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Model many-body wave functions are constructed for a quantized vortex line and ring. The
corresponding variational energies are calculated using an approximate integral equation
derived by Percus and Yevick for classical fluids. The energy of the line is close to that
found in the Hartree theory. However, the density distribution in the core region is markedly
different, and the core size is somewhat smaller, being of the. order of 1 L. The velocity of
translation of the vortex ring is calculated by a new method and excellent agreement is
obtained with the experimental results of Rayfield and Reif. The condensed-state wave function
is computed numerically, and it is found that in the core of the vortex there are about 20%
fewer particles in the condensed state than in the zero-momentum state when the system is
in equilibrium.

I. INTRODUCTION

It is now well established that quantized vortex
lines and rings can be excited in superfluid heli-
um. 'y' These vortices are quantized in the sense
that the circulation associated with the superfluid
flow is an integral multiple of i't/m, where m is
the mass of a helium atom. There is a variety of
experimental evidence' which shows that, apart
from the vortex core, the flow field associated
with such a vortex is very-similar to that of a
classical vortex, namely irrotational and incom-
pressible. The most striking evidence for this is
the remarkable accuracy with which the experi-
mental data' on the energy and velocity of large
quantized vortex rings can be fitted to the standard
classical formulae. ' However the classical theory
of vortices contains no unique theory of the core,
which indeed can in this theory be taken to be any
one of a number of different models. Nearly all
the data that is available suggest that the core of
a quantum vortex in helium has a spatial scale of
a few interatomic spacings' aqd may indeed be
very much smaller. If this is accepted, then
clearly a quantum description of the core is man-
datory; and it is equally important to construct a
theory which takes into account the strong short-
range interatomic correlations that are present
in the fluid.

The purpose of this paper is to construct a
model wave function for a vortex line and ring,
and to calculate the energy of each.

The only theory of quantized vortices that
we have at present is the well-known Hartree or
order-parameter theory developed by Gross, 4

Pitaevskii, ' and Fetter. ' The obvious objection
to this kind of theory is that by its very nature it
is unlikely to give an accurate description of
phenomena which take place in spatial regions of
the order of a few interatomic spacings. Conse-
quently it is probably unreliable in its description
of the core of a quantum vortex. Qn the other
hand, there is little reason to doubt that it gives
a satisfactory description of the large scale po-
tential flow outside the core region. Until we
have data from experiments that are sensitive
to the core structure we shall be unable to dis-
tinguish the predictions of this theory from any
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other that is proposed. Vfe hope that some of
the results presented in this paper will stimulate
such experiments.

In Sec. II we present the model wave function
for a vortex line, and in Sec. IIIwe present the
results of an approximate calculation of the en-
ergy per unit length of such a line. Section IV
is devoted to the energy and velocity of a vortex
ring. Very close agreement is obtained with the
experimental data. ' Our model wave leads to
a macroscopically occupied state of the single-
particle density matrix, and in Sec. V we show
how the amplitude and phase of this state can be
calculated. Our conclusions are presented in
Sec. VI, where we outline further possible devel-
opments of our model and calculations.

II. THE MODEL O'AVE FUNCTION

~T=e"e,(r, ~ ..r ),n

where g=Z t)I(r ) . (2. 2)

Here xz denotes the position of the ath yartiele,
275

There are two requirements that our trial wave
function must satisfy. First it should, except
perhaps in the region of the core, lead to the same
velocity field as a classical vortex line. There
is very strong evidence to support this require-
ment from Rayfield and Reif's rneasurements2 of
the energy and velocity of quantized vortex rings.
In the core region we have no strong grounds for
this requirement, and we therefore leave the
question open for the moment. Our second re-
quirement is that the model wave function take
into account the strong interatomic correlations
that are present in liquid helium. This latter
requirement follows from the fact'y' that the core
region has a spatial scale of at most a few inter-
atomic distances.

It is well known7 how to construct a wave function
that meets these two requirements. For simplic-
ity, we assume that we have a cylindrical con-
tainer of volume V of liquid helium with mean
density n=N/V. Then if C, is the exact ground
state for this system, then a suitable model wave
function is
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and g(r) is the velocity potential for the classical
irrotational flow we wish to reproduce. For a
vortex line on the axis of the cylinder

I=re, (2. 3)

j (r ) = —5/m(V()n, (2.4)

and n(r ) =n=N/V. (2. 5)

Consequently if the velocity field v ~(r) is defined
by the equation

v (r ) =1 (r)/n(r)

then we find that with (2. 3)

(2. 8)

v(r) =(v, v, v ) =(0, yh/mr, 0). (2. f)

Here we have used cylindrical polar coordinates
(r, 8, z). This flow field is easily seen to be ir-
rotational and incompressible everywhere. How,
ever, this model wave function leads to an infinite
flow energy because the velocity field diverges as
x-0. Feynman~ has suggested a modification of
the model that removes this difficulty. Namely,

N
C = li f(r)e C, ,TL n-1 ™ (2. 8)

where f(r) is chosen to be a functionof ralonethat
vanishes as x-0 tends to unity as r becomes
large. With this function,

j (r) =Pi/m(V()n(r) (2. 9)

N
n(r, ) =Nfd2. ~ dN H f'(r )4O'/f dl . dN

(2. 10)

The velocity field v(r) is therefore the same as
before, and the expectation value of the Hamil-
tonian II is given by

52
(e) =E, +2 f[( &VI'+(Vi f)n] 2(rn) rds, (2. 11)

where E, is the exact ground-state energy. The
integral in (2. 11)will converge as long as n(r)
vanishes sufficiently fast as x-0, and this can
be assured as long as f(r) vanishes sufficiently
fast +-0.

