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We investigate the behavior under SUIXSU» of the hadron energy density and the closely related question
of how the divergences of the axial-vector currents and the strangeness-changing vector currents transform
under SU3&(SUI. We assume that two terms in the energy density break SU3XSU3 symmetry; under
SU3 one transforms as a singlet, the other as the member of an octet. The simplest possible behavior of
these terms under chiral transformations is proposed: They are assigned to a single (3,3*)+(3~,3} repre-
sentation of SUOXSU3 and parity together with the current divergences. The commutators of charges and
current divergences are derived in terms of a sing]e constant c that describes the strength of the SU3-breaking
term relative to the chiral symmetry-breaking term. The constant c is found not to be small, as suggested
earlier, but instead close to the value (—V2) corresponding to an SU2XSU~ symmetry, realized mainly
by massless pions rather than parity doubling. Some applications of the proposed commutation relations
are given, mainly to the pseudoscalar mesons, and other applications are indicated.

I. DtTRODUCTION

E assume here the correctness of the SU3)(SU3
algebra proposed for equal-t, ime commutators

of the vector and axial-vector charge operators Ii; and
P;~ for hadrons. ' As is well known, there is some experi-
mental evidence in con6rmation of it, 2 and especially
of the SU2&SU2 subalgebra. The correspondkng local
commutation rules proposed for the charge densities
may also be correct. At in6nite momentum, all these
commutation relations fall into the "goad-good"
class' and yield sum rules that amount to unsubtracted
dispersion relations in the variable s.

%e investigate in this paper the behavior under
SU3&SU3 of the hadron energy density Hpo and the
closely related question of how the divergences of the
axial-vector currents and strangeness-changing vector
currents transform under SUB)&SU3. The commutators
involved here fall into the "good-bad" category at
in6nite momentum, and some of them are tractable in
deriving sum rules.
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For a review of the literature, see S.L.Adler and R. F.Dashen,

Current Algebras (W. A. Benjamin, Inc. , New York, 1968) and3. Renner, Current Algebras and Their Applications (Pergamon
Press, London, 1968).' R. F. Dashen and M. Gell-Mann, in Proceedings of the Pourth
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%e do not consider here the equal-time commutators
of divergences with each other, which give "bad-bad"
relations at I',= ~ and which no one has succeeded in
using in a straightforward way at I',= ~ or in deriving
low-energy theorems, although these commutators may
be useful when acting on the vacuum state.

Our aim is to explore further the original proposal
(as suggested, for example, by a quark model) for com-
mutation relations between charges and current di-
vergences. These relations arise from an energy density
800 in which the SU3&SU3-violating part consists
of two terms; the 6rst breaks the chiral symmetry
SUsXSUs but not SUs itself {and corresponds in a
quark model to a common quark mass), and the second
breaks SUs (and corresponds in a quark model to a
mass-splitting between isotopic singlet and. doubl«).
The proposed behavior of these terms under SUSXSU3
is the simplest possible: They and aQ the current di-
vergences belong to a single representation of SUSXSUg
and parity. This theory, because of its simplicity, con-
tains a single universal parameter c that describes the
strength of the SUI symmetry-breaking term relative to
the chiral symmetry-breaking term and determines the
commutators of charges with divergences.

If the whole SUIXSU3 violation were"abolished, we
would have a world in which all sixteen vector and
axial-vector currents were conserved. %e suppose that
the conservation of the vector currents would be
achieved through the exact degeneracy of SU3 multi-
plets and the conservation of the axial-vector current
through the existence and coupling of eight massless
pseudoscalar mesons. The chiral symmetry violation
raises the masses of the pseudoscalar mesons to Gnite
values, and the SU3 violation splits the SU3 multiplets.
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Wc note that SV~ mass splittings are always of the
same order as the masses of the pseudoscalar octet.
This observation suggests that it would not be unreason-
able for the strengths of the two synlmetry-violating
terms to bc comparable.

