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A unified treatment of transport phenomena in crossed electric and magnetic fields is pre-
sented. This theory is limited to strong magnetic fields, coca» 1, where coc and 1/7 are the
cyclotron and mean collision frequencies, respectively. It is not, however, limited to lin-
ear response in the electric field nor is a relaxation time approximation introduced. The
semiclassical and quantum theories are developed along parallel lines.

An irreversible transport equation is derived for the asymptotic state of the system,
coca ~, and it is shown that the asymptotic electron distribution is independent of the
absolute values of the coupling constants to the scattering system, but dependent on the form of
the scattering interaction. A perturbation theory in 1/cuc7 is performed and a generalized
orbit-jump formula for the dissipative current is derived. Explicit expressions are.de-
rived for the ohmic case and are applied as an example to polar optical-phonon scattering.

INTRODUCTION

In this paper we present a theory of transport
phenomena in crossed electric and magnetic fields.
This work is restricted to strong magnetic fields
and is essentially a perturbation theory in 1/a&c7',
where cue is the cyclotron i'requency and 1/F is an
appropriate average collision frequency. Our
theory is motivated by the observation that the
asymptotic state of the system for ~~7 ~ is one

in which the conduction electrons acquire a drift
velocity Vd = h x 5/B' normal to the electric field,
and consequently the average power input to the
sysfem vanishes. This is true both classically
and quantum mechanically as long as the particle
orbits in R space are closed, which is the only
cise we treat in this paper. The simplicity and
generality of this result suggests that the strong
magnetic field problem is best approached by
carrying out a perturbation theory in 1/&oc7' about
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this asymptotic state of the system.
We shall treat both the classical and quantum

theories in this spirit' and shall extend the usual
treatments in two directions. The present work
is firstly not limited to ohmic conductivity (linear
response in the electric field), nor does it assume
the existence of a relaxation time' to describe the
effect of collisions.

The usual semiclassical theories' are based on
solving the Boltzmann equation, which even in the
ohmic case is only possible when a relaxation time
approximation is employed. The nonlinear prob-
lem4 is of considerably greater difficulty, since
even if a relaxation time approximation is intro-
duced in order to describe the relaxation of the
anisotropic part of the electron distribution, the
energy relaxation cannot be treated in this simple
fashion. The usual' quantum theories of transport,
on the other hand, are formulated without recourse
to the relaxation time approximation, but deal

mostly with the linear response problem.
In this paper, we present a unified treatment of

both the classical and quantum theories in strong
magnetic fields, which embraces both the linear
and nonlinear problems without recourse to the
relaxation time approximation. In Sec. 1 we es-
tablish the semiclassical kinetic equation describ-
ing the asymptotic state of the system and carry
out the lowest-order perturbation theory in order
to determine the dissipative current. This yields
an expression for the current which is strikingly
similar to the quantum orbit-jump formula first
derived by Titeica. ' In Sec. 2 we discuss the appli-
cation of these results to the transport coefficients
measured in the Hall geometry, where the electric
field is not known a priori. Explicit expressions
for the ohmic transport coefficients are derived
in Sec. 3 and are applied to the case of polar
optical-mode scattering in Sec. 4. Section 5 deals
with the general quantum theory, and the linear re-
sults are displayed in Sec. 6.

I. THE ASYMPTOTIC STATE

We seek the steady-state distribution function f for a gas of noninteracting electrons in the presence of
crossed electric and magnetic fields, denoted by K and B, respectively. The relevant Boltzmann equation
is

e (E+fx B) v f (p) = Cf = fdp' [f (p') Z', —f (p) T,] .
p PP PP

(1)
A

Here p represents the electron crystal momentum, C is the collision operator characterized by transition
rates ~pp' between states p and p', and OV- e(' p=), where e is the electron energy. In seeking the asymptoticp
state of the system for ~~7- ~, one is tempted to neglect the collision term at the outset and to solve the
resulting steady state I iouville equation:

e(E+VxB) ~ & f =0.
p

(2)

One is then faced with a rather fundamental difficulty in that the resulting equation is completely reversi-
ble and admits an infinity of physically acceptable solutions. We see, for example, that pz =p .. 8/B and
e —p Vd are constants of motion, with fd =fxB/B2:

dp /dt=(dp/dt) ~ 8/9=e(K+V xf) ~ B/B =0, (d/dt)(e —p V ) =e(f V -eV xB ~ f ) =0,
d d

and therefore any function@(pz, e —p ~ Vd) solves Eq. (2).
It is in fact the collision term which is responsible for the irreversible behavior of the system and which

is therefore responsible for the existence of unique steady state solutions of the transport equation. We
must therefore'approach the co~F- ~ limit in a gentler manner, so as not to discard the irreversible nature
of the system.

In order to accomplish this we use the yath variable transformation7 of the Boltzmann equation. The
collision-free trajectories are calculated by solving the semiclassical equation:

dp/dt=e(K+V xB); V=V e, (4)

and are introduced into the Boltzmann equation in the manner described in Ref. 7. The resulting equation

f(p) = f ds fdic'f (jP)T,
( )

exp[- dy/v(y)], I/v(s) =—fdp' 7'~ (5)

is identical in form to Eq. (10) of Ref. 7, the only difference being that the collision-free trajectories are
now determined by Eq. (4). The physical interpretation is again the same as before; T i (s)ds is the
probability of a particle Scattering from state p' to p(s) in a time interval ds near s, where p(s) is the
momentum of a particle which would drift into the state p under the influence of the applied fields if it suf-
fered no collisions in the subsequent s seconds. This latter survival probability is represented by the
exponential factor, while f(p') takes account of the occupancy probability of the initial state p'. The func-
tion f(p) is then constructed by summing over all initial states p' and over all points of entry along the
collision-free trajectory. We emphasize here that Eq. (5) is an exact transformation of the Boltzmann
Eq. (1).

