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Systems of interacting harmonic oscillators have recently received considerable attention
as models for describing a variety of physical problems. %'e have investigated the validity of
the rotating-wave approximation which constitutes the traditional approach to the solution of
the dynamical problem by comparing it with the exact solution. A numerical comparison has
been made and the limits of validity of the rotating-wave approximation has been established
in terms of the strength of oscillator interaction.

In particular, the time development of dynamical operators and certain transition probabil-
ities have been compared. In the region where the rotating-wave approximation is valid, the
time evolution of the quasiprobability distribution P(e, t) of one oscillator is given for several
initial conditions. A counting scheme similar to the argument given by Feynman for the driven
harmonic oscillator, is proposed for the interpretation of the time-dependent transition
&.mplitudes between number states.

I. INTRODUCTION

where az is the annihilation operator of the ith
oscillator and the II,"j and ~zj are coupling con-
stants. The information sought about such sys-
tems is a knowledge of the time development of
the dynamical operators along with certain transi-
tion probabilities. In general, the algebraic dif-
ficulties associated with such determinations are
extreme. When seeking transition probabilities
however, a very useful and simplifying approxi-
mation can be made by neglecting terms of the
form ai4&T and aia& in the Hamiltonian (l. 1). The
argument customarily given justifying this approxi-
mation is the following: ' looking at the free dynam-
ical behavior of the terms aia& and aitaj 4, we have

a.a. CC exp[- i(~ . + (u .)t ],i j i

a. a. ~exp[i(~. +co.)t]
(1.2)

while the operators of the form a~aj develop like

a.a. ~ exp[- i(ar. —&u.)t],
2 j (1.3)

where co& and vj are the natural frequencies of the
free oscillators.

The argument is that for sufficiently small coup.-
ling constants gzj transitions should occur over
times long compared with the rapid oscillations of
the terms in (1.2). Therefore the terms (1.2) go
through many oscillations during the transition

In a series of recent publications considerable
attention has been directed toward systems of
coupled harmonic oscillators' ". The Hamilto-
nian describing N-harmonic oscillators with bilin-
ear interactions is given by"

H=5Z~,a. a. + —,'z. . a. a. + —,'v. . a.a. , (1 1)
z

p j iji j ij i j ij ij'

period causing their average value to be small by
comparison with the slowly varying resonant terms
of Eq. (1.3). While the argument is a correct one,
one of our purposes here is to establish quantita-
tively the error incurred inthe time development
of operators and transition probabilities by this
so-called resonant approximation (sometimes
called the rotating-wave approximation).

In particular we study the behavior of a system
of two coupled harmonic oscillators with identical
free frequencies. While the techniques used can
certainly handle the case of different frequencies,
the algebra involved is somewhat simplified by
the selection of identical frequencies. The Hamil-
tonian is taken to be the one for which the coupling
is of the position-position type,

a=ri&u(a a+-,')+ri(u(b b+-,')+ri~(a +a)(b +b),

(1.4)

where a and b are the annihilation operators for
oscillators A and B, respectively, and ~ is a con-
stant describing the strength of the coupling. We
use the Hamiltonian (1.4) to make an exact deter-
mination of the time development of the dynamical
operators (Sec. II and III) and transition probabil-
ities (Sec. IV). Corresponding results in the res-
onant approximation are obtained when the Ham-
iltonian is taken to be

a=5(u(a a+-,')+5(u(b b+-,')+Fi~(a b+ab ) .
(1.5)

By making a numerical comparison of the time
development of the position and. momentum opera-
tors for the approximate and exact Hamiltonians,
we establish that there is almost exact agreement
for values of the dimensionless coupling constant
X = 2g/~ less than 0. 1. For a comparison of
transition probabilities, we consider the transi-
tion probability
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that if oscillators A and B are in the respective
number states Il) and Im) at time zero that they
will be found in the number states [l') and (m')
at a later time t. In particular we construct a
generating function for the transition amplitude

A(t ) wheret'() ) = A(t )
Several numerical comparisons are made for a
number of different coupling constants A. as high as
P. 9. From the form of the generating function we
deduce that there will be excellent agreement for
couyling constants which satisfy the condition
NA. '((1, where N is the largest of the four occu-
pation numbers E, rn, E', nz'.

