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A parametric form is chosen for the ground-state wave function of an electron gas. The
expression for the energy of the system is derived and then minimized with respect to the
unknown parameters. The energies thus obtained agree well with the results of other au-
thors.

I. INTRODUCTION

The problem of obtaining the ground-state energy
of a quantum electron gas has been approached in a
number of ways. The original work on this sub-
ject was done by Wigner, ' who calculated the "cor-
relation energy" of an electron gas for very high
densities (vs &1) and then extended the results in
such a way as to obtain the correct value at very
low densities (rs ))1). He estimated his results
to be correct everywhere to within 20%. Later
calculations employing perturbation- expansion
techniques' ' gave improved results for high den-
sities while improved calculations for low densi-
ties' were carried out using Wigner's lattice mod-
el. In addition to Wigner's treatment, the region
of metallic densities (1(r~ (5) has been treated"
by truncating the Martin-Schwinger equations and
using a random-phase approximation. ' Finally, a
recent paper' has shown how the problem may be
treated by approximating, the Slater sum for the
system by an effective Boltzmann factor. T)le aim
of this paper is to improve upon these calculations
for the metallic density region, and also, to find
a method which will give good agreement with the
above-mentioned results in their respective regio
gions of validity. It is further desirable that the
method used for the electron gas be of sufficient
flexibility so that it may later be generalized to
include multicomponent systems. In accordance
with these ideas, we shall present a, parametric
Rayleigh-Ritz variational method for calculating
the ground-state energy, using a trial wave func-
tion of the form

where u(r) is an unknown function to be determined
by variation and Dis the wave function for an ideal
gas of spin- —,

' particles.

II. DERIVATION OF THE BASIC EQUATION

The Hamiltonian operator II for an electron gas
can be written as

a=-(r /2m)~'+V(r, "r~), (2. 1)

where 4'= + V'
Q=1 0 (2. 2)

and V(r, ~ ~ r~) represents the Coulomb potential.
The expectation value of the energy (E), is then

&E) = Q ~ fq*[ (fp/2m42-+ V] qd~, (2. 2)

where Q = fg* gdv (2.4)

and dw =—dr, dr, ~ ~ dr&

We must now reduce this expression to a more
tractable form in order to apply the variational
principle.

First, we will treat the potential-energy term
given by

(2. 5)

(PE) = Q
if /+Vga (2. 6)

Since V(r, ~ ~ rz) represents the Coulomb potential,
we may define a two-body term v(xi&) in the follow-
ing manner:



GROUND- STATE ENERGY OF ELECTRON GAS

Thus we may write

&PE) = —,
'

Np fv(r)g(r)dr, (2. 8)

where the radial distribution function g(r) is given
by

performing some manipulations, we find that the
kinetic energy may be written as

(KE)= (5'/2m)Q ' JVg ~ Vgdr =a5Ne +4 (2. 16)

where J= (fI'/2m)Q 'J -g Igd7 .

g(r)=N(N 1)p-'Q -'j-y+~r, " drN'

The function v(r) can be expressed as'

v(r) = 0-'Zk v~e'

(2. 8)

(2. 10)

and I= Z Vu(r. .) V. u(r.&).z zj z zk
zp jpR

(2. i8)

In obtaining the above result, use was made of
the relationship

where the prime indicates that the k equal to zero
is not included in the summation. This occurs be-
cause of the presence of the uniform positive back-
ground. Thus

Jv(r„')dr, dr, = & v&6(k)6( —k ) = 0.

Therefore,

,' p fv—(r)g(r)dr = ,' pfv—(r)[g(r) —1]dr .

(2. 11)

(2. 12)

For the case under consideration, v(r) may be ex-
panded as'

v(r)= e'(r ' —a,L ' —a,r-'L ' ~ ). (2. iS)

Since the factor g(r) —1 approaches zero rapidly as
x becomes large, we find that, in the limit as I.
approaches ~, we have

(PE) = ,'Np fv(r—)g(r)dr

(ri'/2m)(D V D)= (P/2m)Z k '(D D)j j
=+NeF(D D), (2. 18)

where e& denotes the Fermi energy. The last
term in Eq. (2. 16) can be written in terms of the
radial distribution function g(r) and the three body
distribution function given by

g,(r„r„r,)
=N(N-1)(N —2)p 'Q 'f P -(dr ~ dr . (2. 20)

Doing this, and adding. the expression obtained
for the potential energy in Eq. (2. 14), we find
that

(E)/N=~seF+ ,'pe'f —[gI(r)—1]r 'dr-
+ (fi'p/8m) J [du(r)/dr]' g(r)dr+ (5'p'/8m)L

+ ,'pe'f —[g(r)—gI(r)]r 'dr, (2. 21)

=
& Npe' f [g(r) -1]r 'dr . (2'4) where

In order to reduce the kinetic-energy term in
Eq. (2. 3), we first note that integration by parts
yields the following relationship:

—f( V2gdv= fVP Vgdh, (2. 16)

where the surface terms cancel as a result of the
periodic boundary conditions imposed upon P.
Substituting our chosen form for the wave function
given by, Eq. (1.1) into the above equation, and

L = fV,u(r„) V,u(r„)g,(r„r„r,)dr„dr„, (2. 22)

and where we have added and subtracted a term
involving the ideal-gas radial distribution function
gI(r) in order that the first two terms of the above
equation constitute the familiar Hatree-Fock solu-
tion' to the problem. The last three terms con-
tain the unknown quantity u(r), and their sum is
called the correlation energy. It is this quantity
that we are primarily concerned with here.