Since the orbits are periodic in p space we have p(s) =p(s+ T) where T= 2m/&ue is the cyclotron period.
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ds jdp'f (p')T, { )
exp[- J dy/7'(y)]

Introducing this periodicity explicitly in Eq. (5), we obtain

(n+ I)T"'

f(p)= z f
= Z j ds jdp'f (p')T,

(
)exp[- j dy/7 (y)] exp[ —n j dy/r(y)]

n=o

= j ds jdpf(p)T, exp[ —j dy/~(y)]/I —exp[- j dy/7 (y)]) ' (6)

At this stage, Eq. (6) is still exact. We now introduce the approximation I/~e7'= T/7 ((1. The inte-
grals appearing in the exponentials are therefore small, and expanding the exponentials we obtain

f(p) =j ds jdp'f(p')T,
( )/ j ds/r(s), (Va)

f(p) jdp j ds T~( )~g= jdp f(p )f ds T~p~(
)

. (Vb)

(g)

The results are readily generalized to take account of Fermi statistics, in which case the appropriate
collision operator becomes

Equation (7) represents the asymptotic limit &o~F- ~ of the Boltzmann equation and is one of our essen-
tial results. It is very much like the thermal equilibrium equation Cf =0, except that the transition rates
are replaced by an average over one period of the collision-free motion, and are consequently field de-
pendent. The asymptotic distribution function fadf determined by Eq. (7) is obviously independent
of any absolute coupling constants to the scattering system, since Eq. (7) is homogeneous in the transition
rates T I, although it does depend on the form of the interaction. The independence of fadf of the abso-
lute coupling constants is similar to the weak-coupling theory of thermal equilibrium, where the thermal
equilibrium distribution exhibits this same property. This is a point worth emphasizing. Although fadf
is independent of the absolute coupling constants, it is not simply related to the thermal equilibrium dis-
tribution and depends on the detailed nature of the scattering system. This is discussed further in the
Appendix.

We now verify that fadf determined by Eq. (7) also satisfies the Liouville Eq. (2). This follows directly
from the following property:

e(E + V x B) ~ v j g(p(t))dt =j d
dt =g(t)(T)) —g(p(0)) = 0. (6)

Equation (7) defines fadf as the ratio of two trajectory averages, each of which solves Eq. (2) in the man-
ner shown in Eq. (8). Since the Liouville equation is of first order, it follows that the ratio of the two
trajectory averages, and consequently fadf, is -a, solution of Eq. (2). We use this property to recast Eq.
(7) in a slightly different form. Since fadf solves Eq. (2), it is constant along the trajectory f (p) =f(p(s))
and therefore Eq. (7) may be written

j ds(Cf]
(

=0 with f(p) =f(p(s)).

Cf= jdI '9(p')[I f(p)]T- ---f(p)[I f(p')]T-- )-
Application of the same path variable transformation as above then yields in place of Eq. (7),

f(p) jdp'[I -f(p')] j ds T (,= jdp'f(p') j ds T,
( )[1—f(p(s))].

(10)

All the properties of the fadf discussed above remain unchanged, the only new feature being the presence
of the exclusion factors [1—f(p )] multiplying the transition rates Tp p .

In order to calculate the current density j in the asymptotic state, we make use of the fact that fadf
solves Eq. (2). We take B in thez direction andKin thexdirectionandmultiply Eq. (2)byp, o. =x,y, z.
tegrating over p then determines the current density. This is in fact simply the moment equation describing the
conservation of momentum. Consider, for example, p:

= eB jdp V f = Bj = Bne (V ),,

— (12)

where we have integrated by parts and have assumed that f vanishes sufficiently rapidly as p -~. The
normalization used throughout is Jdpf =n, the electron density. A similar procedure yields (Vy) = E/B-
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—= Vd. Nothing further can be said about (Vz), since the pz moment equation vanishes because pz is a con-
stant of motion. We take (Vz) =0 for convenience if it is not so by symmetry.

We should now like to carry out our perturbation theory in I/&uc7, Only the lowest-order terms will be
considered here, although the perturbation procedure is readily. extended to higher order. The perturba-
tion theory is most readily performed by setting f =fad f+f~ and inserting this in Eq. (1)

I

e[E+V xB] ~ v f, = C(f df+f, ) = Cf df

since f, -O(l/&uc7. ) W. e note that the condition (7) is necessary for the solubility of Eq. (13). This solu-
bility condition and the relation of our work to the linear theory of Lifschitz, Azbel, and Koganov' are dis-
cussed in the Appendix.

