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tially, all atoms are in the ground level and no radiation
is present. It may then be easily shown that I'&+(t) re-
mains zero for all time. This is expected, because in
this model there is no way to get atoms out of the ground
state and to create photons. Therefore nothing happens.

In both Case I and Case II, it can be noted that 4ac «b,
thereby allowing the expansion (b —4ac) = tbI(1 —2ac/b ).

J. Premanand and D. L. Falkoff, Phys. Rev. 163, 178
(1967).

The factor 1.65 has arbitrary origin. It is the value
taken by the Boltzmann factor, (g&/gu) exp(hvnI/O) for
8 = 2hvul in a hypothetical nondegenerate two-level system
(gu=gl= 1). It is perhaps best to view 1.65 as nothing
more than an arbitrary factor, inasmuch as the notion
of a temperature is as often an encumbrance as an aid
when the system is not at or near equilibrium.

Recall that f&~(v, t) is defined in the continuum. See
Eq. (11) et seq.
' Cases B were included primarily because they repre-

sent a set of initial conditions that are more likely to
exist, physically, than the conceptually useful Cases A

(Cases A correspond to the relaxation of an initial dis-
.tribution of atoms with an extreme measure of popula-
tion inversion). Cases B may be viewed to correspond,
at least crudely, to a system of atoms (initially distri-
buted in the ratio of 1.65) that is instantaneously irra-
diated by an arbitrary light source at t= 0.

It may finally be noted that, for any of the examples
in Table I and/or Figs. 1-6, the asymptotic radiation
density can be used, after the fact, to define a Planck
temperature that also turns out to satisfy Boltzmann's
distribution law for the corresponding asymptotic atomic
level populations. This calculated asymptotic temper-
ature is generally found to be different from any of the
initial temperatures (the initial temperatures being de-
termined from the initial atomic level populations and
the initial radiation densities). At any rate, tempera-

ture is simply a defined quantity here and is in no way
essential to the basic formulation and solution of our
kinetic equations. However, if one were to persist with
a wish to keep track of time-dependent temperatures for
the various components of a given system, it would still
be necessary to first solve for the distribution functions,
Pew se. Then, with this knowledge and a set of appro-
priate (and reasonably well-agreed-upon) definitions,
the corresponding evolution of temperatures could be
computed. It has, of course, been demonstrated in
this section that such ari evolution is very much depen-
dent upon system parameters such as linewidths, statis-
tical weights, and particle and radiation densities. With
the availability of large, high-speed computers, the
approach that we are presenting is feasible for much
more complicated physical systems as well.

T. Suyehiro, Lawrence Radiation Laboratory, Liver-
more, California, C. I. C. Report No. D2. 3-001, 1965
(unpublished) .
' The results of the above cases, in which higher-

order terms were neglected (thereby reducing to a set
of three simultaneous differential equations), have also
been verified by this numerical method.

' This point may also have beeri noticed by Premanand
and Falkoff. For they noted that the fluctuations may
be non-negligible, and that the higher-order terms
should, in general, be included in conventional detailed-
balance equations for systems not at equilibrium. They
did not, however, indicate that the mean values (singlet
densities) must, in general, change noticeably by the
inclusion of these additional terms (although it is sus-
pect). Indeed, the present work explicitly shows that,
not only asymptotically but at all times, the singlet
densities of photons and atoms are essentially unaffected
by the inclusion of, or the neglect of, the higher-order
terms in the simple system models under present con-
sideration.
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The general interaction between quasiparticles and particle-hole eycitations in a neutral
Fermi system at T=0 is investigated. Density and spin-density fluctuations arid collective
modes are treated on an equal basis. Use is made of Ward identities to relate the vertex
function I' to the quasiparticle self-energy Z, and logarithmic corrections to the self-energy
are obtained. The coefficients of the logarithmic terms are calculated analytically in terms
of known Landau parameters.

I. INTRODUCTION

The microscopic theory of a normal Fermi liq-
uid, '-4 formulated in terms of Green's functions,
rests on certain assumptions about the regularity

of the mass operator, Z (single-particle self-
energy). Specifically, it is assumed that the real
part of the mass operator, ReZ =—M, can be expand-
ed in a power series near the Fermi surface, i.e.,
when Iq l=q-ky, &-0:.
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for an isotropic system. From this, one finds that
the quasiparticle energy is proportional to (q —k&),
which leads to a specific heat C&, linear in temper-
ature T as T- 0. ' One would expect Cy to attain
this asymptotic behavior at temperatures which
are an order of magnitude below the effective de-
generacy temperature, about 1'K in He'.

However experiments on liquid He', especially
those of the Illinois group, ' indicate that CyT-'
still increases noticeably as T decreases in the in-
terval from 100 m'K to a few m'K. '

Several years ago Anderson' suggested that the
mass operator may behave in an unexpectedly
singular way near the Fermi surface, because of
the exchange of collective excitations between
quasiparticles. Balian and Fredkin tried to esti-
mate the coupling of zero sound to quasiparticles
and found a term in the mass operator proportion-
al to & ln~, which in turn leads to a specific head
C y ~ T ln I 8/T I . Subsequently, Engelsberg and
Platzman' pointed out that the result of Balian
and Fredkin requires a piezoelectric ' form of
quasiparticle- zero- sound coupling which leads to
inconsistencies. They suggested that the coupling
should be of the deformation-potential ' form,
which in analogy to the electron-phonon coupling
in metals" results in a correction to Eq. (I.l) pro-
portional to & inc and a T 1nT correction" to the
linear specific heat. However, the observed tem-
perature variation of Cy in liquid He' cannot be ex-
plained on this basis. The coefficient of this loga-
rithmic term has the wrong sign, leading to a specif-
ic heat CyT-' which decreases rather than increas-
es with decreasing temperature.

The interaction between quasiparticles and virtual
zero-sound quanta is not the only source of a &'ln&
term in M. A second-order calculation of M shows
that terms of this form are present [compare also
Ref. 20]. In a Fermi liquid the long-wavelength
particle-hole spectrum consists of coherent collec-
tive modes and incoherent density and spin density
fluctuations. The entire spectrum is contained in
the poles and branch cuts of the vertex function I",
when considered as a function of the energy (&u) and
momentum (k) transfer in a scattering process in-
volving two quasiparticles. In the limit (d - 0,
k-0, I depends on &u and 1k[=k only as &u/k. It
is precisely this nonanalytic behavior in k which
leads to logarithmic terms in the mass operator.