At this point we concentrate on the resonant
ayproximation and discuss in detail the time evolu-
tion of a system governed by the Hamiltonian (1.5).
Because of the simplified algebra associated with
this approximation, we are able to give explicitly
the transition amylitude

The form of this result is such that it suggests a
probabilistic counting procedure similar to that
given by Feynman for the quantum oscillator driven
by a classical force. &' & Following Mollow and
Glauber"~" we define in Sec. V a reduced density
operator for one of the oscillators and determine
its time development for a variety of initial states
of the system.

II. DYNAMICAL EVOLUTION OF THE COUPLED SYSTEM

The total Hamiltonian of the two coupled harmonic oscillators is assumed to be

H = —,
'

(p '+ (o'x ') + -'
((b '+ (u'x ') + 2H((dx xa a ~ 5 b a b (2. 1)

(2. 2)

where we consider the natural frequencies of the oscillators to be the same and the masses to be equal
to one. By performing the standard transformation

a =(~x + ip )/(2$(d)»2 b=((dx pip )/(2/~)»2a a b b

where a and b are the annihilation operators for the uncoupled oscillators, we find that Eq. (2. 1) takes
the form

H=ri(d(a a+-,')+h~(b b+ ,')+5~(a +a-)(b~+b) (2. 3)

The Heisenberg equations of motion for a(t) and b(t) can be usefully expressed in matrix notation in the
following way.

d at .cog at . pI( a t
(2.4)

In the Appendix we snow the details of the calcu-
lations leading to the solution of Eq. (2. 4). The
result is

(2. 5)

where we have indicated the operators at time t=0 by a and b. The matrices M, o., p, and A(t) are given
by

1 1 1~~ &() I
e p(-xi t(d) 0

1-1],
~

0 exp( —i(d t)

(e 0'I
x

y)
(2. 6)

where the normal mode frequencies ~x and co& are

= ((d2 / 2g(d)»2:—(A)(] / y)»2 (t) = ((d —2(((d)»2 = ~(] y)»2 y 2g/(dx y

Since we are considering a pure oscillatory behavior it is clear from Eq. (2. 7) that the parameter X is
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bounded between zero and one. We observe that M '=M and that

(2. 3)

where I is the identity matrix. a(t)
It can be shown that the solution b(t) of the Heisenberg equations satisfies the Bose commutation re-

lations at any time t by performing the following unitary transformation.

(2. 9)

The primed operators must satisfy the same commutation relations as the unprimed ones, since they are
related by a unitary transformation. Multiplying (2. 5) by M and making use of the definition (2. 9), we
have

~, ( )
= (a A(t)a —BA*(t)())((, )+ (a A(t),8 —8A"(t)a)(~, () . (2. 10)

The matrices given above are all diagonal and as a result, the matrix products are trivial. Performing
the operations in (2. 10) and using the property (2. 8), the commutation relations for a'(f), I)'(f) and there-
fore (),(f), b(t) are easily verified

III. DYNAMICAL EVOLUTION IN THE RESONANT APPROXIMATION

I et us assume now that the parameter X =2z/v is small enough as to justify the approximation

(3. 1)

Within this approximation the matrix n becomes the identity matrix and the matrix P becomes the null
matrix [in both cases the correction is O(X)]. The solution (2. 5) now takes the form

=MAtM (3. 2)

As a, result of this approximation we have the desirable fact that the annihilation and creation operators
are no longer coupled. The question now is; what Hamiltonian has Eq. (3. 2) and its Hermitian conjugate
as solutions of the Heisenberg equations of motion? It is easy to show that the following Hamiltonian is
the required one

H= fi(d(a a+ —,)+h(d(b 6+ 2 )+5((:(a b+b a)

If we consider the unitary transformation

(".)™(')(:~ ™('(),
the Hamiltonian (3.3) describes the two decoupled normal modes of oscillation

(3.3)

(3.4)

H=5((d +(()A 4+5(~ —v)B (3. 5)

where the zero-point energy has been neglected for simplicity. The normal-mode operators A(t) and

B(t) satisfy the following equation

(a(~)) =""(a (3. 5)

where A and B are the initial operators. The application of the inverse transformation M leads to the
required solution.

