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Arguments are given why the nonleptonic weak interaction should, in a quark model with neutral-vector-
boson strong interaction, be calculable in terms of low-energy contributions, which can be estimated from
the knowledge of semileptonic processes. Fair agreement with experiments seems to support this possibility.
The suggestion is also made that this model could be very helpful in understanding many properties of
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electromagnetic and weak interactions.

1. INTRODUCTION

HE universal current-current Hamiltonian for the

. weak interactions! has been extremely useful in

explaining leptonic and semileptonic processes. An

equally satisfactory understanding of the nonleptonic

decays in this framework, however, has not yet been
achieved.

Interesting results? have, on the other hand, been
obtained by introducing a few low-lying intermediate
states between the currents, in the current-current
Hamiltonian, and using the information available from
semileptonic processes. The picture that emerges from
such a “saturation’’ scheme is, as we will review, con-
sistent with experiments. This success is quite surpris-
ing. In fact, even if the current-current form is basically
“correct,” the local product of currents may be too
singular to allow meaningful tests via a crude “satura-
tion” approximation. Our experience with the calcula-
tion of electromagnetic mass-splittings may also serve
as grounds for pessimism. It has been shown that one
contribution of low-lying states to the Cottingham
formula? fails to reproduce even the correct sign of the
AI=1 electromagnetic (e.m.) mass splittings.*® Such
a failure is relevant to the present discussion, because
the S-wave decays in the soft-pion limit® are related to
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the parity-conserving (P.C.) matrix elements
(B'|Hw?®-¢|B),” which are very similar (except for
the missing photon propagator) to (B’|Hem.|B).

It has been recognized that additional “tadpole”
terms,? reflecting high-energy contributions, must be
present and account for most of the AI=1 mass
splittings®5; and it has been.suggested® that the
AI=1 rule in nonleptonic decays should emerge through
a similar tadpole mechanism, thus casting severe
doubts on low-energy saturation.

A possible interpretation of the “tadpoles” has been
suggested by Bjorken.® By applying his method to the
virtual “Compton-like’” amplitudes, one finds in
general divergent integrals, both in nonleptonic and
e.m. amplitudes. We do not think that the occurrence of
such divergencies is disastrous. Motivated by re-
normalization theory, we take the attitude that when
these divergencies occur, they are going to supply us
with incalculable “renormalization” constants. On the
other hand, if such divergencies are not present, the
possibility of calculating such amplitudes in terms of
low-energy contributions seems to be likely. We would
like to emphasize that this is the basic attitude taken in
the present investigation.

In Sec. II we show that there exists at least one model
of the strong interactions where the “divergent” terms
have operator coefficients whose matrix elements vanish
between the physical states of the weak decays. Such a
privileged model is the quark model, where the inter-
action is mediated by a massive neutral vector meson
coupled to the conserved baryon current, and the
SURSU; chiral invariance of the theory is broken

7 The Suzuki-Sugawara analysis assumes certain commutation

relations between the weak Hamiltonian and the axial charges,
which are true both in the JJ and in the intermediate-vector-boson

ictures.
P 8 The term “tadpoles” was introduced by S. Coleman and S.
Glashow, Phys. Rev. 134, B671 (1964), indicating a general
dynamical enhancement of a particular channel.

9 J. D. Bjorken, Phys. Rev. 148, 1467 (1966).
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only through mass terms in the Lagrangian® It is
worth noticing that this is the only renormalizable
model of the strong interactions which guarantees
either finiteness or universality of the radiative correc-
tions to semileptonic processess.!