Recently Berk and Schrieffer" and Doniach and
Engelsberg" pointed out that liquid He may be re-
garded as a nearly ferromagnetic Fermi system.
The low-temperature spin susceptibility of He,
particularly near the melting pressure, is greatly
enhanced over that of a noninteracting system. '
Consequently, liquid He may be expected to exhib-
it large, incoherent spin density fluctuations. The
virtual interaction between quasiparticles and these

paramagnons leads to logarithmic corrections
in Ct/' with the correct sign and order of magni-

tude. " These calculations hint at a possible ex-
planation of the anomalous specific heat of liquid
He'.

In this paper we investigate in general the inter-
action between quasiparticles and particle-hole
excitations in a neutral Fermi system at zero tem-
perature. The paramagnons" and density fluctua-
tions (including zero sound) are treated on an equal
basis. As previously mentioned, the dependence
of the particle-hole spectrum on &u/k, in the long-
wavelength limit, leads to logarithmic terms in
the mass operator. Apart from this, we also find
that short-wavelength particle-hole excitations
(k = 2k') yield additional logarithmic terms of the
same order.

The calculation of the coefficients of all the loga-
rithmic terms is carried out in the framework of
the microscopic Landau theory. ' The coefficients
are expressed in terms of Landau parameters. In
this analysis we shall use Ward identities to relate
the vertex function I' to the mass operator Z and
the crossing symmetries of I' which follow from
the Pauli principle.

A brief preliminary report of this work has
appeared earlier. "

II. FORMAL PRELIMINARIES

The Green's functions are defined as ground-
state expectation values of time-ordered products
of fermion creation and annihilation operators (
and gT. Specifically, the one- and two-particle
Green's functions have the form

G (x„x,) = —i(I Tg (x,)g (x,)!)

d4

=( —i)'& l Tg (x,)P (x, ') P (x, ')Pp (x,)I) (II.1)

84K d4Q, d4Q,
G=

(2,) (2.)' (2.)'Gn. y.(~ @ @'

, i[a(x, —x, ')+q, (x, —x, ')+q, (x, '-x, ')],»e

where I) is the ground-state vector, T the Wick
time-ordering operator, x = (r, t), K = (R, ~), Qf
= (q;, e; ), Kx = k r —~ t, and the Greek subscripts
label spins. We shall also use unit vectors e and
nz to write k = ek, qf = nfq.

The two-body force between particles is assumed
to be spin-independent. Then, in the absence of an
external magnetic field, the spin dependence of
the Green's functions simplifies considerably

(11.3)
I

G .p~='G"" p'~"G"' p' ~.
The product of the Pauli matrices in (11.3) can al-
so be written in the form ozp ozy = 25&~5pz
—&aP&vA. ~

The mass operator Z(Q) is defined by Dyson's
equation
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G-~(Q) = e —(q'/2m)+ p —Z(Q), (I1.4)

where p, is the exact chemical potential for T = 0,
and m the bare fermion mass. Z(Q) has a spec-
tral representation of the form

(» ) HF(») de y(q& e )
2m ~- ~'+ay

~

~

~

0
de' y(q, e')

(11.5)
2m E —& —sg

where q )0 and Z (q) is the frequency-indepen-HF ~

dent Hartree- Fock self-energy.
The vertex function I' is obtained from the cor-

related part of the two-particle Green's function;

G(1, 1'; 2, 2') = G(1, 2)G(1', 2') —G(1, 2')G(1', 2)

+ fG(1, K)G(1'3')F(3, 3'; 7, V)G(4, 2)G(4', 2').
(11.6)

The variables 1, 2, . . . are abbreviations for
1=-(r„t„n,) etc. Integration and spin summation
over repeated barred variables is implied in (II.6).
The Fourier transform I'~spy(ff'; Q„Q,) of the ver-
tex function has a form analogous to (II.2) (see Fig.
1), and 1"~~p~ can be decomposed as in (II.3) into
spin-symmetric and spin-antisymmetric parts I'"&
and I""&,respectively. When Q and Q, are on the
Fermi surface [Qf = (nzkF, ez --OI], the vertex
functions are denoted by I'0& (K; n„n, ), j=1, 2.

III. PROPERTIES OF THE MASS OPERATOR:
QUASIPARTICLES

Vfe recall some well established properties of
Z(Q) which are valid in normal Fermi systems at
zero temperature.

The Real Part of Z(Q)

The Hugenholtz-Van Hove theorem" relates the
chemical potential p, , the mean binding energy per
particle of an isotropic, homogeneous fermion

FIG. 1. Momentum and spin variables for the vertex
function 1

p&
(K; Q~, Q2) .

system at T = 0, to M(Q) evaluated on the Fermi
surface: "

p = (k&'/2m) —M(k&, 0), (III.1)

with kF' =3m'p, p =K/0 the particle density. The
nontrivial point to notice is that (III.1) holds for
the ideal-gas value of kp.

The energy dispersion law for Eq of the single-
particle excitations is obtained from

E- —(q'/2m)+ p —M(q, E-) = 0. (III.2)
q q

Solution of (III.2) requires knowledge of the analyt-
ic properties of M. Assuming that M(Q) can be
expanded in a Taylor series near the Fermi
surface [see (I.l)] we find from (III.2)

Z =(kz/vf")(q- kF)+O((q- k, )'). (111.3)

The effective mass m* is defined in terms of
derivatives of M evaluated on the Fermi surface

, Z F (sM(q, o)
m" m ~ sq kF-—q,

&M(k, e)
a '=1

e~ ~=0 '

(m.4)

The Imaginary Part of Z(Q)

The imaginary part of Z(Q) which is related to
the spectral function y(Q) of 11.5) by

ImZ(q, e) = —(e/2)&t)y(q e), (111.5)

is a measure of the inverse lifetime of the single-
particle excitations of momentum q and energy E.
Luttinger" has shown that for e((p

y(q, e) =y e'+O(e'), (III. 6)

where yq is a smooth function of q at least for
q -—kF. Equation (III.6), valid to all orders of
perturbation theory, is essentially a result of
phase space restrictions on the decay modes of
single-particle excitations, deriving from the
Pauli principle.

The denominator of the Green's function (II.4)
may now be expanded around z =Eq with the
result

G(q, e) =~F/(e e+in )+-G'"'(q, e), (III.V)

where eq = vF(q —kF), vF =kF/m~. The infini-
tesimal pq has the sign of q- ky. The spectral
density, —(e/l & I) ImG '"c(q, e), of the incoherent
part of G vanishes at the Fermi surface, whereas
the spectral density of the first term on the right-
hand side of (III.V) (the quasiparticle contribution)
is 2maF6(e —eq). Equation (III.V) is valid for the
low-lying excitations (near the Fermi surface)

Migdal" has shown that the renormalization con-
stant a~ is equal to the discontinuity at kp of the
momentum distribution function nk of the inter-
acting particles, hence

0~a ~1.E
A basic hypothesis of Fermi liquid theory is that
a~) 0.
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where the quasiparticle lifetime increases as
(q —kF) ' according to (III.6). Verifications of
Landau's theory of a normal Fermi liquid' 4 use
(IIL7) as a starting point.