=MAtM (3. 7)

We point out that the solution (3. 7) which we have obtained from the exact Eq.
is also the exact solution of the Hamiltonian (3.3). Thus (3. 7) is the solution
equations of motion in the resonant approximation. It is worth noting that our
not the same as a perturbation expansion in powers of the coupling constant y,
in comparison to co but all powers of zt=&Xwt are retained.

(2. 5) by assuming 2)(/&u «1,
to the Heisenberg
assumption A. =2((/&u «1 is
since z is neglected only
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In order to make a direct comparison between the systems described by the exact and approximate
Hamiltonians we have performed a numerical investigation of .the time evolution of the expectation values
of the position operator x(t) for different values of X.

A. Exact Hamiltonian

By making use of the. fact that

(
g(t) (g 1/2 ( g+) 1 1/2 fpg( )~

:b(t) ) %it )x&(t)/ 2'5w )Pb (t)/

g4(t) (g j/2 ( g( )l, 1 1/ /2P ( )

I)t(t ) Z5 x&(t)~
2"& p&(t)

(3.3)

(3.9)

it is easily shown that the position operators (and their expection values)for the two oscillators in the
exact case are related to the initial positions and momenta by the following relation

(
x (t) f cose t cos&u&t —sinter tsinur&t)(xg) 1 (sine tcosebt cos&u t sin&a t (Pg)
x (t) (- sin~ t sin&a&t cosa& taos&u&tJ)x& ) x ) cosa tsin~&t sin~ t cos~&t ~pl )a b a a

For simplicity we have used the symbols

(d =p((d +(d ), (d =2((d —(d )a ' x y
' b ' x y

(3.11)

B. Resonant Approximation

In the approximate ease we use the same technique to show that the position operators xg(t) and x&(t) (and
their expectation values) are related to the initial positions and momenta by the equation

fx (t)) 'fcos&u t cos&u&t —sin&u tsi &un&t )(x ) 1 /sin&@ t costs&t cose t sine t) (p )
)x (t)j ( —sin~ t;sin&@ tcosv t cost@ t) x&) &u &cost@ t since&t sin&@ tcos+ t~ (p

Again ~g and &ub are, respectively, one-half of the sum and difference of the normal-mode frequencies,
i. e. ,

(d = 2 ((d +(d ) =(d, &d = ~ ((d —(d ) =K.a x y
' 5 x y

In Fig. 1 a comparison is given between the exact solution xg(t) given by Eq. (3. 10) and the approximate
one given by Eq. (3. 12). We have assumed the particularly simple initial condition

These initial conditions eliminate the last term in Eq. (3. 10) which has an amplitude of order X. It is in-
teresting to observe that even for relatively high values of a = 2a/&u, e. g. , X =0. 1 the difference between
the exact and approximate solution does not exceed a few parts per thousand. We have also investigated
the strong coupling situation (X =0. 9). An appreciable error is very evident in this case. The two solu-
tions become rapidly dephased from each other and cross the horizontal axis at different points.

IV. TRANSITION PROBABILITIES

Another method of examining the validity of the resonant approximation is to compare transition prob-
abilities. That is, probabilities for exchange of quanta between the two oscillators, for the exact and
approximate cases. , The amplitude for a transition from an initial state at t= 0 with E quanta in oscillator
A and m in oscillator B to a final state at time t with l' quanta inA and nz' quanta in B is given by
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The transition amplitude in the resonant approximation can be obtained by making the approximations

(4. 5)(o =(o(1+-,'x), (o =&o(I ——,'x)
X

in Eqs. (4.4) and (4. 5) and retaining only lowest-order terms in X except where X appears multiplied by t.
Equation (4. 4) becomes

G(t„t„t„t4)= exp[- (t,t, + t,t4)2cos2 Wart e ]exp[- (t,t, +t, t, )2 sin-,'tate ],
while Eq. (4. 5) becomes

(4. 7)

(4. 8)

The differentiation may be explicitly performed and the transition amplitude is

irot 2d+l —m' . . ~ irot m+m' —2d
&

l'm'
& 00

( ip I p!1~ I)y/2 (-cos , X&u—te ) (-i sin —,Xvt e )
lm =

00 d!(d+ l —m') I(m —d) I(m '- d) Id=0
(4. 9)

with the subsidiary condition that

l+m =l'+~' . (4. 10)

That is, in the resonant approximation the total number of quanta is conserved, since the coupling term
in Eq. (3.3) commutes with the unperturbed Hamiltonian of the two oscillators.