II. BJORKEN’S METHOD AND EVALUATION OF
DIVERGENT PARTS
A. Intermediate-Vector-Boson Weak Interaction
We write the weak Lagrangian in the form
Ly=gT*(x)Wu(x), )
where J, is the Cabibbo current

Ju(@)=cos (V,** (x)+4 W (%))
+sind (VMK+ (x)+4 nK+ ), (2)

and W,(x) is the vector-boson field whose mass mw
relates the dimensionless coupling constant g to the
Fermi coupling constant, via

g/mw*=G/V2. )
This Lagrangian leads to the nonleptonic amplitude

(B Br)= 2/ d4k(
w)=§ (27r)4 guv

k,,k,) T
mwt] — k2+mW2’

)

where

Tw= —i/d4x R (B'r| T*(J 1 (x)],(0))| B) (5)

and T* denotes the covariant amplitude which repre-
sents the response of the S matrix to the second-order
weak vector perturbation.!?

We now apply Bjorken’s analysis to T,. We ana-
lyze first the k#%’T,, part.’® By using the chiral algebra
we have

E#kT =k (B'w| J,(0)| B)

i f Be 53 (B | [To(x),D' (0) Juo—o] B)

+i / iz e (B'x | T*(D' (x),D(0))| BY, (6)

where J,(0) is a combination of neutral vector and
axial currents, and D(x)=9,J#(x). The first term
integrates to zero by a symmetrical integration over k.

10 Some properties of this model have been considered by M.
I(ie%l-l;/[ann, Phys. Rev. 125, 1064 (1962) and by J. D. Bjorken,

ef. 9.

11 C. G. Callan, Phys. Rev. 169, 1175 (1968) ; G. Preparata and
W. I. Weisberger, Phys. Rev., this issue, 175, 1965 (1968).

12T* consists in general of the time-ordered product of the
currents and additional “Schwinger” terms. Here, and in the
following, we assume that no AS=1 “Schwinger” terms are
present so that we can ignore them throughout our discussion.

138 We have found that a similar analysis was carried out by
V. S. Mathur and P. Olesen, Phys. Rev. Letters 20, 1527 (1968).
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The second term yields a quadratic divergence in (4):
g2 [ d% 1

mw?) (2m)* my?—k?

X [#2 sl Ls0,0'01B). (1)

Logarithmic divergencies in (5) may arise from the
third term in (6) and from g,, piece in (4), and accord-
ing to the Bjorken analysis will be given by

(—ig?) / * 1
o)t ) mp—k2 B2
1
x(—
’sz

+/d3x e_tkx<B/7rl[jﬂf(x):[Ha]F(O)]]lB>)) (8)

(B'r|[ D (x),[H,D(0)]]| B)dPx e~

where H is the Hamiltonian of the system.

We now evaluate (7) and (8) in the framework of the
above-mentioned quark model, which is characterized
by the Lagrangian

L=g(—1iy-39+gB+M)¢+Lg, )

where Lp refers to the vector boson B, part, and M is
a numerical quark mass matrix. In such a model the
Cabibbo current has the form

Ju(@®)=q(x)vua(1+vs)Nrq(x) , (10)
where
0 cosf sind
o [o > 0}
0 O 0
and
D(x)=14g(x)Mg(x), (11)

where script letters here and in the following denote
linear combinations of products of A\ matrices with 1,
and ;. '

The equal-time commutator in (7) is now

[Jo(x,0),D%(0,0) 1= & (x)igont’y. (12)
In particular, the part relevant to nonleptonic decays
(AS=1)is
g “5=Vg=g(aNs+BNrs)g,
where a and 8 are constants.

We analyze next the logarithmically divergent part
(8), and consider first the matrix element

(13)

f &w(B'x|[D' (x,0),[H,D(0)T]| B).

Using the Hamiltonian H corresponding to (9), and the
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expression (11) for D(x), we find that

/ P(Bx| (D' (), [H,D () Thooo| B)

=/@ﬂ3wm@w%—ﬁﬁg&m+WWMB% (14)

The first term in (14) can be written in the form

gy (—iVi+gBi)g=—gn(—iy-9+gB)g
+num gyt (—i9"+¢B)g, (15)
where 7,=(0,1).
The covariant form corresponding to (15) is obtained
by the substitution® 7,9, — k.k,/k?, yielding the follow-
ing contribution to (8):

ig? / d*k
2m)t) B2 (mw—E2) dmp?

