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20%for D. For %they are less than 10%. For
q, (1/7' —1/7', ) is about 0.03w~p'/~, ' times (1/&
—1/wo) for K. Thus, usually, the T' term in q
will not be large, although it could be significant
if &@p/&, took on its extreme value of 3.1.
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We present a systematic discussion of time-independent large-scale self-focusing in a
paraxial ray "constant-shape" approximation. An equation is obtained for the variance of a
self-focusing beam with a Gaussian transverse intensity profile as a function of axial distance.
This equation, valid for an arbitrary nonlinear constitutive relation, is solved for several
important situations, including the case of a saturable nonlinear refractive index. We also
derive closed expressions for such a saturable index arising from reorientation of axially
symmetric molecules in an external field, ignoring local-field effects. Self-focusing of an
elliptically polarized beam is considered in the same approximation, and numerical results
are presented which show that the self-focusing length is quite sensitive to small departures
from circular polarization.

INTRODUCTION

In this paper we present a systematic discussion
of time-independent self-trapping by molecular
reorientation in a "paraxial ray" approximation.
This approach provides a qualitative description
of many of the important aspects of the stationary
"large- scale" self-trapping phenomenon. In Sec.
I, we review briefly some relevant previous work

in order to place our own in proper context. Sec.
II is an account of the approximation scheme used
in this paper. We find that the equation describing
the width of a propagating cylindrically symmetric
beam (with an assumed Gaussian transverse in-
tensity profile) is equivalent to the equation of
motion of a particle in a one-dimensional conser-
vative potential well. The potential is proportional
to the nonlinear part of the. dielectric susceptibility
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describing the medium. Solutions of this equation
are derived in Sec. III for susceptibilities which
show nonsaturable and saturable behavior as a
function of field strength. For an ideal liquid
composed of molecules having uniaxial symmetry,
we find a closed-form expression for the suscep-
tibility arising from molecular reorientation which
is "exact" if one ignores local field effects. This
susceptibility displays the qualitative features of
the simpler saturable model which is discussed in
detail. In Sec. IV, we modify the preceding for-
malism to include polarization-dependent effects.
There are now two coupled "equations of motion"
describing the trapping of the right- and left-handed
circularly polarized components of the light beam.
These are solved numerically to find the critical
power and self-trapping length for beams of arbi-
trary polarization.

I. OUTLINE OF PREVIOUS WORK

In many fluids the self-trapping of high-intensity
light beams determines the onset of oiher nonlinear
optical processes. The key role of this effect in
such fluids has stimulated intensive research, both
experimental and theoretical (see references be-
low), into the details of the trapping mechanism.
The experimental work has shown that the behav-
ior of the beam is substantially different in two
regimes. Initially a beam of the order of a milli-
meter or larger in transverse dimension contracts
in a reasonably smooth way to a size of the order
of 100 p.. ' Typically at such sizes the contraction
of the beam is sufficient to lead to field strengths
which induce other important nonlinear processes,
such as stimulated inelastic scattering of all types
and double quantum absorption. At this stage, the
beam begins to exhibit small-scale filamentation, '-'
perhaps induced by fluctuations in the initial
beam profile, with characteristic diameters of the
order of 10 p, and less. These intense strands of
light seem to last only about a nanosecond, prob-
ably as a result of large local thermal changes
in the fluid which may cause small explosions,
disrupting the beam. In these small-scale fila-
ments, there is rapid and high conversion of the
radiant energy from one frequency to another.

We refer to the regime where only the self-
trapping phenomenon is irrfportant as the region of
large- scale trapping. The subsequent behavior of
the beam in the small-scale trapping regime is
marvelously complex. Most efforts at a mathe-
matical description of beam trapping, this paper
included, have considered only beams with a fixed
frequency, and are thus relevant only to propagation
in the large-scale trapping regime. The interest
in this work lies in the fact that good quantitative
values for the threshold for inelastic nonlinearities
may be obtained, and in the hope that some quali-
tative features of this description of beam propa-
gation at very small transverse dimensions may
appear in the small-scale trapping regime, where,
however, the quantitative description may be quite
different.

