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Quasidiffraction Scattering and Selection Rules for Spin and Parity*
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The diBraction model for inelastic scattering is shown to lead to an approximate selection. rule on the
spin of a diGractively produced resonance. The model leads to parity selection only for a spinless incident
particle. Some examples are discussed briefly. For the reaction p+p-+ p+E+m, it is shown that the
nucleon pole graphs cancel in the forward direction, leaving only the pion pole graph as the dominant one.

1. INTRODUCTION
'

q LASTIC diffraction scattering at high energy is
characterized by R forward differential cross

section independent of energy Ldo/df(s, /=0)=inde-
pendent of s) and displaying a very steep forward
peak. An inelastic process may be called quasidi6ractive
if it can be considered a two-body reaction (one of the
6nal "bodies" may actually consist of several stable
particles) and if it displays a dependence on s and f
similar to that in elastic diRraction scattering.

Amorig the first to consider the concept of inelastic
diffraction scattering in high-energy physics mere Good
and Walker. ' On of the salient features of the analysis
is the coherence of the produced inelastic system with
the incoming particle. This implies that the quantum
numbers of any resonance so produced must be un-
changed, e.g., isotopic spin, hypercharge, 6 parity if
applicable, etc. The mass is, of course, not the same,
but Good and Walker give a criterion for coherence
when AM'/0.

In this paper we address ourselves to the question of
possible lestllctlons on the spin and pRllty of R diGrac-
tively produced resonance. It is not unnatural to expect
such restrictions in light of the simple coherence
arguments mentioned above, and we 6nd that approx-
imate selection rules within a particular model do exist.
If a particle of spin sl produces di6ractively in the
forward direction a two-particle resonance of spin j,
then 0&Ij)&Lsg+Lsm]+ Lsd], where s2 and sg are the
spina of the decay products. Here $s) =s for a boson
and s——,

' for a fermion.
Recently, Goldhaber and Goldhaber' and Morrison'

have proposed selection rules on the parity of a diGrac-
tively produced resonance. These relate the change in
parity to the change in spin. We shall discuss the
relationship between those selection rules and the
ones presented here.

The present work is a direct generalization of an
earlier paper' on an application of the Drell-Hiida
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(DH) model. ' There is now a fairly extensive literature'
on this model (or variations and applications of it).
For want of a better name, we shall refer to the model
as the quasidiffraction model (QDM). The notation
and conventions in the following are those of Ref. 4.

2. p+p —+ p+N+m

We consider in this and the next section two explicit
examples, because they serve to clarify some points.
The general case is considered in Sec. 4.

The 6rst example is the reaction p+p-+ p+W,
where 8' is an Fx system. This is the example studied
in Ref. 4, where it mas conduded that the experimental
peak seen at a missing mass W=1.40 GeV/c' must be
at least partially attributed to dynamics in. the mÃ

system, i.e., to 6nal-state interactions. However, an
argument was made in favor of the DH process (Fig.
1(a)] as the production mechanism for this pn res-
onance or dynamical enhancement, and the approx-
imate spin selection rule j=—, was obtained. Parity
selection did not follow; spy was also allomed. One of the
questions raised was the possible importance of nucleon

k'

P

FlG. 1. Graphs for p+p .-+ p+E+~. .(a) Drell-Hiida process;
(b)-(e) nucleon pole graphs.
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pole graphs LFig. 6 of Ref. 4 and Figs. 1(b)—1(e) herej.
We resolve this problem now.

For convenience, we rewrite the invariant amplitude
for Fig. 1(a) as follows:

»j2 2''
3f"= 2ig s("'(t) u(q')u(q)

2m 2m2 —-t

This is an approximation for l.il very smail and
I ql

very large.
Though it is not essential to the argument, we have

written 6'~~=0~~ j 0~~ j where 0 ale the total asymp-
totic cross sections. In Ref. 4 the factor l 2ris'/(2)sos
—-', I)ji(s does not appear, since —,'i was already dropped
compared with 2m'. We reinsert it here for reasons

apparent below. The factor arises as follows. The
amplitude for the virtual elastic diffraction scattering
may be written as Ms"=8(q')N(q)A(s, ('). We can
evaluate xsplkIs' l' as before to obtain (4rs'('/nz)'

