together with the conservation of total particle number.
It is permissible to break the region of integration in
Kq. (14) into three different parts, as done for the
paramagnetic case; however, it is important to include
properly the nonlinear splitting of the Fermi surface
while doing the integrals.

Consider first the case with no spin-orbital inter-
action. Then, in the static limit, one can perform the
integration of Kq. (14) to order q'/Pss by making a
change of variables from ~ to

y= P(Ps+s+2ma) 'i'+ (Pi s+2nuv)'"j sgno~.

One obtains the result

x' '- (q, o) = (2P~) 'I L(3yo'+5') /3yoj

—lq'E(3yo' —5') /5yo')+0(q') }



This result ls well known from the vrork of Nagaoka. "
To discuss the properties of the low-frequency suscep-
tibility, we can restrict ourselves to ~&&6,, the spin-Qip
energy in the molecular 6cld. To this approximation
we find the spin susceptibility by integrating Eq. (14),
keeping terms linear in ~~ but dropping terms of order
(PI/) ', tobe

++ —. nOrm (q

=y+ l,n'~(q, 0) +bolo/3sI ys'+ (oIs/sob)

&&L1+sV('/1 —b) 'j/L1+(sV'/3»)(s/1 —~) 'j (33)

By lllsel tlllg tllls susccptlblllty 111'to Eq. (7) alld look-
ing for the poles one 6nds the following solution:

(34)

The 6rst term is the ordinary quadratic spin-wave ex-
citation spectrum for pure systems which has been
discussed cxtcnslvcly by Izuyama» Elm» RDd Kubo.
The second term represents the effects of impurities
and is seen to vanish if the external 6eld is sct equal
to zero. The reduction of the difFusion constant by
(1+6'P) ' has been found previously by Hirst' and
by Kaplan. ' However, the additional factor of the form
&oz,/f'I which we obtain. makes the diffusion constant
vanishingly small. It shouM be noted here that wc
have lgnol'cd thc cGccts of magnetization on thc SCRttcl-
ing rate Lsee Eq. (6)j. When the magnetization is
slllall, b 0.1', tlllS pl'ocCdlll'C 18 I'lgol'ollsly justlaed.
We also use it for large 8, in order to avoid unphysical
spin damping.

In the case that spin-orbital interaction is present
the calculations are done in analogy to the case without
spin-orbital scattering. One Ands that Eqs. (34) are
replaced by

G3s =Q&I+Br/,

oII=oll, (1—4t/3»I) ~

BI=8—rrh4I/3»l.

"Y.Nagaojra, Progr. Theoret. Phys. (Kyoto) 28, 1033 (1962).

As expected, spin-orbital scattering leads to damping
of the in6nitc-wavelength resonance and also gives a
difFusion constant proportional to the spin-Rip scatter-
ing rate. It is estimated to be of order f/ll smaller
than the results of Hirst4 and of Kaplan~ and is prob-
ably too small to be observed in most metals.

IV. DISCUSSION

We have studied microscopically the one-hand spin
susceptibihty of an electronic system in the presence
of exchange interaction and spin-orbital scattering due
to randomly distributed scattering centers. For the
paramagnetic state a linearizcd Boltzmann equation
was derived from the microscopic vertex equation. It
turned out that the relaxation time and difFusion con-
stant of the susceptibility tend to zero as the ferro-
magnetic lnstRblllty ls Rppx'oRchcd. In an cxtcl DRl mag"
netic 6eld the difFusion constant was found to be
field-dependent if the Incan free path in the sample
is very large. In the ferromagnetic state the difFusion
coDstant was fouDd IQRQy orders of magnitude sInallcr
than in the previous investigations.

It should be noted that the presence of spin-orbital
scRttcrlng hRs dI'Rstlc cfFects on the small-momentum,
small-frequency portion of the spin-correlation func-
tion. IQ particular» thc maximum 1Q the corresponding
spectral function at zero momentum occurs at a finite
frequency oI, = (r, ') ', where r, ' is the total spin re-
laxation time given by Eq. (23). As is well known
from studies of nearly ferromagnetic systems, "the free
energy involves an integration of the spectral function
tunes a Hose factor over frequency. At low tempera-
tuI'cs Tg&gm~ thc Bose fRctol CUts oG thc. 1Qtcglatlon
before the peak in the spectral function is reached.
Thus the thermal excitations sample only the small-
frequency region in which this spectral function can
be expanded in a power series in or. As a consequence
onc 6nds only terms lineal Rnd cubic ln temperature
in the speci6c heat. Previous considcrations6 have shown
that the linear term is unafFccted by mean free path.
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