PROPERTIES OF THE VERTEX FUNCTION:
PARTICLE-HOLE EXCITATIONS

which is a consequence of the Pauli principle.
From its definition (II.6), we see that this symme-
try is shared by the vertex function. In terms of
momentum variables, the symmetry relation be-
comes

(K; Qg, Q2) =-g C "iF (Qg- Q2; Q2+K, Q2)jj
(IV.2a)

= I' ~ (—K; Q2+K, Qi —K). (IV.2b)(j)

1 13
where C ~ ~ g

=
2jj jj'

The relation (1V.2a) is of some importance in what
follows. We discuss its implications in some de-
tail by looking at Feynman diagrams for F.

The diagrams of Fig. 2 are representative of

K+@
I

Q llew [OI O, -a,

The two-particle Green's function, defined in
(II.2), has the following rather obvious symmetry
property,

G(1., 1'; 2, 2') = —G(1'1; 2, 2') = —G(1, 1';2', 2)

(IV.1)

the four mutually exclusive classes into which
the set of all diagrams of I maybe divided. A
given diagram of I' may be split into two parts by
cutting a pair of lines (i) with four-momentum
transfer K [Fig. 2(a)]. (ii) with four-momentum
transfer Q, —Q, [Fig. 2(b)]. (iii) with total four-
momentum K+Q, +Q, [Fig. 2(c)], or finally, (iv)
it may not be possible to split the diagram into
two parts by cutting just two lines [Fig. 2(d)].
The complete set of diagrams for l may be gen-
erated by starting with any one of the above four
classes of diagrams. If we denote by &'& I' all
diagrams which do not belong to the class (i), i.e.,
which do not have a K cut', we obtain the Bethe-
Salpeter equation for I' by iteration:

»"'(» q q) "'r'-&'(» q q) fd'&

(K; Q„Q,)R(K; Q, ) I' (K; q„q,), (IV.3)
(1) (j) (~)

where R(K, Q,) = G(K+ Q, )G(Q,). Notice that (IV.3)
holds separately for the spin-symmetric (j =1)
and spin-antisymmetric (j = 2) part of I'. The in-
tegral equation (IV.3) is depicted schematically in
the top line of Fig. 3.

Clearly we may also start with a kernel &'& 1
which contains no diagrams of class (ii) (no

Q, —Q, cuts ) and generate an equation for F with
intermediate lines B(Q, —Q„Q,). See the lower
line of Fig. 3. The equations for these two-
particle hole channels are completely equivalent.
In the first channel the momentum transfer K is
a parameter; in the second channel the parameter
is Q, —Q, . The kernels "& I' and &'& I" are related
through

")F")(KQ Q)
=- Q C, I' (q, —q„. q, +K, q,). (IV.4)

(2) {j)
j'=1

Thus we see that the crossing symmetry (IV.2a)
is a statement of the equivalence of the K and
Q„- Q, dependence of I'.

K+0, K+A,

(b)

+Q)+ Qp-Q3 Q) Qg

jr3'i ~a

Q, K+Q2

(c)

FIG. 2. The four classes of diagrams for the vertex
function. m represents the single-particle Green's
function. 0 represents arbitrary diagrams contributing
to I'; Q3 is an integration variable.

FIG. 3. Bethe-Salpeter equations for the first, "K cut, "
and second, "Q&-Q2 cut, " particle-hole channels. The
diagrams (a) and (c) represent the irreducible kernels ( )1
and ( )1, respectively. The diagram (d) is contained in
(a) and diagram (b) is contained in (c) .
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(u5(e )5(s)
A(K, Q) = 2miaE'

cu —V k+ ie
q

where sgnn=sgn(q ~ k). R"(Q) is the k limit" of
R(K, Q):

lim lim R(K, Q) =R (Q).
k' -0+-0

+R (Q), (rv. 5)

(IV.Sa)

The co limit is, at zero temperature, identical
to R(0, Q)."

The spectrum of particle-hole excitations is ob-
tained from the singularities of I"& & (density fluc-
tuations) and I""& (spin density fluctuations) in
the variable K, or equivalently from the singular-
ities in Q, —Q, . If I'&j (K; Q„Q,) are calculated
from (IV.3) the singula. rities in Q, —Q, are con-
tained in (1)I'(j)(K; Q„Q,) exclusively.

Of course the particle-particle channel [class
(iii) above] can also be used to generate an equa-
tion for F with the total four-momentum K+ Q,
+ Q, as the pa, rameter. This equation is trans-
formed into itself under the variable transforma-
tion K- Q, —Q„Q,-Q, + K, Q, —Q„corre-
sponding to (IV.2a), since this leaves K+ Q, + Q,
invariant.

As a rule, the Bethe-Salpeter equation (IV.3)
cannot be solved. Neither the irreducible '

kernels (1)l' (j) nor the particle-hole propagator
R(K, Q) are known in general. However, if we
are cOncerned only with the long-wavelength, low-
frequency behavior, it is only necessary to know
I' jq)(K; Q„Q,) in the limit K- 0 (i.e., k((kE,
v((p). Since (1)I'(j) is, by construction„a
smooth function of K, we can set K= 0 in(1) I'(j)
in this limit. The K dependence of the full vertex
function is then governed by the behavior of
R(K, Q) for K-0. Using (III.7) for the single-
particle Green's function, we obtain an expres-
sion for R(K, Q) for K~ 0 which depends on the
ratio ~/k':

Q = (0, n,kE). In the following we will only need
T j) qr Qi = (0, nikE), where i = 1, 2.

Tk &j(n„n,), the forward scattering amplitude
for quasiparticles on the Fermi surface, can be
expanded in a Legendre series

Tk(j)(„- „-) g ~(j)E(„- „-)
l=0

(IV.10a)

Similarly

T~(j)(- -) g E(j)E(-.-)
l=0

(IV.10b)

Taking the e limit (s - ~) of (IV.S) we find

T~(j)(Q Q) P(j)(Q Q)
dn3 ~k g

(IV. 12)

The crossing symmetry relation (IV.2a) can be
used to obtain the sum rule

[A "&+A ~'&] =0,
l=0 l l (IV.13)

which simply states that the forward scattering
amplitude for two quasiparticles of equal spin is
zero. Since there are some subtleties involved in
obtaining (IV.13) from (IV.2a), we discuss the
derivation in Appendix A.