We are particularly interested in calculating the dissipative current (in the electric field direction),
which is zero in the asymptotic state. This is readily accomplished by the same type of moment proce-
dure used in Eq. (12). More specifically, the p moment of Eq. (13) yields

j = fdp(p /B)C f = ffdpdp'(p /B)[f(p')T, —f(p)T, ], (14)

where we drop the adf subscript. Interchanging p and p' in Eq. (14), adding and dividing by 2, we obtain

(15b)

j =effdpdp'[(p —p ')/2eB] [f(p')T, -f(p)T, ] (classical statistics).x p p pp
(15a)

Here again Eqs. (14) and (15) remain valid for Fermi statistics with the Tpp~ multiplied by the exclusion
factor 1 -f(p'),

j =cffdpdp'[(p —p ')/2eB]p(p')T, [1-f(p)] -f(p)T, [1—f(p')]] (Fermi statistics).
x p p p

2. THE HALL GEOMETRY

We now discuss some general features of the asymptotic state and their relation to the transport mea-
surements in the Hall geometry. We should first like to point out that fadf depends on the electric and

magnetic fields only through Vd. The kinetic Eq. (4) for the collision-free trajectories is rewritten in

the following form:

dp/dt=ef xB; 'f =V e, e =e —p V; dp /dt=di/dt=o.

The collision-free trajectories are then characterized by pz = constant and & =constant, the only electric
field dependence entering through Vd. Since we consider only the case of periodic orbits in p space, the
trajectory averages eliminate any field dependence of fadf other than Vd

-=—E/B.
It is important to note, however, that f, the total electric field, is not an independent variable in the

Hall geometry (Fig. 1). Here the direction of the current jf is imposed and a transverse Hall field Et
arises in order that the current jt be zero. The Hall field Et is not known a Prio and must be deter-
mined self-consistently, such that j~= 0.

f =j E /E+j E /E=o, E /E =-j /j .

Inserting j& = —neE/B, and Eq. (14) for j~ we obtain

E /E& = (nE/B)/fdp(p /eB)Cf df, 1 = (E/E )EE/fdp(p /ne)Cf ~= (E/Et)E&/n(E/B), (18)

where the last form emphasizes the fact that the integral appearing in this equation is some function of
E/B, which we denote by n. . Now since Et/Et = ec7,E —= Et to order I/to~'v', and Eq. (18) becomes

1 =Et/&(Et/B). (19)

Thus Et/B is independent of Bfor givenEI, andtherefore fadf is independentof B. The current is, in the same
approximation, j& = neEt/B, which is again independent of B. Therefore in the Hall geometry all the semiclas-
sical transport coefficients saturate (are B independent) for large magnetic fields, just as they do in the linear
theory The Ha.ll coefficient is givenby B,=Et/j&B = 1/ne, since jf =neEt/B. An explicit expression for the
conductivity or Hall mobility cannotbe given inthe generalnon-ohmic case, since this requires solving Eq.
(19) for the Hall field. It is, however, possible to derive such expressions for the linear case, which we
present in Sec. 3.

We cite, as an example, results obtained for the case of electrons interacting with acoustic phonons.
The asymptotic distribution function is readily obtained in the diffusion approximation ~':

f d, =e ' [1+(P V /IT)], *T= [ T+I-,'(V /c)'], (2o)

where T is the lattice temperature, and c is the velocity of sound. Here we see the independence of f df
on the coupling constants and the field dependence entering only through Vd. For the experimental geome-
try of Fig. 1, the Hall field is determined from Eq. (19) to be

E /B = el[1+~(9m/32)'(uE /c)']'I' —lj'I'( —')'I' (21)
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„jt-0
FIG. 1. Hall geometry. The current flow is in the

l direction, while the total electric field E is in the x
direction and the magnetic field is in the z direction.

where u is the ohmic mobility for acoustic phonon scattering. The reappearance of the couyling constants,
through u, is clearly seen to be due to the fact that the total field is u-dependent in the Hall geometry.

3. THE LINEAR THEORY

In this section we present the linear version of our theory, which is most readily derived from Eq. (9).
We seek a function near the thermal equilibrium distribution fo(e), which is constant along the collision-
free trajectories. fo(e —p. Vd) satisfies this condition since e —p. fd is a constant of motion, Eq. (3).
We therefore take as a trial function

f =f (f —p 0 ) ~f (e) —p 0 Bfo/Bf . (22)

(25a)

where detailed balancing has been used fo(p)Tpp =fogi )Tpp This resul.t is strikingly similar to the

quantum orbit-jump formula which we derive in Eq. (55).
When Fermi statistics are applicable, Eq. (158)becomes

j =(e'E/2kT) Jfdp'dp[(p -p ')/eB]2fo(p')T, [1—f,(p)] (Fermi statistics),
x p p

(25b)

Equation (9) then becomes

f ds[C(f, —p ~ 0d Bfo/Be)] =0, (23)

where Po(s) indicates that the bracketed quantity is to be evaluated along the trajectory in the absence of
the electric field, since the former is already linear in E,.