Xg~i)(((l) (k(r„s('"/4r)'. We can also evaluate it directly
to obtain l

A
l
'(2ms ——,'t)/2m'. Equating the two

expressions gives [al or W=slWl lRex(s, ~=o) is

neglected5 Also, .k+s=nqI k')' srisp'J('=q—I O'. The
result is Kq. (1). Note that q' k' is the inner product
of the two pkysica/ momenta in the virtual diffraction

scattering (in this case the final lines). This follows from

the ansatz of the model, that the elastic diffraction

scattering is to be taken from experiment; off-shell

effects are relegated to possible form factors, which

have been neglected in writing Kq. (1).
We are now ready to write expressions for the nucleon

pole graphs in the same approximation. For Fig. 1 (b),
the virtual diffraction scattering is that of pp —& pp.
Since the diGraction bubble is to be treated as a scalar
"particle" coupling to the nucleon lines (in Regge lan-

guage, the Pomeranchon has the quantum numbers of
the vacuum), "we make the ansatz that

P'+ k'+ its
M"=u(q') I(q)u (p')ysG„u(p) B

(p'+ k') '—m'

and 8 is to be eva, luated similarly to the previous

diagram. If p'+k' were on shell, we would write

M g"——u(q')u(q)t(, (p')N(p'+k')B, and now

This allows us to evaluate B=s
l
B

l
. Here st ——(q+ P)'

and k» is the corresponding c.m. momentum, so that
ktQsi=q P. We note that this is what we should

expect,—it is the inner product of the two physical
lines of the diffracting system (in this case the initial

lines of the pp scattering system) that is the relevant

quantity. In M'~, we may also use the Dirac equation
to set N(p')y, (P'+xi) =0. kP' is very similar, except
that the physical lines are now q' and p', and q' p'

replaces q p. By taking o „~'"=o»""and g„„(t)=g»(/),
we may ignore isospin (the final W system may be
Ps.s or ns.+) and write for the sum of Figs. 1 (b) and 1 (c)

»j2
Our

X G„u(P')ps''N(P)
251

X + . (2)(
O'P q'P

(P'+k')' —ns' (p —k')' —m, '

In an exactly analogous way,

I/2 25$2

+»Ir(» F'I(&') ~()")~(I)
2m

+us
G,t( (q') ps''u (q)

2

(We can regard the above expressions as effectively

giving the rules for diagrams that include a virtual

diGraction scattering, or the exchange of an "inelastic
Pomeranchon. "'"')

In Ref. 4, it was shown that, at 8=0,

6'Iiootgote added ~rI, proof. The Pomeranchon has, of course, a
spin given by 0.(t)~1 for t~o. So, strictly, a vector coupling
should be introduced, and terms like g

k' and q' k', etc., would
then enter. It is easy to show, however, that all these are equiva-
lent to qI k' Lsay, in Fig. 1(a)], using the same approximations
as above. The coupling constants are then determined by de-
manding that the asymptotic elastic scattering ht experiment.
But this is precisely equivalent to the prescription actually used.
The vector nature of the Pomeranchon is therefore completely
accounted for by the factors q' k', etc., that are explicitly ex-
hibited, and no further energy or angle dependence can come
from the Pomeranchon exchange. So the diGraction bubble (or
Pomeranchon) must be treated as a scalar in subsequent analysis.

This implied that at 8=0 M'~ can contribute only to
j=-,', that is, sit and pii partial waves in the W system

if no form factors are introduced. With the presence of

a form factor, this selection rule is weakened but is

' These are in essence the same rules and prescription given in
the last two papers in Ref. 6. However, Ross and Vam do not
explicitly consider o8-shell fermions. %est et al. do consider nu-

cleon poles, but introduce an extra positive-energy projection
operator. Their diagrams therefore cancel only in the static limit,
while in the present prescription they cancel to all orders of p'/m,
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still approximately true. » (In the numerical calculation,
a suppression in the cross section of several orders of
magnitude with Ii=1 becomes a suppression of a
factor =10 with "reasonable" F.)