The EI(j) are the usual real, dimensionless
Landau parameters. " Three of them are directly
connected with observable quantities:

C
V m+

Effective mass: = = 1+&I' ~'&

(p )

which, using (IV.10), leads immediately to a rela-
tion between EI(j) and A[(j):

(.) I(j)
l

—
(2)1+E, ' /(2I+ 1)

lim lim R(K, Q) =R (Q) =—R(O, Q).v-0& -0 (IV.Sb)

A(Q), the difference between R (Q) and R (Q), isCO

seen from (IV.5) to be

b(Q) =R (Q) —R (Q) =2»iaE'5(e)5(e ), (IV.7)

and is nonzex'o only at the Fermi surface. For
K-O, using (IV.5), the Bethe-Salpeter equation
(1V.3) can be written in renormalized form as
first shown by Landau. '

~"'(»; e„s.& ""'(a„s.&.f",";=

&& & (Q„ns) . T (K; n„Q,) (IV.S)

with s =&@/vEk. The integral in (IV.S) is over the
Fermi surface. T(A is the renormalized vertex
function

T (K; Q„Q,) =ZEI' (K; Q„Q,),
(Iv.g)

zE = m*kEaE'/2m',

and z (Q„n,) is the k limit of T(K; Q„n,) for

First sound velocity: c,' = ~ (1+Eo&'&),3mm~

(rv. 14)

Spin susceptibility:

where C~~'& and y&'& are the specific heat and
spin susceptibility of the noninteracting system.
At present, in liquid He' there is no information
available on the values of the remaining param-
eters.

The Landau equation (IV.S) can in principle be
solved for any number of parameters. But, for,
comparison with experiment, the usual proce-
dure is to assume Et(j) = 0 for I ~ 2." In Sec.
VIII we solve for T(j)(K;n„n, ) in this model and
determine E,t'& from (IV.13).

V. WARD IDENTITIES: COUPLING OF PARTICI.E-
HOLE EXCITATIONS WITH QUASIPARTICLES

The equations of motion for the single-particle
Green's function relate the mass operator to the
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two-particle Green's function and thus to the ver-
tex function. For the purpose of calculating the
coupling between particle-hole excitations and
quasiparticles this relationship is not very useful
because (i) it involves the bare potential and we
want to express the coupling entirely in terms of
Landau parameters, i.e., in terms of the effective
interaction between quasiparticles and (ii) the inte-
grals include regions of four-momentum space in
which the vertex function is not known.

Z and r are also related through %'ard identities
which follow from conservation laws. ' ' We will
employ the following two pairs of identities:

f q.' )' (Q, Q, )B ((),), (V.)a)

&Z())) =if d'q, ~),())( )~k( )(2+)4 ) 2 2 ) (V.lb)

and- "'')) f""~'-"(e e)z (o)- (v) )

=-i (, ,
'r (q, q, )~ (q,)q.. (v. ld)

aq (2w)'

1 —a&' s 2)'r n, 2A 2, V.2a

nkvd(I
—ay ') =i

(2 )4r (n, q, )A (q,)q, .CPQ (d(1) ~ (()

(V. 2b)

If (V.lb) is subtracted from (V.la), the right-hand
side may be simplified using (IV.7), (IV.II), and
(V.2a):

d n rk1

xr (n„q,)I~"(q,)+r (q, q, )~(q,

=-a -' J (dn, /4v)T (q, n, ),
k(1)

where we have used the definition of T, (IV.9).
Hence,

sg(q) sZ(q) dn, k(l)(
E Bc &p, 4m

Using (1II.4), (V. la), and (V.lc) we obtain, for Q on '

the Fermi surface, the renormalization relations

m*/m = I +E ")/3 However, (V.3) and (V.4) are
valid for quite general values of Q.

As we-discussed in Sec. IV, the spectrum of
particle-hole excitations is contained in the
Q, —Q, momentum transfer singularities [here
Q, —Q, - (e, q —n,kF)] of rk&1)(q, n, ). In order to
exhibit this dependence of Tk(1) explicitly, we
employ (IV.2a)

T ()(q -) l. T()(~ q -)
0

2
C l. »m T (e, q —n,k&, R+ n,k, n, )

k-0
2

=- Z Cl. lim T ~ (e, q- n,k;n„n, ). (V.5)
j=I n~ n2

As shown in Appendix A, the limit n, - n, of T ~

in (V.5) is different from the value of T(J) a n,
=n, . Nevertheless, in the limit n, -n„T(J in
the third line of (V.5) only depends on t e angle
between q and n, . Thus we expand T(j in
Legendre polynomials

lim T (c, p; n„n, )
n) n2

= + T ~ (e, p)P (P. n, ),()
l 0 l lP

p=q —n,k&, ipl=p. (V.6)

Inserting (V.6) in (V.5) and using this in (V.3), we
find for the real part of the mass operator [with
ReTI(i) = Tfb)]

~sM (q) sM(q) i

BE Bp,

2 OO

= ~ c, „. ,"; »,(')(., p)~, (—' ~ .). (V.7)
j=1 " l=0

Similarly

q BM(i)) m BM(i)))aZ y ac 'p~ eq

2
=Z C, .

d" Z i ' (e, p)S,(p n, )n n, .1j 4m

A formally identical procedure, used after adding
(V.lc) and (V. ld), leads, with (V. 2b), to

q &Z(q) m &Z(Q)
El k& se k& &q

= —J (dn, /4m)T (Q, n, )n n, . (V.4)

This renormalization procedure i's well known in
Fermi liquid theory )~ For example Eq. (V.4) with
Q=(nk&, 0) reduces to the effective mass equation

(V.7) and (V.8) constitute a system of differential
equations for the real part of the mass operator;
the spectrum of particle-hole excitations enters
through the TI(J&. From the solution of these
equations we obtain the coupling between density
and spin-density fluctuations and quasiparticles.

In the next sectio~ we discuss the form of the
solutions of (V.7) and (V.8) which contribute log-
arithmic terms of the self-energy. In Sec. VII
we explicitly evaluate TE(1) and find the coeffi-
cients of these logarithmic terms.
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VI. LOGARITHMIC TERMS IN THE MASS OPERATOR

We are interested in the mass operator M(q, e') for small values of e(e(( p, ) and for Iq —
kg I (( kP. In

Eqs. (V.7) and (V.S) e is a parameter, whereas the integral over the Fermi surface covers the region

Iq-u l&p= lq-nu i~q+u
i.e., we need to know TI j (p, e} for small e and 0 «p «2k&. Consider Eq. (V.7) first. We introduce a
cutoff momentum kz, with I q- k~ I Kg((ky', anddivide the integration domain into three regions:

(i) Landau region (LR): P &kl, ,
(i.::) Middle region" (MR): kf, «p &2k'- kf„
(iii) Far region (FR): 2k' —kl, «p&kP+q.
LR: In this region we insert for ff j (e,p} the solution of the Landau equation (IV.S), defined in (V.6),

which depends on e and p only through s = e/vPp. The integral on n, in (V.7) may be transformed into an
integral on s:

le/e I

dn, -(j) p - 1 e ' q dk-(j) ~
q

LR4v I ' I p ' 2 vp& I/ Is I I I e s2v&k+/'
' T (e, p)P (—~ n, )= —. ~T (s)P ~s———

L

(VI.1)

(V1.2)

The integral on s in'the interval I in (VI.1) yields lnl e/el I multiplied by (VI.2) if the upper limit I e/e
is larger than s,. If, on the other hand, I e/eq I &s,(&1, the argument of the logarithm is changed into
I eq/ef, l .