Our distribution (22) is thus a valid linear solution under the conditions in which Eq. (23) is satisfied.
It is immediately obvious that this is indeed the case for any isotropic. system, since in this case C(f,
-p g&Bfo/Be)=p&k(e), where k(e) is some function of energy. This simply means that the collisions do
not change the direction of the anisotroyic distribution, and follows from the fact that the Legendre poly-
nomials are eigenfunctions of the collision operator in this case. Since k(e) is constant along the trajecto-
ries with E =0, we are left with the trajectory average of p&(s) which vanishes for closed orbits and E = 0.
Equation (23) is also valid for the case where the scattering is anisotropic but only mixes simple anisot-
ropies in the plane normal to B, i. e. ,

C(f. -p ~ Bf./B )=P k( )+P„g( ), (24)

The additional term in Pz again satisfies Eq. (23) by the same arguments as above. This condition is valid
for a large class of scattering systems and in no way implies the existence of a relaxation time, as can be
seen, for example, in the case of polar optical-phonon scattering. Here the strong dependence of the scat-
tering cross section on the scattering angle precludes the applicability of the relaxation time approximation,
although the scattering is isotropic (dependent only on the scattering angle) and Eq. (23) is satisfied. Polar
optical-phonon scattering is considered in detail in Sec. 4.

Inserting Eq. (22) into Eq. (15), we obtain

j = (e'E/2k T) fJdp'dp[(p —p ')/eB) 'f, (p') T, (classical statistics),
x yp

where here again detailed balancing for the Fermi-Dirac function has been used; f (p)oT i[1 —f,(p')]

=fo(p')Tp p[1 f.(p)]. -
Although we have established a fairly wide applicability for Eq. (22), we would like to suggest that our

resulting current formula, Eq. (25), has an even wider range of validity. Let us write the linear solution

of Eq. (9) as

f =fo —p.~d Bfo/B&+&Z(p)

Since the last term is linear in E we must require that it be constant along the trajectory in the absence

of E. We therefore have g=g(e), where we ignore any possible Pz dependence of g. The contribution of

this term to the current is proportional to fdpp Cg(e). We note that if Cg(e) is some function of energy

this integral is zero since all the orbits are closed and Eq. (25) remains valid. In order to obtain a non-3'

zero result for this integral, we need a scattering system which tends to create anisotropic distribution

out of isotropic ones. This implies that transient currents could arise from initially noncurrent-carrying,
nonequilibrium states, even in the absence of applied fields. This seems somewhat unlikely and therefore
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suggests that Eq. (25) has an even wider range of validity than we have established here.
For the sake of completeness we display the saturation value of the Hall mobility uII, which by Eqs. (17)

and (25) is given by

u —= Ro=Rj /E =E /BE =eke[ ffdpdp' ,'(—p -p ')'n 'f (p)T, ] '.
p p

(27)

For Fermi statistics, the Tp~p appearing in Kq. (27) is to be multiplied by [1-f,(p)] .

4. POLAR OPTICAL-MODE SCATTERING

In this section we apply our linear results to the case of polar optical-phonon scattering. Since a relaxa-
tion time does not exist in this case, previous solutions of the Boltzmann equation have been numerical
ones, "usually based, on variational methods.

We treat the case of a standard band e p'/2m and first consider classical statistics. The transition
rates are given by'

2v 2v548E m VT ~p =
g z

"
~

z [(1+No)5(G' —E'+ 5M) +N 05(E' —6 —5(0)], No = (8 - —1) (28)

where 5e is the constant optical-phonon energy, V is the sample volume, and E, is related to the coupling
constants. " The evaluation of C(p V~ ef, /8&) is straightforward and we obtain

-sinh '
~ (29)

where 5 = Fi re/k 7 and [(e/k&u) —1]'I' is taken to be zero for e/kv (1.
Inserting this into Eq. (14), we obtain

j = 4neEP'gE/3B2(2vk T/m)'I' I = 2 $ e [x(x+ 5)]'I~dx = 5e K,(5/2) (classical statistics), (30)

where E, is the first-order modified Bessel function. " This result is identical to the classical limit of the
Kubo formula, which has been evaluated by Gurevich and Firsov, ' using Green's-function techniques.

When Fermi statistics are applicable we obtain the same result as Eq. (30) with I replaced by

I = (v'I'/2) f dx([x(x+ 5)]'I' G —5 Sinh '(x/5)'~'G )(f f,(x)x'I'dx"I ' (Fermi statistics), (»)

where Gz =f,(x+ )he[1 —f,(x)]+f,(x)[1 f, (x+5)] . -
The Hall mobility is given by

I -=Ro =Rj /E =3(2mkt/m)'~'/4E+, I . (32)

5. QUANTUM THEORY

The basic ideas presented in our discussion of the classical theory will now be formulated in the quan-
tum mechanical treatment. The linear problem has been studied extensively and has been developed prin-
cipally in two directions.

The first consists of calculating corrections to the thermal equilibrium state to first order in the driv-
ing field, from which the transport coefficients are readily calculated. This method has been largely de-
veloped by Kubo' who emphasizes the relation between linear response theory and certain correlation func-
tions in the thermal equilibrium state. The second scheme consists of deriving irreversible kinetic equa-
tions for the relevant part of the density matrix. This latter approach has been applied to the linear
crossed-field problem by Argyres. " As we have seen in our classical theory, the asymptotic state of the
system when +&7 - ~ is determined by an irreversible kinetic equation, and therefore it is in this direc-
tion that we shall formulate our theory.