The theoretical treatments of self-trapping may
be classified according to their goals and methods
of analysis. Each has as its starting point Maxwell~ s

equations and a nonlinear constitutive relation yield-
ing an effective intensity-dependent refractive index.
The resulting wave equation is then solved in varying
degrees of approximation for the quantities of in-
terest in the trapping situation. The first such
quantity to be investigated was the critical power
required in a beam for the focusing action to over-
come diffraction defocusing. Solving the wave
equation numerically, Chiao, Garmire, and Townes'
found the critical power and the stationary radial
intensity distribution for a beam having a single
transverse intensity maximum. Critical powers
for stationary beams having several maxima were
found by Haus' using the same method. For beams
which do not propagate with constant cross section,
the spatial transition to a focus, characterized by
a "self-focusing length" is of obvious importance.
Using a form of the wave equation valid for regions
in which the field amplitude changes slowly within
a wavelength, Kelley' obtained a computer solution
describing the field in a focusing (initially Gaussian)
beam. Bespalov and Talanov' obtained numerical
solutions of the same equation for beams with
different initial shapes. All this work is valid only
for linear polarization, and it employs the consti-
tutive relation (for a real field)

D= e E+ e2(E ~ E)EL

which does not take saturation effects into account.
Wagner and Reichert" have recently obtained
critical powers and stationary radial intensity
distributions for the "exact" susceptibility de-
rived in Sec. III. C of this paper.

It is not necessary to resort to numerical compu-
tation to obtain useful formulas describing the
most important aspects of trapping. Talanov, "
Raizer, " and Akhmanov et al. "have used the
approximate paraxial ray formalism of geomet-
rical optics to find expressions for the critical
power and the self-focusing length. We employ
this formalism in the present paper, and discuss
it in detail in Sec. II.

Bespalov and Talanov' have found useful informa-
tion from a stability analysis of the wave equation
with a cubic term. They assumed as an unperturbed
solution a wave with no transverse intensity varia-
tion and asked for the growth rate of small pertur-
bations. Perturbations with a transverse wavelength
larger than a constant divided by the electric field
strength were found to grow exponentially. If the
maximum growth constant occurring in this type of
analysis is regarded as the inverse of a character-
istic trapping length, one finds trapping lengths
lo~ge~ than those given by other approaches for
powers not exceeding the critical power by an order
of magnitude. This is a consequence of the use of
an unrealistically "flat" beam shape as the unper-
turbed solution. For powers much greater than the
critical power, this analysis gives shorter trapping
lengths, but only for an optimal Fourier component
of the perturbation. Brueckner and Jorna'4 have
also performed a stability analysis which attempts
to encompass a wider variety of physical mecha. —

nisms.
Most of these techniques may be applied to more

realistic self-trapping situations in which saturation
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II. THE PARAXIAI. RAY APPROXIMATION

The electric and magnetic field intensities obey
the equations

VxE = —p. BH/Bi (2. 1)

of the nonlinear index, polarization effects, time
dependence, inelastic scattering, thermal effects,
etc. are taken into account. In this paper, we
analyze the time-independent saturation and polar-
ization properties of trapping induced by molecular
reorientation, ignoring all other complications.
This is not unrealistic, since there are several
liquids for which this effect is clearly the dominant
self-trapping mechanism. It is also characterized
by a shorter response time than other proposed
mechanisms, and may therefore be analyzed inde-
pendently of them in the spirit of an "adiabatic
approximation. " Finally, interaction with inelasti-
cally scattered waves is small in the large-scale
trapping regime where the field intensity is still
below threshold for stimulated processes.

drical symmetry)

kBE02/Bz = —VT (Eo VTp), (2. 6)

we find immediately from Hamilton's equations

V
+(V y)2- — q(E,2)=0. (2. 7)

These are obtained from (2. 5) by ignoring all
second derivatives of P and E, with respect to z
and comparing real and imaginary parts. Equation
(2. 6) expresses the conservation of power, and
(2. 7) gives a differential equation for the surfaces
of constant phase. The latter equation bear s
a striking resemblance to the Hamilton- Jacobi
equation for a particle whose motion is described
by the Hamiltonian z P + V, P = VS: 2BS/Bt+(VS)'
+2V= 0. Identifying time with kz, spatial coordi-
nates with kx, S with P, and V with

1 i T 0 1 1 eff
2 k2 (2. 8)

L J L

VxH= BD/Bt (2. 2) d2~/dz' = ', (B/B~)(-e ff/~L) . (2. 9)
in rationalized mks units. These can be combined
to give

V x (V x E) + p B'D/Bt' = 0, (2. 8)
where the displacement flux density is related to
the electric field by a nonlinear constitutive law

D=TL' E+y (E)' E . (2. 4)

Here y is the nonlinear part of the susceptibility
tensor the linear part being included in YL. In this
section, we restrict the discussion to linearly
polarized light and treat y as a scalar. In liquids,

may always be regarded as a scalar. Section
IV includes the treatment for general polarization
of E.

