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Using the properties of the mass operator and vertex function derived previously, we cal-
culate corrections of the form T lnT to the term in the specific heat Cg that is linear in the
temperature. The connection of this calculation with the microscopic theory is pointed out
and the limitations are discussed.

I. INTRODUCTION

In a previous paper' we studied the corrections
to the single-particle mass operator of a normal
Fermi liquid, which arise from the interaction of
quasiparticles vrith density and spin density fluc-
tuations at T= 0. For a quasiparticle with momen-
tum q near the Fermi momentum k~, the correc-
tions were found to be proportional to (q —k~)'
x ln)q- kpI. The coefficient of this logarithmic

contribution was obtained in a completely renor-
malized form in terms of Landau parameters.

In this paper, which supplements I, we calculate
the change in the low-temperature specific heat
resulting 'from the above corrections to the mass
operator. The calculation is performed within the
phenonenological Landau theory. ' The result is a
T' lnT correction to the leading linear term in the
specific heat.



175 SPECIFIC HEAT OF NORMAL FERMI XIQUID 3.27

II. ENTROPY AND SPECIFIC HEAT

In I we used the formalism of zero-temperature
Green's functions to study the single-particle ex-
citation spectrum of a normal Fermi liqui'. d. In
this scheme the concept of quasiparticles is intro-
duced through the poles, in the complex frequency
plane, of the single-particle Green' s function.
The real part of the solution of the pole equation
determines the energy dispersion law and the imag-
inary part measures the quasiparticle lifetimes.
Within this formalism the low-temperature equi-
librium properties of a Fermi system may be cal-
culated by carrying out a temperature expansion
of the thermodynamic potential, Q[G], given as a

. stationary functional of the temperature-dependent
Green' s function G. ' This procedure was used by
Luttinger~ to derive the linear term in the specific
heat CV. The problem of calculating the coeffi-
cient of the T'lnT term rigorously turns out to be
rather difficult. The trouble arises from the over-
lap of the momentum distributions of quasiparti-
cles and quasiholes at nonzero temperatures. '~'
If this ove'rlap is neglected in the expansion of
Q[G], the resulting expression for the T' lnT
term is found to be identical to that which one
obtains starting from the Landau entropy of a nor-
mal Fermi liquid. That is, it is equivalent to the
specific heat computed from the entropy as given
in Eq. (II. 2) (below), using (I.VIII. 4) for the
quasiparticle energy and neglecting the tempera-
ture dependence of the Landau parameters.

The postulates of Landa~~' s phenomenological
theory of a Fermi liquid are':

(i) The low-lying excited states (excited quasi-
particles) of the interacting system are in one-to-
one correspondence with those of an ideal gas.

(ii) The internal energy E is a functional of
the quasiparticle distribution function nq, a with

where P '=k T, and iL(T) is the chemical poten-
tial. eq o( in (II.3) is a functional of nq o(T)
and hence is a function of T.

The specific heat at constant volume V obtained
from (II.2) and (II.3) is

TBS(T, P)
v eT

eS BS Bp,=T- +T—eT, V
ej[L T VST (11.4)

e —g =e +Os (T),
q, o q q

where e = v&(q —kF), vF =kg/m*, and m* is theq=
effective mass. The variation of the entropy is
then

SS =(2/T)Z e [sn(T, e )/Be ]5@ (T).qq 'q q q

We shall split 5e (T) into two parts

5e (T) = 5 e +ST.e
q q q T' q'

where 5qqq is the correction to eq at zero tem-
Perature and 5T eq is a temPerature-dePendent
correction which vanishes as T-0. Correspo~
ingly, 6S is split into two terms

As T-p, $™Tand48p/8 Tl V-T. Since we shall
neglect terms of O(TS) we drop the second term on
the right-hand side of (II.4) and hereafter use
V(T= o) =u.

For spin-independent forces, the quasiparticle
energy does not depend on o. We write

&&= ~ e», 5n,
q, o V'o q'~

AS=5 $+BTS,

where now

(II. 8)

+2q ~, ~f(g, o;g', cr')5n 5n, i, (11 1)

where eq, = eq o is the energy, in an isotropic
system, of a quasiparticle with momentum q = lgl
and spin o. The f (kF, o;R'F, a') are the Landau
parameters.

The entropy per unit volume, S, can then be
written as'

S= —k Z [n inn
gq o q, g qo'

+ (1 —n ) ln(1 —n )]q, e q~0
(II. 2)

(11.3)

The equilibrium function &q z which follows from
(II. 1) and (II. 2) and the requirement that the num-
ber of quasiparticles equal the number of particles
is

o=(exp[P(e (T) —P(T))]+ 1].