The fact that exact eigenstates are available for the crossed-field Hamiltonian" has led to some con-
fusion in the literature. Adams and Holstein" and Kahn and Frederickse" relate the asymptotic state to
the thermal equilibrium distribution. In both cases, these authors work in the crossed-field eigenstate
representation and argue that the appropriate zero-order (in the coupling constant) state is one in which
the density matrix is diagonal and equal to that of the zero-order density matrix in the absence of the
electric field. This is equivalent to starting from a thermal equilibrium distribution in the presence of
the magnetic field and adiabatically applying the electric field. If collisions are completely neglected the
adiabatic theorem assures us that the system evolves into the state proposed by these authors. This com-
pletely reversible process fails in general for exactly the same reasons as in the classical case (see
Appendix). The zero-order function is not independent of the scattering system; it is only independent of
the absolute coupling constants, i.e. , the absolute strength of the coupling. The procedure employed by
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these authors is however valid for the linear case, which we treat in Sec. 6, and it is to this order that
these authors have limited their work. Calecki" has unfortunately applied their procedure to the nonlinear
case and has obtained erroneous results. In this latter work Calecki does not even obtain the correct
classical limits.

Kazarinov and Skobov' have presented a nonlinear theory based on solving a kinetic equation for the
density matrix. Their theory is based on using the same relation between the dissipative current and the
density matrix that holds in the linear theory. This is reminiscent of the diffusion approximation in the
classical theory, where it is known to be equivalent to a weak anisotropy approximation. Yamashita"
has presented a similar theory, where he explicitly expands the diagonal part of the density matrix in the
cosine of the angle between the electric field and the momentum vector, and keeps only the two lowest-
order Legendre polynomials. In the same spirit he also expands the energy conservation 5 functions in
the electric field.

In the present work we shall follow the general method discussed in the classical theory. The asymp-
totic state of the system is determined by the quantum analog of Eq. (I) and a perturbation scheme is used
to derive a generalized orbit-jump formula for the dissipative current, in analogy with Eq. (15).

We take, as before, the electric field E in the x direction and the magnetic field B in the z direction,
and we work in the Landau gauge A =[0,Bx,0]. The one-electron Hamiltonian in the effective mass approx-
imation is given by

H =[P '+(P -eBx)'+P ']/2m —eEx. (33)

We consider only the case of spherical energy surfaces and constant mass. The eigenfunctions and eigen-
values of He are given by

=4' (x —x)exp[i(k y+k z)]; x=5k /eB+mE/eB'
n k n y z '

y

&
=(n+ 2)5&@ +(Fi'k '/2m) —eEx+ —,'m(E/B)', u& = Ie IB/m .

(34)

The C~ are the usual Hermite functions associated with the harmonic oscillator, and are centered at x.
The normalization factors have been dropped in Eq. (34).

We denote by HS the Hamiltonian of the scattering system (Ss) and by V the electron-SS interaction. The

set of quantum numbers describing the electronic states will be denoted by lower case Greek letters n,
P, etc. , which represent the set ln, k~, k&]. The eigenstates of the SS will be denoted by I S), where S is
again an appropriate set of quantum numbers. For phonon scattering, the S represent the different phonon

states. We also take S to represent symbolically the states of any relevant scattering system, i.e. , the
distribution of impurities, for example, in the case of impurity scattering. The density matrix for the
total electron-SS system is denoted by p and satisfies the kinetic equation

ap/at =(t/h)[p, a +a +V] . (35)

The derivation of the master equation, describing the irreversible evolution of the occupancy probabili-
ties, from Eq. (35) has been studied in great detail. The original treatment of Van Hove" is based on

certain special properties of the scattering-interaction matrix elements. An alternative derivation of the

kinetic equation for electrons interacting with a random distribution of fixed impurities was given by Kohn

and Luttinger" in connection with the ohmic transport problem. Subsequent work by Zwanzig, "Montroll, '
and Argyres'4 has systematized and clarified this derivation. No new features are introduced by working

in the crossed-field representation, Eq. (34), and so we merely state the result

8pcs 2m

t m, (PpS' P S 5 IV
S, S'I 6(E S EpS')' E S-—c +eS' (36)

Here pnS
—= (nSI p InS) is the diagonal element of the density matrix and represents the occupation prob-

ability of the state eS, while &~, &S represent the electron and SS energies, respectively. We take the

statistical properties of the SS to be given by the diagonal density matrix I' and neglecting correlations
between the electrons and SS set p =fP, where f is the electronic density matrix. Inserting this in Eq.
(36) and taking the trace over the SS variables, we obtain

=~(f T fT ); f —= (a. l-f In), with T =
&

P(S)IV S S, I'6(E S
—E S,),at p pn n np ' n "SS (37)

where we have used ZSP(S) =1. We take P(S) to be given by the thermal equilibrium distribution for the

case of phonon scattering, while the trace over S is taken to mean an appropriate ensemble average" for
a random distribution of fixed impurities. We shall not consider any higher order (in V) kinetic equations

or the multiple scattering problem.
The steady-state solution of Eq. (3'l) determines the asymptotic distribution function fn, and is the

quantum analog of Eq. (7):

f Z T =Z f T (classical statistics). (36a)
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If we continue to neglect electron-electron interactions but allowing for Fermi statistics, the Tn p are to
be multiplied by 1-fp .

f Z T (1 -f ) =Z f T (1 f —) (Fermi statistics). (38b)

That the exclusion factors appear in the expected places has been demonstrated explicitly by Argyres. "
The only difference here is that in the present context the electronic states are given by Eq. (34) rather
than by the free-electron states used in Argyres's proof.