When the dielectric constant varies with position,
as when the nonlinear contribution to (2. 4) is im-
portant, the electric field acquires a divergence
and we have a vector problem. We shall disre-
gard this effect, this obtaining from (2. 3) the non-
linear scalar wave equation

V'E'+ 2i k BE'/Bz = —k XE'/zL . (2. 5)

Here we have removed the rapidly varying part of
the electric field strength

E =E'e p[x—i((ut —kz)],

where k = E pML

{.omplex notation in nonlinear equations must be
handled with care. In the present situation, this
problem is particularly simple because the only
nonlinearity occurs in the susceptibility y, which
we assume to depend only on the field amplitude,
andnofrequencydoubling, tripling, etc. is assumed
to occur.

Equation (2. 5) leads to the following equations for
the slowly varying amplitude E„and phase &j& of
E' =E, expiQ,, (V7 is the gradient perpendicular to
the direction of propagation and we assume cylin-

Here the position variable is the distance of a ray
from the axis and depends upon the time variable
z. Notice that the effective dielectric constant in
(2. 8) includes a term depending on the variation of
field intensity across the wave front. This term
describes the diffraction of the beam.

The right-hand side of (2. 9) is a function of ra-
dius. This means that in order to evaluate the
changes in shape of the light beam, it is necessary
to trace a family of rays starting at different ra-
dial distances from the beam axis. Our next ap-
proximation, however, consists in replacing the
right-hand side of (2. 9) by a function proportional
to the radial distance, thus vastly simplifying the
mathematical effort. Before we can use (2. 9),
we must make the radial dependence of E, explicit.
We assume that E, is given by

E Ee-I (2. 10)

V 2E

2k'2 et E & &&
k'2 a3 (2. 11)

for a general nonlinear susceptibility y(E ), we
find

(E )
—1 By(EO) l m

2C Btt= Da 2'E' BE )i aI I 'V ~Q

(2. 12)
A relation between E~ and a can be obtained

where E~ and a2 are functions of z. One reason.
for assuming this dependence is that it satisfies
the equation of diffraction theory (the wave equa-
tion with BzE/Bz' neglected) in the absence of
nonlinear effects.

Using Eq. (2. 10), we find for the diffraction term
in (2. 8), at a radial distance x = na with o. ((1,
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from the expression for the power in the light beam,
which quantity is conserved in the dissipation-free
system we consider

tions of this formalism for particular suscepti-
bilities.

III. NONLINEAR SUSCEPTIBILITIES

A. Simplest Nonsaturable Susceptibility

=-'v(e /p. )'"z 'a'.
L m

(2. 13) Expanding the nonlinear part of the susceptibility
and keeping only the first nonvanishing term, we
find for an isotropic medium

In evaluating the power, we have neglected the
change in dielectric constant with applied electric
field. Here E~ is the peak amplitude and the
power is averaged over one cycle. To obtain
the corresponding result in unrationalized cgs
units, divide (2. 13) by 4', .
Now (2. 12) may be written as a function of a alone

1 B 1 By(Z)
26 R' 2t BZL r=~a I

gQ

r=~a a

where q = (2/m) (p/e )' P .L
Equation (2. 9) may now be written as an ordinary
differential equation for the beam radius a

B'a 1 q By(z )
ez 0'a' 2e a' ~EO r = ~a

(2. 14)

(2. 15)

This may be rewritten in the following suggestive
form:

B'a/Bz' = —BU/Ba, (2. 16)

(2. 16)

Here a, is the initial beam size and a, =tan80,
where 8, is the initial divergence angle of the
beam. Once a~ has been found, the distance zf
from z=0, at which this minimum occurs, is
given by the familiar formula for the "half period"
of the motion

a
z = J da/(2[U(ao) —U(a)] + a02} '~' . (2. 19)

A beam with no initial divergence and with size
ac given by the solution of (2. 15), with B2a/Bz'
= 0, will propagate with constant cross section.
Evidently the expression

(0' q/2e )[Bx(z,)/Bz, ] =1,
C

(2. 20)

is an implicit equation for a~. This corresponds
to the value of a for which the slope of U vanishes,
a point of "equilibrium. "

In the next section we consider some applica-

U(a) = (2k 0 ) ' —(2t ) ' y(q/a) .L (2. 17)

Equation (2. 16) is equivalent to that describing a
particle of unit mass moving in the one-dimen-
sional conservative potential U. Thus, once the
nonlinear susceptibility is specified, we may use
the formal apparatus of elementary mechanics to
find the behavior of the beam radius a as a function
of z. In particular, the minimum beam radius
a~, if any, may be found using "conservation of
energy"

U(a ) = U(ao)+ —,
' a,'

(3.1)xo«0) = &2'zo'

where our notation for the coefficient of propor-
tionality conforms with KeQey&s. ' While this form
does not include saturation, it is the simplest
which leads to self-trapping when c2 is positive.
The effective potential corresponding to (3.1) is

U = (2a2k ) '[1 —(e '/g )k q'] (3. 2)

which is "attractive" (leads to focusing solutions)
only for

kao
(P/P —1)'"—a it@

(3.5)

Evidently the power in a divergent beam must ex-
ceed

= [1+(a,aP)2] P (3.6)

before it can trap itself. Raizer, "however, has

q'- /p - or P-P =
2 /)2, 1, g (3.3)Cr 62 p,

where Pcr is the critical power for focusing. This
critical power is less than that found numerically
by Chiao, Garmire, and Townes, ' by the factor
v/(2x 5. 763) = 0.273.

