
P H VS ICAL RE VI E%' VOLUME 175, NUMB ER 28 NOVEMBER 1968

Analyticity and Broken O(4) Symmetry*
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We investigate the extent to which broken O(4) results can be obtained by requiring that unequal-mass
scattering amplitudes be analytic at zero energy. All O(4) constraints upon the trajectory functions can
be obtained in this vray.

"N this paper wc study the reIation between the
~ ~ analyticity and group-theory approaches to daughter
Regge trajectories. For this purpose, we consider the
scattering of spinless particles in the s channe1, which
for convenience we assume to be an annihilation channel
with pairwise equal masses in the initial and 6nal
states. %e study Regge poles in the e channel which
contribute to the high-s behavior. If the scattering
particles in the e channe1 have equal masses, then the
amplitude in the I channel has O(4) symmetry at
Q„=O, where Q„ is the total four-momentum in the I
channel. ' The additiona1 symmetry at this point
strongly suggests that poles shou1d be classided accord-
ing to irreducible representations of O(4); this means
that for each parent Regge pole at n (m= 0) there must
be a sequence of daughters with a spacing of two units
at u(0) —2E (E= I 2 ~ ~ ) with definite coupling rela-
tions among them. In the unequal-mass case, O(4)
symmetry does not apply to the scattering amplitude,
but Domokos and Domokos and Suranyi have shown
that the symmetry does Rpp1y to the bound-state
Bethe-Salpeter equation, which does not depend upon
the external masses at Q„=0.2 This again suggests that
poles should. be classified according to O(4). However,
now the Regge daughters have a spacing of one unit
occurring at n(0) —E (E=I, 2, ~ ). There 'also follow
de6aite rules as to how the symmetry is broken for
m&0.

The presence of daughter trajectories in the unequal-
mass CRse cRn Rlso bc deduced by Rnalytlclty RI'gu-

ments. A single Regge-pole contribution in the u
channel is not analytic at e=O, in violation of the
Mandelstam representation. The analyticity can be
restored only by assuming the presence of a daughter
sequence of tra]ectorles at a(0)—E (E= I 2 ' ')

The group-theoretic and analyticity approaches thus
lead to the same sequence at N=o, but they have dif-
ferent starting points and content. In the present paper

wc are interested in the analyticity approach, and the
extent to which it can recover symmetry results. Ke
cannot expect to recover the symmetry itself, since the
unequal-mass amplitude does not possess the symmetry.
What we can do is see how many group-theoretic re-
sults we can obtain. The principal results from O(4)
are the following:

(I) The existence of the daughter sequence and the
integer spacing at I=0. This has already been obtained
by others from analyticity. 4

(2) For the trajectory functions nx(1), all the results
for 0(4) symmetry are broken by I/0 (mass formulas).
These we can obtain in unaltered form from analyticity
because the properties of the trajectories do not depend
upon the masses of the particles to which they couple.
This contrasts with the derivation given in Domokos
and Suranyi' where thc Bethe-Salpetcr equation and
bound-state perturbation theory are employed.

(3) For the daughter residues, the fact that when the
parent passes through a non-negative integer, all the
daughters for n(0) E(—0 are absent 5 This we can verify
for the most singular part of the daughter residues in the
unequal-mass case. '

(4) We might hope to show that daughters must be
present in equal-mass scattering. The equal-mass
amplitude is analytic at N=O, but the (6nite) residues

of the daughters in this case might be inferred by con-

sidering equal-mass scattering as the limit of unequa1-

mass scattering. This hope does not materialize for
I'eRsons wc discuss 1Rter.