We see here again the independence of the asymptotic state on the absolute coupling constants. Further-
more, to this order the density matrix has only diagonal elements fn, which means that it commutes with
the unperturbed Hamiltonian and is therefore a constant of motion in analogy with the same property of the
fadf, Eq. (9).

Similarly, the current flow is again identical to the classical case. Since the average velocity corre-
sponding to the eigenstates (34) is (n I Vx ln ) = 0 and (n I Vn I n ) = E/B—we have

j =e TrpV =eZ f (n IV In) =0, j =e Trpv =eZ f (n IV In) = —neE/B.
X X Q Q X Q

(»)

It is important to realize that Eq. (37) also describes thermal equilibrium in a uniform electric field,
and therefore admits thermal-equilibrium-type solutions fn-exp(- en/kT). This is also true of the clas-
sical transport Eq. (1), with f -exp( —[e(P) —eEx]/k T I. These solutions are of no interest in the trans-
port problem where we are interested in nearly uniform electron distributions, as is also the case in the
linear problem, " while the thermal-equilibrium-type solutions correspond to strong concentration gradi-
ents. More specifically, we seek k&-independent solutions fn, since k& is the quantum number defining
the orbit-center x coordinate.

We must now compute the lowest-order correction to the density matrix in order to calculate the dis-
sipative current, which is zero in the asymptotic state. Since (n I Vx ln) =0 for the eigenstates (4), we
shall need the off-diagonal elements of the density matrix, which we compute to lowest order in V. Before
doing this, however, we now employ the same moment method used in Eq. (12) in order to simplify the
calculation of the dissipative current. We multiply Eq. (35) by V& and take the trace

(d/dt) Trpv =(d/dt)(V ) =(i/Fi) Tr([p, H ] V +[p, V] V )
since [V,H ] =0. Nowy' S

(i/Fi) Tr[p, H ] V =(i/5. ) Trp[H, V ] = —(eB/m) TrpV = —(B/m)j

The steady-state form of Eq. (40) then becomes

(40)

j =(ie/Fi(u )Trp[V, V ] =(i/hB)Trp[V, p ] . (41)

It is readily verified that the commutator algebra involved here is valid, since x is nonsingular in the
crossed-field representation.

The most convenient way to obtain the steady-state off-diagonal elements of p is by use of the Laplace
transform technique of Kohn and Luttinger. "

. Using their definition of the Laplace transform of the density
matrix P=—s g e stp(t)dt, the transformed kinetic Eq. (35) becomes

sp- p d =(i/5)[p, H +Hs]+(i/S)[p, V], (42)

where padm =fP is the asymptotic diagonal density matrix, the fn being determined by Eq. (37) and P be-
ing given. To lowest order in V, the off-diagonal elements are determined by

s(nsltIlps') -=sp 8 8, =(i/Fi)(E S,-E 8)f88, +(i/5)(ns'l[p d, V]lpS').

The steady-state off-diagonal elements are given by

S,pS' lim (P 8 PpS' V 8 ps, E S E Sisfi)
s-0+

(43)

P 8 P 8')V S, pS' [mi5(E S EpS' +PE S EpS' (44)

where P denotes the principal part and where we have dropped the adm subscript.
Inserting this in Eq. (41) we obtain

~ Z

PnS PS [Py')-Py(P)]'PS nSns PS'

Z [p 8
—p 8,][p (n)-p (p)] Iv 8 s, l'vi5(E 8-E 8, ), (45)



175 S TRONG MAGNE T IC F IE LDS 249

where the principal part vanishes since it is multiplied by a quantity which is invariant under the inter-
change nS PS'.

Using our previous definition of Tn p, Eq. (45) becomes

. rk (p)-rk (n)
[f T

p fpT-p ]
n, p-

[f T —f T ] (classical statistics)x(p) —x(n)
9

(46a)

which is the general orbit-jump formula for the dissipative current, and is the quantum analog of Eq. (15).
Equation (46a) thus provides us with a relation between the dissipative current and the asymptotic occupa-
tion probabilities f .

Here again we merely state the result for Fermi statistics:

j = e ) [f T (1 f) f T-(1—f)] -(Fermi statistics). (46b)
n

6. THE LINEAR THEORY

(47)

We now consider the linear version of our theory and proceed as in Sec. 3. We seek an electronic den-
sity matrix near thermal equilibrium which is diagonal in the crossed-field representation, Eq. (34), and
solves Eq. (38), both these conditions being satisfied to first order in E. A likely candidate is f =e—p&o,
where H, is the electron Hamiltonian, Eq. (33), with E =0. One readily verifies, using the eigenfunctions
(34), that this matrix is indeed diagonal to first order in E and its diagonal elements are

f =exp( —ye o), e 0=(n+ ~)fichu +52k '/2m, y= 1/kT.

Inserting this trial function in Eq. (38a), we obtain

(49)

O=Z exp( —ye ')T —exp(-ye )T =Z ]exp[-yeET(n)] —exp[ —yeEX'(p)]3 exp(-ye )T, (48)
p n np p pn p n np'

where we have used detailed balance: exp(-yen)Tnp= exp(-yap)Tpn. Since the difference of exponen-
tials is already linear in E we have

0= —yeEZ [x(n) —x(P)] exp( ye)T-
p n np'

where Tnp = T z(E =0) . Our trial function (4V) is therefore a valid solution under the conditions for which
Eq. (49) is satisfied. Let us consider the case of an isotropic scattering system. It is then to be expected
that Tnp is invariant under permutation of the orbit centers x(n), x(P), i. e. , the sites x(n) and x(P ) are
equivalent in the absence of an electric field. Since, further, the en are independent of x(n), the sum in
Eq. (49) vanishes.