Equation (2. 16) may be solved directly in this
case for a formula which describes most of the
important aspects of the self-trapping phenomenon

ao

This solution is plotted in Fig. 1 for P=10Pcr.
The dimensionless variables employed in the
figure are @*=a/a„f*=z/ka, 2, and 8, =tan '[(P/Pcr
—1)/aP]. When the divergence angle of the in-
cident beam is greater than 8„ there is no focus
for positive values of z. For an initial beam di-
ameter of 0. 2 cm and light at 6900 A, this angle
is close to a milliradian at P = lOPcr. Figure
1 indicates that the self-focusing length is a sen-
sitive function of the incident divergence.

The equilibrium radius defined by (2. 20) exists
only when a, =0, P =Per, under these conditions
it is arbitrary. Thus a beam of any size and no
initial divergence will propagate with constant
cross section if it has precisely the critical power.
This is true only for the approximate suscepti-
bility (3.1). For saturable susceptibilities, there
is usually a unique critical radius for each power
exceeding the critical power.

For P sufficiently large, the beam collapses to
an arbitrarily small radius at a distance zf given
by
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e, '=~„'[1+(E,'/E ')j-', (s. 6)

we obtain an expression for the susceptibility which
displays most of the qualitative aspects of the
"exact" form to be derived below. The principal
new features are a minimum radius for the focused
beam and "pulsations" or repeated foci as noted
by Razier. " All other aspects of the nonsaturable
case appear here as well, but we confine the dis-
cussion to parallel incident beams for brevity.

The "equation of motion" of the radius is now
2

'9 kd2a 1 tl crP P

[i.(.,'/. ')] * ) '

where a = q/Es s

(3. 9)

4 .6

Figure 2 shows a graph of the corresponding po-
tential

P P1
1 cr

2~' 1+(as'/a') j '

which reduces to (3.2) for large values of the sat-
uration field Es. The dimensionless variables
employed in this and subsequent figures are

r=ia/a, t =z/ka '

FIG. 1. Radius squared versus axial distance in
dimensionless variables for various divergence angles
of the incident beam in the absence of saturation for
P= 10P. g +=z/Kap, &*=a/ap.

pointed out that Part of a divergent beam can be-
come trapped at powers lower than this.

To estimate the critical power required to trap
any part of a beam, Raizer assumes an equation
equivalent to (3.6) to apply to a tube within the
beam characterized by a» ~ a, and Boy proportional
to ap] However this assumption implies that the
trapping of each tube within the main beam is gov-
erned by a different transverse intensity distri-
bution. This is certainly inconsistent with other
assumptions used in deriving (3.6).

Equation (3.4) may be used to compute the inten-
sity on the z axis. Taking I = Pjza2, we find

I =[(1-P ) k, ', +(1+d,—')']-'. (3.7)
cr Dao

This differs from the empirical expression given
by Kelley' even for parallel incident beams.
Kelley's formula leads to imaginary intensities
for P &P'cr and is therefore not useful for investi-
gations of trapping near threshold. Kaiser et al. "
explain why Kelley's equation is accurate in some
cases despite its awkward analytical properties,
and modify it to include absorption. An analogous
modification of (3. 7) is possible, but is not rele-
vant to our discussion.

Here as is the radius to which a beam of definite
power must shrink before saturation effects be-
come appreciable. In terms of the physical model
for saturation described in the next section, we
have

E =(4kT/lo]II —o I)

At this field strength, the energy associated with
the reorientation of an induced molecular dipole
is kT. A glance at Fig. 6, in which saturable sus-
ceptibilities are plotted versus E'/Es2 ——as'/a'
=g', shows that the dielectric response of the
medium actually flattens out only for a ( as/3.
For CS2 at room temperature, as=3. 12EPi]. for
P in megawatts. (This number does not include
local field corrections. ) The quantity actually

c PiP IQ

B. Siplest Saturable Susceptibility -40
I I

.2
I I I I

.6 .8 1.0

Replacing e, ' in (3. 1) with the "standard" satur-
able form

FIG. 2. Effective potential versus beam radius for
the saturable susceptibility of Eq. (3.1). g =a/a .s
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plotted in Fig. 2 is Us*=-(4eI, V/N I n 11
—o'~ I ) Us,

where N/V is the molecular number density and
e)) and n& are the longitudinal and transverse
polarizabilities of the axially symmetric molecules
of our model.