Equation (4. 9) can be rewritten in a particularly symmetric and revealing way

p f g/2 Y m'j mt . . ~ irot m -d
(l Im Il!m!) ~ I(, )~ I( )~

(-i

l!
x (m —d) I(-cos2X&ot e ) d! (l' —m+d) I(m —d)I (l —m'+d) l(m' —d) I

$rdt d

irot szx (-i sin —,'&&etc ) (m' —d) I (-cos 2X+te )
+

(l —m'+d)I . (4. 11)

The total amplitude is constructed out of two amplitudes. First

A
01

A
00 . , g t trot

A
10

the amplitude that, if the first (second) oscillator starts with one quantum and the second (first) with zero,
at a time t later the first (second) oscillator has no quanta and the second (first) has one, i. e. , the ampli-
tude for exchange of a single quanta between the oscillators. Second,

A 10 A 00 ~rot A 01
the amplitude that, if one oscillator has one quantum and the other none, at a time t later the situation is
unchanged. The total amplitude can be built up out of these two amplitudes by imagining the process as
occurring in the following way (see Fig. 2). Oscillator 1 emits m —d quanta which are absorbed by oscil-
lator 2, and retains l -m +d quanta. Oscillator 2 emits m -d quanta which are absorbed by oscillator 1,
and retains d quanta. The net transfer is m —m', so in the final state oscillator 2 has m' quanta while
oscillator 1 has l' (with I'= l+m —m', since quanta are conserved). Note that the value of d is immaterial
since it does not affect the final state, so for the total transition amplitude, d must be summed over.

The factors in Eq. (4. 11) may now be understood in the following way: (-i'&t sin —,Xvt)m d is the
amplitude for emission of m —d quanta from oscillator 2 and absorption by oscillator 1. These m- d can
be chosen from the original m in m I/d I(m —d) I ways. The m —d quanta can be rearranged in (m —d)!
ways. Oscillator 2 receives from 1 (m' —d) quanta which can be arranged among the final m' in m'I /
d I(m'-d) I ways. Oscillator 2 retains d quanta, hence (-eight cos~ X&ot)d; these can be chosen in only one
way, once the emitted m —d are chosen, but can be rearranged among themselves in d 1 ways.

OsciQator 1 emits m —d which are absorbed by 2, giving (-iei+t sin —,Xrot)m d. These can be chosen
from the initial l in l I/(l -m'+d) l(m' —d) I ways and rearranged in (m'-d) I ways. Oscillator 2 absorbs
m —d from 2; these can be arranged among the final l' in l' I/(l' —m +d) l(m —d) I ways. Oscillator 1 re-
tains l —m'+d, hence (-eight cos~X&ot)™+dwhich can be rearranged in (l —m'+d) I ways.

The factor (I Im Il'Im'I) '" is the correction for Bose statistics. In the transition probability a state
with l quanta present should receive a statistical weight of 1 rather than l f.

The argument given here is similar to that of Feynman'4 in the problem of the quantum oscillator driven
by a classical source. The same construction is possible for the exact transition probability with the addi-
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OSCI

FIG. 2. Schematic representation of the exchange of
quanta between the two oscillators.

OSCILLATOR 2

tional complication that the coupling mechanism may serve as a source or sink of energy.
We have done several numerical examples to examine the validity of the resonant approximation. The

simplest transition probability is the probability that, if at t = 0 the two oscillators have occupation number
zero, at time t they will be in the same state. In the resonant approximation this probability is identically
one. For the exact case it is given by

1+ sin2 ~g 1+~ x/2t 1+ sin~ ~ 1+A. (4. 12)

This differs from one because the l00) state is not an energy eigenstate of the exact Hamiltonian. Figure
3 shows P(,",) as a function of time for the exact and approximate cases for several values of the coupling
parameter X. Even for values of X as high as 0. 1, we see that the resonant approximation is excellent.