(B'm|gn"q| B). (16)

A similar calculation applies to the second term in (8).

The crucial observation is that within the framework
of this model the S=1 scalar and pseudoscalar den-
sities can be expressed as four-divergences of the corre-
sponding current operators.!3*

Matrix elements of these densities therefore vanish
between states of equal energy and momentum (pro-
vided such operators are, as they indeed are, non-
singular). As a consequence we find that the coefficients
of both the quadratic and logarithmic divergencies
[Egs. (13) and (16)] vanish for the physical decay
process.

This is different from what one finds, within this
same approach, for the second-order e.m. mass shifts.
There the coefficient of the leading logarithmic di-

vergence?® is
[J#e'm',[H:je.m-"]] = g0, (16,)

when Q is the 3X 3 charge matrix. This density cannot
be written as a four-divergence, and therefore its
relevant matrix elements will in general be non-
vanishing. Indeed, if we wish to attribute the prominent
AI=1 mass differences to such tadpole terms, these
matrix elements should be quite large, as we will
discuss later on.

B. Current-Current Interaction

We may obtain the current-current interaction
formally from (4) by letting mp? — oo M giving

G

T(B—Bm=— an

d*k r
(2mr)* a

12 Footnote added in proof. After completion of this work, we
learned that a similar observation has been made by C. Boucfliat,
J. Tliopoulos, and J. Prentki, Nuovo Cimento 56A, 1150 (1968).

14 We must, however, warn that this procedure may be meaning-
less due to the possible bad behavior of the theory at small

distances.
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In addition to the quadratic divergence in (17) which
by the above argument may be absent, there are
logarithmic divergencies. If the Bjorken analysis can
be pushed this far, the coefficient of this divergence is
[J.1,(d%/d#)J,]. Evaluation of this commutator gives
in addition to quark densities (13) expressions of the

form
gmq(8,B,—8,B.)owTq, (18)

which are quite different from a quark density, and
their matrix elements may well be much smaller than
those of the e.m. tadpole (16’). This, together with the
fact that the leading quadratic divergence is absent
leaves open the possibility that the unknown appro-
priately cut-off high-energy contribution to the non-
leptonic amplitude is relatively small compared with
the calculable low-energy contribution. This may serve
as a motivation for the analysis of the low-energy part
of the weak amplitudes to which we now proceed.

III. LOW-ENERGY CONTRIBUTIONS

Since we are interested in the region of small virtual
momenta (k%K experimental lower limit of mp?),
Eq. (17) is an adequate starting point for the calculation.
The kinematics of the amplitude T, which appears in
Eq. (17), is shown in Fig. 1.

In order to evaluate the contribution of the low-lying
states in (17), it is most useful to write down a Cotting-
ham-like formula,?

Tiow(B— B ¢! wd k2 - B2L 212
low( - W)_$32W3ﬁ (—— )/ (_ +y)
+1
X/ dz ImT (B%,v,2), (19)
where -
ImT (R2,v,2) =% (2m)* 22 8*(pn—p—k)
X{(B'm|JH0)[n)(n|T.(0)|B), (20)

and v=Fk-pp/mp, =k-q/|k||q|, where q is the pion
momentum in the rest frame of the decaying baryon B.
vmax i a cutoff energy defined by the condition

(k+ps)<M?

and M? will be specified below.
In (19) there are three different types of intermediate
states % : 7, containing no disconnected parts (Fig. 2a),

(21)

Fic. 1. Kinematics of the
amplitude T'y.

B'(p"
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Fic. 2. Intermediate states contributing to formula (19).

n, containing a disconnected pion (Fig. 2b), and #,
containing a disconnected baryon (Fig. 2c).

In the following we will keep only the two lowest
SU; multiplets in the s, #, and v channels. This is
effectively achieved by choosing M of Eq. (21) to be
slightly above my+mp~1800 MeV. The final result
will in fact not be particularly sensitive to the value
of M.

