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The diffraction model for inelastic scattering is shown to lead to an approximate selection rule on the
spin of a diffractively produced resonance. The model leads to parity selection only for a spinless incident
particle. Some examples are discussed briefly. For the reaction p+p— p+N-m, it is shown that the
nucleon pole graphs cancel in the forward direction, leaving only the pion pole graph as the dominant one.

1. INTRODUCTION

LASTIC diffraction scattering at high energy is
characterized by a forward differential cross
section independent of energy [do/di(s,i=0)=inde-
pendent of s] and displaying a very steep forward
peak. An inelastic process may be called quasidiffractive
if it can be considered a two-body reaction (one of the
final “bodies” may actually consist of several stable
particles) and if it displays a dependence on s and ¢
similar to that in elastic diffraction scattering.

Among the first to consider the concept of inelastic
diffraction scattering in high-energy physics were Good
and Walker.! On of the salient features of the analysis
is the cokerence of the produced inelastic system with
the incoming particle. This implies that the quantum
numbers of any resonance so produced must be un-
changed, e.g., isotopic spin, hypercharge, G parity if
applicable, etc. The mass is, of course, not the same,
but Good and Walker give a criterion for coherence
when AM?50.

In this paper we address ourselves to the question of
possible restrictions on the spin and parity of a diffrac-
tively produced resonance. It is not unnatural to expect
such restrictions in light of the simple coherence
arguments mentioned above, and we find that approx-
imate selection rules within a particular model do exist.
If a particle of spin s; produces diffractively in the
forward direction a two-particle resonance of spin 7,
then 0L [ 1< [s1]+[sz]+ss], where s, and s3 are the
spins of the decay products. Here [s]=s for a boson
and s—1 for a fermion.

Recently, Goldhaber and Goldhaber? and Morrison?
have proposed selection rules on the parity of a diffrac-
tively produced resonance. These relate the change in
parity to the change in spin. We shall discuss the
relationship between those selection rules and the
ones presented here.

The present work is a direct generalization of an
earlier papert on an application of the Drell-Hiida
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(DH) model.5 There is now a fairly extensive literature®
on this model (or variations and applications of it).
For want of a better name, we shall refer to the model
as the quasidiffraction model (QDM). The notation
and conventions in the following are those of Ref. 4.

2. p+p— p+N+=

We consider in this and the next section two explicit
examples, because they serve to clarify some points.
The general case is considered in Sec. 4

The first example is the reaction p+4p-— p+W,
where W is an N system. This is the example studied
in Ref. 4, where it was concluded that the experimental
peak seen at a missing mass W=1.40 GeV/c? must be
at least partially attributed to dynamics in the =V
system, i.e., to final-state interactions. However, an
argument was made in favor of the DH process [Fig.
1(a)] as the production mechanism for this pi; res-
onance or dynamical enhancement, and the approx-
imate spin selection rule j=% was obtained. Parity
selection did not follow; s11 was also allowed. One of the
questions raised was the possible importance of nucleon

~~_

(b)

(d) (e)
Fic. 1. Graphs for p+4p— p+N -|-1r (a) Drell-Hiida process;
(b)-(e) nucleon pole graphs.
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pole graphs [Fig. 6 of Ref. 4 and Figs. 1(b)-1(e) here].
We resolve this problem now.

For convenience, we rewrite the invariant amplitude
for Fig. 1(a) as follows:

o ppll? 2mE \ V2

o= s () |
2m 2m2—3i

X(reiGaama) )
(p—p')—w?

This is an approximation for |¢| very small and |q]
very large.