The trial function given by (2. 8) is an eigen-
function of the z component of the total angular
momentum with eigenvalue NFi. We may there-
fore use it to calculate the energy variationally,
and our task then reduces to finding that function

where (9 is the cylindrical angle about the axes and
y is for the moment an arbitrary real constant.
With@T1, given by (2. 1) and (2. 2), we find that'
current density j(r) and number density n(r ) are
given by

f(r) which minimizes the expectation value of H.
There is still however one undetermined para-

meter in C Tl„namely y in Eq. (2. 3). This is
directly related to the circulation in the system
for

fCv dj. =pa/m, (2. 12)

where E is the energy per unit length of line and
E, the exact ground-state energy per unit length
of cylinder.

III. THE ENERGY OF A VORTEX LINE

To calculate the energy of a line, we have to
compute the density n(r) corresponding to the trial
function QTt„with f (r) = exp [- ,' h(r)] —Wefi.rst
note that the density, defined by Eq. (2. 10) is for-
mally identical with the density of a classical sys-
tem with an equilibrium probability distribution
C,' in the presence of an external potential Zf V(rf)
=kTeffZfk(r~), where Teff is some arbitrary ef-
fective temperature and k is Boltzmann' s con-
stant. Our problem is therefore exactly equiva-
lent to the problem of calculating the density in
this equivalent classical system. There are sev-
eral methods by which this might be done. We
have chosen to use the Percus-Yevick (PY) and
convoluted-hypernetted-chain (CHNC) approximate
integral equations': first, because these equations
are known to be reasonable accurate at liquid heli-
um densites" and second, because they are rela-
tively simple to solve and consequently we can
carry our a wide search to determine the best
trial function h(r) We hope at. a later date to
check the calculations presented in this paper by
means of a Monte Carlo calculation. From the in-
formation that is available from exact variational
calculations' of the radial distribution functions
and ground-state energy for liquid helium, we es-
timate that the PY and CHNC equations should

where the integral is evaluated around any closed
path C enclosing the z axis. The quantization of
circulation is usually derived by demanding that
the trial function be a single-valued function of its
.arguments, from which it follows that y = n with
n an integer. We find this procedure unsatisfac-
tory because there are no general grounds for de-
manding that a wave function be single valued, and
indeed there are known counterexamples. ' How-
ever, we show in Appendix A that if we assume
that our system possesses one or more single-
valued states, then all possible states of the sys-
tem must be single valued. We believe that it is
perfectly reasonable to assure that the ground
state of liquid helium is single valued; and conse-
quently we can conclude that 4TL must also be
single valued, and thus y/2v must be an integer.
The quantization of circulation in units of h/m then
follows at once.

For convenience, we rewrite (2.11) in a slightly
different form. We set f(r) = exp[ —1/2h(r) with
h(r) real; then

(II) =Eo+ f —,+ —,
' — n(r)rdr, (2. 13)

r52
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yield energy values for the vortex line that are
accurate to 10-15%.

The PY equation for n(r) is'

n(r)e = n[1 + 1C,(r —r')(n(r ') —n)d'r'], (3. 1)

while the CHNC equation is'

n(r)e =nexp[f C,(r —r')(n(r') —n)dsr']

These equations are derived in Appendix B. The
only reference to the ground state is Co(r —r'),
the direct correlation function corresponding to
the probability distribution 4, . This is related
to the liquid-structure factor So(R) by the equa-
tion

(3.3)

where Co(k) is the Fourier transform of Co(r) and
n is the mean density. The structure factor S,(k)
cannot, of course, be measured directly. How-
ever, apart from its behavior for small k, its
measured values at finite temperature should be
little different from those at absolute zero. Feyn-
man' has argued convincingly that the zero point
motion of the phonons dominates the behavior of
S,(k) for small k; namely that its form for small
k is hk/2mc. A model wave function that leads to
this result has been constructed by Reatto and
Chester. " We show in Appendix C that the linear
behavior of S(k) for small wave numbers is a nec-
essary condition for the existence of an absolute
minimum in the energy and a function of a. If
S,(k) tends to a, constant as k -0 then only a, local
minimum exists. We also give a physical argument
in Appendix C which leads to the same conclusion.
We have consequently taken the measured values of
S(k) for Ik I)0.6 A, and below this value of Ik I we
have assumed a linear form for S,(k) with slope
hk/2mc. We tried three different forms for f(x)
= exp[- k(r)],

f ( )
—( /X)

fl. f(r)=r /(r +a ),

niques.
The flow term in the energy diverges logarith-

mically at large r. Consequently we have to
choose a definite radius in order to present our
results. We have chosen it to be 6 A; outside of
this region the fluid density is accurately uniform,
and therefore plays no part in the variational cal-
culation.