The equilibrium radius given by (3.9) is

a =a [(P/P, )»2-1] "'. (3.i2)

For powers greatly exceeding the trapping thresh-
old value Pcr, the equilibrium radius is propor-
tional to P"~ . This may be surprising at first
glance because the dielectric constant reaches a
power-independent saturation value at high P.
However, a look at (2. 20) shows that the gradient
of y, and not X itself, determines the equilibrium
radius. Order-of-magnitude estimates of az are
are given in Sec. III. C. ' For the present, we
remark that for P =Ps))Pcr, where Ps= P/II-'as',

(j'» / . I I ( I) I
u2a ' =

where I5e is the maximum change in the dielectric
constant achieved at full saturation. a~ )) X only
if the maximum fractional change in the dielectric
constant is much smaller than unity. Since the
radius oscillates weakly about the equilibrium
point az in this model, we know that the minimum
radius reached will always be less than a~. Thus
a self-focusing beam will tend to focus to radii
less than a wavelength unless 5e (( 1 or P =Per.
Of course, our analysis fails for such small radii
because the neglect of second derivatives with re-
spect to z is no longer justified, and the details of
propagation will be modified substantially in the
focal region by other nonlinear phenomena.

When the radius of the light beam oscillates
weakly about its equilibrium position, the "period"
or interval between minimum radii (foci) may be
obtained from a "small-signal" analysis of (3.9).
In this approximation, the squared angular fre-
quency is equal to the spring constant

where C =(-[(P/P ) —1]q ' —1}/Il, +1)I),' . (3. 16)

2 2
sin24 =

gQ g

[(P/P ) 1]q,——2q, '- i
y'-

(e,"1)([(PIP„)—1]~.'- 1}
(3. iS)

Here gras is the minimum radius a~ which can be
found from (2. 18) or from the condition that the
integrand of (3. 15) be singular at Il,' and Ii~2.
When a, =0, we have

n '=(n.'+1)/1'[(PIP„) —1]n.'- 1}

The exact "half period" or self-focusing length is

(n.'+ i)
~s P/Pcr —1-qo ']

where E(y) is the complete elliptic integral of the
second kind. Our notation for these integrals is
that of Abramowitz and Stegun. "

Figure 3 shows the dimensionless minimum ra-
dius q~ as a function of starting radius q~, and
Fig. 4 gives the dimensionless period of oscillation
as a function of starting radius with P/Pcr as
parameter. Neither of these quantities are sen-
sitive functions of a, for large starting radii

l.8 I I
i

I I I I I I I I I I

l.6-

This can be written as an incomplete elliptic inte-
gral of the second kind

Il 2+1
kP [(P/P ) 1 ~ 2 ]

where

k+ = —-22=
cfQ [1 + (IIs'/&')] '

(3.13)

l.4-

l.2-

from which the period is found to be

8 = 2K(ds (P/P )I/4
cr=gka 2' [(P/P„) —1]

(3. i4)

l.o-p,„= l
P

.8-

6-
For P =Per, or when the saturation field is very
small, zf is much greater than the near field
length kas' of a beam of radius as.

The period for large oscillations can be found
from the exact solution of Eq. (3.9). For a par-
allel incident beam, we have

.2

0
I I I I I I I I I I I I I I I

.2 .4 .6 .8 I.O l.2 l.4 l.6
(X+1)»2dX

([(P/Pcr) —1]X—1 —CX(X+1)}
(3.16) FIG. 3. Minimum (or maximum) radius versus

starting radius. g =a/as.
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(3. 20)

(3.2I)
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(n 0 0)
(n ')= o

U
Q Q Qtt

~ . f + noninteractinga model liquid cons
t in a volume V, ig

such
ec

' ld effects. e
ules with ~la"

Th energy of onenoring local fie
f an external electriicmolecule in the pres

th respect to the]d inclined at ang se wi
Stem 1Sprinc&pal

(g ) -', Z,. n, (g, m(z;Ej f '

d cages a time averag pver manyHere the (')f in
. (g &) is the polariz-cycles « th

'
d b a transformation

e field, and &ij &

fromability tensor obtaine
~ . al ~is systemthe mol. ecular princip

n. .(g P)= kf fkU
'

.2-

OO
l

2 2
~0

'ectpries for a givenFi re 5 shows tra]ec iven
ifferent starting radii.

h' hd tance betwee n foci is twice zf, w
'

l
he first focus r

allel inc~dent beam. For
mfalls close tofirstminimum a

i.e. , to (P/Pcr —I

rres onding to MolecularC Susceptibility Correspon ing
Reorientation

In is ', m ute the susceptibility ofIn this section, we compu e

l,6

l.4

l,2

I.O

0 I II.2 1.0

s uared versus axial distance for
different starting ra ii.