Though it is not essential to the argument, we have
written o.y=0r-"2cnx"2, where o are the total asymp-
totic cross sections. In Ref. 4 the factor [2m?/(2m?
—1§) ]2 does not appear, since 3/ was already dropped
compared with 2m?. We reinsert it here for reasons
apparent below. The factor arises as follows. The
amplitude for the virtual elastic diffraction scattering
may be written as Mg*=d(q)u(g)A(s,f). We can
evaluate 3 3| M4%|? as before to obtain (4ms'/%/m)*
X gan (t) (kornt°t/4m)2. We can also evaluate it directly
to obtain |A4|2(2m*—3%1)/2m?. Equating the two
expressions gives |4| or A=i|A| [Red(st=0) is
neglected]. Also, kv/s=[(¢ -k’ 2—m*u*]?~¢'-k’. The
result is Eq. (1). Note that ¢'-%’ is the inner product
of the two physical momenta in the virtual diffraction
scattering (in this case the final lines). This follows from
the ansatz of the model, that the elastic diffraction
scattering is to be taken from experiment; off-shell
effects are relegated to possible form factors, which
have been neglected in writing Eq. (1).

We are now ready to write expressions for the nucleon
pole graphs in the same approximation. For Fig. 1 (b),
the virtual diffraction scattering is that of pp— pp.
Since the diffraction bubble is to be treated as a scalar
“particle” coupling to the nucleon lines (in Regge lan-
guage, the Pomeranchon has the quantum numbers of
the vacuum),®® we make the ansatz that

'3 kl

Mre=u(q)u(gQ)a(p")vsGy (»)B

—u
(p'+ 1) m?

and B is to be evaluated similarly to the previous
diagram. If p'+k’ were on shell, we would write

68 Footnote added in proof. The Pomeranchon has, of course, a
spin given by a(f)=~~1 for #~0. So, strictly, a vector coupling
should be introduced, and terms like ¢-%’ and ¢’-#/, etc., would
then enter. It is easy to show, however, that all these are equiva-
lent to ¢’-#’ [say, in Fig. 1(a)], using the same approximations
as above. The coupling constants are then determined by de-
manding that the asymptotic elastic scattering fit experiment.
But this is precisely equivalent to the prescription actually used.
The vector nature of the Pomeranchon is therefore completely
accounted for by the factors ¢’-#, etc., that are explicitly ex-
hibited, and no further energy or angle dependence can come
from the Pomeranchon exchange. So the diffraction bubble (or
Pomeranchon) must be treated as a scalar in subsequent analysis.
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M v=i(g u(@)a(p u(p/+#)B, and now
| B2 (2m2—31)?

4m?
4m+/51\* 10 pptt\ 2
= {3 .
(o) 0 55)

This allows us to evaluate B=~i|B|. Here s;= (¢+)*
and &, is the corresponding c.m. momentum, so that
kEiv/si=~q-p. We note that this is what we should
expect—it is the inner product of the two physical
lines of the diffracting system (in this case the initial
lines of the pp scattering system) that is the relevant
quantity. In M'®, we may also use the Dirac equation
to set % (p')ys(p'+m)=0. Ml is very similar, except
that the physical lines are now ¢’ and p’, and ¢'-p’
replaces ¢- p. By taking o.ptot= 0"t and gap(?) = gpp(0),
we may ignore isospin (the final W system may be
pn° or nat) and write for the sum of Figs. 1 (b) and 1 (c)

EE (M2

ooyl 2m*
Mo Mie= (Zig,,,}/?(t)—-——’d (q"u (q)r-)

y 4
2m m2— %1
o 1/2
»p _
x[——cru@')wk'u(p)
2m

x( q-p } qg'-p )] @
(p'+E)2=m?  (p—Fk')*—m?

In an exactly analogous way,

2

o 1/2 2m2
Ml Mle= (Zig,,pm(A?)—f-L’lZ(P')u(P)——"—
2m 2m2—3A?