We found that the functions II and III, both with
~=2& a =1 A, lead to very similar energies for
the vortex line; these results are shown in Fig.
1. In Fig. 2 we show the corresponding density
profiles. These profiles show that a reasonable
estimate for the radius of the core of the vortex
is 1 A. This is, at first sight, remarkably
small compared with the typical correlation length
of 3 A as revealed by the the radial distribution
function. This later function also drops much
more rapidly to zero than our density profile. In-
deed, our votex core is roughly speaking "half
full of fluid. "

The following points are interesting. First, the
CHNC equation usually gave steeper minima than
the PY equation, even though the absolute values
at the minima were almost identical. The reason
for this is discussed in Appendix C. Second, we
feel that the fact that these two different approxi-
mate equations lead to the same energies at the
minimum confjro. s our belief that the equations
are quite accurate at helium densities. Third, the
value of the energy at the minimum values of a andI are not sensitive to the detailed shape of C,(k),
for k greater than about 0.6 A. Finally we com-
pare our results with those obtained by Amit and
Gross using the Hartree theory. The density pro-
file.

oN

0
UJ

f11 f ( ) 1 ( / ) (3.4) Z5—

The first of these leads to an f (x) that tends to
zero, as r-0, faster than any power of r; the
second leads to an f (x) which tends to unity, asr- ~, faster than any inverse power of r; while
the last form tends to zero as r and to unity as

We feel that these classes of function cover
a sufficiently wide range for our purposes.

The PY and CHNC equations were solved by the
standard iteration method. " Most of this work
was done after the equations had been Fourier-
transformed. However, some solutions were
found directly in coordinate space, and the two
methods produced identical results. In Appendix
D we set down some of the details of the tech-

I
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FIG. .1. The energy of a vortex line as a function of
the variational parameter a. Curve A corresponds to
the trial function f(r) = 1 —exp [- (x/a) ], curve B corre-
sponds to a trial function f(~) = 2/(2+ a ), curve C
corresponds to a trial function f(r) =1-exp[- (x/a)4],
and the dashed curve corresponds to the Hartree theory.
The energies are calcu1ated per angstrom of vortex
line contained in a cylindrical bucket of 6 A radius.
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FIG. 2. The reduced total fluid density n(r)/n as a
function of distance from the vortex line. Curve A cor-
responds to the trial function f(r) =1-exp t.

'- (r/a) ],
curve B to the function f(r) =r /2 +a2, and the dashed
curve to the Hartree theory.

they obtained is shown in Fig. 2, and we see that
their core size is much larger although the shaye
of the core is considerably smoother. The en-
ergies they obtained variationally are shown in
Fig. 1, and we see that at the minimum they are
very close to our own. The single adjustable pa-
rameter in the Hartree theory was chosen by these
authors to fit the velocity of sound. The philosophy
behind the two methods is of course very differ-
ent. It is nevertheless interesting that they lead
to nearly the same results for the energy of the
core of the line.

IV. THE ENERGY AND VELOCITY OF A
VORTEX RING

Our wave function for a vortex line can be used
to estimate the energy of a large vortex ring.
Figure 3 shows a cross section of such a ring to-
gether with the coordinates used in our calcula-
tion. Now if A)) a, we expect that the energy of
such a ring will be the sum of the kinetic energy
of the incompressible flow outside the core and
the energy of the core. This latter energy can be
accurately approximated by 2mB&, where & is the
energy per unit length of a straight vortex line.
This approximation can be described by a trial
wave function,

FIG. 3. The coordinates used for the vortex ring.
The ring is symmetrically placed on the z axis and has
radius R. A general point in the flow field has coordi-
nates (~, $, 8).

2nm
+ J Iv) I'd'r

8m2 outer 8 (4. 2)

(r s $) = (a/2n)(Rr)'I'k'C(k), (4. 3)

where a =k/m. We have broken up the integral
over the whole fluid into two parts. The first is
over an inner region where the density n(r) is non-
uniform. %e take this region to be a torid with a
cross section of radius b. Ifb (4-5) A, then with
the density n($) will be equal to n on the surface of
the toroid. Inside the toroid we can accurately
approximate v by a single component v8 =k/m$,
and n($) will, by our assumption, have the same
form as the density n(r) for the straight vortex
line. The integral over the inner region is thus
equal to 2vRs(b), where s(b) is the energy per unit
length of a line vortex in a cylinder of radius b.
The second integral is over the remainder of the
fluid where n(g) is a constant. This contribution
to the energy is therefore equal to the energy of
a classical hollow vortex ring of radius 9 and with
a cross section of radius b.

For completeness we write down the velocity po-
tentiaP g(r)

=exp[iZ g (r )]exp[—Z k($ )]C, , (4. 1,) where k'=4mftr/(s'+$'+4&r) (4.4)

where gg is the classical velocity potential for a
vortex ring and k($) is the same function we used
for the straight vortex line. This model function
will clearly give an upper bound to energy of a
ring because we have constrained the flow to be
that of a classical vortex ring and the core to have
a circular cross section. These should be excel-
lent approximations as long as A/a )) 1. The ex-
pectation value of the Hamiltonian is now given by

(a)=E,~, . J (Iv|) I'+-'IV AI) (nr) dr

s in'8 c os'8
o (1 —k'sin'8) ' (4. 5)

v =(0, v8, 0); where v8--tc/2vg .

Our final result for the energy is thus

E =Z, + —,
' ~2m' @[in(sa/b) n], —

where n =2 —(4v/a'n)s(b) .

(4. 6)

(4. 7)

(4. 8)

From these equations we find that if g ((8, then
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This expression for the energy is accurate to order
(b/A)' and is, of course, independent of the value
chosen for b as long as b is large compared with
the core radius and small compared with R. When
a and 8 become comparable, an entirely differ-
ent calculation has to be made; nevertheless our
wave function will still give an upper bound to the
energy of such a ring.