Employing some simple approximate assumptions, we
conclude that a consistent picture of several experi-
mental results can be obtained and the crucial constant
c estimated. This constant is not small, as originally
suggested, ' but rather is close to the value —K2. If it
were exactly equal to —M, we would have exact
SUsg SUs invariance and massless pions. (In the quark
scheme, which we employ here only as R mnemonic, this
value corresponds to a zero mass for the isotopic doublet
and a finite mass for the isotopic singlet. )

Many authors have taken steps in the same direction, 2

and in particular wc should mention the work of
Glashow and Weinbcrg4 as being the most closely
related to ours. Still, we 6nd that our approach leads
to results and to a formulation of the situation that, to
the best of our knowledge, have not yet been reported
in the literature.

In Scc. IIy wc discuss thc commutators of charges
with current divergences; jn Scc. III, wc cstlmRtc the
constant c and give some applications.

II. TRANSFORMATIO5' PROPERTIES OP
CURRENT DIVERGENCES

The algebraic behavior of current divergences is
closely related to the properties of the energy operator
B under the SVIQSV~ algebra through the equation'

d
je(x,f)de= — B„j„(x,f)dsx

assumption. A decomposltlon of K (z) 111'to 'tcl'Ills

transforming according to irreducible representations of
SVIXSV3 speci6es completely the commutators of
charges and current divergences.

For simplicity, we make our second assumption: Wc
will not admit operators of isospin or hyperchargc 2 into
the multiplet of the current divergences. This assump-
tion implies the vanishing of certain commutators, for
example,

EF, +iF„B„s,„'+ B„S,„1=0, (2.4)

EFss+iFss, B„Pi„s+iB„Fs„sj=0. (2.5)

These have been found consistent with experimental
information. Iil fact this assumption allows compo-
nents of K'(z) only in representations (3,3*)+(3*,3)
and (1,8)+(8,1) of SUsXSUs.

The 6nal simpli6cation is achieved if wc make our
last assumption, which is that. the (1,8)+(8,1)part of K'
vanishes and that the SV3 singlet Rnd octet parts of
X' belong to the same (3,3a)+(Bk,B) representation of
SV3XSV3. We have arrived at the simplest theory of
the behavior of X,', because it introduces the least
number of new operators to complete the multiplet of
the current divergences. )We shall argue at the end of
the article that if there is a (1,8)+(8,1) contribution,
its efFects on our deductions are unlikely to be large. )
We then obtain the formula

of Ref. I, where the parameter c expresses the relative
scale of thc two parts of X and ls uniquely dc6ncd by
the transformation properties of the scalar and pseudo-
scalar nonets, I; and v;, in the representation (3,3a)
+(3*,3) of SUsxSUs.

EX= Bee(x ()dry. (2.2)

=i EE, je(x,f) „(2.1)
LF',I (y)3=if"N.(y),
EF',c;(y)j=if';»k(y),

EF ~(y)j=-id'»&(y)
EF',c (y) j=id' kl.(y),

(2 &)

The local generalization' of Eq. (2.1) to

B„j„(x,f) = i X.'(x, t), js(y, f)dsy— (2.3)

48. L. Glashow and S. %'einberg, Phys. Rev. Letters 20,
2m (&F8).

~ The notation of Ref. I will be adopted throughout this paper,
in that we use s acelike metric g00

———1 and the pion decay con-
stant (t/vx}(O S„S,„'(O)—saS,„'(O)l ')=m. '/2/. . As ln M.
Gelt-Mann LPhysics 1, 63 (1964}g f~ ' and / ' are constants
that yield kaon and pion decay amplitgdeg mh|:o mgltipUed by
sin8 and cos8, respectively.

rests on the assumption that the tensor part in ()M(x)
commutes with the charges, and only a Lorcntz scalar
part &ooR"(a) (such as a mass term in certain Lagrangian
models) breaks 'tile sylllnlc'tl'y. We IIlakc this our 6rst

where ~=i 8 and g k=o ~ 8 Wc do not cons1dcr
an operator ~0~, because we 6nd that no such operator
is "partially conserved" to anywhere near the same
degree as the operators we do consider. Furthermore,
such an operator is not known to play a role in the
physical interactions of hadrons.