Since we are ultimately interested in the behavior of M(q, e) on the energy shell, "e = eq, in the follow-
ing we consider only the case I e/eql =1.

Altogether we obtain for the right-1;and side of Eq. (V.7) from LR

where ef, =vPkf, and eq =vF(q —ky'). We show in the next section that TI (e,p) =(—1) Tf (—e, p); this
- (j) I ™(j)

is alsothe parity of the right-hand side of (VI.1). The interesting case is 0( Ie/ef, l&(land for the moment we put
q =A~, i.e., eq =Oinordertosimplifythediscussion.

Consider the contribution to the right-hand side of (VI.1 from the lower limit of the integral. In this
interval, I given by 0& le/ef l(s&so«1 we expand TI j}s) in powers of s." For even I, the general
term in TI(j)(s) is ~s (n=0, 1, 2 ) and in Pf it is ~(e/s) m=0, 1 I/2) (since we put e =0). The
integrand, multiplied by the a' in front, is ~s[2(n-m)-3]a[2m+ 2 Hence for n —m 0 1 we obtainSerms from
interval I &(2n, (n=0, 1, 2 ' ). Inf, for n —m=1 we obtain'a term ~e2m+2lnle/ef, l (m=0, 1 '. ) from
the lower limit. Analogously, for odd I the logarithmic terms are ~e + lnl e/eZ, I (m =0, 1, 2 ).
Therefore the leading logarithmic contribution arises for even E and m = 0. In the interval s, (s, e only
enters into the polynomials I'g and there are no further logarithmic terms.

Now we drop the simplifying assumption eq =0. Then eq appears in (VI.1) in two places: in the upper
limit and in the argurgept of I'). As before, the logarithmic terms arise from the term ~s in the expan-
sion of the product TI1jj(s)PI(seq/e). 28

The coefficient of e2 now contains, apart from terms independent of eq, terms ~(eq/e)2.
%e summarize our discussion by writing for the coefficient of s'

2

g=1 /=0 -- s=0

g Cl. ~ 4' Tf (e, p)PI —n, =regular terms in (e, e )
0

+ (I/v&k+)2 (Qoe2+ Q,ee + Q,e 2)lnl e/a&I+0(es).1 q 2 (VI.3)

The only difference between the right-band side of (V.7) and (V.S) is the factor n n2 in the latter. In the
LR, this factor may be replaced by 1 to obtain the leading logarithmic term. . Consequently the right-hand
sides of (V.7) and (V.8) are identical and equal to (VI.3) in the LR. We still have to discuss the middle
and far regions. - (j)MR: Here we assume that Tf (e, p) is expandable in powers of e andp. We can check this by studying
typical low-order diagrams or infinite sums of selected classes of diagrams (bubble sums, ladder sums).
In. these approximations the radius of convergence for the power series in e is roughly vga (In the LR
it is vip which shrinks as zero as q -kF). Hence there are no log-terms coming from this region.

FR: The vertex function for small energy e and momentum transfer P = Ny corresponds to the scatter-
ing amplitude for two quasiparticles on opposite points of the Fermi surface (small total energy and mo-
mentum). This is the dangerous region if Cooper pairs are formed. It is beyond the scope of the Landau
theory to provide information about the vertex function in this energy-momentum region. "

I et us assume for the moment that the logarithmic terms in M are entirely due to the LR, i.e., to long-
wavelength particle- hole excitations.
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Examination of (VI.3) leads us to the following ansatz for M22:

a [~(q)-~ (q)] -=a m(q)= (co~2+m, ~2e +C,ee 2]inl ' l+0(e2).reg E g~ k~ Q Q
(vl.4)

This ansatz (VI.4) is now inserted into (V.V) and (V.8) and the coefficients of e2, we&, and e&' are com-
pared with the right-hand side of (VI.3). The differentiation with respect to the chemical potential need
only be applied to e& in the order in which we are working; Be&/Bp, can be replaced by —v&Bk /Bll.

Now we encounter an inconsistency. The C' obtained from (V.7) are different from those obtained from
(V.S). They only agree if either $, =$2=0 or p, =kF /2m. Explicit calculation in Sec. VII shows that
Q, 22 0. Further, p, is equal to kF /2m only in an ideal Fermi gas. Thus we conclude that additional log-
arithmic contributions must exist which enter into (V.7) and (V.S) with different coefficients.

If one looks at second-order diagrams of I', one finds that our assumption about the FR is not tenable.
There are in fact logarithmic terms coming from the FR in every order. To include these we add a term

(1/v&k )2(Xoe2+Xlee +X2e 2) lnl e/e&l
Q

to the right-hand side of Eq, (VI.3), where the intregal on n2 is now understood to run over the LR and
FR. Therefore we write

O . "' r (e, (t)pt l

e ' )=re)tntnr terms

(vl. 5)

(VI.6)

-(
+ (1/v k )'

i
ie'+i ie +i

i

'+ le/ + (e').

The lower line is obtained from (V.S). Since n ~ n, = —1 in FR, the X terms enter with a relative minus
sign. From (V.7), (VL4), and the first line of (VI.5) we find

~k~ eh~
(t) +)(o=34'o+v @„Q,+X, =2@,+2vF @2, (t)2+X2=4„

and from (V.S), (VI.4) and the second line of (VI.5)

4'o —Xo ——34'o+. t)t 41, 4'1 —Xl = 241+ 2 t)t 4'2, Q2 —X2 = 4'2. (vl.v)

(vl. s)

The coefficients Ci and Xi are determinedunambiguouslybythe Qi. With the help of the Landau relations
(1V.14) for m*/m and vF&kF/() P = kF2/3mm*&, ' we find

~ (A (1)/F (1) +A (1)/F (1))P ++ (A (1)/F (1) ~A (1) /F (1) )2y

X (A (1)/j' (l2 pA (1)/F (1))g

P (A (1)/F (1) A (1)/F (1) )Ct n( —(A (1)/F (1) A (1) /F (1))C) n( Q

VII. EVALUATION OF THE COEFFICIENTS (t) .
z

(VII.1)