This is readily demonstrated explicitly, and we consider, for example, the case of phonon scattering.
Writing the interaction Hamiltonian as

V=Z~ C(q)b~e +C*(q)b~ e (50)

where b+, b are phonon creation and annihilation operators. We obtain for Tnp' in the usual way

T '=—
I C(q) I'I J' (q) I' (1+n )5(e ' —e ' —p& )n 5(e ' —e '+5& )nP h nP q n P q q n P q

where Jnp'(q) = fdr @n'*e ' ep', (52)

and the superscript 0 indicates that E is to be taken as equal to zero. We see from Eq. (34a) that q& z= k& z(n) —k& z(P) and that the remaining integral in J'np is simply

J' - fdx 4 [x —5k (n)/eB] exp(iq x)C [x —5 k (P)/eB]np n& y x np y

=exp[iq hk (n)/eB] fdx4 (x)exp(iq x)C (x —ax); ax=x(p) —x(n).X SQ x np

If we interchange the orbit centers in Eq. (53), we have

J '=exp[iq Fik (P)/eB] fdx C (x) exp(iq x)C (x+M)

(53)
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=exp[iq hk (P)/eB] JdxC (-x)exp(-iq x)C (-x+ax)x x np

n +n~
=exp[iq Fik (P)/eB] (-1) Jdx C (x) exp(-iq x)C (x —M),x Q x np

(64)

where in the second line we have changed x to -x, and in the third line have used the fact that the parity
of Cn is n. Since the Cn are real it then follows that I JntI I' = I Jn p' I' andtherefore Tn ' is invariantunderper-
mutation of the orbit centers. A similar proof applies to the imyurity scattering prob em. The assumption of an
isotroyic scattering system can be somewhat relaxed, as discussed in Sec. 3, but we shall not consider this here.

Inserting Eq. (47) into Eq. (46), we obtain for the dissipative current

j =e g, [exp(-ye )7' —exp(-ye ')T ]
x(P) —x(n)

n nP tl Pn

p
E' ' T ' classical statistics

n, P

where we have kept only linear terms in E and have performed the same sort of manipulations as in Eq. (48).
The same sort of procedure applied above works equally well with Fermi statistics and we obtain

j = g f,(z ')T '[1-f(e ')] (Fermi statistics).e'B W [x(P) —x(n)]' (66b)
Q,

SUMMARY

We have presented a unified treatment of trans-
port phenomena in crossed electric and magnetic
fields in the limit &oeF )) 1. The asymptotic (&ueF
—~) state of the system is determined by an irre-
versible transport equation and is shown to depend
on the form of the scattering interaction even
though it is independent of the absolute coupling
constants. The asymptotic state is, therefore, of
zeroth order in the coupling constants, even though
it is determined by the detailed nature of the scat-
tering system.

Once the asymptotic state of the system is de-
termined a perturbation theory in 1/u&~F allows us
to compute the dissipative current in a direct and
simple manner. This provides us with a general-
ized orbit-jump formula for the dissipative cur-
rent.

These results establish a unified basis for both
linear and nonlinear transport phenomena in strong
magnetic fields without recourse to a relaxation
time approximation. Both the quantum and semi-
classical treatments have been established by the
same basic perturbation method.
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APPENDIX

We discuss here an alternative method of de-
termining the fadf, which is a generalization of the
linear theory of Lifschitz, Azbel, and Kaner. '
Here we start with the Liouville Eq. (2) and take
as a solution g(e —p Vd), where g is to be de-
termined. Now doing perturbation theory we set
f =g+h and seek to determine h to lowest order in

1/&sew. The perturbation equation is, as in Eq.
(»),

e[E+Vxl3] vh=Cg.
p

Integrating this equation over one period of the
collision-free trajectory, the left-hand member
vanishes by Eq. (8), and we obtain

[&g] -( )
dS = 0, a'(p) =g(p(s)),

which is Eq. (9). Thus although any function g(e
—p Vd) satisfies the Liouville Eq. (2), the condi-
tion Eq. (9) is in fact a, necessary condition for

the solubility of the Eq. (13) and assures the con-
sistency of the yerturbative method.

Lastly, we note that solving the initial value
problem is of no assistance in determining the fadf,
which is determined by an irreversible transport
Eq. (7). If we start, for example, with the theI-
mal equilibrium distribution fo and slowly turn on
the electric field, the magnetic field always being
present, the distribution evolves adiabatically
into f=fo(e —p Vd(t)), fd(t) =f(t) xB/B' in the ab-
sence of collisions. If we now attempt to do per-
turbation theory with the collision term, we en-
counter the sort of problem discussed above, the
insolubility of the perturbation equations, or, in
general, physically unacceptable solutions. This
is the wrong zero-order function. The correct
one is determined by Eq. (7) and is not indepen-
dent of the scattering system, but is on the con-
trary determined by the detailed nature of the in-
teraction even though there is no dependence on
the absolute coupling constants.