T 1/2
pp _
x[——cru@'mwu(q)

2m

X(<q'+2;>i_mzl' (q_i)q_m)] )

(We can regard the above expressions as effectively
giving the rules for diagrams that include a virtual
diffraction scattering, or the exchange of an ‘“‘inelastic

Pomeranchon.” 82:7)
In Ref. 4, it was shown that, at =0,

E-g[w—(p—p' )T~ |d'|/2¢, e=E,—E,.
This implied that at §=0, M@ can contribute only to
j=4%, that is, s11 and py; partial waves in the W system

if no form factors are introduced. With the presence of
a form factor, this selection rule is weakened but is

7 These are in essence the same rules and prescription given in
the last two papers in Ref. 6. However, Ross and Yam do not
explicitly consider off-shell fermions. West ¢¢ al. do consider nu-
cleon poles, but introduce an extra positive-energy projection
operator. Their diagrams therefore cancel only in the static limit,
while in the present prescription they cancel to all orders of p*/m,
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still approximately true.® (In the numerical calculation,
a suppression in the cross section of several orders of
magnitude with F=1 becomes a suppression of a
factor =10 with “‘reasonable” F.)

We now observe that (p'+k')2—m?= (p+q—q')?—m?
={+2p- (¢—¢') and again, at §=0, {=0 and 2p- (¢—¢')
~2p-ge/lq|, so that g¢-p/[(p'+k)—m*]~|q|/2e

Likewise,

(p—Fk'2—m>= (p'+q' —q)*—m?
=1—2p"-(g—¢)=—2p"+qe/|q| = —=2p"-¢'¢/| q]

at =0, so that ¢-p'/[(p—Fk')2—m¥]~—|q|2e. We
therefore find that though M and M*¢ are individually
as large as M@ (on doing the numerical calculations,
they are seen to be even larger), nevertheless they cancel
exactly in the leading approximation. M'® and M'¢ can
contribute only in the higher order that has already
been neglected in evaluating M?e,

For M'é+ M, the cancellation is not exact, but the
sum is about 159, of the individual terms. This is for
forward scattering at 20 GeV/c. However, in calculating
the cross section, isotopic spin and the angular integra-
tion come in in such a way as to give a further suppres-
sion of these graphs by about a factor of 10. Thus
M4 M'e, the pion bremsstrahlung graphs, can also
be safely neglected. We should remark that Figs. 1(d)
and 1(e) must be included for the particular case of
identical particles such as p+p — p+W. However, for
the reaction A+B — A+W and 4B, B is uniquely
associated with W and only the first three diagrams of
Fig. 1 need be considered.

There are other pole graphs as required by the Pauli
principle, but these are all small. The exchange graph
to Fig. 1(a) would be the ‘“‘isobar” graph, already
considered in Ref. 4, and other graphs would require a
large momentum transfer at the ‘‘diffraction” bubble,
and so would be outside the diffraction region and small.

We therefore conclude that at high energies and
forward angles the only important pole graph is that of
Fig. 1(a), the DH diagram (or, equivalently, the
Lorentz-transformed graph, a fast incident proton
producing a fast forward W). From the point of view
of dispersion relations, we may look at these various
diagrams as the pole terms in the various channels of
the five-point function N+4+N — N4+N-+=x. To a first
approximation, the unknown contributions of the cuts
can be included as form factors. These would have two
effects. The very strong calcellations between graphs
would no longer occur, since we would have (|q|/2¢)
XLE((p'+k'))—F'((p—F')*)] appearing in M*
+M*¢, and even if F'®=Flc  the arguments are different.
Secondly, as in the case of M itself, form factors can
have an angular dependence that breaks the selection
rule j=%. However, we would still expect that Fig. 1(a)
would be the dominant diagram and j=% the dominant

8 See alsp L. Stodolsky (Ref. 6).
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F1c. 2. Graphs for p+p—->p+N+p, corresponding to those
in Fig. 1

spin, at large energies and small angles, for ‘‘reasonable”
form factors.

Independently of the cancellations between different
graphs, we observe as a general feature of Figs. 1(a)-
1(c) the cancellation in dependence on the off-shell
mass between the denominator of the propagator and
the kinematic factor arising from the diffraction
scattering.

3. p+p— p+N+o

The pion of Sec. 2 is replaced with a p, so that the
diagrams corresponding to Figs. 1(a)-1(c) are replaced
with Figs. 2(a)-2(c). The corresponding (d) and (e)
graphs are not examined because they are not expected
to be important for reasons mentioned in Sec. 2.