In order to obtain the (()i's we have to solve the Landau equation (IV.S) for T (K; n„n, ) [Compare Eqs.(j)
(V.6) and (VI.2)]. t is convenient to replace the real energy transfer &u by the complex frequency f:
T(j )((o, k; n„n2) - v (f, k, n„n2). The real part of the vertex function is then obtained from

T (&u, k;n„n2)= lim &2[2 (&u ', i)I, K;n„n )+&2—((d+i)I, k;n„n2)].
q-0

The integral equation for 7 is (we omit the index j for simplicity)

(VII.2)r(r, 2;n„n, )=A(n, n, )+fe 'rt(n, n, ) r(r, 2;n„n, )—
3

with & =f/vF k and A(n, n2) = T (n, 'n, ).
We now introduce polar coordinates, with e =K/k the polar axis, and use the rotational symmetry to

write

2.(z, k;n„)),) = + + & 4w7I I (~)I I (n, )yI (n, ),
I QI 0[m]1212

A(, ,) = Z A~ (, ,) = + . +
2I IAII'I (,)&I (,), (V11.4)

(V11.5)
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The Yl are the spherical harmonics; Pl and Ql are Legendre polynomials of the first and second kind,
respectively. 'o The symbol [I] implies that the sum on I for fixed l„ l, is restricted to l m I ™n(l„l2).
In (V11.4) we have used the addition theorem for the Ylm.

Inserting (VIII.3)—(VIII.5) into (V11.2) and comparing the coefficients of Ylm (n, )Yl »&(n, ), we deduce

A. A
m m m l1

l 2l +1 ll ll 2l +1 ll (V11.6)
12 1 l 0 13 32 1 12

3

with Jl I (z ) = + [4»(2l+ 1)]'~'Ql(z)f dnYI '(n)Y0(n)Yl "(n)
1 2 l 0 m 2m

=[(2l, +1)(2l,+1)] ~'Z (2l+l)Q (z)C &
l l l

l=p l mp —m' (VII.7)

(vll. s)

(vli. o)

l, l l2
The coefficients C 0 'm are related to the Wigner 3-j symbols, " 0, by

Cl, l l, —(—1)m~ l, l l,
l

l, ll,(
mo —I &mo —I) o oo) '

From the properties of the 3-j symbols we find: (i) Jl, l, m(z)= Jl, l,m(z), (ii) the coefficient of Ql on the
right-hand side of (VII. 7) vanishes unless (- 1) = (- 1)l, + l, . Furthermore

Ql(- )=(-1) '
Ql( )

hence J (—z) =(- 1) ' ' J (z). (VII.10)

Taking the forward limit of 7 in (VII.3) [compare (V.s)], we arrive at

lim v(z, K; n„n, ) = Z Z Z 4&&7' (z)Y (n, )Y (n, ) =— Z 7' (z)P (n, e)

from which we obtain vl(z) in the form

(VII.11)

(VII. 13)

+1) ~ ~ L [(2l +1)(2l +1)j C (VII.12)

Again, only those vl l enter in (VII.12) for which (—1) '+ 2 = (- 1) . From (VII.6) and (VII.10) we have
1 2

(- z ) = (- 1) '+ '~ (z) and r (- z ) = (- 1) ~ (z ).l

Before we proceed, let us summarize our method for obtaining the coefficients &t&f from the unwieldly form-
ulas above. Given the Al, we calculate &1,1,~(z) from (VII.6). Inserting the result into (VII.12) gives the
7l (z) from which we obtain Tl(s) through the analog of (VII.1). The Tl(s) is then inserted into (VI.2). The
Ql's are obtained by comparing the coefficients of c', eeq, and eq'.

This program can be carried out with any number of Aj's. Since only three of the Landau parameters
(A,&'&, A, &'&, A,&'&) are known for He', we proceed using a model in which

A =0 for 1~2
' j)'
l

(VII.14)

and where A, "& is obtained from Eq. (IV.13). In this model &1 l =0 for l, l, ~ 2. This follows from (VII.6)
and the symmetry wl, l, =v'l l '. The solutions of Eq. (VII.6) are (we again suppress the index j)

z Oo(z) =A~[1 —
3& A, z J„"(z)]D &(z), 7~Do(z)=7o&o(z) =&~ Ag, z J oo(z)D-&(z),

v„o(z) = —,'A, [1—A,zJ„O(z)]D-'(z), v„'(z) =w„'(z) =3 A,[1—,'A, z J„'(z)]—',

D(z) = [1—A,z Joo'(z )][1—&A, z J„o(z)]-&A+,z '[Jo,'(z )] '.

The Jl l (z) are given in Eq. (VII.7). Using the value of the 3-j symbols, we arrive at
1 2

Jooo(z) = Qo(z) = —,
' ln[(z+ I)/(z —1)], Jo,'(z) = &3Q,(z) = v3[z Qo(z) —1],

J„o(z)=3 Q,(z), J„'(z)=—,'[Q,(z) —zQ, (z)].

From (VII.12) we get

(VII.15)

(Vll. ls)
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T 0+ 7'~ 0+ 21 ~q~ Tq: 2v 37'qo: 2 &370|

(VII.17)y, =2(v„o v„~), v =0 for l ~ 3,

from which we obtain Ti(s) according to (VII.1). The wl I (z) and 7'l(z) are analytic functions of z for
Imz c0. They have a. branch cut along —1(Rez(l resulting from the logarithm in Jl,l, .(z). In addition,
1solated poles may exist on the real mls i Re zl )1 at the zeros of the denominators in'('Vli 15) The
appearance of these poles depends on the numerical values of the A~'s. The branch cut corresponds to
the continuum of particle-hole excitations; the discrete poles give the spectrum of collective excitations.
In any case, whether these poles occur or not, the real functions Tl(s) in (VII.18) are well behaved in the
interval —l(s(l and are expandable in powers of s around s=0. The formulas (VII.15)-(VII.18) hold
for both values of j. If we now insert TI(s) of this model into (VI.2) we obtain the Qz by straightforward,
but somewhat tedious algebra. The result is (with the index j reinserted)"

j=l
(VII.18)

The vanishing of P2 is quite general and does not depend on our model assumption (VII.14). From (VII.2)
we see that

lim ~(0, K;n„n, )n-n1 2

is independent of k n„ thus vl(0) = 0 for l c0 and hence Tl(0) = 0 for I e Owhich implies p, = 0.
Equations (VII.18) together with (VI.8) solve our problem of calculating the coefficients of the logarithmic

term in the mass operator. The result (VII.18) [but not (VI.8)] depends of course on our model assump-
tion (VII.14). The coefficients Qf in (VII.18) include both the contribution of incoherent density and spin
density fluctuations and zero sound. The zero-sound contribution to the @~ is calculated explicitly in
Appendix B where we also exhibit numerical values of the 4z for He at two pressures in Table II.