To compare the energy of our model wave func-
tion with the experimental data, we have to esti-
mate the velocity of translation of the ring. The
quantities measured by Rayfield and Reif are the
energy and velocity, and very little experimental
information is available about the size of the rings.
However, as we have already remarked, the data
can be fitted quite accurately with the formulas
for the energy and velocity of a classical vortex
ring. This fit determines the circulation y and
the radius of the core a. The circulation is accu-
rately given by h/m while a is close to I A. From
this fit we can draw two conclusions. First, the
rings are undoubtedly large, between 5pp-5ppp A,
and secondly, the major portion of the energy of
the rings is the kinetic energy of flow outside the
core region. A reasonable estimate of the core
energy is that it amounts to at most 5% of the en-
tire energy of the smaller rings. Our theory is a
theory of the core of the vortex. Since only 5%
of the energy of these rings resides in the core,
only differences between theory and experiment
of this magnitude are significant.

We first note that because our model wave furic-
tions, either for a line or a ring, are not solutions
of Schrodinger's equation, they will decay in time
into other excitations of the system —presumably
phonons and rotons. Consequently, we cannot ex-
pect our model of a vortex ring to propagate in-
definitely with a uniform velocity. However we
may reasonably hope that initially the ring will
start to move as a whole and then somewhat later
it will decay into other excitations. We shall there-
fore calculate the initial velocity of translation and
use this to make a comparison with the experimen-
tal data. At this point, it is interesting to make a
comparison with the Hartree theory. In that theory
one could, in principle, make an exact calculation
of the wave function for a large vortex ring, and
this would then be expected to have permanent
velocity of translation. Indeed it has been shown
by Fetter" that an accurate solution for a pair of
vortex lines leads to a permanent velocity of
translation of the pair through the fluid. However,
no accurate solution for the ring is known in this
theory, and consequently the question of transla-
tional velocity has been usually handled by crd hoc
methods. 3 In a recent paper, "Fetter has pro-
posed a method of calculating the velocity of
translation which is very similar to that outlined
below.

The position of the ring at any time may be de-
fined by the position of its core, that is the region
of the fluid where [n(r) —n] is different from zero.
We therefore define a mean density coordinate z
for the ring by the equation

z, = fz[n(r) —n]d r/f[n(r) —n]d r, (4. 9)

and identify dz, /dt with the velocity of translation

of the ring. This velocity is independent of the
origin of coordinates. The definition we have just
proposed has to be modified slightly since the de-
nominator in Eq. (4. 9) vanishes because our cal-
culation preserves the total number of particles
in the system. It can be shown that, as x- ~,
n(r)-n exactly, even to order I/N, as long as
the ground-state wave function contains the long
range correlations which produce the linear be-
havior of S,(k) for small k. This difficulty is eas-
ily overcome if we generalize Eq. (4.9) to

z = fz[n(r) —n]~d'r/f[n(r) —n)] d'r,

p z BR 1+W2)
=4 &

ln
&

—2 —ln

—f f (4)»(U&)5A/f f (5)Wh, (4. ll)b b

where f ($) =[n($) —n]
p

In Fig. 4, we have plotted the product of the ener-
gy and velocity from our theory and from the ex-
perimental data. This product is a slowly vary-
ing function of g, and thus the comparison with

22—
OJ

Cll

~ol8

OJ

e l4-

Exp. Data

10
I

I I

2
I I I I

lO 20 50 50
E ~(eV)
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FIG. 4. The product {E&& V) as a function of E for
a vortex ring. Curve 1 corresponds to P=4; curve 2 to
p= 2 in Eq. {4.11) for the velocity of translation. Curve
3 corresponds to the impulse value of 8E/BP, where P
is the impulse necessary to generate a ring of radius R.

and confine ourselves to integer values of p ) 1.
We shall see that de, /dt is quite insensitive to the
value chosen for p.

If we apply this definition of the translational
velocity to a pair of vortex lines, we find that we
recover exactly the classical answer to order a/8,
where a is the core radius and A is the distance
apart of the lines. To this accuracy the initial
velocity of translation is independent of the value
chosen for p and independent of the quantum struc-
ture of the core. These results provide us with
some degree of confidence that our definition is
reasonable.

For a vortex ring we find that
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experiment is more easily made. We see that
with p =2 excellent agreement is obtained; p =4
yields somewhat less satisfactory values. On this
figure we have also plotted the results using the
impulse definition of the translational velocity, "
and we see that this also leads to less satisfactory
agreement. We must emphasize that these com-
parisons merely tell us (a) that our model of the
core is reasonably accurate, and (b) that our meth-
od of computing the velocity of translation is also
reasonable. To make an accurate comparison with
experiment we need data on rings one order of
magnitude smaller in radius and, hopefully, mea-
surements of their size as well. If this latter in-
formation is not available, then a direct compari-
son is impossible and only indirect comparisons
can be made via some identification of the transla-
tional velocity. Since this identification at the
moment is somewhat uncertain, it obscures the
comparison with experiment.