III. APPLICATION OF APPROXIMATIONS

In order to proceed further, we now resort to some approximations.

First, the energy expression is simplified by the application of either a random-phase approximation
or a superposition approximation. " The random-phase approximation is used for the high-density cal-
culations while the superposition approximation is used for the metallic region.

1. Random-Phase A pproximation

In Eq. (2. 16) we saw that the kinetic energy contained a term labeled J which we defined in Eq. (2. 17).
We want to apply the random-phase approximation to this term. First, we assume that the unknown func-
tion u(r) may be written as

u(r)= f~- + y(e)e' (8. 1)

Using Eq. (3.1) in Eq. (2. 18) yields

ik r, —im r'. i(k+m) ~ r
I= 0 '~. ~ —(k m)&P(k)P(m)e 8 ~Z e

z jm~k a
(3. 2)



BECKER, BROYLES, AND DUNN 175

dom ph~e approximation (R.p.A. ) assumes that the ru, which appears in the above equation, is
distributed at random so that the factor g ',exp[i(k+m) r ] maybe replaced by N k . e o i g0 a

this substitution in Eq. (S. 2) and summing over m gives

ik r. .
I=en 'Z Z k2-y'(k)e

i, jk
Thus Eq. (2. 1V) may be written as

(s.4)

(s.6)

Substituting this result into Eq. (2. 16) and combining with Eq. (2. 14), we find that

jV

= 6+ i~g f[g (R) —1]—+ 96,Jx'y'(x)dx

I I
8=(&'p/8m)Q 'f p*p,p k p'(k)+ 0 ' + g k'p'(k)8igj

Using the det nition of g(x) as given by Eq. (2. 9), converting the summations to integrals, and adopting the
same procedure used to obtain the factor g(r) —1 in Eq. (2. 12), we finally obtain

J = (NPp/8m)(2m) 'f k'p'(k)dk + (Nfi'p'/8m) f [g(x) —1]fkk'p'(k)e dkdr

+ 288,fR[g(R) —1]f x'p'(x)e '
dxdR+ &~& f[g(R) —gI(R)] (s. 6)

(s.7}where y' = 8e'K&/Sv&F

and where the Fermi units l'ave been used (see Appendix). As before in Eq. (2. 21), the last three terms
represent correlation energy.

2. Superposition Approximation

Equation (2. 21) contains an integral involving the three-body distribution function g,(r„r„r,). This in-
tegral is labeled L and is defined by Eq. (2. 22). In order to simplify L, we will apply the Kirkwood super-
position approximation (S.A.) given by replacing the function gs(r„r„r,) by the product g(v»)g(r»)g(r»)
Performing this substitution in L yields

I. = fV,u(r„) V,u(r„)g(r„)g(~„)g(r„)dr„dr„.
A brief consideration of the above shows that

I.= fV,u(r») V,u(r»)g(r»)g(x»)[g(x») —2]dr»dr»

In order to uncouple the variables in the above, we now introduce a 5 function as follows:

L = fVu(x„) V,u(x„)g(r»)g(x„)[g(~„)—1]x6(r„—r„+r„)dr„dr„dr„

(s.8)

(s.9)

(s.io)

Noting that 6(r ) = (2n) 'J e dk

we see that, after some manipulation, Eq. (S.10) can be written as

(s.i 1)

I, =(—)'f-dk J [g(~)-1]e dr f- ——e dr= 13 ik r - d du(~)g(~) ik r - '
2m k r dk r Ch

Substituting this result into Eq. (2. 21) and changing to Fermi units (see Appendix), we obtain

(s.i2)

288m' x g~ dR R ) 16m g I ' R[g(R) 1)e
'

dR d fu(R) g(R) ix RdH. I
W'

f[g(R) g (R)] (s.is)

where, once again, the last three terms constitute the correlation energy.
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(B)

Next, we must calculate the radial distribution function g(r) as a functional of the unknown quantity u(r),
To do this, we note that the product D*D can be approximated by writing

D~D=exp —. .8 x. . (3.14)

where 8(r) has been determined from the ideal-gas calculations of Lado. " This enables us to write g(r) as

g(r) =N(N —1)p ' fexp[- .g [H(e, )+ a (r...)))dr ~ dr /f exp[- .g .[9(x. .)+ u[r .)])dr, . dr (s.i6)

Radial distribution functions of this form may be readily calculated by several methods. We have chosen
to use the Percus- Yevick integral equation" for the metallic densities and a perturbation formula" for
the high-density points. Let us now define the structure factor S(x) in the usual manner by writing

S(x) = pG(x) —1 (s.i6)

where G(x) is the Fourier transform of [g(R)- 1]. The perturbation approximation referred to above tells
us that

S(x) =S (x)/[1+ py(x)S (x)], (s.iv)

where P(x) is the Fourier transform of the effective potential as shown in Eq. (3. 1), and the ideal-gas
structure factor Sf(x) is given by

Sf(x)= pGI(x)+1=~4x —(x/16), x ~2; or 1, x~ 2. (s.ls)

Substituting this result into Eq. (3. 6) and simplifying, we find that for high densities the correlation energy
m, ay be written as

—(I/24'') 1 xp'(x) S(x) dx +(sy'/8) f [S(x) Sf(x)]—dx.