The pNN coupling will be taken to be minimal (no
Pauli terms), so that the v;5 of Egs. (1)-(3) is replaced
with ¢, where ¢, is the polarization 4-vector of the p.
By direct analogy with the procedure in Sec. 2, we
obtain

o.ppllz 2m2 1/2
M2a=[Zigm“(t)——«z(q')u(q)( ) ]
2m 2m2—1¢

X (a,,,,WGpm Py e(p) “21:” ) . @
M
=[2z‘gm1/2<t>f—“’—uiz<q'>u<q>( 2’"1)]
2m 2m2—1t
x(“;’: Gowia(p)u(p)2e- _'q') (5)

The cancellation that occurred in the previous case is
not a general feature. If one attempts to treat the
production of particles with spin>0 in the QDM, the
DH diagram is not the only important one. One must
consistently include the other pole terms as well, as
pointed out by Ross and Yam.8

We can learn one more thing from Eqs (4) and (5).
In making a partial-wave analysis, it is convenient to
take the direction of p% as the polar axis. Then %(p’)
will transform as D2 except for parity doubling (since
the relevant polar angle is linearly related to p-p’). In
the case of the , that is all there was, so that we
obtained j=4%, or only s1; and py; waves were allowed,
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Now, however, y-e and e (p—p’) will transform as
mixtures of D° and D, so that, in addition to j=3%, we
shall have contributions to j=$%. An equivalent way
of seeing this is to make a helicity decomposition, for
example. Because of the ¢, the projection onto angular
momentum 7 of the W system will be

+1
/ dz H[aPjy3(2)+BPjr3(2)+vPi3(3)+8P;3(2) ],
-1

where H is a scalar invariant in the decomposition of the
general amplitude into scalarsXspinors: tensors having
the correct transformation properties. But in the QDM
at §=0, H to first approximation is independent of z
(H is essentially 2|q|/e). Therefore only j=% and §
waves survive. (In Ref. 4, the terms in ¢ and 6 were
missing for the pion case, so that only j=3% survived.)

These results indicate an obvious generalization,
which will now be discussed.

4. SPIN SELECTION RULE IN THE
GENERAL CASE

We want now to consider the reaction 4+B — A'4-C
-+ D where the C+D (or W) system is produced quasi-
diffractively. This may be in a reaction where 4 is a
stationary target suffering a small recoil, while the fast
incident particle B produces the fast C+D system at
forward angles. Alternatively, B may be at rest, C+D
emerges with relatively low momentum, while the
momentum transfer between the scattered 4 (=4')
and the incident 4 is very small. For convenience we
shall retain the second picture.

The relevant diagram is Fig. 3. In Fig. 4, the lower
part of Fig. 3 is expanded in the three pole contributions.
By the requirement that the virtual diffraction scatter-
ing be elastic, the diffraction bubble may connect only
lines corresponding to the same particle. The propaga-
tors are therefore [ (p1—p2)*—ps* 17, [(p1—ps)*—p" 17
and [(pa+ ps)*— p1217, except for possible factors in the
numerators arising from spin. Using momentum con-
servation, the propagator denominators are, respec-
tively, (ps+¢ —g)*—ps?, (po+q —g)*—ps, and (prtg
—¢')2—p2 At 6=0, and with = (¢'—¢)*~0, they are
very mearly po-g'(—2¢/lal), poq/(—2¢/|al), and
$1-9(2¢/|q|). These are precisely the correct factors
to cancel the factors ps-¢/, p2-¢’, and p;-q arising from
the diffraction scattering in the upper part of each
diagram. Therefore, except for the explicit contributions
from the spins, and from form factors, there is no
dependence on z, where z is the cosine of the angle
between p,7 (=—p;%) and p;% in the C+D cm.
frame. We can put this another way. If we ignore form
factors, then Fig. 4 represents the coupling of a scalar
“particle” (the diffraction bubble) and three particles
B, C, and D having spins s1, 2, and ss such that there
is no angular dependence coming from the dynamics.
The only angular dependence comes from the kinematics

L. RESNICK
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Fic. 3. Diagram for A+B
— A'+C+D.

(a")q'
(Mg (D)P3
(B)Pl E

(C)Pz

of the coupling of the three spins. This leads immed-
iately to the selection rules. [In the following, “minimal
coupling” is assumed. For three spinless scalar particles,
this is equivalent to a basic interaction of the form
GV ¥V, Extra derivatives such as G'(0*%1) (9,¥2)¥s
are equivalent to invariant scalar functions of the
momenta in momentum space, and may conveniently
be absorbed into the form factors.]

