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We investigate the extent to which broken O(4) results can be obtained by requiring that unequal-mass
scattering amplitudes be analytic at zero energy. All O(4) constraints upon the trajectory functions can

be obtained in this way.

N this paper we study the relation between the
analyticity and group-theory approaches to daughter
Regge trajectories. For this purpose, we consider the
scattering of spinless particles in the s channel, which
for convenience we assume to be an annihilation channel
with pairwise equal masses in the initial and final
states. We study Regge poles in the # channel which
contribute to the high-s behavior. If the scattering
particles in the # channel have equal masses, then the
amplitude in the # channel has O(4) symmetry at
Q.=0, where Q, is the total four-momentum in the #%
channel.! The additional symmetry at this point
strongly suggests that poles should be classified accord-
ing to irreducible representations of O(4); this means
that for each parent Regge pole at a (#=0) there must
be a sequence of daughters with a spacing of two units
at a(0)—2K (K=1, 2, ---) with definite coupling rela-
tions among them. In the unequal-mass case, O(4)
symmetry does not apply to the scattering amplitude,
but Domokos and Domokos and Suranyi have shown
that the symmetry does apply to the bound-state
Bethe-Salpeter equation, which does not depend upon
the external masses at Q,=0.2 This again suggests that
poles should be classified according to O(4). However,
now the Regge daughters have a spacing of one unit
occurring at «(0)—K (K=1, 2, - ). There also follow
definite rules as to how the symmetry is broken for
u#£0.

The presence of daughter trajectories in the unequal-
mass case can also be deduced by analyticity argu-
ments. A single Regge-pole contribution in the #
channel is not analytic at #=0, in violation of the
Mandelstam representation. The analyticity can be
restored only by assuming the presence of a daughter
sequence of trajectories at ¢(0)—K, (K=1,2, -+-)3

The group-theoretic and analyticity approaches thus
lead to the same sequence at #=0, but they have dif-
ferent starting points and content. In the present paper
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we are interested in the analyticity approach, and the
extent to which it can recover symmetry results. We
cannot expect to recover the symmetry itself, since the
unequal-mass amplitude does not possess the symmetry.
What we can do is see how many group-theoretic re-
sults we can obtain. The principal results from O(4)
are the following:

(1) The existence of the daughter sequence and the
integer spacing at #=0. This has already been obtained
by others from analyticity.*

(2) For the trajectory functions ax (#), all the results
for O(4) symmetry are broken by #£0 (mass formulas).
These we can obtain in unaltered form from analyticity
because the properties of the trajectories do not depend
upon the masses of the particles to which they couple.
This contrasts with the derivation given in Domokos
and Suranyi® where the Bethe-Salpeter equation and
bound-state perturbation theory are employed.

(3) For the daughter residues, the fact that when the
parent passes through a non-negative integer, all the
daughters for (0) — K <0 are absent.? This wecan verify
for the most singular part of the daughter residues in the
unequal-mass case.®

(4) We might hope to show that daughters must be
present in equal-mass scattering. The equal-mass
amplitude is analytic at #=0, but the (finite) residues
of the daughters in this case might be inferred by con-
sidering equal-mass scattering as the limit of unequal-
mass scattering. This hope does not materialize for
reasons we discuss later.”

We incorporate known results in studying analyticity.
These are that to obtain analyticity at #=0, at least
one daughter must be present at «(0)—K when #=0,
with a residue behaving like #~%. One daughter is all
that is required, and to use more would be to insert
spurious, accidently degenerate trajectories. The con-

4D.Z. Freedman and J. M. Wang, Phys. Rev. 153, 1596 (1967).

5 In the equal-mass case this follows from the fact that the
0(4) quantum number M =0 for spinless particles. See also, L.
Jones and H. Shepard [Phys. Rev., this issue 175, 2117 (1968)]
who also discuss this question from the point of view of
analyticity.