The current divergences follow from (2.3):

Bs&is= &fisksik)

disk&k &diskek ll i(&)BiÃk
—(V's)cB'» (29)

6 For a related discussion, see D. J. Gross and R.Jackie, Phys.
Rev. 163, 1689 (19|7).

'M. A. Ahmed, Nucl. Phys. Il, 679 (19M'); D. K. Elias,
Oxford University Report, I96$ (unpubhshed); G. Furlan and
C. Rossetti, Phys. Letters 23, 499 (1966); G. 3oliani, University
of Torino Report, 1967 (unpubhshedl.



8';(c)= (V2+c)/P for s=1, 2, 3,
(~——',c)/v3 for s=4, 5, 6, 7, (2.10)

(v2 —c)/v3 for i= 8

Commutation of charges with current divergences can
be read off by combining Eqs. (2.7)—(2.10).

All these assumptions and conclusions are as in Ref. 1.
However, it was assumed there that c was small com-
pared to unity. If we consider the formal analogy of
—eo—vis with the mechanical masses of an isotopic
doublet and singlet forming a fundamental triplet,
then the old assumption about c amounts to saying that
the doublet-singlet splitting is small compared to the
average mechanical mass. If we imagine that, in the
limit of conservation of aD sixteen currents, the masses
of the baryons (for example, the —',+ octet) go to zero,
then this might be a reasonable idea, with c correspond-
ing roughly to the ratio of baryon mass splitting to
baryon mass. But if it is the masses of the eight pseudo-
scalar mesons of the 0 octet that go to zero as we dis-
regard us+cu„ then that is no longer reasonable. In
fact, it seems that the real world of hadrons is not too
fa.r from a world in which we have eight massless
pseudoscalar mesons, SV3 degeneracy, and conserva-
tion of all sixteen currents. We are even closer to a
world in which there are massless pions and the algebra
of SU2&SU2 is conserved. In that limit, we would have
c= —V2, since the combination us —V2us commutes
with E; and Ii s for i = 1, 2, 3. (This combination corre-
sponds to zero mass for the conceptual fundamental
isospin doublet and a 6nite mass for the isospin singlet. )
Since, in fact, the pion is nearly massless, we should
expect that in fact the value of c is close to (—~2. We
shall see that a number of experimental results can be
understood with the aid of the assumed behavior of R'
in Eq. (2.6), a value of c something like (—1.2), and a
few approximate assumptions about the matrix ele-
ments of currents between SU3 multiplets and about
meson pole dominance.

III. APPLICATIONS

The applications given in this paper will include the
estimate of c, a discussion of the approximate equality
of the m„~ and E„2decay constants„a demonstration of
the consistency of the squared-mass formula, and some
results for E„,decays.

We shall make approximations of two kinds:

(A) Pole dominance for axial current divergences
through m, E, and g mesons. We note that although
the hypothesis of partially conserved axial-vector
current (PCAC) for E mesons appears uncertain, there
is no definite evidence known against it, and the recent
estimates of E-meson Vukawa coupling constants are
compatible with generalized Goldberger-Treiman rela-

tions. ' g-meson PCAC is not testable, but one expects
it to be on a similar footing as E-meson PCAC, at least
as long as (gg') mixing may be neglected.