We consider first the case where all the s; are integers
(only bosons occur). The wave function for a particle
of spin s can conveniently be described by an s-rank
symmetric, traceless, divergenceless tensor ¥p,...,,%:

8 o 8
W eeeioreigoootse =T ppogeeesivenss’
1 f— 8
G 8= QT #= 0,

Each index transforms like a vector, so that the spatial
part transforms under D' and the largest representation
of the rotation group contained in ¥* is D°. (¥* trans-
forms precisely like D¢ only in its own rest frame. The
Lorentz frame required for the projection of the partial
wave is the W frame, the c.m. frame of C+D, and this
is generally not the rest frame of any of B, C, or D
individually.) Because the Pomeranchon has momen-
tum ¢—¢' =ps+ps—p1 by momentum conservation,
only p1, ps, and ps need be considered. Consider index
1 of W%, say. (ps)*¥, - --=0, while (ps)*1¥,,*---
=W¥s-- -, using the subsidiary condition and p."
=—p;”. This transforms like DO (py)“¥,, - -- will
transform as a mixture of ©°and DY, since p, 7 is fixed as
polar axis. Therefore the highest representation is ©%,
contained in (p1)#--- (pr)#¥,,.. % Similarly, the
highest representation from <2 is D2, and from ¥ is
De1, In the last case, this comes from coupling with
either p, or p3, and from the rotation properties of the
spatial parts of these momenta rather than the ¥, - - -
which have no dependence on p,". The amplitude for
Fig. 4 s trilinear in ¥y, W12 and Wi, so that the highest
representation that can occur is contained in D*Q H*
® D%, that is, Detertss, This leads immediately to
7<s1+s2+s3, where j is the total angular momentum

(D)s4,p4
(B)slwl
©) 8,,p,

F16. 4. Expansion of the lower part of Fig. 3.
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in the W frame, i.e., is the total “spin” of the C+D
“system.” The minimum 7 is zero because, in general,
the inner products will also contain scalar parts. We
thus conclude 0< j< s1+s9-+53. .

If two of the three particles are fermions, the result
is nearly the same. A spin-s fermion wave function
Ve can be written®

Wygeuta (PN = )Z)\: C([s1as; o))
1A2
X ‘I,Ml"'ll[d e (P))‘l)q,llz (Pa)‘2) ]

where C is the appropriate Clebsch-Gordan coefficient
and W2 is a spin-} wave function. [s]=s—1% is the
greatest integer contained in s. Then the two spin-}
wave functions in the trilinear product ¥*2¥*¥s1 must
combine in the usual invariant way ¥¥2¥V2, This will
at most give a parity doubling but will not affect the
maximum j allowable (see, e.g., Sec. 2). The remaining
part of the argument proceeds as in the boson case;
except that s is replaced with [s]. The boson and
fermion case can be included together in the rule

0<[71<[siH-Lso]+Lss].

5. PARITY SELECTION RULE

We wish now to discuss the possibility of a selection
rule in parity. The connection between the model
discussed here and the diffraction production of res-
onances discussed in Ref. 2 is illustrated in Fig. 5.
Figure 5(a) represents the diffraction production of a
resonance of mass I in the forward direction, from an
incident particle of mass m. Figure 5(b) represents the
model discussed here, where the two constituent
particles (momenta p, and p;) are diffractively pro-
duced, and rescatter resonantly (at energy W). This
latter picture is also discussed by Morrison.?