Within this approximation the typical contributions
to Im T of Eq. (20) involve weak-current form factors
and weak meson production amplitudes. Following
earlier calculations,? we take the weak-current baryon
matrix elements from the fit to the Cabibbo theory and
use universal dipole form factors. Lacking detailed
experimental information about weak meson production
amplitudes, we use the soft-pion limit.

In previous estimates of S-wave decays*® partially
conserved axial-vector current (PCAC) and the soft-
pion limit were used at the outset, restricting the satura-
tion procedure to the matrix elements of the weak
Hamiltonian between single baryon states. In the
framework of the present model, the PCAC extrapola-
tion may be dangerous, since in the soft-pion limit the
nonleptonic Hamiltonian carries effectively a mo-
mentum transfer ¢ and the matrix elements of the quark
densities [[(13) and (16)] do not vanish any more. In
practice, as we shall show later, the difference between
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Fi16. 3. The general weak pion-
production amplitude.

Alp) B(p)
this and our approach of using PCAC in the weak meson
production amplitudes is relatively small.

We consider the general weak meson production
amplitudes T,%(k,g) (see Fig. 3). If we assume that
Tu(k,q)—T,B(k,q) (where T,B is the Born amplitude)
is a smooth function of ¢ when ¢ — 0,5 we may write
the amplitude

T2 (k)T B (k) + [T (k,0)— T (£,0)].  (22)

Making use of PCAC and the chiral SU;®SUj; algebra,
we have

V2
T, (k,0)—Tu*(k,0)%= —}—(B’(P’) [ 7:2(0)] 4 (9))

w

V2
i | e [ e o3| DL, 0112
Tk |, (9

where .J,2(0) is the result of the equal-time commutator
[46%(x),7,.(0)]. If we write T,%(k,q)® using a derivative
coupling, the last term in (23) is identically zero when
g¢— 0. So in the soft-pion limit we have

Ty (ksg) = Tuo(ksq)"— (V2/ f2)(B| T,2(0)| 4). (24)

Equipped with Eq. (24) for the weak pion-production
amplitude and with the usual weak-current form factors
we now evaluate the contribution to the nonleptonic
amplitude from #,=n,=baryon octet and decuplet
diagrams.

For the S-wave decays the dominant contribution
comes from the equal-time commutator term in Eq.
(24), so that we recover formally an S-wave amplitude
identical with that obtained by direct application of
PCAC? to the nonleptonic Hamiltonian,

S(B— B'w)=(V2/f=)(B'|H°| B), (25)

where Hyp is an effective nonleptonic Hamiltonian

TasLE I. We define M =1(p’) (4 —Bys)u(p) as the decay ampli-
tude. The amplitudes satisfy the A7=4 rule.

Decay 104 expt.® Calculated  10¢Bexpt.*  Calculated
A~ 0.33540.004 0.285 2.3+0.1 1.48
z:+ 0.001-£0.006 0 4.2+0.08 2.6
Zot 0.33840.030 0.40 2.6+0.4 1.85
-~ 0.405+0.003 0.57 (—3.4+8.5) X102 0
E_~  0.4404:0.006 0.50 1.47+0.12 1.28

a The experimental figures have been taken from N. Cabibbo, in

Proceedinis of the Thirteenth Annual International Conference on High-
{Ego%e;)gyDPngicx. Berkeley, 1966 (University of California Press, Berkeley,

15 We follow the procedure first used by L. S. Brown and C, M.
Sommerfield, Phys. Rev. Letters 16, 751 (1966).
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evaluated by saturating a current-current Hamiltonian
by the low-lying octet and decuplet states. In the
SU s-symmetry limit one can write

(B'|H.|B)=DDgpp*+FFpp*+TTp5*, (26)

with D, F, T referring to the D and F octet, and 27
coupling, respectively. An estimate of (B’|H.|B) was
made by Hara?, who obtained!®

=—3.2X10-5 MeV,
F= 3.8X10~5 MeV,
T=—0.1X10~5 MeV.