(8) Application of appmximate SUs symmetry to
vertices of certain operator octets involving multiplets
with smaD mixing. We shaD apply SV3 only to form
factors and there only at points which are far enough
away from important singularities so that differences in
their distancedue to SV3 violations are negligible. At
small momentum transfers, form factors describing the
transverse parts of vector and axial-vector currents (not
the induced scalar or pseudoscalar parts) and form
factors of scalar densities (u;) may be estimated by
SV3, while matrix elements of pseudoscalar densities

{s;) are usually too strongly distorted because of the
closeness of pseudoscalar-meson poles. No such dis-

tortion by the position of singularities affects matrix
elements of octet operators between the vacuum and
particle octets. We shall 6nd that the vacuum is ap-
proximately SV3 invariant and that these matrix ele-
ments are always dose to their symmetry values.

Before employing these approximations in our appli-
cations of the algebraic properties of current diver-

gences, we give an independent example to show they
are reasonable by estimating the observed SU3 viola-

tions in the decay Fse(1405) -+ Zs as compared with

the vIrtual transltlon Ys ~EE, w1th Fs ) a (s) SUs
singlet. As discussed in (8), we apply SUs to the matrix
elements of the transverse part of the axial-vector
currents

(Fp*IF „'IZ)=ig,(t)u~„us+ (3.1a)

Therefore,
gx(0)(my —m~) =(1/2fx)gy, .Ng. (3.2b)

fÃ p 5$pf

gro~NX/gy0 Zx 2 ~

(mr —mz) f.
(3.3)

ExperimentaDy this latlo is estimated to be about 3,
while exact SV3 symmetry predicts 1. Because of the
parity change (-,'——+-,'+) the SUs corrections ente~

through the mass differences and are signidcantly larger
than in cases considered previously" where there is no
parity change {s+~s+) and the corrections

8 J.K. Kim, Phys. Rev. Letters 19, 10'tI'9 (1967};C. H. Chan and
I". T. Meiere, ibid. 20, 568 (1968); H. T. Neih, ibid. 20, j.254
(I968}.

9 C. Weil, Phys. Rev. 161 1682 (196II'}."K. Ramsn, Phys. Rev. f49, 1122 (1966); 152, 1517(E) (1966);
R. H. Graham, S. Pakvasa, and K.Raman, ibid. 163, 17'4 (j.967).

(Fs*
I Fx„sI 1V)=igx{t)ury„u~+, (3.1b)

by appmximating g (0)=gx(0). Using generalized
Goldberger-Treiman relations for the axial divergences,
as discussed in (A), we 6nd

g (0)(mr —mz)=(1/2f. )gr, *„
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through the sum of the masses. Further corrections
would result from singlet-octet mixing.

We now return to our objective and start by consider-
ing the vertex of K'(0) between members of the pseudo-
scalar-meson octet [P;& in the low-energy limit

—lim &P;(p) I ue+cus [P;(p')&

= —2if;(0[LJ' us+cia] [P,(p')&

=2J,&0[a„p,„[z'(p)&=m, . (3.4)

The application of low-energy limits to matrix ele-
ments involving parts of K(0) may appear questionable,
and it certainly is misleading in some theories, but it
has been our 6rst assumption that we are not dealing
with such cases in that the explicitly momentum-
dependent tensor parts in eee(0) are SUsXSUs sym-
metric and do not enter into Ne(0)+cg, (0). A free-
meson theory may serve as an illustration of what we

mean; there we have

Using different values for (s,j,k), we fmd

(1,4,6):P=-2J-&0[ I&)=-2f & I -Io&

(1,18):0/~3= —2f-(0 I
e

I n&/~3 —2f-&OI eo
I ~&v's

=—2y,&~[..[0&/vs,

From these equations, we hand

K g p
(3.10)

(0[e,[P;)= P/2f —independently of i (3.11a)

(0[.,[~)=0, (3.lib)

(4,4,8): -P/2~3= V (oI "I.&/2&
—2Jx&OI e, [ ~&V'l

(3.9)
=2y„&z[.x[0&/2',

(8,8,8): P/V3—=2f &oI e. I ~)/~ 2f.(—OI eo I ~&V's

(1,0,1):-+Pa-:=-V-&0[ -I )4l.