VIII. CORRECTIONS TO THE ENERGY AND LIFETIME OF A QUASIPARTICLE

The logarithmic corrections (VI.4) to the mass operator lead to a correction ~e 'In l eq/el I to the
quasiparticle energy (III.3). We now derive the coefficient.

From (III.2) we have, with eq" & = q'/2m —p,
E =e" +M(qE)=e" +M (qE)+6M(qE)

q q reg ' q

Mreg denotes the regular terms in the expansion of M in powers of Eq, 6M is given in (VI.4). We put

+6 E, E =e +0[(q —k )'];
q reg q q' reg q I' (VIII.2)

then M (qE +6 E )=M (E )+8M (q e)/eel 6 E
reg ' reg q 9 reg reg reg ' e=e q q'

Combining (VIII.1)-(VIII.3) and (VI.4) we get for the leading logarithmic term in 6 E
6 E =[1—&M (q, e)/&el ] '6M(qE +6 E ) =a 6M(q, e )+O(e 3)

q q - reg ' E' =e reg Q Q I' q q
q

=(1/v&k+)'[4, +4,]e 'Inle /e&l+O(e '),
q q I. q

(VIII.3)

(VIII.4)

where we used C, =O.
The real and imaginary part of the mass operator Z are Hilbert transforms of each other as is obvious

from the spectral representation (II.5). Especially. ,

M(q, &)-M (q) =Pf (de'/2w)[y(q, e')/(e —e')], (VIII.5)

aF6y(q, e) = [m/(vF&F)'] (4,e'+4, ee )(el,
for e-0, q-kF. This may be checked by inserting (VIII.6) into (VIII.5).

The correction (VIII.6) to y gives a correction o.(4,+ 4,) leq I to the inverse lifetime of a quasiParticle
the leading term still being given by (III.6).

(VIII.6)

where the right-hand side is the principal value integral. The logarithmic corrections (VI.4) to M imply
a correction
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IX. DISCUSSION

Our principal result is the procedure for obtaining logarithmic corrections to the quasiparticle self-
energy, resulting from the exchange of density and spin fluctuations, in terms of Landau parameters. We
have calculated the coefficients of these terms explicitly in a model in which AI(j) =0, l ~ 2. The approach
of a system to a ferromagnetic instability is characterized by E, ' -—1 or A,&'&- —~. As the transition
is approached, the (A, ' )3 term in @'o, Eq. (VII.18), becomes dominant. This is the "paramagnon" limit.

In liquid Hes at a pressure of 27 atm m*/m = 6 and the static spin susceptibility is enhanced by a factor
of nearly 20 over the value for a noninteracting system. From (IV.14) we then find A, (2& = —2.6. This
value is sufficiently large to dominate 4, as may be seen in Table G.

A word of caution is in order concerning the validity of models such as (VII.14) near an instability. There
exist a set of inequal, ities for the parameters FI(j), which follow from stability requirements on the ground
state, ' namely, F&(& )- (2l+ I) for all I and j. Suppose that for some I=/„EI = —(2l, + I)+x with 0&@«1;
then -AI =(2I,+ I)/x))1. From the sum rule (IV.13), which holds for all x)0, we see that the large neg-
ative value of A)0 must be compensated by other terms in the sum. But the A.)'s are bounded from above
by (2l+ 1}and an increasing number of them will be needed as the system approaches the instability.

In other words, the forward scattering amplitude T&(n„n,}becomes strongly angle-dependent. A model
in which only a few Legendre coefficients of Tk(n„n, ) are taken into account will not be valid when the sys-
tern tends toward an instability.

APPENDIX A

We consider the vertex function,

r ., p~(K Q Q'=r ., pa= r""np'.x" r""@'.~
(Al}

(A2)

(A3}

(A4)

for the case o. = ~ = P = X

r =r =~ r~»+~ r~».
&QqQQf

The crossing symmetry (IV.2) implies

r(K; Q„Q2) = —I'(Q, —Q2; Q~+ K, Q2),

and for K=O, Q, = Q2,

r(o; Q„Q,) =o.
Since the (d limit of R(K, Q) =G(K+Q)G(Q) is equal to R(0, Q) we infer from the Bethe-Salpeter equation
(IV.3) that I'(0; Q„Q,) = r&(Q„Q,). From (A.4), with Q on the Fermi surface, it follows that
that

r ( ) r" ( n)=0.
Now consider the (() limit of (IV.S), with Q, =Q, =(o, nba},

T(()(g)(««) Tk(J)(««) f (d«tl/4 )T~(J)(«g))T«(()(J)( ff ««)

However T (n, n) may also be written in the formu j)-
T (n, n) = lim T (n —n';n, n) =-lim ~ C,T (0;n', n)
&(j)-- . (j)- -, -- . ~ (j')

2
= —lim Z C,T ~ (n', n).

n'-n j'=1

(A6)

(A6)

(Av)

Inserting the expansion (IV. lob),

T (g)(- -) g r (j)(- g g (j) (; -)
l=O

we obtain

Tk(j)(- -)
Z=O

Then, using (A.8) in

T,~(i)(- -) P (l=0

g C,s,j.j'=I jj'
(A.6) we have

) z (j)z (j) p ()'))-
2E+ 1 ~ ~ .I gy' l

g =1

(As)

(A.9)
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From (A.5) the sum on j of (A.9) must vanish and this leads to

(A "&+A (2') = 0.
0 l l

We emphasize that

T (j)(- -)„g (j)
l=o

To see this let us assume the contrary. From (A.5) we would obtain

Q [E(»+E& &] 0
l' —0

l l

(A. 10)

(A. ii)

Subtracting (A.li) from (A. 10) yields
2

Z (E,l
)'/(2l+ 1+El ) =0. (A. i2)

j=l /=0 '

Because of the stability criterion E )—(2l+1), every term in this sum is non-negative. (A. 12) is only
El(j)=0 for all l and j. This is only true in the trivial case of noninteracting particles.