'
d twice the distance to ewith perio

le th versus radar. us os of incidentFIG. 4. Self-trapping eng
are indicated for g o= ao s=a /a )) l.b am. Asymptotes are in

kf =zf/Has .

A" (g, P) is that gi&en byThe rotation matr~ ij
h g about the bodyGpldstein. Rotation thrpug

hangedaxis leaves ou y
f surrounding mol-

r s stem unc an
j. uid the Presq-p. ) In a»Qu~

pojIlt.
~ the field seen a anyecules modifies

f ld prob]e fpr thisever the non . ' lt t arrant a separ
inear l.peal

ratetl dgficu
he

case is sufficien y
n l t it completely in tinvestigatipn, and we

f llpwing discuss " .
th ~ direction, welarized»For (E)t linear y P

' describing an en-artitj. on functionmay write the pa
h with energy given bymble of molecules, ea

(3. 2I), as
1

) cos2gj/d cosg
~

1 —Q~Z= 2 J exp/gPEO [-1
(3. 22

b t ' al for our symmetry.
h 1 b tw th

~ ~axis an
' t' f polarizatzon.

t ic fi ld i t it .is e P e e ri ze
i

d' thand has different forms depen mg u" molecules such as) For "cigar-shaped mo(nil n' Fo)r „„...,mo
CS2, n II

—ng, a

(3. 23)E )
4P II OF(z/E )+ S

ral tabulated in Ref.where I' x is Dawson' s integral a
I6)

~2 & y2F(x) =eJ e dy-
0

and E =2(PInII —niI
ch as benzene, n

II
d molecules sucFor disc- shaped

—eg (0 and

Z = —.'~, ' erf(Z, /Z ), (3.24)z =-.'~2 (z /z, )e

e ydyror function erf(x) =-(2/w'~' e dywhere the error un ' = 2 w ~ e y

l f-
it and therefore to the po

s lead direc y
lar-the mean polarizability, an e



F- TRA PPINPING OF OPTICAL BEAM

ive relatio

L BEAMS1'75

I I I I I I I I

.22

ization densi ansity and a constitut
or e mean polarizabili

n as well.
erne ' ii, we have

n, =(4/P)elnZ, /e(Z )

j.=n+ 2 ln —nn —-— ——, i, (3.26)

263

whereere, taking l' =E,/Ee =q-'

&, L
= &-(k), G (L)=(&v/2) ~v e erf(l'),

n= 3(n +2n ) .
The bracketed ex re ' . v

ofi ld
nonlinea

ie so the linear d lr ielectric
' ii~ are, res c'pe t ly,

.l8

.l6

and

Nl a )I- a~ I

+
lG ( )

) (3 26)

.l2

.IO

The dimensionles

so plotted the dim
pt b 1 t

saturatjon f ld1) h s
rated susce

e saturation val

nz, respectivel

panded
s ows ththese susce t' ' ' '

p ii
ensionless f ld

an ex-
ng

.08

.06

.04

.02

'0 I

l.O

(~)
6 ], 16 (3.27)

.6 2 .8

FIG. 7. Kx aF . . xpanded view of F' .xg. 6 for small intensities

(l ) l 2 32
s 45 675~ ' (3. 26)

l.6

l.4

l.2

I,Q

0 \ I ~ I

0 2 4 6 8 IO I8l2 s l4 l6 I8I8 20 22 24

FIG. 6. DimF . . imensionless sus
d oblate molecules

sceptibilities for
cu es, respectivelecu es e y, ~ for the stand

=E /E 2=a
a rable form ™an ard

s =~s
Mo)

It is at for c's interesting th
he susceptibil'

cigar- shaped
' ii shows o '' molecule s

i
p i

i ifi t H
ensi be

a re as

owe ver
ion begins to

, a glance at F' 6

h thare ver
a l thre

e. Thus most u
-trapping are describe

e simple model of the

Ho~e~er Chiained.
solutio

h d% have shown that
i ' r'um rad" fo u earnso e inp

g y Chiao, Garmire, a

.8 . 2 =0. 69,p,.
i in is analysis being about

ions has nodes for f' 'inite

The dimens nl
d th

10 ess 0
rough

in Figs. 2 and 8



264 WAGNER, HAUS, AND MARBURGER 175

the system described in the previous section:

0
0

.2.

-4-

="" '~(367 'f '—'af"En*El+EaEf*)
Zg 'Q$ Z g 2$

(4. 1)
where

—.6-

-,8-

- 1.2-

- 1.4-
I

.I .2 .3 .4 .5 .6 7 .8 .9 1.0 1.1 12

FIG. 8. Dimensionless potentials corresponding to the
susceptibilities shown in Fig. 6 plotted versus q= alas.