It is only in the linear transport problem that
this scheme is applicable, since in this limit the
system is energetically isolated, in the sense that
there is no energy dissipation to first order in E.
The linear version of the adiabatically evolving
distribution discussed above is then an appropriate
zero-order function under the same conditions that
Eq. (22) is valid.



175 S TRONG MAGNE T IC F IE I.DS 251

*Associated with Centre National de la Recherche
Scientifique.

A preliminary version of this work is to be found in
H. F. Budd, Phys. Rev. Letters 20, 1099 (1968); ibid.
21, 425 (1968).

The transport problem may be treated exactly in this
approximation. W. Shockley, Phys. Rev. 79, 191 (1950);
R. G. Chambers, Proc. Phys. Soc. (London) A65, 458
(1952); H. F. Budd, J. Phys. Soc. (Japan) 18, 142 (1963).

Recent review of semiclassical galvanomagnetic
phenomena: A. C. Beer, Solid State Physics, Suppl. 4
(Academic Press Inc. , New York, 1963).

Recent review of non-ohmic effects: E. M. Conwell,
Solid State Physics, Suppl. 9 (Academic Press, Inc. ,
New York, 1967).

5Recent review of quantum galvanomagnetic phenomena:
Ryogo Kubo, Satoru J. Mayake, and Natsuki Hashitsume,
Solid State Physics (Academic Press, Inc. , New York,
1965), Vol. 17, p. 269.

S. Titeica, Ann. Physik 22, 129 (1935).
7H. Budd, Phys. Rev. 158, 795 (1967).

Lifschitz, M. Ia. Azbel, and M. I. Kaganov, Zh.
Eksperim. i Teor. Fiz. 31, 63 (1956) [English transl. :
Soviet Phys. -JETP 4, 41 (1957)1

R. F. Kazarinov and V. G. Skobov, Zh. Eksperim, i
Teor. Fiz. 42, 1047 (1962) [English transl. : Soviet
Phys. -JETP 15, 726 (1962)].

H. F. Budd, Phys. Rev. 131, 1520 (1963); 140, A2170
(1965).

See, for example, H. Ehrenreich, J. Phys. Chem.
Solids 2, 131 (1957).

Ref. 4, p. 156.
A. Erdelyi, W. Magnus, F. Oberhattinger, and F. G.

Triconi, The Bateman Manuscript Project —Table of
Integral Transforms (McGraw-Hill Book Co. , Inc. ,
New York, 1954}, Vol. 1.

4V. Gurevich and Yu Firsov, Zh. Eksperim. i Teor.
Fiz. 40, 198 (1961) [English transl. : Soviet Phys. —
JETP 13, 137 (1961)].

~Petros Argyres, Phys. Rev. 117, 315 (1960}.
l6E. N. Adams and T. D. Holstein, J, Phys. Chem.

Solids 10, 254 (1959).
~YA. H. Kahn and H. P. R. Frederikse, Solid State Phys-

ics (Academic Press, Inc. , New York, 1959), Vol. 9,
p. 257.

D. Calecki, J. Phys. Chem. Solids 28, 1409 (1967).
J. Yamashita, Progr. Theoret. Phys. (Kyoto) 33, 343

(1965).
L. Van Hove, Physica 21, 517 (1955); 23, 441 (1957).
W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590

(1957).
Robert Zwanzig, in Lectures in Theoretical Physics

(Interscience Publishers, Inc. , New York, 1961), Vol. 3,
p. 106.

Elliot Montroll, in Ref. 22, p. 221.
P. Argyres, in Lectures in Theoretical Physics

(Interscience Publishers, Inc. , New York 1961), Vol. 8a,
p. 183.

5P. Argyres, J. Phys. Chem. Solids 19, 66 (1961).

PHYSICAL REVIEW VOLUME 175, NUMBER 1. 5 NOVEMBER 1968

Solution of Boltzmann Equation for Degenerate Fermi Systems~

V. J. Emery
Bxookhaven ¹tiona/ I aboxato~, Upton, Neu Fork

(Received 15 July 1968)

A new method of solving the Boltzmann equation for a degenerate Fermi system is described
and compared with the approximation of Abrikosov and Khalatnikov and with variational cal-
culations. The first two terms in the expansions of the inverse relaxation times in powers of
the absolute temperature are calculated, and the resulting expressions are applied to dilute
mixtures of He in liquid He4 and to nearly ferromagnetic Fermi liquids.

1. INTRODUCTION

It has been pointed out'&' that it is necessary to
reconsider the derivation of expressions for the
transport coefficients of degenerate Fermi sys-
tems. At low temperatures, the mean free
times may be expanded in the form'

1/v = aT2+ b Ts,

where T is the absolute temperature, and a and b
are coefficients which depend upon the transport
process. Two methods have been used to obtain

One is a direct approximate solution of the
Boltzmann equation, '~ the other a variational cal-
culation, '~4 and they give different values of a and
b. Without further calculation, it is not clear
which is more accurate. The discrepancy is par-
ticularly important for the thermal conductivity K,
and it is large enough to affect the comparison be-
tween theory and experiment for dilute mixtures'~'
of He' in liquid He4, andpossibly'»'for pure He'.

The purpose of this paper is to describe a more
accurate approximation which resolves the diffi-
culty. A brief account of the results has been
given already. ' During the course of this work,