6 For unequal-mass scattering, the Kth daughter has a u™*
singularity at #=0. This is what restores analyticity to the sum
of Regge amplitudes.

7 For a later development on this point see J. B. Bronzan and
C. E. Jones, Phys. Rev. Letters 21, 564 (1968), and also Ref. 5.
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tribution of the Kth daughter is

Tx(syu)=[vx(u)/u"]s*x®
XF(—ax(u), —ax(u); —2ax(u); —44.%/5),
g =[u— (m+p)* Lu— (m—p)y1/4u, (1)
ax(0)=a(0)—K,

where we have combined various factors, including
signature into the reduced residue, and represented
O—axy—1(—Zy=—1—s/4¢.%) as a hypergeometric
function. The u-channel center-of-mass momentum is
gu, m and u are masses, and the singularity #~* has been

removed from the residue. We sum over daughters, and
write the complete amplitude in the form

T (s,)= i Tr(su)= Zw: seK (W i C(K,n,m)
K=0 K=0 nﬂ)x s_nu—n—K , (2)
C(K nm)="x(){[u— (m+p)*Lu— (m—p)]}"
I: T'(ag(w)+1) :|2 T'Qog(u)—n+1) .
T(ox(4)—n+1)d TQex(u)+1)n!

Our program is to examine Eq. (2) for large s and
demand that the coefficient of each term (like s*®—" Ins,
52— etc.) be analytic at #=0. Since the sum over #
in Eq. (2) converges only when |4¢,2/s| <1, and g¢,2
diverges like 7! at #=0, one might question whether

0= Z CO(Kr r_'K):
K=0
r
0= 3 ax'Co(K, r—K),
K=0
0= 3 (ax')"Co(K, r—K),
K=0

0=2 Cy(K,r—K),
K=

0= [ax'C1(K, r—K)+}axCo(K, r—K)], (r=3)
K=

We make use of
Co(K, f—K)='YKBK.r(a0) )

Cu(K, r—K)=[v&'—2(r—K)yr(m*+u1*)/¢]Bx,+(x0)
+ax'yrBk,” (20), (6)

where
e K I‘I‘ (to—K+1)PT(2ap—K—r+1)
Brafed = ]
(r—K) LT (xo—7r+1) 4 T(2a0—2K+1) o
and

e= (m2—u2)?.
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these constraints are correct. However, one can pro-
ceed in a manifestly correct, but laborious way to get
the same results. Namely, like Goldberger and Jones,?
one can use the Mandelstam representation to deduce
the corrections which must be added to the parent to
correct its analyticity at #=0. The correction terms are
cancelled by the first daughter, which in turn requires
new correction terms to correct its analyticity at #=0,
etc. This procedure generates constraints equivalent to
those we find more easily.
We need the expansions®

C(Kn,u)= i Ci(Kn)u?,
3

sk (W) = soo~K{1+ (Ins)[worx'+3ulax"+ - - -]
+ (Ins)*[3u?(ax’)*+§0ax’ax"+ - -]

Thus, + ns T e - T ).

T(su)=2_ s> 2 2 Cu(K, r—K)u*
r=0

K=0 i=0
X {1+ (Ins) Cuax'+buta+ - - T+ -+} . (4)

We now select for study five subsets of the infinite set
of relations implied by Eq. (4). In parentheses we
indicate the term whose coefficient must vanish in order
for Eq. (4) to be analytic at #=0.

(r=1) (so=r/u") (5a)
(r=2) (s« Ins/u~") (Sb)
(r2n+1)  (s*r(Ins)"/u") (S¢c)
(r=2) (seo=r/um1) (5d)

(520~ Ins/ur=2). (5¢)

We observe that Egs. (5a), which now take the form

r
> v&Bg, (a0)=0, r>1
K=0

determine all the yx in terms of vo. They are easy to
solve recursively because as 7 increases more and more