We make no attempt to include such final-state
interactions. What is assumed is that if a dynamical
resonance at mass IW exists in a given state, and if this
(two-particle) state can be produced via Fig. 3, then
the resonance is produced as in Fig. 5(b). What has
not been proved is that the spin selection rule that
follows from Fig. 3, where p, and p; are free lines, also
holds in Fig. 5(b), where p, and p; are in principle
virtual lines. Stated another way, the proposed spin
selection rule for the resonance W requires also that the
lines p, and p; in Fig. 5(b) may be treated as essentially
on the mass shell.

Since Fig. 5(b) is a more detailed model of the
general process in Fig. 5(a), it is not surprising that it
contains more information (in the way of a spin selection
rule). However, we have seen that, in general, for a
given spin 7 of W, W can have either parity. This is at
variance with the existence of a parity selection rule.

Let us first consider the case where p; is spinless.

9 P. Carruthers, Phys. Rev. 152, 1345 (1966).
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Fic. 5. Diffraction production. (a) Model discussed in Ref. 2; (b)
model discussed in this paper and in Refs. 3 and 6.

Then in Fig. 4, the parity of the initial state is n1(—1)/,
where 7, is the intrinsic parity of B and j is the total
angular momentum, By parity and angular momentum
conservation, the parity of the final state C-+D is also
n1(—1)7, where 7 is the “spin” of the C+D system (or
resonance W). But this means that the parity of the
produced resonance W is uniquely determined by its
spin j and by 71, and is in complete agreement with the
result of Goldhaber and Goldhaber. There is parity
selection when the incident particle is spinless.

Now let p; have spin 5:>0. Then in Fig. 4, the initial
state is not completely determined by j. For each j,
there will in general be 2s;+1 values of ! possible
(3=14s,), and the parity will be 7:(—1)!, which can
have both signs. For a given allowed spin j and either
parity of the produced resonance W, the transition is
allowed by the appropriate choice of ! (even or odd).
This freedom is always possible whenever s;>0, and
we conclude that there is no parity selection when the
incident particle has nonzero spin. This is for the
specific model of Fig. 5(b).

This latter result can also be illustrated by a simple
example, within the general framework of Fig. 5(a).
Suppose that p; and W each have spin § and there are
no other spins. Let the momentum of W be K. Then the
general amplitude for Fig. 5(a) is H@w(K)u(py) for
equal intrinsic parities and H#(K)ysu(p1) for opposite
parities. The H’s are scalar invariants. The point is
that %(K)ysu(p1) vanishes for K||p; only if K2(=W?)
=p2(=m?). In the inelastic case under discussion,
even at exactly §=0° neither #u nor d#ysu is zero,® and
both parities are allowed. Of course, d#ysu/@u— 0 as
W2 — m2, so that parity selection in this case is approx-
imately recovered if W is close to m. For W=1.40 GeV
and m=0.94 GeV,

W(K)ysu(pr)
a(K)u(p)

Ex—W\"2
=( ) =0.20
Ex+W

at 20 GeV/c¢ incoming momentum.

We conclude that parity selection at 0° is rigorous in
both the general picture [Fig. 5(a)] and this particular
model [Fig. 5(b)] in the case of a spinless incident
particle. For an incident particle with spin> 0, Fig. 5(b)
leads to no parity selection a priori; both parities are
allowed. Figure 5(a) may lead to a weaker parity
selection rule, the approximation depending on the
masses, energies, and spins involved.
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6. DISCUSSION

It is worthwhile to repeat again the approximate
validity of the spin selection rule. First, it arises in a
definite model of how the “resonance” is produced.
Second, it holds rigorously only at 0° scattering angle
and for the pole terms. If the scattering angle is small
but not zero or if form factors (to account for continuum
contributions and nonminimal coupling) are included,
the rule is more or less approximately valid. And of
course the rule arises within the approximations made
in the QDM itself (ReMs~0, s~ constant in energy,
etc.).