We now observe that (p'+k')2 —m2= (p+q q—')' t—n'
=I+2P (q—q') and again at 8=0 I=O and 2P (q—q')
=2p q»/)II[, so that q p/[{p'+k')' —e'j=/II)/2».
Likewise,

(P—k')' —m'= (p'+ q' —q)' —m'

=&—2P' (q—q') =—2P' q /I «I =—2P'. q' /1 III

at 6=0, so that q' p'/[(p —k')' —m'j= —~II~2». We
therefore find that though 3P~ and M" are individually
as large as M" (on doing the numerical calculations,
they are seen to be even larger), nevertheless they cancel
exactly in the leading approximation. M' and M" can
contribute only in the higher order that has already
been neglected in evaluating M".

For MI»+M", the cancellation is not exact, but the
sum is about 15% of the individ. ual terms. This is for
forward scattering at 20 GeV/c. However, in calculating
the cross section, isotopic spin and the angular integra-
tion come in in such a way as to give a further suppres-
sion of these graphs by about a factor of 10. Thus
M'"+M", the pion bremsstrahlung graphs, can also
be safe]y neglected. We should remark that Figs. 1(d)
and 1(e) must be included for the particular case of
identical particles such as p+ p-+ p+ W. However, for
the reaction A+8 -+ A+W and AWB, 8 is uniquely
associated with 8' and only the 6rst three diagrams of
Fig. 1 need be considered.

There are other pole graphs as required by the Pauli
principle, but these are all small. The exchange graph
to Fig. 1(a) would be the "isobar" graph, already
considered in Ref. 4, and other graphs would require a
large momentum transfer at the "diftraction" bubble,
and so would be outside the diffraction region and small.

%e therefore conclude that at high energies and
forward angles the only important pole graph is that of
Fig. 1(a), the DH diagram (or, equivalently, the
Lorentz-transformed graph, a fast incident proton
producing a fast forward W). From the point of view
of dispersion relations, we may look at these various
diagrams as the pole terms in the various channels of
the IIve-point function N+fq —+ Z+X+Ir. To a fIrst
approximation, the unknown contributions of the cuts
can be included as form factors. These would have two
effects. The very strong calcellations between graphs
would no longer occur, since we would have (~ II~/2»)
X[F"((p'+k')') —F"((p—II')')] appearmg In M"
+Sf",and even if P'~= 8", the arguments are diferent.
Secondly, as in the case of M' itself, form factors can
have an angular dependence that breaks the selection
rule j=-', .However, we would still expect that Fig. 1(a)
would be the dominant diagram and j= 2 the dominant

' See sl»o I„S&odol»ky (Ref. 6).

k» P

P

spin, at large energies and. small angles, for "reasonable"
form factors.

Independently of the cancellations between diferent
graphs, we observe as a general feature of Figs. 1(a)—
1(c) the cancellation in dependence on the off-shell
mass between the denominator of the propagator and
the kinematic factor arising from the diGraction
scattering.

The pion of Sec. 2 is replaced with a p, so that the
diagrams corresponding to Figs. 1(a)—1(c) are replaced
with Figs. 2(a)—2(c). The corresponding (d) and (e)
graphs are not examined because they are not expected
to be important for reasons mentioned in Sec. 2.

Tile pe% collpllIlg will be taken to be II11111111al (110
Pauli terms), so that the 7» of Kqs. (1)—(3) is replaced
with y e, where c„ is the polarization 4-vector of the p.
By direct analogy with the procedure in Sec. 2, we
obtain

1/2 2m'
M"= 2ig, ~"'(t) u(q')N(q)

2m 2m —kf

—
I&I

0 pp Gp+ JfUi P ' 6S
26

M»'+M"

I/2 2&2
= »g.."'(&) u(q')I(q)

2m 2es2 —-t

(o I/2
,
—lal.~~(P')l(u) 2» (P—P') (5)

& 2m 26

The cancellation that occurred in the previous case is
not a general feature. If one attempts to treat the
production of particles with spin&0 in. the QDM, the
DH diagram is not the only important one. One must
consistently include the other pole terms as well, as
pointed out by Ross and Yam. 6

We can learn one more thing from Eqs. (4) and (5).
In making a partial-wave analysis, it is convenient to
take the direction of P~ as the polar axis. Then N(p')
will transform as SII» except for parity doubling (since
the relevant polar angle is linearly related to p p'). In
the case of the m, that is all there was, so that we
obtained j= ~z, or only sII and pII waves were a]]owed,

(b)

FIG. 2. Gl»Lphs for p+ p —+ p+E+ p, corresponding to those
in Fig. j..