(C)

(s.19)

Finally, although the function u(r) is unknown, some information about its form is already available.
Specifically, as r becomes infinitely large, u(r) must vanish, and the work of Dunn and Broyles indicates
that u(0) is finite and nonzero. This can be expected since the electrons can tunnel into the classical
Coulomb barrier. The work of Dunn and Broyles and others'4 further indicates that the function u(r) falls
off as (r)-' in the large-r limit. A simple functional form of u(r) which obeys these conditions is given by

u, (r)=ar '(1 —e
-bx (s.20)

(3.21)

where a and b are unknown parameters to be determined. If this form of u(r) is adopted, one can express
the wave function, and consequently, also the energy for the system, as a function of the two parameters
alone. Thus the ground-state energy may be calculated simply by computing the energy for various val-
ues of the two parameters and determining which values give the lowest energy. The accuracy of the
minimum energy obtained in this manner depends rather heavily on how well the parametric form chosen
for u(r) agrees with the true form of u(r). In the hopes of obtaining better numerical results, the calcu-
lations were repeated with a form more flexible than that given by Eq. (3. 20). It is given by

u4(r)=ar '(1 —e )+ c[(P+r) '

where a, b, z, and P are all unknown parameters to be determined by variation.

IV. RESU LTS

The minimum correlation energies, for various
densities, using Eq. (3.20) and Eq. (3. 21), are
given in the tables below. The notation used in
Table I is the following: x~ is the ion sphere ra-
dius in Bohr units, P= 1. 13r~, E, is the minimum
correlation energy found by using Eq. (3.20), E,
is the minimum correlation energy found by using
Eq. (3.21). The results are presented in fermi
units and, as mentioned before, the high-density

points (y' = 0. 01 and 0. 1) were calculated using
Eq. (3. 19), while the lower density points (y
= 1.0, 3.0, and 5. 0) were done using the last three
terms of Eq. (3. 13) and the Percus- Yevick inte-
gral equation.

From a consideration of the Table I, it is ap-
parent that, for metallic densities, the two-pa-
rameter effective potential given by Eq. (3.20)
yields essentially the same results as the four-
parameter form given by Eq. (3.21). It is possible,
therefore, that for the metallic density region, the
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TABLE I. The ground-state correlation energies in
aFermi Units.

TABLE III. Ground-state wave functions in Fermi
units. a

0.0113
0.113
1.13
3.39
5.65

0.01
0.1
1.0
3.0
5.0

-0.000 012 1
-0.000 85
-0.041
-0.31
-0.69

-0.000 012 7
-0.000 88
-0.041
-0.31
-0.69

0.01
0.1
1,0
3.0
5.0

0.15
0.75
1.5
4.2
5.3

0.20
0.33
1.25
1,4
1.5

0.4
2.5

10.0
8.0

a
See Appendix.

a
See Appendix.

two-parameter function is quite a good approxima-
tion to the optimum two-body effective potential. A
comparison with the results of other authors which
seems to substantiate this hypothesis is given in Table
II. Thus we conclude that the eff ective potential given
by Eq. (3.20) maybe rather good guess. The val-
ues obtained for the parameters a, b, o., and P
are given in Table III.

In conclusion, let us discuss one final point. It
may appear strange that the superposition approx-
imation has been used for g,(r„r„r,) while the
Percus- Yevick integral equation was used instead
of the Born-Green- Yvonne (BGY) integral equa-
tion"~" for the purpose of computing the radial
distribution function g(x). The reason for this is

that the work of Broyles, Chung, and Sahlin" indi-
cates that the Percus-Yevick equation is superior
to the BGY equation for computing g(r), and a prop-
er form of the Percus-Yevick equation for calcu-
lating g, was not readily available.

APPENDIX

Fermi Units

Fermi units are based on the definition of the
Fermi energy given by

= Fi'K&'/2m

where K = (3w'p)'"

TABLE II. Comparison of ground-state correlation
energies in Fermi units. a The unit of length in these units is

0.01
0.1
1.0
3.0
5.0

Variational
method

-0.000 012 7
-0.000 88
-0.041
-0.31
-0.69

Carr

-0.000 013
-0.000 82
-0.044 -0.034

-0.24
-0.57

-0.051
-0.30
-0 ~ 62

Dunn and

signer Broyles

a~= 1 E~

In order that the variables of integration in this
paper will be dimensionless, the following trans-
formations are made in the energy expressions:

and K=K+x
a
See Appendix. where R and x are dimensionless.
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