Next we compare the probabilities that, if at t =0 Oscillator 1 has one quantum and Oscillator 2 has zero,
at time t Oscillator 2 has one quantum and Oscillator 1 has none. In the resonant approximation this is
given by

while in the exact case
X2 X2

P( ) P ( 0 4(( )
sin [v() +X)'&'(]+4((

)
sin'[v(( +X)'&'(]

+2 1-- sin &v 1+1 ' + 1-X ' t +2 1+»/2 sin 2+ 1+X ' — 1-X ' t

(4. 14)

where P(,",) is as given in E[I. (4. 12). Figure 4 shows these two probabilities for several values of ](..
Again the approximation is excellent for X = 0. 1.

In general it can be seen by retaining the next-higher term in X in E(l. (4. 7) that the error in the resonant
approximation transition probabilities

(' ')

is given by
1q- gM.

where N is the largest of the four occupation numbers l, m, I', and m'.

V. EVOLUTION OF ONE OSCILLATOR OF THE COUPLED SYSTEM

The general conclusion of the preceeding sections substantiates the idea that in many problems of interest
involving coupled harmonic oscillators, the resonant approximation is an adequate one. In the present sec-
tion we discuss the resonant approximation in more detail. In what follows we consider the evolution of one
oseil1ator rather than describing the dynamics of the whole coupled system by means of joint distributions.
The language used throughout this section will be the coherent-state representation. " Extensive use wil. l
also be made of several results obtained by Mollow and Glauber in Refs. 11, 12, and 13.
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is the so-called P representation".

p&(t) = fd'n ln) (n I P(n, t) . (5. 2)

(5.3)

and the normal ordered characteristic function (NOCF)

A question may arise as to whether the expansion (5.2) exists, and in particular if it exists throughout
the entire evolution of the system. " The P function in some cases may become extremely singular and
fail to be interpretable as an ordinary function, "or even as a tempered distribution, " but this difficulty
does not arise for the cases we shall examine here.

The operator p~(t) can be found in a natural way by solving the I iouville equation corresponding to the
total Hamiltonian and by taking the trace over the unwanted variables (the oscillator 8 in our ease). A
considerably simpler procedure is to make use of the characteristic function (CF) of the A oscillator,

)t~(q, t) = Tr [p(t)e"' "*']

)(~~('g, t)= Tr[p(t)8 8 ] ~ (5.4)

By applying the Baker-Haussdorf identity to the exponential operator of Eq. (5.3) it is easy to show that
the CF is related to the NOCF by the following equation.

——'
I g t'

(5. 5)

If the density operator has a P representation, then the NOCF is the Fourier Transform of the P distribu-
tion

X~~(q, t) = fd n P(n, t) e"

The inverse transform gives the P distribution at any time t once the NOCF is known at all times.

P(n, t)=m 2fd q y ~(q, t)e

Furthermore the density operator pg(t) possesses the following integral representation"

p~(t) =v fd n y~(n, t)e"

(5.5)

(5. 7)

(5. S)

The complete description of the A oscillator is therefore reduced to the evaluation of the CF at all times.
From the definition (5.4) we have,

If&&(g, t) = Tr[p(t) e" e " ] = Tr[p(0)U (t) e" e " U(t)], (5. 9)

(5. 10)

The advantage of Eq. (5. 10) is that the statistical evolution of the system is described in terms of the ini-
tial density operator and the solution of the Heisenberg equations for a(t) and a P(t). As shown in Sec. III
the exact solutions of the Heisenberg equations are

where U(t) is the time-displacement operator corresponding to the Hamiltonian (3.3). Finally by inserting
the identity I= UUf between the exponential operators of Eq. (5. 9), we have

y~~(g, t) = Tr[p(0) e" e "
l .

a(t) = X(t)a+ p(t)b,

a (t) =X*(t)a y p+(t)b

where the functions of time X(t) and g(t) are, respectively, given by

&(t) = exp(- i(et) cos~t,

p. (t) = —i exp(- iwt ) singt .