L. RESNr CK

Now, however, y e and c (p—p') will transform as
mixtures of $0 and S', so that, in addition to j=—', we
shall have contributions to j=2. An equivalent way
of seeing this is to make a hebcity decomposition, for
example. Because of the e, the projection onto angular
momentum j of the 8' system will be

«&L~»+~(s)+P'+~(s)+VI'. «(s)+&» ~(s)j,

where H is a scalar invariant in the decomposition of the
general amplitude into sealarsgspinors: tensors having
thc col'lect transfoHIlatlon pl'opcltlcs. But lll thc QDM
at 8=0, H to 6rst approximation is independent of s
(H is essentially 2~ II~/e). Therefore only j=-,' and -',

waves survive. {In Ref. 4, the terms in CI and 5 were

missing for the pion case, so that only j=-', survived. )
These results indicate an obvious generalization,

which w111 now bc discussed.

(~)~—

(s)vy

FIG. 3. Diagram for 8+8
-+ 3'+C+D.

of the coupling of the three spins. This leads imrned-

iately to the selection rules. [In the following, "minimal

coupling ls assumed. FOI' thl cc splnlcss scalar paI'tlelcs

this is equivalent to a basic interaction of the form
&I I%2%'3. Extla dcl'lvatlvcs sllcll as G (8"+I) (8p@2)qf3

are equivalent to invariant scalar functions of the
momenta in momentum space, and may conveniently
be absorbed into the form factors. ]

%C consider 6rst the case where all the s; are integers

(only bosons occur). The wave function for a particle
of spin s can conveniently be described by an s-rank

symmetric, traceless, divergenceless tensor 0„,...„,':
&—&Tr@/I ~ ~ op)1lopploJgs x pI ~ ~ op'ot ~ Iss ~ 41jgs p

We want now to consider the reaction 2+8 -+ A'+C
+D where the C+D (or W) system is produced quasi-

diffractively. This may be in a reaction where A is a
stationary target suGering a smaQ recoil, while the fast
incident particle 8 produces the fast C+D system at
forward angles. Alternatively, 8 may be at rest, C+D
emerges with relatively low momentum, while the
momentum transfer between the scattered A (=A')
and the incident A is very small. For convenience we

shall retain the second picture.
The relevant diagram is Fig. 3. In Fig. 4, the lower

part of Fig. 3 is expanded in the three pole contributions.

Sy the requirement that the virtual di6raetion scatter-
ing be clastic, the diGraction bubble may connect only
lines corresponding to the same particle. The propaga-
tors are therdore [(pl—p2)' —p32+I, [(pl—pa)' —pp]-I,
and [(p2+p3)' —pin+I, except for possible factors in the
numerators arising froin spin. Using momentum con-

servation, the propagator denominators are, respec-
tively (pa+q —q) pa (p2+q q) p ~d (pl+q
—q')' —pp. At 0=0, and with f= (q' —q)'=0, they are

ve~ nearly p, q'( —2e/(q(), p, q'( —2e/(II)), and

Pl q(2e/~II~). These are precisely the correct factors
to cancel the factors pa q' p, q' and pl q arising from
the di6raction scattering in the upper part of each
diagram. Therefore, except for the explicit contributions
from the spins, and from form- factors, there is no
dependence on s, where s is the cosine of the angle
between p2~ (=—pII~) and pl~ in the C+D c.m.
frame. Wc ean put this anothcl way. If we lgnolc form

factors, then Fig. 4 represents the coupling of a scalar
"particle" (the diffraction bubble) and three particles

3, C, and D having spins s~, s2, and se such that there
is no angular dependence coming from the dynamics.
The only angu/ar dependence comes from the kinematics