4c
L U'

(N/V) I o.
II

—n

or V+= 0 /P)C'-=-(g').

In the high- and low-field limits, the local field
problem becomes tractable for our ideal fluid, and
we may find the maximum fractional change in
dielectric constant from the Lorentz local field
theory.

�

6m 1 N~ m n

(1 ——', (N/V)nm/eo 1 —
& (N/V)n/eo )

(3. 29)

Polarizabilities in unrationalized cgs units should
be multiplied by 4m', for use in this formula. Using
the cgs values appropriate for CS, (o.m = 151.4
x10 'cm, o, =87.6x10 'cm', eg/so=2. 66 and
N/V =10 'cm ') we find 5e/eL =1.30. Another
parameter worth noting for CS, is the critical
power required for threshold according to this
paraxial ray theory: Pc = 2. 02 kW. This value
is obtained from Eq. (3.3 for X=6943 A and e, '
given by the theory described in this section suit-
ably modified by the Lorentz local-field theory.
[See Eq. (6) of Ref. 19.]

IV. COUPLING OF POLARIZATIONS

For a wave of general elliptical polarization,
there will be two partial differential equations de-
scribing the components of the electric field vector
in each possible state of polarization. These equa-
tions will be coupled for two reasons. First, the
material will, in general, couple the two compo-
nents through the nonlinear susceptibility. Second,
since V(V E)40, the wave equation for one compo-
nent will depend upon the other. We shall not con-
sider this effect at all, but shall include only the
coupling arising from molecular reorientation.

Close et al. "have developed the following ex-
pression for the nonlinear susceptibility tensor of

f2 = [(Qq —Q2) +(CK2 —os) +(Qg —(lg) ]p

and the ei are the principal molecular polariza-
bilities. In the limit of small field strengths,
Eq. (3.26) is a special case of (4. 1) for o, ,= nm
= o~, o., = n

II
and Ei =E5@.

A description in terms of Cartesian components
of E is not useful here, because in this case the
nonlinear polarization O'NL depends upon the rel-
ative phases of the components a,s wel]. as on
their magnitudes. For polarization in the x-y,
plane we have

tN~ - e,'[ I E I'+ 4(3e
'

+ 1) I E I'] Ex x

=e,'[IE I'+ 4(3e '~+1) IE I']E
NLy ' y

' x y
'

where Q is the relative phase Q&
—Q of the two

components. Thus yz& is a function of intensities
alone only when the principal axes of the polarization
ellipse are aligned along the coordinate axes:
P= v/2. However, one consequence of the coupling
between the two polarizations is a rotation of the
axes of the polarization ellipse, a process which
requires transfer of power from one linearly polar-
ized beam to the other. A description of the light
in terms of circularly polarized components avoids
this difficulty. Defining

&2 E =E +iE
X

we find,

NL+ NLx NLy
= (P yi(P

4 6' = e, ' (7 I E I '+ I E I ')E (4. 2)

The two directions of rotation are coupled in a very
simple way: One wave affects the dielectric con-
stant of the other, but the dielectric constant itself
can be treated as a scalar for each wave. Notice
that the nonlinear susceptibility is larger for the
weakest wave. Thus the weakest beam will focus
more rapidly, tending to equalize the intensities of
the components and convert the beam to linear
polarization. Also, because the indices are dif-
ferent for the two components, the orientation of
the ellipse rotates as the beam passes through the
liquid, which is consistent with the experimental
result that the beams emerge depolarized.

The saturation of a dielectric medium is inherently
tensorial. Indeed, when the applied field is linearly
polarized, it induces an anisotropy in the medium.
The dielectric tensor describing this uniaxial med-
ium cannot be diagonalized in the circular-polar-
ization description and depends upon the relative
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phases of the counter-rotating fields. We shall
not treat the problem of the saturation of the polar-
izability in this section. Our discussion of sat-
uration for linearly polairzed beams led to the con-
clusion that there should be periodic foci. That
this is also a feature of elliptically polarized beams
has been demonstrated by one of the authors (HAH)
and co-workers.