This being said, the rule should still be reliable and
useful within its range of validity. The cancelling out
of any “dynamic” dependence on z was seen to be a
general feature of a graph like Fig. 3, not just of a
particular component pole graph. This fact depended
on the diffraction bubble (Pomeranchon) connecting
only similar lines, corresponding to elastic (though
virtual) diffraction scattering. Now, at first glance this
restriction may seem unwarranted. After all, we are
dealing with a model for quasidiffraction scattering,
so that (consistently) inelastic diffraction scattering
should be allowed in' the virtual process as well. The
justification for ignoring it is simply that experimentally
the quasidiffraction cross section is small [of the order
of 5%, of the elastic in the reaction p+p— p+N*
(1400)7,1° so that we are consistently neglecting correc-
tions of higher order. If a resonance of spin j has
several two-body decay modes ¢ with spins s;' and sy,
the spin selection rule would generalize to read: The
resonance can be produced quasidifiractively only if its
spin satisfies 0<[j]<max;([s1]+[s:]4+[ss7]). The
QDM makes no statement about genuine three-body
resonances.

We now briefly discuss a few examples of the selection
rules, using also the requirement that the produced
resonance have the same baryon number, strangeness,
isospin, and G parity (where applicable) as the assumed
incident particle. This requirement is of course implicit
in the model.

In p-p collisions, the spin selection rule allows the
quasidiffractive production of the p11 1400-MeV 7N
resonance, but forbids (or suppresses) the di3(1525),1%
d15(1670), and f15(1688) resonances. The production
of the s1;(1570) and s1;(1700) is allowed, there being
no parity selection. But the masses here are already
higher than the region of ‘“kinematic” peaking that
occurs in the DH model and the resonant amplitudes
themselves may not be too large. For these reasons, as

10 E. W. Anderson ef al., Phys. Rev. Letters 16, 855 (1966).

8 Footnote added in proof. Since the di3(1525) also decays to
A(1236)+, this branching mode would allow j=3* as well as
j=3%%So the diffractive production of the di; can “‘go” via the
A+ mode. T am indebted to Dr. R. F. Peierls, Dr. T. L. Trueman,
and Dr. A. H. Mueller for raising the questions discussed in

Refs. 63 and 10a.
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already remarked by Morrison,"2 these resonances
may be difficult to observe. Therefore the fact that on
the basis of present data these resonances do not
appear to be diffractively produced is not a serious
objection to the model. There is an enhancement in
the prtr— mass near 1500 MeV in 28-GeV p-p colli-
sions.!8 This seems to be a candidate for the diffractive
dissociation of p—> A*tz—. The spin selection rule
allows the angular momentum of the A*+z~ state to be
1 or 3, so that the allowed quantum numbers are
1+ and £+,

In = collisions, to the extent that the 4,(1080) is a
wp resonance that is produced diffractively, the spin
selection rule requires the spin of the A, to be 0 or 1.
Since it is produced from a spinless pion, parity selection
is valid, and the QDM allows 0~ or 1*. On the other
hand, the 4,(1300), having an assigned j?=2*+ and
decaying primarily into pr, KK, and n, is forbidden by
both spin and parity selection rules to be produced
diffractively.

In K collisions, the Krr situation is complicated.
There is an enhancement in the K*(890)r system
around 1300 MeV (Q meson) and there seems to be
evidence for the relevance of the diffraction picture.!*!*
The Q is found to be predominantly 1+, while the
selection rules require 0~ or 1+. For an L meson near
1700 MeV decaying primarily to K*(1400)r, the spin
and parity rules require 0—, 1*, or 2~ [assuming a 2+
K*(1400)]. Experimentally, 2~ seems to be favored,"
although the situation is not yet clear. On the other
hand, the K*(1400) which decays primarily to K,
K*(890)w, Kp, Kw, and Kn is forbidden to be produced
diffractively by both the spin and parity rules. A
mass enhancement near 2240 MeV in the AN system
has been reported!® and, because of the highly peripheral
nature of the events, considered as a possible candidate
for a diffractively produced boson resonance. In this
case the selection rules from the QDM give the unique
assignment 0~ for the K*(2240).