Each index transforms Hke a vector, so that the spatial
part transforms under X)' and the largest representation
of the rotation group contained in 4' is I)'. (4' trans-
forms precisely Eke S' only in its own rest frame. The
Lorentz frame required for the projection of the partial
wave is the lF frame, the c.m. frame of C+D, and this

is generally not the rest frame of any of 8, C, or D
individually. ) Because the Pomeranchon has momen-

tum q
—q'=p, +pII —pl by momentum conservation,

only pl, p2, and. p3 need be considered. Consider index
1 of 4'", say. (PII)»%' " =0, while (P2)»+ "
=8'4'0'». ~, using the subsidiary condition and y~~
= —ps~. This transforms 1ilM n'. (pl)»%'„88 will

transform as a mixture of S' and X)', since yl ~ is 6xed as
polar axis. Therefore the highest representation is L)",
contained in (pl)». (pl)& e ". Similarly the
hjghcst representation from Q&s js @82 and from ip I js
X)". In the last case, this comes from coupling with
either p2 or pa, and from the rotation properties of the

spatial parts of these momenta rather than the + "
which have no dependence on p2~. The amplitude for
Fig. 4 is trilinear in%"I 4' t'2 and% ~'» so that the highest
representation that can occur ls contained ln X)'j L)'~

L)'» that is Q'&+'&+'». This leads immediately to
j&sl+sm+ss, where j is the total angular momentum

FIG. 4. Expansion of the lower part of Fig. 3.
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in the W frame, i.e., is the total "spin" of the C+D
"system. "The minimum j is zero because, in general,
the inner products will also contain scalar parts. We
thus conclude 0&j&st+ss+ss.

If two of the three particles are fermions, the result
is nearly the same. A spin-s fermion wave function
0 ' can be written'

+„,...„i,l'(P, X)= Q C(Lsf-,'s; XI) sX)

X'F. -'l.l 'i(p, ) I)+"s(p,4),
where C is the appropriate Clebsch-Gordan coeScient
and O'I' is a spin-s wave function. [s)=s—

s is the
greatest integer contained in s. Then the two spin-~
wave functions in the trilinear product 4'%'%'~ must
combine in the usual invariant way 4"s@"s.This will

at most give a parity doubling but wiO not affect the
maximum j allowable (see, e.g., Sec. 2). The remaining
part of the argument proceeds as in the boson case,
except that s is replaced with Lsj. The boson and
fermion case can be included together in the rule

o&L~j&L j+L"3+l:"j.

S. PAMTY SELECTION RULE

We wish now to discuss the possibility of a selection
rule in parity. The connection between the model
discussed here and the di6raction production of res-
onances discussed in Ref. 2 is illustrated in Fig. 5.
Figure 5(a) represents the diffraction production of a
resonance of mass 8' in the forward direction, from an
incident particle of mass rll. Figure 5(b) represents the
model discussed here, where the two constituent
particles (momenta ps and ps) are diffractivcly pro-
duced, and rescatter resonantly (at energy W). This
latter picture is also discussed by Morrison. "

We make no attempt to include such 6nal-state
interactions. What is assumed is that if a dynamical
resonance at mass 8' exists in a given state, and if this
(two-pal'tlclc) state call be produced via Flg. 3, tllcll
the resonance is produced as in Fig. 5(b). What has
not been proved is that the spin selection rule that
follows from Fig. 3, where ps and ps are free lines, also
holds in Fig. 5(b), where ps and ps are in principle
virtual lines. Stated another way, the proposed spin
selection rule for the resonance 8" requires also that the
lines ps and ps in Fig. 5 (b) may be treated as essentially
on the mass shell.

Since Fig. 5(b) is a more detailed model of the
general process in Fig. 5(a), it is not surprising that it
contains more information (in the way of a spin selection
rule). However, we have seen that, in general, for a
given spin j of 8', 8" can have either parity. This is at
variance with the existence of a parity selection rule.

Let us 6rst consider the case where pi is spinless.

' P. Carruthers, Phys. Rev, 152, 1345 (1966).

(m).p

(a)

FIO. 5. Diffraction production. (a) Model discuss« in R«2; (h)
model discussed in this paper and in Refs. 3 and 6.