V. THE CONDENSED-STATE WAVE FUNCTION

It has never been rigorously established that the
ground state of liquid helium leads to a macro-
scopic occupation of the zero-momentum state of
the single-particle density matrix. There are, of
course, good reasons to support the belief that
this kind of macroscopic occupation does occur for
both the ground state and the low lying excited
states. Since we cannot establish this property
for C„we equally cannot establish it for our model
states given by Eqs. (2. 8) and (4. 1). There are,
however, model states for which we can establish
that Bose-Einstein condensation occurs, and for
which we can also calculate the amplitude and
phase of the condensed state. These trial func-
tions can be obtained by replacing 40 by a Jastrow
function 4~ in Eqs. (2. 8) and (4. 1), where

C~ = g E(&r -r l) wit Fh(l lr) = e . (5. 1)
o&IP

The functionE(r) is chosen so that Cd yields the
best variational estimate for the ground-state en-
ergy. " This trial function for the ground state
yields excellent values for the energy, and more-
over leads to a structure factor Sd (k) which is al-
so in good agreement with experiment. "

With this trial function, the expectation value
of the Hamiltonian is given by

cle distribution function corresponding to Cg'.
The interaction potential is V(r) while T(r)
= I&'/2m V'u(r). The function nay&2& would be ex-
tremely difficult to calculate; and we have there-
fore replaced it by the approximate form

n &"(r, r') =n &»(r)n&&&" (r')g (r —r'), (5. 3)

where g&(r —r') is the pair correlation function
corresponding to @~ . This is a super-position
approximation for v~~'", which has all the quali-
tive features we desire and should, we feel be
sufficiently accurate to allow us to make a reli-
able estimate of the last term in Eq. (5.2).
With this approximation and using the best known
C g, we found that the value of (H)-E& was, at
the minimum, within a few percent of the value
of (H) —E, which we calculated in Sec. III. The
density n~p'» also differs from n(r) by only a few
percent at most. We therefore conclude that this
type of model state leads to essentially the same
results as before.

We now demonstrate that this kind of trial func-
tion does lead to Bose-Einstein condensation. The
single-partii:le density matrix o(1, 1 ) is defined
by the equation

o.(1, 1')=N f +(1,2 .N)&I'*(I', 2, . . .N)d2d3. dN,

(5.4)
where 4 is a normalized wave function. With our
trial function (4. 1), this can be written as

o(1, 1') = exp(i[((1) —g(1')])o(1, 1'),

where o (1, 1') = N/QN ff (1)f(1')

(5. 5)

H f ( )C (1,2 N)C (1,2 N)d2 dN, (5.6)
&2

(5. 7)

as the separation of 1 and 1 increases indefinite-
ly. Now it follows at once from Eq. (5. 6) that

and QN'" is the normalization constant for &t&~~.

The eigenfunctions of o(1, 1') have the form exp[i&1&(1)]
x y(1), where y is an eigenfunction of &(I, 1'). If
our model state has a macroscopically occupied
state y, then

+ —,
' f[T(r)+ V(r)] [n~~"&(r, r')

—n~ &'& (r '—r ')]d'rd'r, (5. 2)

where E~ is the variational energy correspond-
ing to 4g, the second term has the same form
as in our previous calculation, and the third term
arises because 4~ is not an eigenfunction of H.
The function n~y "&(r) is the single-particle den-
sity constructed from exp[-Zo, h(yo.')]C'd2, and
n&&& &(r, r') is the corresponding two-particle
distribution function, whileng' & is the two-parti-

o(1, 1') = C exp[ —'h(l) + —,'I&(1')+ m(1, 1')]g(1,1').

(5.8)
Where C is a constant andg(1, 1') is the pair dis-
tribution function for an equivalent classical sys-
tem in which N- 1 particles are coupled with full
strength u(r) and are acted upon by an external
potential to I&(r), while 1 and 1' are coupled with
strength —,'u(r) to the remaining N 1and arealso-
acted upon by an external potential k(r). For
reasons of symmetry, we have also coupled 1 to
1' with a potential —,'u(r). We now evaluate the
constant C. If we consider a region of the fluid
far from the vortex core, then the fluid will be
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quite uniform and unaffected by the presence of the
vortex. Consequently we conclude that if 1 and 1'
are both far from the core and also far apart from
one another, then

(5. 9)

where n, is the fraction of particles in the zero-
momentum state in the system when it is in equi-
librium with no vortex present. For any Cg with
u(r) of finite range, n, exists. If we compare Eq.
(5. 7) with Eq. (5. 8) then we see that C =n„be-
cause h, u-0 andg-1 as 1 and 1'become far
apart.

Now consider 1 and 1' to be far apart but both
still in the region of the core, e.g. , far apart
vertically above one another; then

I.O

0.5

0
1.0

n/n

I

2.0
g -[A(1)/n] [A(1')/n] (5. 10)

and u-0, hence

il 1 il 1'
o(1, I') -n exp[—,'h(l)+ —,

' h(1')]. (5. 11)

FIG. 5. The square of the amplitude of the condensed-
state wave function y~ as a function of x.

Where n is the single-particle density for one of
the half-coupled particles in our effective clas-
sical system, and n is the mean density. Compar-
ing this result with Eq. (5. 7), we see that

Thus to calculate y~ we have to compute A(r).
This can be done in a manner very similar to the
way in which we computed n(r) in Sec. III. The
PY equation for n(r) is

A(r)e =n +JC,(r —r')[n(r') —n]d r', (5. 13)

while the CHNC equation is

A(r)e =exp(J[n(r') —n] C,(r —r')d'r'). (5. 14)

In both these equations C,(r —r') is the direct cor-
relation function in which the particle with coor-
dinate r is half coupled to the remainder while the
particle with coordinate r' is fully coupled to the
remainder. This correlation function can be
readily calculated using the PY equations for a
mixture. ' Once C, has been calculated, Eqs.
(5. 12) and (5. 13) yield A(r) at once. We found
little difference in A(r) from these equations;
in Fig. 5 we plot Iy I'/n, and compare it with
the total reduced dennnity n, /n . We see that they
are very similar in form. The physical signifi-
cance of the differences is not known to us. We
have also calculated the ratio of the number of
particles in the condensate with and without a
vortex present. Since most of the fluid in the
system is quite unaffected by the presence of the
vortex, the calculation is only meaningful if we
confine our attention to the vortex core. Defining
this to be a region of radius 6 A, we then find
that in this region the ratio is about 0. 8. That
is to say, the presence of the vortex has removed
about 20%%uo of the particles from the condensate.
It would be interesting to know what this ratio is
for a vortex with tmo or more units of circulation.