Using Eqs. (5. 11) and (5. 12) the NOCF takes the form

y&&(tj= Trjp(0 e71'*(t)a —g*X(t)a qp(t)b —g*p, (t)b.e e e

Equation (5. 15) will be frequently used in the following examples.

(5. 11)

(5. i2)

(5. iS)

(5. 14)

(5. 15)
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A. Coherent Initial State

Let us assume the initial-density operator to be of the form

p(0) = lnotl0) &no I30I

By means of Eq. (5. 15) the NOCF is found to be

X+A(n, t) =exp[en*(t) —n'n(t)],

where n(t) is the solution of Hamilton equations corresponding to the classical Hamiltonian (3.3),

n(t) = X(t)n, + p (t)8, .

As a consequence of Eq. (5. 1V) the P distribution for the A oscillator is given by

P(n, t) =v-' Jd'g g (g, t) exp[-gn*(t)+g*n(t)] =rP[n —n(t)] .

(5. 15)

(5. 17)

(5. iS)

(5. 19)

The evolution of the P function in the phase space Rem, Imo. is easily interpreted. The distribution does
not change its shape with time, that is, the A oscillator remains coherent at all times. The center of the
distribution however, follows a trajectory whose projections onto the Re@ and Imn axis represent the evolu-
tion of the position and momentum of the A oscillator. '

The probability distribution for the excitation number n is a Poisson distribution with a mean value In(t) I'

PA(&) =(nl pA(t) In) =e (In(t) I /nl). (5.20)

B. Coherent State fox A, Chaotic State for 8

(5.21)

One oscillator is in contact with a thermal bath and at time t =0 is coupled with the second oscillator
which is initially in a coherent state. No energy exchange is allowed for t ) 0 between the two oscillators
and the external surroundings. The initial-density matrix of the system is

p(0)= ln, )(n, l /. 1 I 1 ~ Inb)(nbl.
( b & b

ÃQ 0 1+nb (1+nb

The NOCF defined by Eq. (5. 15) is given by
OO ny

gb
y~A(g, t) =exp[71'*(t)n0" —q+x(t)n0] . 1

L (lgl'Ig(t) I'),0 0 (1 )Plb+ 1 sb (5. 22)

where we have used the fact that

(nlep' e P In)=r, (Ipl')
n

The series on the rhs of Eq. (5.22) is the generating function for Laguerre polynomials. Therefore,

(g, t) = exp[- n I p (t) I
2

I q I '] exp[pa*(t)n *—q*x(t)n ] .

The Fourier transform of Eq. (5. 24) can be found by using the identity

v-' fd'r exp[- (I&I'/x)+rv*+y'$] =ae Rex )0.Xv*$

(5.24)

(5.25)

The result is

P(n, t) = 1
I p(t) I'= sin Kt A(t) = 8 cosKt.tln —x(t)n I') —i~t

wnb I p, (t) I' k &b I p(t) I' j
(5.25)

(5.2V)o'= —,'mb lp. (t) I'= —,'mb sin'vt

undergoes a periodic variation whose period is T=v/z. At time t= 0 the P function is a 5 function at the
origin. As time. goes on the state of the A oscillator becomes chaotic. -The maximum spread of the dis-

Let us consider first the initial state of the A oscillator to be the ground state ln, =0) . The P-distribution
in this case is a Gaussian distribution in the n-phase space whose mean value is zero at all times (Fig. 5).
However, the shape of the distribution is a function of time and in fact a periodic one. The variance of the
distribution
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)l Pfc(,t}

FIG. 5. Time evolution of the I' distribution describ-
ing the complex amplitude of oscillator A whose initial
state is the coherent state ~c.' = 0 ) interacting with an
initially chaotic oscillator B.

tribution occurs at time T=v/2v when the mean excitation number for the A oscillator is nh. At this point
3 has lost every memory of its initial condition. Then the "chaoticity" flows back to B, and half a period
later the initial situation is reproduced. When the coupling constant II." is very small compared with an ob-
servation time, i. e. , when et&&1, the P distribution can be approximated by

(5.28)

The process described by the P function (5.28) is a diffus'ion process (in a probabilistic sense) because of
the particular choice of the observation time (t« T). In many cases however, the observation time is
naturally subjected to the condition t« T. Equation (5.28) is therefore an irreversible approximation of
the true behavior.