Thell ill Fig. 4, thc parity of 'tile 1I11'tlRl s'tate 18 rII( I)~,
wliel'6 I)I 18 thc intrinsic parity of 8 and j 18 tile total
angular momentum, Sy parity and angular momentum
conservation, the parity of the final state C+D is also

I)I(—I)&, where j is the "spin" of the C+D system (or
resonance W). But this means that the parity of the
produced resonance TV is uniquely determined, by its
spin j and. by qj, and. is in complete agreement with the
result of Goldhaber and Goldhaber. There is parity
selection when the incident particle is spinless.

Now let Pl have spin st&0. Then in Fig. 4, the initial
state is not completely determined by j. For each j,
there will in general be 2sl+I values of I possible

(I=l+si), and the parity will be III(—I)', which can
have both signs. For a given allowed spin j and either
parity of the produced resonance W', the transition is
allowed by the appropriate choice of I (even or odd).
This freedom is always possible whenever s~&0, and.

we condude that there is no parity selection when the
incident particle has nonzero spin. This is for the
speci6c model of Fig. 5(b).

This latter result can also be illustrated by a simple
example, within the general framework of Fig. 5(a).
Suppose that pi and W each have spin -,'and there are
no other spins. Let the momentum of 8"be K. Then the
general amplitude for Fig. 5(a) is HI@(K)N(pi) for
equal intrinsic Parities and Hsl(E)ysg(PI) for oPPosite
paritics. The H s are scalar invariants. The point is
th«sI(lt)ysN(pi) vanishes «r KIIIII only if Xs(=W')
=pls(=rise). In the inelastic case under discussion,
even at exactly 8=0' neither NN nor Ny5N is zero, ' and
both parities are allowed. Of course, Qysl/IN ~0 as
lV' —+ m', so that parity selection in this case is approx-
imately recovered if 8' is close to m. For 8"=1.40 GeV
and m=0.94 GeV,

II(E')ysg(pi) Ex W~"'—
=0.20

M(K)N(pt) Zx+W&

at 20 GCV/o incoming momentum.
Vfc conclude that parity selection at 0' is rigorous in

both the general picture LFig. 5(a)j and this particular
model LFig. 5(b)g in the case of a spinless incident
particle. For an incident particle with spin) 0, Fig. 5(b)
leads to no parity selection e priori; both parities are
allowed. Figure 5(a) may lead to a weaker parity
selection rule, the approximation depending on the
masses) energies) alld spills involved,



6. DISCUSSION

It is worthwhile to repeat again the approximate
validity of the spin selection rule. First, it arises in a
de6nite model of how the "resonance" is produced.
Second, lt hoM. s llgolously only at 0 scattering angle
and for the pole terms. H the scattering angle is small
but not zero or if form factors (to account for continuum
coll t11bu tloIls Rnd no111111111Inal couplltlg) Rl'c 111cllldcd,

the rule is more or less approximately valid. And of
course the rule arises within the approximations made
in the QDM itself (Rc3fs=0, a =constant in energy,
etc.).

This being said, the rule should still be reliable and
useful within its range of validity. The cancelling out
of any "dynamic" dependence on s was seen to be a
general feature of a graph like Fig. 3, not just of a
particular component pole graph. This fact depended
on the diffraction bubble (Pomeranchon) connecting

only similar lines, corresponding to elastic (though
virtual) diffraction scattering. Now, at ftrst glance this

restriction may seem unwarranted. After all, wc- are
dealing with a Inodel for quasidiGraction scattering,
so that (consistently) inelastic dilfraction scattering
should be allowed in' the virtual process as well. The
justification for ignoring it is simply that experimentally
the quasidiffraction cross section is small [of the order
of 5% of the elastic in the reaction p+p-+ p+Jt7'*

(1400)j,"so that we are consistently neglecting correc-
tions of higher order. If a resonance of spin j has
several two-body decay modes i with spins sa' and s2',

the spin selection rule would generalize to read: The
lesonancc can be produced quasidiGractively only lf its
sp111 sRtlsics 0([j](max~([stj+[ss j+[ss j). Tllc
QDM makes no statement about genuine three-body

l csonallccs.
We now brieQy discuss a few examples of the selection

rules, using also the requirement that the produced
resonance have the same baryon number, strangeness,
isospin, and G parity (where applicable) as the assumed

incident particle. This requirement is of course implicit
in the model.