Equations (25) and (28) yield a reasonable prediction
of all S-wave decays. (See Table I).

In particular the A7=1} selection rule seems to emerge
in a dynamical way, because of mutual cancellation of
octet and decuplet contributions.

The corrections to Eqgs. (25) and (27) which arise
from the Born term in Eq. (24), and the so far neglected
n, diagrams, have been estimated. We find that such
contributions give at most 20-309, corrections.

We turn now to consider the P-wave nonleptonic
amplitudes. Neglecting again the #,-type diagrams, and
the equal-time commutator term in the weak-production
amplitude (24), we obtain from the Born diagrams
effectively the results which have been previously
obtained in Ref. 17, where we have to use for the
“spurion” matrix elements the values of Egs. (27).
As is shown in Table I, this gives a substantially correct
picture of the P-wave amplitudes.!®* We found that the
neglected pieces (equal-time commutators and n,
diagrams) give small corrections without altering the
picture. It is however, interesting to notice that the
possible effect of a Py resonance in the P-wave weak
production amplitude will add a contribution which is
qualitatively of the right structure to improve agree-
ment with experiment. Also here the A7=3 rule is
dynamically brought in through the matrix elements of
the weak ‘“Hamiltonian” between baryon states.

@n

IV. CONCLUSIONS

We have shown that in a particular field-theoretical
model, a justification can be given to the “saturation”
approach to the nonleptonic interaction. A review of
its implications has shown that, within the approxi-
mations made, it describes correctly the main features
of the nonleptonic baryon decays.

16 Uncertainties in F, D, and T of Egs. (27) arise from the
insufficient experimental information on the vertices (B|J.|B)
and (B|J,.|A). The forms used by Hara for these vertices are
rather simple and appealing. In particular the universal dipole
form factor (my?/E*—my?)? with my>~0.71 BeV? was used in all
cases. We found only small variations (=~15%) when choosing
different form factors, incorporating the correct static values
(including the radii).

17 C, Itzykson and M. Jacob, Nuovo Cimento 48A, 655 (1967).

18 The results for the P-wave decays are not as significant as
those for the S-wave, due mainly to some subtle cancellations in
the Born diagrams, which on the other hand are particularly
sensitive to mass SUjs-breaking effects.
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That this situation is significantly different from what
we have in the case of the e.m. mass difference, we think
is supported by the following argument. Let us con-
sider the S-wave amplitudes; if the deviations between
the calculated and experimental values for the S-wave
decays are interpreted in terms of additional “tadpole”
contributions, we find for the magnitude of the tadpoles,

|Fr|+ | Dy |~1.8X 105 MeV.

The analysis of the em. AI/=1 mass difference
indicates® that the low-energy contributions need be
augmented by a tadpole term with a magnitude

(F+D)e.m.=—2.08 MeV,
F/D=-138,
giving
|F|+|D|=6.3 MeV.

If we adopt Bjorken’s interpretation® of the tadpole
contributions, we would in general expect a ratio

_ (|D|+|F)w _Gsin@cos@
TUDIHFDem. V2

Awk? Ae.m.? Ze.m.
X/ dk2(gvv+g,4,4)// dkL;e;—

and gyy=gas=gom. as a consequence of the ‘“uni-
versality” of tadpoles. Using for the cutoffs the values
Awi~10 BeV and Aen>~100 BeV, we find that ¢
is smaller than “7e,”’ by almost an order of magnitiude
and the situation is of course much worsened ,f we
increase the value of A% In spite of the crudeness of
the argument we think that this is a fairly meaningful
indication of the difference between the e.m. and the
weak case, which seems to be incorporated in the model
discussed previously.

The question now is: What have we learned from all
this? We think optimistically that from the preceding
discussion may emerge the basic adequacy of the
current-current picture for low-energy nonleptonic
interactions, and the interesting role played by this
particular quark model in supplying us with information
going beyond the realm of “current algebra.” We think
that investigating other features of such a model could
be helpful in understanding the weak and e.m. inter-
actions of the hadrons.
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