As already mentioned, whether an allowed resonance
is actually seen to be produced quasidiffractively
depends also on the size of the resonant amplitude, and
whether the resonant mass is within the kinematically
important region of the diffraction model. This involves
a more detailed calculation in the individual case. The
dependence of Fig. 3 on W?=(p,+ps)* is nearly® as
(po"/W)e2R(W). The first factor is just phase space;
it is 0 at threshold (W =may+ms) and approaches 3 as

11 Reference 3; see also D. C. Colley, in Ref. 12, Vol. I, p. 84.

12 Proceedings of the Topical Conference on High-Energy Collisions
of Hadrons (CERN, Geneva, 1968).

13 F. Turkot, in Ref. 12, Vol. I, p. 324.

14 F. Bomse et al., Phys. Rev. Letters 20, 1519 (1968); J. C.
Park et al., ibid. 20, 171 (1968). See also D. C. Colley, in Ref. 12,
Vol. I, p. 72; J. C. Berlinghieri ef al., in Ref. 12, Vol. IT, p. 172;
Phys. Rev. Letters 18, 1087 (1967).

15 D. Denegri ef al., Phys. Rev. Letters 20, 1194 (1968).

16 G, Alexander ¢ al., Phys. Rev. Letters 20, 755 (1968).
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W gets large (compared with the masses). R(W) is the
explicit contribution of the spins. Since ex<(W2—m;2)/
2my, the dependence, on W is as W—* for large W (if
R=1). The result is a peaking at some intermediate
value. The peak may in principle be very sharp, and
near threshold (“Deck effect””). For example, if m1=m,
=m (nucleon mass) and mz=pu (pion mass), then 2
o« (W2—m?)~2, while threshold is at W=m-u, so that
there is a very sharp peak just above threshold. How-
ever, this can be qualitatively modified by R(W),
which for 3*— }*+0~ behaves as (W2—m2)/ W2
Thus the net behavior in this case is as (p.¥/W)W-2,
which displays a broad enhancement at W=~1400 MeV
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and is o W-2 for large W. Higher spins would result in
an R(W)involving larger powers of W, so that the peaking
can not only be broadened and shifted, but even
eliminated. The particular case will depend on the spins
and masses involved.
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Continuous-moment sum rules are used for examining the validity of the pion-conspiracy hypothesis in
pion photoproduction. The trajectory and residue functions of the pion and conspirator trajectories are

estimated.

O explain certain observed features of reactions in
which pion exchange is allowed, the hypothesis
of the existence of a conspirator trajectory with positive
parity and with other quantum numbers the same as
those of the pion has been made.! In particular, this has
made possible an explanation of the forward peak in 7+
photoproduction.?® Rough estimates of the pion and
conspirator trajectory functions have been made by
different- authors, using finite-energy sum rules for
photoproduction.* Recently, alternative mechanisms®
have been proposed for explaining the observed features
of pion photoproduction, and it is therefore desirable to
make a further check of the conspiracy hypothesis.
We have recently used the continuous-moment sum
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rules® for determining the A, trajectory and residue
functions in pion photoproduction.” As we have ob-
served in our earlier work,? these sum rules provide a
more reliable method of determining the Regge tra-
jectory parameters than the finite-energy sum rules;
and in this paper we use them for examining the ques-
tion of pion conspiracy in pion photoproduction. Here
we use these sum rules, assuming pion conspiracy, to
obtain estimates for the trajectory and residue functions
of the pion and the conspirator. The nature of the
results thus obtained enables us to examine the validity
of the pion-conspiracy hypothesis. Further, we examine
in detail how the results obtained from the continuous-
moment sum rules depend on the value of the moment
parameter v; this gives an estimate of the reliability of
the results obtained using the available fits to the
photoproduction amplitudes.?

8Y. Liu and S. Okubo, Phys. Rev. Letters 19, 190 (1967);
A. Della Selva, L. Masperi, and R. Odorico, Nuovo Cimento 544,
979 (1968).
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