In p-p collisions, the spin selection rule allows the
quasidiffractive production of the p11 1400-MeV Iris'

resonance, but forbids (or suppresses) the dts(1525) 's'

dts(1670), and fts(1688) resonances. The production
of the srt(1570) and sII(1700) is allowed, there being
no parity selection. But the masses here are already
higher than the region of "kinematic" peaking that
occurs in the DH model and the resonant amplitudes

themselves may not be too large. For these reasons, as

'0 E. W. Anderson et al. , Phys. Rev. Letters 16, 855 (1966).
'0' IiootrIote added m proof. Since the d18(1525) also decays to

4(1236)+7i., this branching mode would allow j=$+ as well as
j=~+. So the di8ractive production of the d13 can "go" via the
d, +~ mode. I am indebted to Dr. R. F. Peierls, Dr. T.L.Trueman,
and Dr. A, H. Mueller for raising the questions discussed in
gefs. gq, hand fog, .

already remarked by Morrison"'~ these resonances

may be dBBcult to observe. Therefore the fact that on

the basis of present data these resonances do not

appear to be difI'ractively produced is not a serious

objection to the model. There is an enhancement in

the ps.+s mass near 1500 MeV in 28-GCV p-p colli-

sions."This seems to be a candidate for the diBractive
dissociation of p —+6++Ir . The spin selection rule

allows the angular momentum of the 6++sr state to be
ol &, so that the allowed quantum numbers arc

2'and 2+
In Ir collls1011S, to t11c cxtcIlt tllat tllc AI(1080) 1s R

xp resonance that is produced di6ractively, the spin

selection rule requires the spin of the A& to be 0 or 1.
Since lt ls produced flon1 a spnllcss pion parity selection

is valid, and the QDM allows 0 or 1+. On the other

hand, the As(1300), having an assigned j"=2+ and

decaying prtmarlly 1Ilto pIr, KE, Rlld 'gIr, 1S forbtddcn by
both spin and parity selection rules to be produced
di6'r actively.

In E collisions, the K+m situation is compbcated.
There is an enhancement in the K*(890)Ir system

around 1300 MeV (Q meson) and there seems to be

evidence for the relevance of the diBraction picture. ' "
The Q is found to be predominantly 1+, while the

selection rules require 0 or 1+. For an I. meso~ neal'

1700 MeV decaying primarily to K*(1400)Ir, the spin

and parity rules require 0, 1+, or 2 [assuming a 2+

K*(1400)j. Experimentally, 2 seems to be favored, ts

although the situation is not yet clear. On the other

hand, the K*(1400) which decays primarily to KIr,
K*(890)s., Kp, Ka&, and Kq is forbidden to be produced

diBractively by both the spin and parity rules. A

mass enhancement near 2240 MCV in the XX system

has been reported" and, because of the highly peripheral

nature of the events, considered as a possible candidate

for a diGractively produced boson resonance. In this

case the selection rules from the QDM give the unique

assignment 0 for the K*(2240).
As already mentioned, whether an aBowed resonance

is actually seen to be produced quasidifI'ractively

depends also on the size of the resonant amplitude, and

whether the resonant mass is within the kinematically

important region of the diRraction model. This involves

a more detailed calculation in the individual ca.se. The

dependence of Fig. 3 on W'= (ps+ps)' is nearly' as

(p, s'/W)e 'E(W). The first factor is just phase space;
it is 0 at threshold (W=ms+sÃ3) and approaches —.

' Rs

"Reference 3; see also D. C. Colley, in Ref. 12, Vol. I, p. 84."Proceedirlgs of the Topical Cfererice on Hi gh-Erlergy CoNisioes

of Hadrons (CERN, Geneva, 1968)."F. Turkot, in Ref. 12, Vol. I, p, 324.
'~ F. Bomse sf sL, Phys. Rev. Letters 2ll, 1519 (1968l; J. C.

Park et al. , i''. 20, 171 (1968). See also D. C. Colley, in Ref. 32,
Vol. I, p. 72; J. C. Berlinghieri et al. , in Ref. 12, Vol. D, p. 172;
Phys. Rev. Letters Is, 1087 (1967}.

"D.Denegrj. et al. , Phys. Rev. Letters 20, 1194 (1968).
I'Q. Alexgndgg et al., Phys. ggy. I.etters 20, 755 (1968).