Finally we remark that T&(j)(n, n') is also discontinuous in the forward direction, i.e.,

T&(j)(- -) ~ g A (j)
ll=0

In fact, one finds from (A. 8) that

2 QO

p T (j)(- -„) g g E(j)
j=1 j=1l=0 l

APPENDIX B

(A. is)

In this section we calculate explicitly the contributions of collective excitations to the coupling constabts
Qi for the model Al (j) = 0 for l ~ 2. The terms involving e/2nEkEs in the argument of Pl in (VI.1) can be
ignored, and the sum on l on the right-hand side of (VI.l) becomes

QO

Z T (s)Pi(s ~ ) =T,(s) —,'T, (s)+T,(s—)s +2T,(s)s'—~~ (B.i)
l=o

for each value of j. From (VII.1) and (VII.12) we find

T,(s) —,T,(s) = Re[—~oo'(s)+3&»'(s)], T,(s) = K3 Re&„', 2T, (s) = 3Re[&»'(s) —&»'(s)].

The analytic properties of &i,i,m(Z) are summarized in the spectral representation,

( ) =, , (-)+ f „(d '/2 )[, , (~')/( — ')],
1 2 1 2 1 2

with the spectral functions,

(B.2)

(B.s)

yl l
()= li yl l (,q)=' li [ l l ( +'q) —

l l ( —')1)].
1 2 ~~0 12 ~~0 12 I 2

From (VII.15) and (VII.16)

&oo'(&)=E,
~

1+ '"' '
~, & '(&)= ' ' "' ' 7„'(&)=-,'A, li+ ' '

~,
~ '(s)=' —,(B5)

where Do(z) = 1 —(E,+A, &')&u(z), D,(&) =A —1+ (z'—l)&u(z), &u(z) =—ln 1
—l.

1

The spectral functions are obtained using (B.4). We find

sD0
g„'(s)=sg, '~(s)sg» s ') S(SS,'(s)], g„'(s)=g„'(s)=((//g)(s(/g)sg„'(s),

(B.6)

ll„'(s) = —', (A, /E, )'s'y„'(s), y„'(s) = —,
'

m sgn [SD,'(s)/&s] 5[D,'(s)], (B.7)

whereD, '(s) =ReD, (s+iq), D,'(s) =ReD, (s+i7)). (B.8)

The existence of zeros for the arguments of the 5 functions depends on the numerical values of the
Landau parameters. In Table I we list the Landau parameters for liquid He' at two pressures from Ref.
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6. E '2& is obtained by using (IV. 12) and (IV. 13)."
At both pressures E,&'&+A "&s' is positive. A solution of the equation (E,"'+A "&s')&u(s) =1

exists for s )I if 1 —I/m~ = —,A, &'& (1. The dispersion law for this collective mode is &u = vEsok =~@
corresponding to longitudinal zero sound (azimuthal index I =0). There is also a transverse, spin-
symmetric mode (m = 1) with velocity DIES,', obtained from the solution of (s'- 1)~(s) = 1 —2/A, &'& when
A, &'& )2 (E,"&)6), which is present at least at high pressure.
j =2: Fp") andA, ")are negative at both pressures. Consequently there are no collective spin waves in

our model and the spectral functions vanish identically for Is I &1.
Using 6(f(x))=Zo lf'(x )I '6(x- xo), f(x~) =0, f'(xo) =Bf(x)/axl x-x, we have the final form of the

spectral functions from B.v for j=1:
y„'(s) = Q(s, )[6(s—s,) —6(s+ s,)], y„'(s) = E'&» Q(s,) [6(s —s,)+ 6(s+ s,)],

3 0
(1) 2

y„(s) = —,
'

E'&, &
s, Q(s,)[6(s —s ) —6(s+ s,)], y„'(s) =Q'(s, ')[6(s —s,) —6(s+ s,)], (B.9)

p

where

s 'A '"{A"'- 3)+s '(3A "'+2A "'E "&-E "')+E "'(E "&+1)

Q'(s ') =—,'7rA, ~"s,'(s ' —1)/[s ' (A, ~'&- 3) + 1]. (B.10)

Using (B.9) in the spectral representation (B.3), it is a simple matter to obtain Re&I I m(s) by taking the
principal value of the integral. We can then obtain Tf(g) and find the coefficients Qf'in (VI.3). The re-
sults of this procedure are

coll 1 Q(so) Q'(so') coll 1 A, ~'& Q(so)
4v s'+, '3 ' ' 2w E "& s

coll 1 A, "& '
( )

Q'(s, ')
2

—
4 E (» so so-

7l o sp
(B.11)

The contribution of the incoherent particle-hole excitations is obtained from Qf —Qf
coll

The values of C'q, using the Landau parameters of Ref. 6, are given in Table II. Also shown are the
contributions of the longitudinal zero sound, @fzs, computed from (B.ll) with Q'(s, ') = 0, the 'paramagnon"
contribution, C,Pm, and the Xz from the short-wavelength excitations. @',Pm is the value of 4', with only
Ap ) 00. Notice that C,~ ~ 4 0, but is always cancelled identically by the contributions of the tranverse
modes and particle-hole continuum. C'f and Xf are obtained from Eqs. (VII.18) and (VI.8).

The longitudinal zero-sound velocity from Ref. 6 is c,= 193.6 m/sec (s, =3.6) at 0.28 atm. , and c, =389.5
m/sec (so= 12.2) at 27 atm. For the transverse collective mode we obtain s,' = 1.003 at 0.28 atm and

Qp
——1.202 at 27 atm.

TABLE I. The Landau parameters at two pressures
taken from Ref. 6.

TABLE II. Numerical values of the coefficients 4z,
Xz, using the Landau parameters of Ref. 6. Notice that
C 2- A. g- X2 —0.

s (atm) z0(') ~ (2)
0

(2)
1 P (atm) 40 pm C, zs C e, ~s Cas

0 0 1 1 2 0

0.28
27

10.77
75.63

—0.67
—0.72

6.25
14.35

—0.72
—0.66 0.28 —5.67 —5.16 0.04 1.91 0.22 1.06 -0.228

27 ' 0 —11.40 —10.48 0.03 2.24 0.34 2.95 —0.018
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Using the properties of the mass operator and vertex function derived previously, we cal-
culate corrections of the form T lnT to the term in the specific heat Cg that is linear in the
temperature. The connection of this calculation with the microscopic theory is pointed out
and the limitations are discussed.

I. INTRODUCTION

In a previous paper' we studied the corrections
to the single-particle mass operator of a normal
Fermi liquid, which arise from the interaction of
quasiparticles vrith density and spin density fluc-
tuations at T= 0. For a quasiparticle with momen-
tum q near the Fermi momentum k~, the correc-
tions were found to be proportional to (q —k~)'
x ln)q- kpI. The coefficient of this logarithmic

contribution was obtained in a completely renor-
malized form in terms of Landau parameters.

In this paper, which supplements I, we calculate
the change in the low-temperature specific heat
resulting 'from the above corrections to the mass
operator. The calculation is performed within the
phenonenological Landau theory. ' The result is a
T' lnT correction to the leading linear term in the
specific heat.