Consider now the general initial condition 0.', 40. In this case two different processes take place in the
a-phase space. In addition to the periodic variation of the variance 0'= &n sin gt the center of the dis-
tribution moves according to the law of motion. b

(5.29)

(5.30)

Such a motion is illustrated by Fig. 6. The rapid rotation with angular velocity ~ drives the polar radius
a around the origin. Meanwhile the slowly varying factor cosset modulates its length. At the same time
the variance assumes its maximum value o = —,n and the oscillator A is completely chaotic with a mean
excitation n =ny. The main difference therefore, between the cases n, =0 and n, 0 is that the state of
the oscillator A for n, = 0 is always chaotic except for t =ns/z, whereas for o.,40 the state is a mixture of
coherent and chaotic states. The last statement will be clarified if we evalutate the probability distribu-
tion for the excitation number n. 33y definition

Ia I'
p (n, t)=( nip&(t)ln) = fd'c) P(a, t)e Io. Isn/nI

p~(n, t) = (s'n5 I y (t) I ') 'f d'n exp[- I n —ap(t) I &/n I ~(t) I
s

I a I 2] Io I2n/n I

Eq. (.5.31) can be easily integrated. The result is

[ I (t)l ] (I 0I I (t)l 'I ( I I I (t)l

[1+n In(t)l']n+ (1+n I p, (t) I') ( n& I p(t) la(1+nb l p, (t, ) la) )

(5.31)
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FIG. 6. Time evolution of the center of the P distri-
bution for oscillator A, whose initial state is a coherent

state no ), interacting with an initially chaotic oscil-
lator B.

FIG. 7. Time evolution of the probability distribution
p(n, t) for the occupation number n of osci11ator A whose
initial state is the coherent state no) interacting with
an initially chaotic oscillator J3.

entioned above, for n, = 0 the distribution pg(n, t) is always a single-mode Bose-Einstein distri-
bution with a mean occupation number n~ I p t

' that for t = 0 reduces to

p (n, 0)=5 (5.33)

For o.oWO the time evolution of p4(n, t) is qualitatively described in Fig. V. It is easy to check by using
Eq. (5.32) that at time t = (v/2/c)(2n+1), n = 0, 1,2. .. the distribution is a Bose-Einstein distribution
with mean value nb and at time t =m n/~ the distribution is a Poisson distribution with mean value In, I .

C. Number State for A, Chaotic For B

If we assume the initial state of the A oscillator to be an eigenstate of the unperturbed Hamiltonian and
if the initial state of 8 is a thermal mixture, the density operator is given by

n
p(0)= In . )(n I g 1

I

1 [ Inb) (n&la a 01+n5 I+n5 j
b

(5.34)

By use of Eq. (5. 15) and (5.23) we easily find that

00 n~ b
&~~('0, t) =L (lg I'IX(t) I') Q L (lg I'I p, (t) I')

a

=L (Iril' I&(t) I') exp(- n I p (t) I'lail') .
a

(5.35)

The P distribution can be found by Fourier transforming Eq. (5.35). By inspection we can easily observe
that as long as. I p, la 40, the Fourier transform of Eq. (5.35) exists and is well defined in the space of
square-integrable functions. When I p, I =0 (i.e. , for times t=nv/a) the NOCF becomes a Laguerre poly-
nomial. If we assume I p l 40 the integration can be done. The result is

I.(t)l I I

( n„lp(t)I') a+ k .n& I p, (t) I' a ( n I p(t) I'(IX(t) I' —n lp(t)l')p
(5.35)

We should observe that while this P function is correctly normalized, it is not in general positive definite.
For instance, when IX t -ny I p, I2&0, the Laguerre Polynomials take on positive and negative values. Fur-
thermore, even when L„ais positive the factor (n5 I pl

' —IX I') a cari be made negative by choosing an odd
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(5.sv)

The result of a rather involved calculation is

value for the integer na. The probability distribution for the occupation number n of the A oscillator can
be evaluated by means of the following integral

P&(n, t)=gd2nz(~, t)e !~1 /n! .