6 $=(2/T)Z. e [sn(T, e )/&e ]8 e
q 9 q q q q q

ITS=(2/T)Z e Bn(T, eq)/Be ]6Te . (11 Ip)q
' q q Tq'

III. EVALUATION OF 5 S

The correction 5qeq at T= 0 is given by 5qE
from Eq. (I.VIII.4) apart from a possible regular
term proportional to g 2. Hence

1 q
=ye + (@p+@1)e lnl

e
l ' (III. 1)(v&k )' q E'

Here &L = vFkL and 0&kL ~Q kF The quantities
4 p and 4, are determ ined by Landau parameters
from (I. VI. 8) and (I.VII. 18). The coefficient y
is unknown; however, the yeq' term in (III. 1) does
not contribute to 6 S due to the symmetry of
Bnq/&eq around q kF. Thus we find
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cPq

k )'( o' 1T (2~)'F F
where gL=kBTL and

g = f dx [dn(x)/dx]e .

x[Bn(T, e )/Be ]e 'Inlege&1
q q q

(III.2)

Changing integration variables from q to e via

Defintng TF*, the effective Fermi temperature,
by k~ T~*= ky'/2m* we finally obtain the entropy
yer mole

q'dq=m*k&[1+O(e )]de
q q

and introducing the dimensionless variable x = Pe&,
we obtain

k 4

5 S=$, k (I'0+4 1)Tain T +O(T'),B m* ~
3 T

q m' kF L
(III.8)

)) 8=-)2 . ()8)+04 ))( „) )n 'p
( 0)7,

(III. 4)

where R is the gas constant.

IV. EVALUATION OF BTy

In order to calculate ITS from (II. 10) we have to find the temperature-dependent correction to the quasi-
yarticle energy, 5T& . Following Landau s procedure, the variation of & is related to the variation of
the distribution function by

e =Z, f&'&(f, fl')BTn, (rv. 1)

where f&'&(q, q ) is the spin-symmetric part of f (q, o;q, o ). The distribution function varies with tempera-
ture in tmo ways:

(i) Through the. explicit dependence on T, i. e. ,

BTn(T, e )—=n(T, e (T=0)) —n '
where n (&=e[ e (T-0)]

q

and 9 is the unit step function.
(ii) through the temperature dependence of the quasiparticle energy

BTn(0, e (T)) =-(Bn '/Be )5Tq

(IV.2)

(rv. 8)

Thus the net variat. ion of n is

8 n = 8 (n,Te)+(Bn '/Be )8 ~T q T '
q q q Tq' (rv. 4)

Insertion of (IV. 4) into (IV. 1) leads to an integral equation for 5Te

=Z,f'"(q, q')[B (T, ,)+(B '/B

The solution of this equation can be written as

BTe =Z,p&»(q, q')BT, n(T, e '
)

(rv. 5)

(rv. 8)

where the resolvent g&» satisfies

(rv. 7)

The function f "&(q,q') is the second functional derivative of the internal energy with respect to In&I. Thus
it will, in general, be temperature-dependentand. so will g&» Since the form of this dependence is not
known, we will neglect it.

The resolvent g&'& at T=0 is related to real part, I"&'&of the vertex functionconsideredinI. To obtain
this relationship, we note that in analogy with (IV. 6), using Galilean invariance, we can write

Be /Bj = q/m +Z,g&'&(q, q')(Bn,'/Bq')g'/mmt (IV. 8)
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at T=0. On the other hand, from (I.VIII. 1), the Ward identities (I.V. 1c) and (I.V. Id), and using a well-
known renormalization procedure, we find at T = 0.

BE Bq =q/m —(I/V)Z, a a, I' (q E E E )6(E )gl/~
-k(I)

qt ~ ql qI
(IV. 8)

in the notation of I. Here aq = [I —BM(q, Eq)/BEq] is the q-dependent renormalization coefficient and
Bnq'/BEq= —6(E ). Since E =eq at T=0, we deduce, 'by comparing (IV. 8) and (IV. 9),

py&»(q, n'k ) =a a I' (g, e;n'k&, 0).(„, -k(»

From (IV.10a) we infer

»)(~ ~q) k(l)(q, t;q", Eg)'+ (qpq ) ~

qq'V &'&, q' =a a, I' ' q'

(IV. 10a)

(IV. 10b)

gt'&, I",and X are symmetric in q and q '. From (IV. 10a) X(q, q') must vanish if q and/or q' is on the
Fermi surface. Since we do not have further information about X', we shall neglect it. Using (IV. 11) in
(IV. 6) and substituting this in (II. 10) yields

2 . 3 3"d q d q' Bn(T, e )
S =-— CI. . .,), . '

e a a, 6 n(T, e,) I" (q-q', e —e „R+q', e, , q', e,),

where use has been made of the crossing symmetry relation (I. IV. 2a) (C» = —, , C» = ~ ).
The leading term of (IV. 11), namely that proportional to T' lnT arises from the energy-momentum

transfer variables q —q ', eq —e ~ in I'4). The dependence of I'(i) on the deviations of the second, and
third variables from the Fermi surface leads to higher-order terms in T." For the same reason a and
aq' can be replaced by n&, the value on the Fermi surface. " Thus we have

CI 2, fdic fdef~ f 4 B
' &Tn(T, e') lim T (q —q', & —e';n', n)+ ~ ~ . , (IV.12)

where we have made the variable transformations q =n (e/vF +k&), g'. = n'(c'/vF+ kg); n' and n are
unit vectors. In (IV. 12)

T ~ =(m*k a 2/2')1'-(j )

is the renormalized. vertex function.
Next we notice that the integral over n'. in (IV. 12) is of the same type as that considered in Sec. IV of I.