We plan to perform this calculation when our tech-
niques have improved.

~. &ONCLUSIONS

The calculations we have presented in this paper,
both for the vortex line and ring seem to us to
lead to very reasonable values for the energies con-
cerned. The radius of the core region is, how-
ever, quite small -1 A. Nevertheless we seri-
ously doubt that any more sophisticated wave func-
tion or more accurate calculation will substan-
tially change this number. The reason why the
radius turns out to be so small is simply that the
centrifugal barrier is really quite small and con-
sequently produces little distortion in the fluid.
The repulsive potential barrier between two heli-
um atoms is enormous in comparison and thus
produces a very much larger local distortion in
the fluid. For example, this repulsive barrier
reaches a height of 12'K, the mean kinetic energy
of a helium atom, at about 2. 5 A, while the cen
trifugal barrier of a singly quantized line reaches
the same height at 1 A, the core radius. This, we
feel, is the essential reason why the core is so ---
small. This simple estimate would lead to a core
diameter of 2 A for a doubly quantized line

Our numerical values for the energy are quite
close to those obtained from the Hartree theory,
but our density profile is, of course, much more
realistic.

One of the most interesting extensions of our
theory would be to calculate the core size at
higher pressures. Preliminary calculations
shows that the core radius decreases as the pres-
sure is increased. However, the approximate in-
tegral equations we have used become less reli-
able at these higher densities and we feel that
further investigation of this effect should be de-
layed until we have developed the requisite Monte
Carlo techniques to evaluate the density profile
accurately. This method will also of course pro-
vide a check on our calculations at zero pressure.



CHESTER, METZ, AND REATTO

We plan to extend the work presented in thp '

paper in two directions. First, we shall construct,
using the generalized Hartree theory as a guide,
more sophisticated wave functions. These will un-
doubtedly lead to a nonzero density of "normal"
fluid and a non-curl-free flow field in the core.
This should result in an appreciable lomering of
the energy of the line. Secondly, me hope to apply
our methods to small vortex rings. These are of
interest because they open the possibility of a much
more sensitive test of the theory, ;since a much
larger fraction of the energy resides in the core.

APPENDIX A: ON THE SINGLE-VALUEDNESS

OF WAVE FUNCTIONS

In this Appendix we shall show that if a system
has one or more single-valued states, then all the
acceptable states of the system must be single
valued. We note in passing that the single valued-
ness of states in quantum mechanics receives little
serious consideration in texts on the subject; the
only really pertinent remarks we have been able to
find are those in the article byPauli. ' Thetheorem
we have stated does not in any wayrule out thepossi-
bility that all the states of a system are multivalued.
It therefore does not conflict with the example of
the three-dimensional rigid rotator. '

Let g~ be a single-valued state of a system and

gM a multivalued one. Then, by the superposition
principle,

(A. 1)

I
' + l b I

'
I r/)S M

(A. 2)

Now it is quite possible —and indeed often the
case —that (AM I' is single-valued even though

gM itself is not. For example, if for a single de-
gree of freedom &f&, (M =exp(io. p)with n different
from an integer, then gM is multivalued while

I' is not. Consequently the first two terms
in Kg. (A. 1) may well be single-valued. However,
the second two terms obviously cannot be single-
valued individually; and since a and b are arbi-
trary constants, the sum of them cannot be either.
We thus conclude that I/I' is not single-valued.
This conflicts with our postulate that probability
amplitudes should be single-valued, and we there-
fore conclude that gM is not an acceptable state.
Hence all states must be single-valued if one is.
Notice that we could still have Ig I' single-valued
if all the states are suitably multivalued.

APPENDIX B: DERIVATION OF THE PY
AND CHNC EQUATIONS FOR n(P)

The s-particle quantum distribution function

tI' =a(& +bP

is an acceptable state if gg and titM are, with a
and b, two arbitrary constants. We nom postulate
that the probability amplitude of any acceptable
state should be single-valued. This postulate

. seems to be a necessity on purely physical grounds.
The probability amplitude corresponding to (A. 1)
1S

where z is the fugacity; and then the s-particle
distribution function having dimensions of 1/Vs
18,

n (1 "s/h)= — Z1
s :-n=s(n s)l-
xf P,'exp -g h(r ) d(s+1) dN. (B.3)

Here the h is written explicitly to show that the
system is in an external potential.