%e incorporate known results in studying analyticity.
These are that to obtain analyticity at N=O, at least
one daughter must be present at n(0) —E when m=0,
with a residue behaving like e ~. Onc daughter is Rli

that is required, and to use more would be to insert
spurious, accidently degenerate trajectories. The con-
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tribution of the Eth daughter is

rx(s,u) = t yx(u)/ux]s x&"&

XF{—nx(u), n—x(u); —2nx(u); —4q„'/s),

q
'= Lu —(o1o+1M)']$u—(1oo—p)']/4u, (1)

ax(0) =«(o)—K

where we have combined various factors, including
signature into the reduced residue, and represented
Q x1„1 1(—Z„=—1—s/4q„') as a hypergeometric
function. The u-channel center-of-mass momentum is
q„, ns and IM, are masses, and the singularity I ~ has been
removed from the residue. %e sum over daughters, and
write the complete amplitude in the form

these constraints are correct. However, one can pro-
ceed in a manifestly correct, but laborious vray to get
the same results. Namely, like Goldberger and Jones, '
one can use the Mandelstam representation to deduce
the corrections which must be added to the parent to
correct its analyticity at I=0. The correction terms are
cancelled by the Grst daughter, which in turn requires
new correction terms to correct its analyticity at N=O,
etc. This procedure generates constraints equivalent to
those we 6nd more easily.

We need the expansions'

C(E n u) =Q C (E u) u'

s «"1 =s ~x(1+(lns) [unx'+-', u'nx"+ ]
+ (lns)'Duo(nx')'+souoax'ax "+~

+ (lns)oL:p, u'(nx')o+ ~ ~ ]+~ ~ }.
I'(nx(u)+1) ' I'{2ax(u) I+—1)

X
-I'(nx (u) —I+1) I'(2ax (u)+1)N!

T(s,u)= p Tx(s,u)= p s x&"& g C(E,u,u)
X~O X~0 nM

Xg-eN —n—X

(2)
C(E n u) =yx(u)(fu (m—+Is)']fu (rN—Is)'—5}" Thus,

Our program is to examine Eq. (2) for large s and,
demand that the coefficient of each term (like s~&o& "Ins,
s &o1 ', etc.) be analytic at u=0. Since the sum over u
in Eq. (2) converges only when ~4g„o/s~ (1, and q„o

diverges like I—' at 1=0, one might question whether

X(1+(lns)Lunx'+su nx"+ ~ ~ ~ ]+ ~ ~ ~ }. (4)

We now select for study 6ve subsets of the in6nite set
of relations implied by Eq. (4). In parentheses we
indicate the term whose coeKcient must vanish in order
for Eq. (4) to be analytic at u=0.

0= + Cp(E, r—E), (r& 1) s~o "u" (Sa)

0= P ax'Co(K, r—E), (s o "lns/u ') (Sb)

0= P (nx')"Cp(E, r—K), (r&u+1) (s~o-"(lns) "/u ") (Sc)

0= + C1(E, r E), — (sao-r/ur 1) (Sd)

r
0= g Lax'C1(E, r—E)+x onCxp(E, r K)], (r&3—) (s o "lns/u~'). (Se)

Cp(E, r K)=yx&x, r(ao), —
Cs(K, r—E)= $yx' —2(r—E)yx(rrlo+p')//o3&x„(ao)

+nx'Vxijx. '(«), (6)
where

o~x -I'(ap —E+1) ' I'(2ao —E—r+1)
&x,.(ao) =

(r—K)! I'(np —r+1) I'(2ap —2K+1)
. (&)

o= (oN' —s1')'.

We observe that Eqs. (Sa), which now take the form

P Vx&x, ,(np)=0, r&1

determine all the yx in terms of yo. They are easy to
solve recursively because as t' increases more and more

SM. L. Goldberger and C. E. Jones, Phys. Rev. 150, j.269
(1966).

~ %here no argument of a function is vrritten, read I=0.
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residues enter. We Gnd

(—p) x F(ap+1) ' F (2ap —2E+2)
Pz +0 ~ (8)E! 1'(ap —E'+1) F(2ap —E+2)

tained in the (lns)p and (lns)I terms, with higher powers
of 1ns providing no further information. "

The solution of Eqs. (5d) proceeds just as above,
after Bx,„(ap) is eliminated by differentiating Eqs. (9)
with respect to 0.0.