W gets large (compared with the masses). E(W) is the
expllclt coI1'tl'lblltloI1 of t11e sp1Ils. Slllce e~(W —mt )/
2mt, the dependence, on W is as W 4 for large W (if
R=l). The result is a peaking at some intermediate
value. The peak may in principle be very sharp, and
near threshold ("Deck efFect"). For example, if mr=ms
=m (nucleon mass) and ms ——tt (pion mass), then e s

~ (W'—m')-', while threshold. is at W=m+tt, so that
there is a very sharp peak just above threshold. Hovr-
ever, this can be qualitatively modifIed by R(W),
which for —',+ —+-,'++0- behaves as (W' —m')'/Ws.
Thus the net behavior in this case is as (ps~/W)W ',
which displays a broad enhancement at W~1400 MeV

and is ~ 8' ' for large H/". Higher spins would result in

anE(W) involvinglargerpowersof W, sothat thepeaking
can not only be broadened and shifted, but even
eliminated. The particular case will depend on the spins
and masses involved.
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Continuous-moment sum rules are used for examining the validity of the pion-conspiracy hypothesis in
pion photoproduction. The trajectory and residue functions of the pion and conspirator trajectories are
estimated.

0 explain certain observed features of reactions in
which pion exchange is allowed, the hypothesis

of the existence of a conspirator trajectory with positive
parity and with other quantum numbers the same as
those of the pion has been made. ' In particular, this has
made possible an explanation of the forward peak in m+

photoproduction. 23 Rough estimates of the pion and
conspirator trajectory functions have been made by
di6erent authors, using 6nite-energy sum rules for
photoproduction. 4 Recently, alternative mechanisms'
have been proposed. for explaining the observed features
of pion photoproduction, and it is therefore desirable to
make a further check of the conspiracy hypothesis.

%e have recently used the continuous-moment sum
~ Research supported in part by the U. S. Atomic Energy Com-

mission (Report No. NYO-2262TA-190).
~ R. J. ¹ Phillips, Nucl. Phys. M, 394 (196"l); F. Arbab and

J. Dash, Phys. Rev. 163, 16M (1967).' A. M. Soyarski eI al. , Phys. Rev. Letters 20, 300 (1968).
l'S. Drell and J. Sullivan, Phys. Rev. Letters 19, 268 (1967);

S. C. Frautsda and L. Jones, Phy . Rev. 163, 1820 (19N); J. S.
Sall, W. Frazer, and M. Jacob, Phys. Rev. Letters 2Q, 518 (1968).

A. Sietti, P.
'

Di Vecchia, F. Drago, and M. L. Paciello, Phys.
Letters 26B, 457 (1968); B. P. Roy and S. Y. Chu, Phys. Rev.
171, 1762 (1968}.

~ D. Amati, G. Cohen-Tannoudji, R.Jengo, and Ph. Salin, Phys.
Letters 26B, 510 (1968); J. Frgyland and D. Gordon, MIT
Cambridge Report (to be published}.

rules' for determining the A~ trajectory and residue
functions in pion photoproduction. ~ As we have ob-
served in our earlier work, ~ these sum rules provide a
more reliable method of determining the Regge tra-
jectory parameters than the 6nite-energy sum rules;
and. in this paper we use them for examining the ques-
tion of pion conspiracy in pion photoproduction. Here
we use these sum rules, assuming pion conspiracy, to
obtain estimates for the trajectory and residue functions
of the pion and the conspirator. The nature of the
results thus obtained. enables us to examine the validity
of the pion-conspiracy hypothesis. Further, we examine
in detail how the results obtained. from the continuous-
moment sum rules depend on the value of the moment

parameter y; this gives an estimate of the reliability of
the results obtained using the available 6ts to the
photoproduction amplitudes.

AY. Liu and S. Okubo, Phys. Rev. Letters 19, 190 (1967);
A. Della Selva, L. Masperi, and R. Odorico, Nuovo Cimento 54A,
9i9 (1968).

~ K. V. Vasavada and K. Raman, Phys. Rev. Letters 21, 577
(1968).

I We have used the Gts to the multipole amplitudes obtained by
R. L. Walker et eL (to be published).