First it can easily be shown that

rn, (r Ih)/bh(r ') =-n, (r lh)n, (r'lh) —n, (r ih) 6(r —r"')

—n, (r, r'th). (B.4)

Next the direct correlation function in the presence
of an external potential may be defined by

C(r, r'lh) = 61ln[n, (r I h)e g/6n, (r'lb), (B.5)

mhich obviously gives

6h(r)
(~f Ih)

(~boih)

6(r —r ) + C(r, r ) (B.6)

Now bn(r')/bh(r") and 5h(r)/6n(r') are matrix in-
verses of each other

(B.7)

Then substituting (B.6) and (B.4) into this expres-
sion gives directly

g(r, r" lh) —1=C(r, r" Ih)

+fd'r'C(r, r'Ih)n, (r'lh)[g(r', r" Ih) —1], (B.6)

which is the basic relation between C and the pair

for the trial function is

V f40 exp[-~ h(r )]d(s+1) "er
n (1 ~ ~ ~ s)—

fy 'exp[-Z h(r )]dl ~ dZ0 Q

(B.1)
which is exactly analogous to the classical, di-
mensionless s-particle distribution function in a
canonical ensemble, at an effective temperature
Teff given by h(r ) =hTeff v(r) where v is an ex-
ternal potential. Classically, of course Q, '
=exp(- hTeff/V~), where V~ is the potential
energy of the system, but it will be seen that
one need not specify the detailed form of Q,

'
to derive the equations we are interested in. One
can pursue this analogy further by defining the
grand distribution function in the classical grand
canonical ensemble at the same effective tempera-
ture. If " is the grand partition function, then

Ã i

:" = Zo —
I

&f&,'exp —Z h(r ) dl ~ ~ dbms, (B.2)
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[.„]= (-., ).f
xz Ih), l

x [n, (r I h) —n]+ ~ ~ ~ .

To obtain the PY equation for n„we choose .

F = n, (r I h) exp h(r). Then Eq. (B.5) gives

(B.9)

nz(r Ih) e C(r, r' lh)5n, r-~ I h h 0 h=0

correlation function g.
Now consider a function F which is a functional

of n, and h. It can be expanded in a functional ex-
pansion in n, .

For our trial functions, h(r) depends on r/a
alone and we can therefore write (C. 1) in the
form

E =E,g f —,+ —
d n(x)xdx, (C. 2)1 dh(x)

where x =r/a N. ow n(x) will not be a function of
x alone and our task is to determine how it depends
on a for large values of a. The function n(x) is de-
termined by the approximate integral equations
(B.11) and (B.12), and these show that apart from
h(x) the only other function that enters is the direct
correlation function C,(r). This function has the
form"

= nCO(r —r ') (B.10) nC, (r) =,—(rJ'r)'+ C (r/I ), (c.3)

where C,(r r') —is the direct correlation function
for the system in the absence of the external po-
tential, that is, for the ground-state system de-
scribed by $0'. Taking the first two terms of Eq.
(B.9), we find

n, (r lh) e -'- n+ f d'r'nCO(r r')—

x [n,(r'Ih) -n], (B.11)

which is the desired PY equation.
To obtain the CHNC equation, we choose

expF =n, (r lh)e

Then Eqs. (B.5) and (B.9) give

ln[n, (r Ih) e ] =inn+ fdsr'C, (r —r')

x [n,(r' Ih) —nj (B.12)

and thus

n, (r Ih) e =ri e p{xfdr'3C, (r r')—
x [n,(r}h) —n]) .

APPENDIX C: THE BEHAVIOR OF THE ENERGY
AS A FUNCTION OF THE CORE RADIUS

The energy E per unit length of a single vertex
line is given by Eq. (2. 13) as

The entire analysis above has been done without
specifying the form of p,2

where the first term comes from the long-range
correlations introduced by the zero-point motion
of the phonons, and the second is a short-range
function that arises from the short-range correla-
tions introduced by the strong repulsive and weak
attractive forces between the helium atoms. We
expect this function to be characterized by a sin-
gle correlation length l of the order of 2-3 A.
Since Co(r) contains both a long-range and
short-range part, we must expect that n(x) will
depend on the two ratios rJa and I/a. We there-
fore rewrite Eq. (C. 2) in the form

E=E,+ ' —,+4 k'(x) n x, —,—]Ixdx . (C. 4)
W

The first term in the integral in Eq. (C. 4) is very
long-range, and will therefore be dominated by
values of x)) I for which values n- n. We there-
fore expect that this term is largely independent
of a-except for very small values of a when it
will increase indefinitely. This behavior is com-
pletely confirmed by our calculation. On the
other hand, the term containing h'(x)' is a very
short-range term, falling off at least as fast as
x ' in all our calculations. We therefore expect
that its behavior as a function of a will be domin-
ated by the behavior of n(x) for small x. We shall
now show that n(x) for small x increases indef-
initely with a for a ))l, where l is the character-
istic correlation length in the fluid.

We do this first for n(x) determined by the PY
equation. This equation can be written, for suf-
ficiently small z, in the form

n(r)e = n+n ft.,(r')[n(r') —n]r'dr', (C. 5)

where Q(r ') = fdz'fdic'C, (r')

= fC, (k)J,(krl)kdk .' (c.5)

(H) = & =&, f [I &gl2+-,'(&h)']n(r)d'r.
(C. 1)

In this Appendix we shall show that E increases
indefinitely as the core radius a increases with-
out limit. Since E also tends to infinity as a -0,
we are assured that E has a minimum for some
finite value of a.

This last equation follows from Eq. (D. 3). Now
from Eq. (C. 3) we see that

C,(k) = r, '/k+ C (kf) . (c.7)

Here Csr(kl) is a well-behaved short-range func-
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tion of kl. Combining (C. 7) and (C. 6), we find
that

V,(r') = P, ,(r'/a, l/a, rJa )

= (r,/a)'(a/r')a+ C' (r'/a, l/a)a '. (C. 8)

The factors a and a ' in the two terms in (C. 8)
arise when we express C, in terms of v'/a and l/a.
When we substitute (C. 8) in (C. 5), we find that

n(r'/a, I/a, r, /a)e

= n+ a'(ro/a)' f[n —n]dx+ fC (x, I/a)[n —n]xdx .