Wc obsclvc that I)'~ vRDlshcs fol' Don-ncgatlvc integer
ap when ap —E&0, in agreement with the O(4) result +, 2( K} (,+,)f
(point 3 above). Apparent poles in Eq. (8) for ap at p~ —2 p —Ep~ f@ p,

llalf odd Illtcgcl' CRI1 bc associated with thc (cosvrap)

wlllcll llas 13cc11 hUIlpcd Illto 'rx. Equations {5b) 111

thc form

&(Bx,„(ap)=0, r& 2

Th.ese determine the y~' in terms of yo', yi', and prcvl

(9) ously encountered parameters:g ax'vx&x, .(ap}=0,

E(K 1)(III'+—y') p)

Vx+ (ax'Vx aI'V I') .—(11)
0!06 DAO

(K—1)(2ap —E) yx E'(2ap —K+1)yx
now determine 0,~'y~ for all E&2 in terms of its VP+ VI

values at E=O and E=1. Sin'ce according to (8) all 2@0 po 2CO

y~ are known multiples of yo, the latter factors out of
(9) entirely, resulting in a mass formula mentioned
under point 2 above:

ax'= ap'+ (aI' —ap')E'(2ap —K+1)/2ap. (10)

This glvcs RB slopes 1Q tclIQs of those of thc pRI'cnt RQd

Grst dRughtcl. This foI'IIlulR agI'ccs with Rcf. 2 whelc
the two parameters appear as reduced matrix elements
after using the O(4) Wigner-Eckhart theorem. Equa-
'tloIIS (5c) RI'c slm)lar to Eqs. (5l3), except tllat IIlolc
equations are missing, and higher powers of the slopes
appear. They are all satisfied identically. Wc conjecture
that all the constraints imposed, by analyticity are con-

Wc remark thRt p~ vaQlshcs for posltlvc 1QtcgcI' co
when e,—IC&0, but the property does not go through
when eo ——0 unless we assume, for o,0= 0, the relation

Py = —~6Q'1 +0.t

Equations (5c) car1 liow bc solved glvlllg ax In tcl'1118

of eo", nj", 0;&", and previously encountered parameters
Wc omit the details and merely present the following
solutloQ:

(E—1)(E—2) (2ap —K)(2ap —E—1) E(E—2) (2ap —K+1)(2ap —E—1)
O'Z =0'0fj' Il Qg

I/

4ap(2ap —1) 4ap(ap —1)

Z'(K —1)(2ap —E+1)(2ap —E) E(E—1)(K—2}(a1'—ap')
II

4 (2ap-1) (ap —1) 2ap'(ap —1)

4@0—E—j.
X ap' +(a1'—ap')(2ap —E+1) . (13)

2Q'Q

This equation constrains the quadratic terms in the
mass formula; it does not appear to have been derived
previously.

Equations (8), (10), (11), and (13) provide the

pattern for an infinite series of other constraint equa-
tions involving higher derivatives of 0.~ and y~. These
constraint equations become less restrictive the higher
the derivatives. If we use a superscript to denote the
order of the derivative, the pattern is that the o.If-, ("&

are completely determined by a known function f„as
follows:

0, (")= & ~K o, (0) 0. (" 0. ("'

a (&) a (P) . . . a (~) ~ . . . ~ a (&)) (14)

Thus, the slopes o,~(" are all determined in terms of thc
f)rst two, as in Eq. (10), whereas the second derivatives

0.~('& are all determined by the first three second de-
rivatives as wcH as the erst two slopes.

AQ analogous pattern of coQstralnt conditloQS cIQcrgcs
for I'cslduc dcllvRtlves p~("&, except that the trajectory
dcrlvatlvcs also cIltcl Rs dctcI'IQ1DlDg pRI'RQMtcl'8. Thc
formula corresponding to (14) is

~x(» = g (E ~ ~ (P) ~ II) . . . + (~) ~ (I) . . . + (~) ~

(n) . a (P) . . . a (s) ~ . . . ~ a {e)) (15)

The result embodied in Eqs. (14) and (15) enables
us to deal with point 4 above; namely, the possibility of
deducing the presence of daughters in the equal-mass