(1;(% L. Goldberger and C. E. Jones, Phys. Rev. 150, 1269
$ Where no argument of a function is written, read ¥=0.
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residues enter. We find
(= T(awt1) ]21‘(2010-21{'—]—2)
K! Lr(—K+1)] TQa—K+2)"

We observe that yx vanishes for non-negative integer
ap when ap— K <0, in agreement with the O(4) result
(point 3 above). Apparent poles in Eq. (8) for aq at
half odd integer can be associated with the (cosmao)™
which has been lumped into yx. Equations (5b) in
the form

—~
oc
=

YE=Y0

r
> ax'veBr (a0)=0, r>2 (9)

K=0

now determine ax’yx for all K>2 in terms of its
values at K=0 and K=1. Since according to (8) all
vx are known multiples of v,, the latter factors out of
(9) entirely, resulting in a mass formula mentioned
under point 2 above:

ax’ =g+ (o1’ — o) K (200— K+1) /2.

This gives all slopes in terms of those of the parent and
first daughter. This formula agrees with Ref. 2, where
the two parameters appear as reduced matrix elements
after using the O(4) Wigner-Eckhart theorem. Equa-
tions (5c) are similar to Egs. (5b), except that more
equations are missing, and higher powers of the slopes
appear. They are all satisfied identically. We conjecture
that all the constraints imposed by analyticity are con-

(10)

”(K-— 1)(K—2)2ar—K)(2a—K—1)
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tained in the (Ins)? and (Ins)! terms, with higher powers
of Ins providing no further information.?

The solution of Eqgs. (5d) proceeds just as above,
after Bg,,/ (o) is eliminated by differentiating Egs. (9)
with respect to ao.

r 0
s [m'— 2= K)vx (m2+u2>/e——(mx>]
1e]

(7]

XBK,T(CZO): O, 7'2 2.
These determine the yx’ in terms of v¢/, v1/, and previ-
ously encountered parameters:

(K—1)Q2a0—K) v& K(Q2apy—K+1) vx
- '—JYOI+ —71'
209 Yo 2 Y1

K(K—1)(m*+p?) 9
- yr+—(ax"yk—a1'v).
Q€ (s11]

vi'=

(11)

We remark that yx’ vanishes for positive integer ap
when ay— K <0, but the property does not go through
when ap=0 unless we assume, for ap=0, the relation

(12)

Equations (5e) can now be solved, giving ax’ in terms
of ay”, a1”’, ay”’, and previously encountered parameters.
We omit the details and merely present the following
solution:

r__ 1 7,
Y1 = —32€01Y0.

”K(K—Z) Qay—K+1) 2ay—K—1)

ag''=ap ay

4(1()(20!0— 1)

4(10((10— 1)

K(E—1)(2a0— K+1) (20— K) | K(K—1)(K—2) (@'~ )

a2

4 (2(10—' 1) (ao'—' 1)

This equation constrains the quadratic terms in the
mass formula; it does not appear to have been derived
previously.

Equations (8), (10), (11), and (13) provide the
pattern for an infinite series of other constraint equa-
tions involving higher derivatives of ax and k. These
constraint equations become less restrictive the higher
the derivatives. If we use a superscript to denote the
order of the derivative, the pattern is that the ax
are completely determined by a known function f, as

follows:
ag™= fn(K; @™, - - - @™ ;
a®,a®, ™ ™),

(14)

Thus, the slopes ax® are all determined in terms of the
first two, as in Eq. (10), whereas the second derivatives

20!02 (ao—' 1)

4ap—K—1
X [ao'—————l—-{- (e’ — ) 2ao— K+ 1)] . (13)

20[0'—

ax® are all determined by the first three second de-
rivatives as well as the first two slopes.

An analogous pattern of constraint conditions emerges
for residue derivatives yx ™, except that the trajectory
derivatives also enter as determining parameters. The
formula corresponding to (14) is

ryK(n)z gn(K; 70(0)’70(1)’ . .’ryo(n) ;‘yl(l)’ . .,;Yl(n) ;
™ @ g™ s, ™). (15)

The result embodied in Eqgs. (14) and (15) enables
us to deal with point 4 above; namely, the possibility of
deducing the presence of daughters in the equal-mass

10 For a demonstration of this, see P. K. Kuo and J. F. Walker,
Massachusetts Institute of Technology Report, 1968 (un-
published).
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scattering by considering it as the limit of unequal-
mass scattering.