(C. 8)

Now the first integral on the right-hand side is
dominated by values of x-1 and will consequently
be largely independent of a for large a. It is, how-
ever, multiplied by a factor a'(ro/a)' =ar, ', and so
this term will increase linearly with a for large
a. The second integral will for the same reasons
be independent of a for large a, and this term will
therefore be independent of a for large a. We
therefore conclude that n(r) exp[k(r)] will increase
linearly with a for large a and small x. This be-
havior was completely confirmed by our numeri-
cal computations. A very similar analysis can be
applied to the CHNC equation for n(r) and leads to
the conclusion that n(r) exp[k(r)] as determined by
that equation will increase as exp a for large a and
small z.

We have, of course, only established that n(r)
exp[k(r)] behaves in this manner in the limit as
x-0. However, we can reasonably expect this
behavior to persist as long as x is smaller than
the smallest length in the theory which is /, when
a ))jt. This in turn implies that we shall expect
the second integral in Eq. (C. 2) to be an increas-
ing function of a for large a. This result was also
confirmed by our calculations. We therefore reach
the interesting conclusion that it is the long-range
correlations introduced by the zero-point motion
of the phonons that in our model stabilizes the
radius of the vortex core. A more physical argu-
ment for the effect of phonons on the core diame-
ter may be made in the following way: if only
short range correlations are present and a)) l,
then the density profile can be determined from
the condition

p, ,(n(r) )+ k(r) = const (C. 10)

when p,,(n(r)) is the chemical potential of the
equivalent classical fluid. This means that n(r)
scales exactly with a and the deficit of particles
is easily absorbed (as long as a is much less than
the size of the container) in the far region due to
the finite "compressibility" of the system. It
then follows from the form of (H) that the energy
is independent of a for large a.

In presence of long range correlations the "com-
pressibility" is infinite, that is the rigidity of the
wave function does not allow the absorption of any
deficit. Then n(r) cannot be determined from
(C. 10) and it does not scale with a. In fact, when
a increases to compensate for the "hole" so pro-
duced, there must be a local region in which n(r)

We outline here the method of solution of the
PY and CHNC equation for n(r).

The PY equation for n(r) is

n(r)e = n + n fC,(r —r ')[n(r') —n]d'r' . (D. 1)

Since C, is spherically symmetric and lz(r) has
cylindrical symmetry, n(r) will also have cylindri-
cal symmetry. We can use this result to reduce
the equation to the form

n(r)e = n+n f dr'r'Z(r, r') [n(r ')- n), (D. 2)

where

Z(r, r') = f kdk Co(k)Jo(kr) J,(kr') .
0

(D. 8)

Once C, (k) has been given in terms of S,(k), the
kernel Z(r, r') can easily be constructed and Eq.
(D. 2) solved by iteration. This method proved
lengthy, particularly as we wished to vary Co(k) to
determine how sensitive our energy values were
to this function. A more convenient form of the
equation can be obtained by Fourier-transforming
Eq. (D. 1). The result is

C(k) = C,(k) ~(k), (D. 4)

where C,(k) is in the three-dimensional Fourier
transform of C,(r), and G(k) and b. n(k) are the
zero-order Bessel transforms of n(r) exp[k(r)] —n
and n(r) - n, respectively. For example,

b.n(k) = f rdr J,(kr)[n(r) —n] .
0

(D. 5)

The function C, (k) now stands as a, multiplicative
factor in the equation, and can therefore be easily
varied. The iterative method used to solve (D. 4)
is very simple. One starts with an assumed form
for n(r), substitutes it into the right-hand side of
either Eq. (D. 1) or (D. 4), and thus calculates a
new n(r) from the equation. This process is re-
peated until the input and output differ by no more
than a prescribed amount. If this method is
naively followed, the iterations are invariably
unstable and diverging functions are obtained.
This phenomenon can easily be cured if at any
step we mix the tycho previous functions together
to form an input function. Thus

n ~=o.n P+(1 —n)n.
in out out

where sin~ is the input function for the pth step,
noutP 1 is that obtained at the (p —1)th iteration.
The constant n is chosen to secure convergence
with the minimum number of iterations. With a
convergence criteria of 1% everywhere in the
range, the energies were found to be at least this
accurate. Several check runs were made with a

(D. 6)

increases. This reacts back on the "hole" making
it difficult to have a lay ge hole. This corresponds
to the fact that n(r) e"&r ) is an increasing function
of a for small r and produces an increase of (H)
with a.

APPENDIX D: THE METHOD OF SOLUTION
OF THE INTEGRAL EQUATIONS
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convergence criterion of 0. i%%uq. The range of in-
tegration was varied according to the type of func-
tion h(r) that was under investigation, the value
of m, and the value of c. A variable integration
grid was used to distribute the points as economi-
cally as possible in the range. Typical n values
ranged from 0. 2 to 0. 02, and the number of itera-
tions required ranged from 50 to 100. The start-
ing function was usually chosen to be exp[ —h(r)].

A very similar reduction can be made for the
CHNC equation. The iterative procedure was,
however, much more troublesome if the iteration

was started from exp[ —k(r)]. This difficulty was
overcome by taking the solution of the PY equa-
tion as the starting function. A convergent solu-
tion was then found with only 20—50 further itera-
tions.

The solution we obtained by these iterative
techniques in k space were checked in several
cases by a direct iteration in x space using Eqs.
(D. 2) and (D. 3). The results obtained by the two
methods always agreed to within the convergence
criterion. "
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