(nblp, I
—IXI ) (n5lp, I )

p (n, t)=
(n I p, l +1)

(5. 38)

where, F, is the hypergeometric function. The complicated function given by Eg. (5.38) reduces to the
familiar Bose-Einstein distribution for times t =(2n+1)v/2z,

P&(n, t) = (2n+ 1)v/2a) ='n& /(1+n&) (5.s9)

D. Number State for A and for B

Let the initial-density operator of the uncoupled oscillators be

p(0) = In, nb) (n, n (5.40)

This situation is interesting because it represents a particular case of the problem discussed in Sec. III
with a different approach. The NOCF is given by

y~~(g, t) =L (lql'IXI')L (Iq I'I pl')
n nb

(5.41)

By means of the NQCF we can calculate the expectation value of normal ordered product of an arbitrary
number of factors of a~ and a

")= (slsn) (- elerj*) x~g(&, t)'
NA '

~~ ~g p

The expectation value of the number operator a~a can be easily found by using Eg. (5.42)

(a a) = (8/sg)(- 8/sg*)L (Iq I' IX I')L (Ig I' I p, I') = lA. I'n + I yl'n
na n

b
g=g*=P a b'

(5.42)

(5.4s)

In general, all information concerning the behavior of A oscillator is contained in the distribution function
for the excitation number

p (n, t)=v ' Jd ge "'L (lgl IXI )L (lgl INI )I. (Igl ).
a

The integral (5.44) cannot be evaluated in closed form, except for several special cases. For n=0

p&(0, t)=[(n +nb)l/n In&!] sin (a't)cos (vt) .

(5.44)

(5.45)

The meaning of the factors sin'zt and cos'zt can be found easily putting na = 1 and nb = 0. In this case

p~(0, t) = sin'(~t)

and for na=p, eb =1

p (0, t) =cos'(vt) = 1 —sin~(vt)
A

(5.48)

(5.4v)

(5.48)

EQuations (5.46) and (5.4V) show that sin xt is the probability of emission of one photon by Qsciiiator + and
cos2~t is the probability of retention of the photon by osci11ator A.

If the A oscillator is initially in its ground state na = 0 and if 8 is excited (nb 40), the probability of find-
ing A excited at the n th level is given by

p (n, t) = fn l/(n —n) lnl jcos "
(Kt) sin (zt), n ~n

pZ(n, t) =0, n &nb (5.49)
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We note that the result (5.49) is in complete agreement with the quanta conserving property of the resonant
approximation. Making use of our interpretation of (5.46) and (5.4V) we can interpret (5.48) in the follow-
ing way. The probability that A absorbs n quanta is equal to the probability that B emits n quanta (sin ~et)
and retains nh-n quanta [cos ("5 "4t]. The factor (gh} is the number of ways the n quanta can be selected
from the original nI .
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APPENDIX

(A. I)

the Hamiltonian (2. 1) takes the uncoupled form

&=-,'(p~'+(o '.x~')+-,'(pB'+(o 'xB'), (A. 2)

where e~ and v are the normal-mode frequencies
defined in Eq. ( .7). We can now define the nor-
mal-mode annihilation operators A and B.

A =(a& x&+iP&/(25&o }'is.

B=((o xB+ip )/(2h(o )'&.
(A.3)

In this Appendix we give the details leading to the
solution (2. 5). Defining the normal coordinates

Writing the Heisenberg equations of motion for A
and B, we have

g (g(f)1 ( x i ~(t)1
d& &B(f)j (0 ur i B(t)) '

This equation is easily integrated and yields the
result

&x(f) &

&B(f)&
- ' »

(A. 5)

(A. 6)

where A(t) is defined in Eq. (2. 6). The algebraic
operations (A. 3) and (A. 1) can be inverted to arrive
at the original position and momentum coordinates
which in turn can be used in the defining Eq. (2. 2)
to determine the time behavior of the original al-
nihilation operators. The final result of these
algebraic manipulations is Eq. (2.5).
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