Assuming, as in Sec. II, that

I.O

.8

-~'~a '
IZ /' =(p, /e )"'(2P /ma ')e

L

we may derive the following set of coupled equa-
tions for the dimensionless radii q+* = a+/a„r/
=a /a, exactly as for the case of linear polariza-
tion

.2

0—
0

I.O

FIG. 9. Radius versus axial distance (in same vari-
ables as Fig. 1) for weaker (solid) and stronger (dashed)
counter-rotating components of elliptically polarized self-
focusing beams. p is ratio of the minor to the major axis
of polarization ellipse. Only the self-focusing distance is
shown for p=0.2, 0.4, and 0.6. P= lOPcr.

d'r/ */d$*'=(1 —c)/r/ *'— 7dr/ */r/ *'
p (4. 3)

Of course Eqs. (4. 3) and (4. 4) are themselves
approximate, and great reliance must not be placed
upon these numbers. Figure 9 shows computer
solutions of Eqs. (4. 3) and (4. 4) for several values
of p, the ratio of minor to major axes of the polar-
ization ellipse. For p=0. 2, 0. 4, and 0. 6, only the
distance (z~ where the radius of one of the counter-
rotating c6mponents vanishes is indicated. The
dashed lines are the "trajectories" of the compo-
nent beam having the greater power. Notice how sen-
sitive the self-focusing length is to small departures
from circular polarization. One may expect the
striking oscillations of the radius of the weaker
component to be a feature of less approximate so-
lutions of the nonlinear wave equation.

d'r/ *./dg*'=(1 —d)/r/ *'—7cr/ */r/ *4 . (4. 4)

Here 4c =P+/Pcz, 4d =P /Pcz, and we have made
use of (4. 2). P and P are the powers in the
counter- rotating components. These equations, of
course, reduce to (2. 16) with U given by (3.2) for
the case of linear polarization for which q+*=g
P+ = P = z P, c = d = P/8Pcz .

A rough idea of the behavior of the solutions of
(4. 3) and (4. 4) may be obtained from the following
crude argument. The stability analysis of Bespalov
and Talanov' shows that the results for elliptical
polarization may be obtained from those for linear
polarization by diminishing the power in the latter
case by the factor &8(1 + [1+(192P+P /P')]' '] .
[This can be obtained from the expression for
F,(/3) in Ref. 9 after replacing the quantity (1—P')
/(1+ P ) by its square to obtain the correct result ].
Including this factor in Eq. (3. 5) for a, = 0, we
find

[I+(I+192P P /P2)'"]-I]-'".
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We make use of our understanding of the ground state Po and elementary excitations $q of
the strongly interacting Bose gas to construct a theory of strongly interacting mixed and
Fermi gases. We consider the overcomplete basis set (tl&gq, where Q is a determinant of
plane waves, and interpret the off-diagonal part of the hamiltonian as a three-point vertex,
coupling the Fermi quasiparticles to the collective modes. This vertex dresses each fer-
mion with its backflow and induces a two-fermion scattering via the interaction of the back-
flows. There is no residual (screened) two-body interaction in the problem. Finally we
discuss the expansion parameter for strong interactions.

I. INTRODUCTION

We attempt to develop a theoretical formalism
which will enable one to calculate the properties
of manybody systems with strong interactions
from first principles. We are interested in the
case in which the dynamical correlations brought
about by a strong two-body interaction dominate
the correlations induced by the statistics of the
particles. This is the opposite limit to the weak
interactions case, i. e. , the high-density electron
gas'~' or the low-'density hard-sphere Bose gas, '~~

where the statistical correlations dominate. The
physical systems that we wish to study include
liquid He', liquid He~, the liquid He' -He mix-
tures and the low-density electron gas (not the
solid). The properties that we wish to calculate
include the ground-state energy, the correlation
functions, the elementary excitation spectrum,
and the low-temperature equilibrium and trans-
port properties.

For the weakly interacting Bose gas the kinetic
energy per particle (KE) is much less than the
degeneracy temperature T~ and the fraction of
particles in the condensed state n, /n is very
nearly one. For the strongly interacting Bose

gas we have (KE) )) TE and n, /n (( 1. Liquid
He4 clearly falls in the second category since,
according to the microscopic theory, ' 7 (KE)
=14'K, T&=2.2 K, ' and n, /n=. 1. Fortheweakiy
interacting Fermi gas the kinetic energy per par-
ticle is very nearly equal to three-fifths the Fermi
energy T& and the zero-sound velocity c not much
greater than the Fermi velocity v&. For the
strongly interacting Fermi gas (KE) ))TF and c
&) v&. Liquid He' clearly falls in the second cate-
gorysince'(AE)/T& =2 and c/v&-2. ' We b'e-
lieve that it is absurd to attempCa microscopic
treatment of a strongly interacting system using
theoretical techniques developed for and valid
only for the case of weak interactions. The pur-
pose of this paper is to reformulate the manybody
problem for strong interactions.

We will take advantage of the progress made in
understanding the wave functions of the ground
state and elementary excitations of liquid He~.
We will further take advantage of the fact that
statistical effects are secondary so that chang-
ing bosons into fermions has only a small effect
on certain properties of the system. The plan
of the payer is as follows: in Sec. II we review
the properties of the ground state and elementary