&&*(p)[~es(0) I J"(p')&=popo'+no'+~", (3.5) n =0; &m'), = (Qss) hm'/c m c=—1.25. (3.12)

with (pape'+yy') being contributed by the chirally
symmetric kinetic tensor term (for which the low-energy
limit is a bad approximation) and the symmetry-
breaking mass term whose eRects are not distorted in
the virtual low-energy limit,

Equation (3.4) illustrates thc role of thc pseudo-
scalar-meson masses in chiral sylllmetry breaking and
their vanishing in the symmetry limit. It gives us a way
of separating the eRects of No from the chirally invariant

part in X. Only for the pseudoscalar octet, with the
help of PCAC, do we know how to isolate eo,' for the
other multiplets, this separation is yet to be achieved.

Now we consider a more general scalar vertex with

pseudoscalar mesons and apply SUs symmetry I see

(Ii)j.Neglecting (gg') mixing, we have

—&~,(p) l~;I&.(p')&= (~)h;.&;.+P(t)d;;. , 3.6
Z P |a a o8 q~o ~ ~ «8

where n(0) and p(0) are related to the pseudoscalar-

meson masses through the SV3 mass formula

—&P,(p) [ue+cu, [E;(p)&=esP=&m'). +d'*'Den' (3.7a)

by

n(0) = (m'). —(Q's)Am'/c and P(0) =Am'/c. (3.7b)

Taking low-energy limits an'd neglecting the de-

pendence of n and P on t In(m;s)=n(0)—=n, P(m;s)

=P(0)—=g, we have

a8,eh;s+Pd;;I, =—2f(d,„t&0[e(
I Eg)

2fpdr;sP',
I
e( I 0).—(3.8)

Equation (3.10) states the equality of the ~„s and

E~2 decay constants. " Experimentally they diRer by
less than 25'%%uz, and we may take this as an indication of

the accuracy of our estimates. Equation (3.11a) repro-

duces the squared meson mass formula when combined

with Eqs. (2.9), (3.10), and (3.11b). This is not par-

ticularly astonishing since we began with an equivalent

assumption that the pseudoscalar-meson states form an

approximately pure octet, yct it appears interesting to
us that the simplest Rnsatz gave a consistent result

stal ting with thc squared meson mRss formula. Thc
vanishing of (0[ca[q) corresponds to our neglecting of

(g,g') mixing; if we had a signi6cant amount of mixing

we would not have the octet mass formula for pseudo-

scalar mesons and g dominance for B„F»'. In our

RpploRch we hRvc to lnslst on kccplng 5$&~ still 1Rrgc

in the limit of SV3&SV3 symmetry, with no conser-

vation for a hypothetical current of the form F„o',
because otherwise we couM not explain the large split-

ting of singlet and octet; the term X' in the energy

density, as given in Eq. (2.6), is clearly not responsible

for that large splitting.
The value c=—1.25 suggests the closeness of our

theory to the SV~QSV~ symmetric limit with @&~=0

and c= —V2. In fact, we find that in the construction of
the commutators (Sec. II), if we take the limit m =0,
we could replace our second and third assumptions by
the requirements of 5V2)&SV2 symmetry and singlet
and octet behavior of K(0), except that some (1,8) and

(8,1) would still be allowed. We see SUs &(SUs symmetry
(with right pseudoscalar Nambu-GoMstone bosons)

"Compare C. S. Lai, Phys. Rev. Letters 20, 509 (1968) atrd
R. J. Oakcs, iME. 20, 5j.3 (j.968).
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broken in two chains":

8Us. (3.13)

At least for the low-lying multiplets, chiral sym-
metry appears realized by strong coupling to Inassless
pseudoscalar mesons, rather than by parity doubling.
Fubini'3 has recently emphasized that this is a quanti-
tative matter in the real world; if a resonant state of
opposite parity and the same spin lies closer in mass
than m from a given state, then approximate chiral
symmetry can manifest itself more in the ma, nner of
degenerate multiplets than in the Nambu-Goldstone
manner.