'0 For a demonstration of this, see P. K. Kuo and J. P. %alker,
Massachusetts Institute of Technology Rcport, 1968 (un-
published).
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scattering by considering it as the Hmit of unequal-

mass scattering.
Since in the equal-mass limit there are no analyticity

problems, the singular parts of residues vanish as
e -+ 0. This fact is veri6ed by Eqs. (8) and (10). The
coupling of trajectories in the equal-mass case then is
determined by the nonsingular parts of the residues,

namely, by yx&x&. But according to Eq. (15) these
y~(~) are completely unconstrained. If the poles in the
equal-mass limit are c1assi6ed by irreducible representa-
tions of 0(4), a de6nite ratio of yx&x& to yo'e& is re-

quired. This means that analyticity cannot eliminate
the possibility in the equal-mass problem of a string of
llltegci'-spaced Lorcntz poles at Nx(0) =ax.

One important remark shouM be made. Equation

(13), as wcQ as Eq. (14) wliicli generalizes it, lllvolvcs

only trajectory functions —not external masses or
residues —-as it should, since Regge poles couple to
many channels. By a slight reorganization of the calcu-
lation, it is possible to show that m and p will never

appear in these equations. Even so, the independence of
Eq. (13) on residues is not evident a priori, and re-

quiring such an independence from residues could lead
to a constraint involving among other things yl(" and

y ('~, as an examination of the steps leading to Eq.
(13) sllows. Sllcli Ilcw coilstlaiII'ts IIligllt well determine
pi&'&/yo'o&, thereby indicating the necessity of daughter
trajectories in equal-mass scattering. However, the
dcpcndcncc on residues tuI'ns out to dIop out of Eq.
(13) automatically.
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The boundary of the kinematically allowed region on the plane of two invariant momentum transfers of
a reaction with three particles in the Gnal state is derived and the phase-space distribution in this region
determined. The boundary may in the most general case consist of branches of a complicated curve, a
parabola, and tvro straight lines. Applications to the analysis of doubly peripheral reaction mechanisms are
discussed.

1. INTRODUCTION

N tlic analysis of reactions of 'the type pi+ ps
= ps+p4+ps with three particles in the final state

(Fig. 1), one commonly uses the Dalitz and Chew-Low
plots. The former ls a plot in the two invariant energies

si= (ps+ p4)', ss= (p4+ps)', (1)

and it is used mainly for the investigation of particle
spectra and intrinsic properties of resonances. The
Chew-Low plot is a plot U1 one energy and one invariant
momentum transfer, which are not adjacent (in the
sense of Fig. 2) to each other, i.e., defining

i.= (P P.), i.= (P.-P-.), (2)

a plot in either sI and t2 or s2 and tj.It is used mainly for
investigating mechanisms of resonance production.
Kinematically, the Dalitz and Chew-Low plots have
thc common feature that they involve, apart from
masses, three invariant variables, one of which is the
fixed total energy s= (PI+Ps)', and which in the sense
of Fig. 2 are not all adjacent to each other. The bound-
aries of all plots involving variables as in Fig. 2(a) are

FIG. 1. A reaction gath three
particles in the 6nal state

P

P~

Pq

obtained from the same analytic function, which is also
the boundary curve of the physical region of a two-body
process.

In this paper, we shall investigate plots involving
three adjacent LFig. 2(b)j invariant variables one of
which is 6xed. The most interesting one of these is the
Iform plot involving the total energy s and the two
momentum transfers ii and is LEq. (2)j. It is con-
venient to apply, when investigating double peripher-
alism, i.e., the simultaneous dependence of the reaction
mechanism on two Inomentum transfers. The derivation
wIQ be carved out for the t~t2 plot, but results for any
other plot of thc same type, e.g., a plot in s, t~, and s&
or s, t2, and s2, may be obtained by a suitable reordering
of thc particles.

Section 2 contains a discussion of some properties of
the Dalitz and Chew-I ow plots necessary for the under-
standing of the /~f2 plot. In Sec. 3, a technique based,