Referring to that discussion, we reproduce the result (IIV.3)

e- e'&'
Q Cl. 4

lim T ) (q —q', e —e';n, n') =
k ~ (Q0+QI+X0)ln (IV.13)

+ regular terms in e and c',

with y =0 and p„p„and y given in (I.VII.18). Inserting (IV.13) into (IV.12) and transforming to the vari-
ables x = Pe, x' = Pe', one obtains

3

8= ——2,~(@0+A +y )k «T' In dx ~I dx'x(x —x')' BTn(x')+0(T'). (IV. 14)

Integrating by parts on x' we find

dx dx'x(x —x')' 6 n(x') =Bn(x), , Bn(x) ' m'

GQ 00 BX T „— cjX 9 (IV. 16)

Thus g S xs

6 S =-(w'/24)R(y, +q+X,)(T/T„*) IniT/T (IV. 16)
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From (II.4), (III.4), and (IV. 16), we find the specific heat per mole, including the linear term, to be

Cy
BT 2 T~+

1- C/ I ln
f T12

20 Ir *) T
+ 0(T'), C'= 21(C', + C', ) + 5(C', + 4', +X,), (IV.17)

where O, and C, are determined by Q, and Q, through (I.VI. 8). The result (IV. 17) is identical to that re-
ported earlier. ' We refer to Ref. 6 for a comparison with experiments.

The coefficient 4 of the logarithmic term in the
specific heat (IV. 17) includes contributions of
incoherent density and spin density fluctuations
and collective modes from both the long-wave
length region and the region of momenta near
2k~. The latter enter through A, Examining
the entries in Table 2, Appendix B of I, one finds
that in He3 the spin fluctuations, "paramagnons, "
dominate. This provides support for approxi-
mations which consider paramagnon effects ex-
clusively "

V. DISCUSSION

In conclusion, we make the following comments:
(1) The coefficient 4 in (IV. 17) is not exact since

it does not include contributions from the tempera-
ture dependence of the Landau parameters" and
possibly from X from (IV. 11). Brenig, Mikeska,
and Riedel" have carried out a temperature ex-
pansion of the thermodynamic potential Q[G] for
a selected class of diagrams corresponding to the
shielded potential approximation (SPA). If the ex-
pansion for the SPA is performed with the assump-
tions made in the present work, one finds, instead
of CSPA corresponding to 4 of (IV. 17), a coeffi-
cient of 4SPA'= 34SPA. This reduction arises
from "boson-like" terms in the expansion of Q[G],
terms which appear first in third-order pertur-
bation theory. However, it should be pointed out
that the factor of —,

' in Ref. 14 depends on their
identification of the zero-temperature Landau
parameters with the bare potential.

(2) It is obvious from the derivation of (III. 1)'
that this form of 5qeq is only valid if eq((&L,
i. e. , q &(01,«k~. As was pointed out in Ref. 6,
this restricts the temperature range in which
(IV. 17) hold to T«TI, . A rough estimate of T~
for He' at 27 atm is Tl -200 m'K. This indicates
that the temperature interval for which Cy is de-
scribed by (IV. 17) may not exceed 20 m'K. At
lower pressures this range is somewhat larger. '
With the Landau parameters slightly readjusted
and TI determined by emperically fitting the ex-
periment, (IV. 17) seems valid for T ( 50 m'K at
high pressures. At higher temperatures, (IV. 17)

I

begins to deviate appreciably from the monotoni-
cally decreasing C„/T data. "

The small range over which (IV. 17) applies led
Brinkman and Engelsberg" to question attempts
at calculating the specific heat of He' using Landau
theory. The answer to their question has two
parts. First, in the model that they use, the sus-
ceptibility does not contain m*/m [see Eq. (I. IV.
14)] . Thus to fit the experimental susceptibility
they must choose an enhancement parameter cor-
responding to our A, t'& =-2. 57, of Ao""=—19.
This modification Ao&'~ precludes any comparison
with the Landau result. Second, Landau' s theory,
which leads to logarithmic terms in C&, provides
the range of its applicability. The obvious conclu-
sion is that at higher temperatures, higher-order
terms in T will appear, possibly with strongly
enhanced coefficients. An indication of possible
sources of such terms is provided by the discus-
sion of Sec. IV of I. We infer that terms pro-
portional to eq' In leq/el ~

should appear in the
mass operator, with coefficients containing Landau
parameters to the fifth power.

Of course, an approach in which the specific
heat of a nearly ferromagnetic Fermi liquid can
be computed without expansions in T and ln T is
very desirable. Unfortunately, except for simple
models which become questionable as the in-
stability is approached, "such an approach has
not yet been found.

(3) One might object that, in the momentum
range where (III. 1) is important, the notion of
quasiparticles is no longer valid because the de-
cay rate is proportional to (q —k&)'. However,

one can show from the temperature expansion of
Q[G] that the damping will contribute at most to
order T'.
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