The vacuum state should be expected to be approxi-
mately invariant under SU3 but not SU3+5U3. That
is consistent with Eq. (3.11), as we shall show when
estimating the vacuum expectation values &Olusl0&
and (Ol I 0). The limit p -+ 0 in Eq. (3.11) gives

&o I s'IF~&= —~"/(2f')II"(~) =—&/2f
=—(2fi)(d'*o(oltsslo)+d" &Ol~ IO&) (3 14)

To the accuracy of Eq. (3.14), we find &OIN, IO)=0,
which indeed corresponds to an SU3-invariant vacuum,
and &OINslO&=as&ad'). /(2f)'.

At this point, we vrant to argue that the e6'ects of a
possible (1,8)+(8,1) admixture in X' on our deductions
are in fact smaH. We denote the scalar and pseudoscalar
members of the multiplet by g;(0) and h;(0), respec-
tively. They transform as foQows:

PFiigJj= zfiisgs pt

I F;,Ii;1=if;;sjis,
[F,',g;j =if;,;h„
[F,',Ii;j=if;;sgs.

(3.15)

We note that the h~ behave oppositely under charge
conjugation to the el,. Making an ansatz similar to
(3.6) for a possible contribution gs in X'(0), we have

&F'I g IFs&=&"v(l)
= —f...&olh IF )/2f, . (3.16)

We see that, to the accuracy of low-energy limits,
y(0) =0 and (Ol hs

I
F"&=0.Roughly speaking, we would

find effects of a possible (1,8)+(8,1) admixture only in
the order or corrections to PCAC in our results.

This possibility should be kept in mind when trying
to use the commutators of currents and divergences in

'~ Compare G. S. Guralnik, V. S. Mathur, and L. K. Pandit,
Phys. Letters 29, 64 (1966)."S.Fubini and G. Furlan, Massachusetts Institute of Tech-
nology Report, 1968 (unpublished).

connection with multiplets other than the pseudoscalar
octet. Such tests are very desirable for con6rming the
universality of c. An obvious possibility is the study of
the so-called r terms in the scattering of pseudoscalar
mesons at low energies. '4 In xE scattering, the low-

energy value of the isospin-symmetric amphtude is
given by the formula"

&irXI Tlirt& I,.= s=-,s(%2+c)(4f ')
x (E I (v2Ns+is, ) I

X&. (3.17)

Aprecise estimate is made de.cult for three reasons.
The first is the occurrence of the factor (v2+c). The
second is the lack of knowledge about &EliislX&; it is
not possible to decide a priori how much of the nucleon
mass should be attributed to chiral sylnmetry violation.
The third reason is that the application of PCAC to a
four-point function is a deHcate problem. The extreme
smallness of the sum of ir+p and ir p scattering lengths
tends to suggest that in fact the quantity &FINslE&
is not a large fraction of the nucleon mass. In E'+p
scattering, we 6nd

&&+PI2'llt+P)l. = =l(~—')(4f ')
X (P I

~2gs+ ,'%3us-',I,—I P—) (3.18)

and two of these difhculties are still present, with the
PCAC trouble aggravated. Attempts at numerical
estimates may be considered elsewhere.

Within the meson system, further applications can be
made to E„3decays. We found the low-energy theorems
emerging from the commutators (2.7) compatible with
and, to our accuracy, hardly distinguishable from the
Ca.lian-Treiman relation. 6 The details mill be given
elsevrhere, along with applications to hard-meson
calculations of the E„svertex.

In conclusion, let us reemphasize that we have so far
investigated the compatibility of the formula X = —eo—cls (with c near —v2) only with certain data about
hadrons and that further tests are desirable to establish
whether a single (3,3*) and (3*,3) representation is
indeed what is involved and also to decide whether
there is an additional term of the form g8 belonging to
(1,8) and (8,1).
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