Since in the equal-mass limit there are no analyticity
problems, the singular parts of residues vanish as
e— 0. This fact is verified by Egs. (8) and (10). The
coupling of trajectories in the equal-mass case then is
determined by the nonsingular parts of the residues,
namely, by vx®. But according to Eq. (15) these
vx®) are completely unconstrained. If the poles in the
equal-mass limit are classified by irreducible representa-
tions of O(4), a definite ratio of yx™® to v,® is re-
quired. This means that analyticity cannot eliminate
the possibility in the equal-mass problem of a string of
integer-spaced Lorentz poles at #x(0)=ax.”

One important remark should be made. Equation
(13), as well as Eq. (14) which generalizes it, involves
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only trajectory functions—not external masses or
residues—as it should, since Regge poles couple to
many channels. By a slight reorganization of the calcu-
lation, it is possible to show that # and u will never
appear in these equations. Even so, the independence of
Eq. (13) on residues is not evident @ priori, and re-
quiring such an independence from residues could lead
to a constraint involving among other things v;® and
v0©®, as an examination of the steps leading to Eq.
(13) shows. Such new constraints might well determine
Y1V /0@, thereby indicating the necessity of daughter
trajectories in equal-mass scattering. However, the
dependence on residues turns out to drop out of Eq.
(13) automatically.
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conversations with Professor S. Fubini.
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The boundary of the kinematically allowed region on the plane of two invariant momentum transfers of
a reaction with three particles in the final state is derived and the phase-space distribution in this region
determined. The boundary may in the most general case consist of branches of a complicated curve, a
parabola, and two straight lines. Applications to the analysis of doubly peripheral reaction mechanisms are

discussed.

1. INTRODUCTION

N the analysis of reactions of the type pi+p.
= p3+pa+ps with three particles in the final state
(Fig. 1), one commonly uses the Dalitz and Chew-Low
plots. The former is a plot in the two invariant energies

s1=(ps+p0)?, so=(pstps)?, (1)

and it is used mainly for the investigation of particle
spectra and intrinsic properties of resonances. The
Chew-Low plot is a plot in one energy and one invariant
momentum transfer, which are not adjacent (in the
sense of Fig. 2) to each other, i.e., defining

h= (pl—P3)27 la= (pz——,Pfi)z: (2)

a plot in either sy and #; or 52 and #;. It is used mainly for
investigating mechanisms of resonance production.
Kinematically, the Dalitz and Chew-Low plots have
the common feature that they involve, apart from
masses, three invariant variables, one of which is the
fixed total energy s= (p1+p2)? and which in the sense
of Fig. 2 are not all adjacent to each other. The bound-
-aries of all plots involving variables as in Fig. 2(a) are

obtained from the same analytic function, which is also
the boundary curve of the physical region of a two-body
process.

In this paper, we shall investigate plots involving
three adjacent [Fig. 2(b)] invariant variables one of
which is fixed. The most interesting one of these is the
1l plot involving the total energy s and the two
momentum transfers & and ¢ [Eq. (2)]. It is con-
venient to apply, when investigating double peripher-
alism, i.e., the simultaneous dependence of the reaction
mechanism on two momentum transfers. The derivation
will be carried out for the £, plot, but results for any
other plot of the same type, e.g., a plot in s, £, and s;
or s, ¢, and s5, may be obtained by a suitable reordering
of the particles.

Section 2 contains a discussion of some properties of
the Dalitz and Chew-Low plots necessary for the under-
standing of the ¢, plot. In Sec. 3, a technique based

P t

F16. 1. A reaction with three
particles in the final state s



