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which vanishes in the limit # —c by virtue of (A4).
The argument goes through in similar fashion for R,®
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in region II. In this region, |z|>1, and the sum in
(A3) is again bounded in absolute value by (AS5). So in
region II,

Ptd) | 45 |
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which vanishes in the limit # —c by virtue of (A4).

We conclude that with the replacements Red i(s) —
Ag(s) and ImA;(s)— Ar(s) the expansion (7) con-
verges for complex values of s such that z [Eq. (A1)]
lies in region I and the expansion (8) holds for values of
2 in region IT.

| Ra® (2)| <
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A generalization of the Bjorken limit (for the two-point function) to the three-point and four-point
functions is given. Some general features of the asymptotic behavior of the #-point function are also dis-
cussed. These results show that in calculating the various Ward identities for the #-point function all
currents are ‘“asymptotically conserved.” We derive generalized Weinberg sum rules for the three-point
functions (these results can be generalized to the #-point functions). We show that the Kz%-Ks® mass dif-
ference (in the universal Fermi theory) is quadratically divergent. Making a saturation assumption, we
calculate the coefficient of the quadratic divergency and we get a weak-interaction cutoff A=4 BeV, sug-
gesting that weak interactions are strongly nonlocal. By means of a simple power-counting argument, we
find that the #th order probably behaves like #!G (GA?)», and assuming that this is some kind of asymp-
totic expansion, we find that the series begins to blow up for #~10% The arguments for this do not con-
stitute a proof. We then study the radiative corrections to the decays = — ev and = — uv, which involve
a three-point function. We find that these decays cannot be discussed within the framework of current
algebra. Finally we show that a somewhat generalized version of the Tamm-Dancoff approximation can

be justified if we use our results for the #-point function. i

1. INTRODUCTION

OME time ago Bjorken proposed! a method for
calculating the (virtual) asymptotic behavior of the
two-point function. This method has been very useful
in estimating the radiative corrections to 8 decay!:?
(coming from high virtual masses) as well as the electro-
magnetic mass differences.!'® In this paper we shall
generalize Bjorken’s expansion to the three-point func-
tion as well as the four-point function; it is possible to
obtain general results for the #-point function also.
Such a generalization is required in order to discuss
several interesting physical problems, e.g., the K1%-K ¢°
mass difference (in the current-current interaction).
The main results of this paper are the following:

*Work supported in part by the U. S. Atomic Energy
Commission.
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In Sec. 2 we generalize the Bjorken expansion to the
three-point and the four-point functions. We also give
a method for calculating the #-point function.

In Sec. 3 we show that the results obtained in the
previous section can be used to prove the following
theorem: Assuming the ordinary current algebra, all
currents are “asymptotically conserved” in the sense
that in calculating Ward identities for the #-point
function

oo d4x1. . .d4xneiqlll+""+ iqnTn
XA TG (1)~ - Jun(xa)) | BY,  (1.1)
it is correct to assume that in time-ordered products

rmg, em(x,,)=0 (1.2)
for all ¢’s in so far as we are only interested in the
leading terms of the #-point function. This theorem is
evidently of practical importance since it shows that
asymptotically the Ward identities allow us to express
the #-point function entirely in terms of the (z—1)-
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point functions. One can also obtain a somewhat related
result which is a generalization of Weinberg’s first sum
rule* (which has been shown to follow from the Bjorken
limit for the two-point function).® If the states | 4) and
| B) in (1.1) are both equal to the vacuum state, our
result means that asymptotically wehave SU(3) @ SU(3)
symmetry. The idea of asymptotic symmetry was
introduced in connection with Weinberg sum rules by
Das, Mathur, and Okubo.® Intuitively one would
expect this to happen in the asymptotic limit because
the masses are not expected to play any role in the
limit; however, against this argument one can say that
our theorems apply to the asymptotic limit gm,—>
but infinitely off the mass shell, |g.?| — e, and it is
somewhat difficult to apply physical intuition infinitely
off the mass shell.

In Sec. 4 we apply the technique developed for the
three-point function to calculate the K °-Kg® mass
difference in the universal Fermi theory. We show that
this mass difference is quadratically divergent with
coefficients of the type

(K| 4,2*(0)4#3(0) | K?).

[4,(x) is the axial-vector current, and we use the
tensor notation.”] To find the numerical value of the
coefficient of the quadratically divergent term, one
therefore has to insert a set of intermediate states in
(1.3) and do some saturation with a few states. If one
only inserts the lowest states, one obtains

(1.3)

M?(KLO) _M2(KSO)

= (2.5G/1672) (GA?) sin20 cos?0 M x*Fx*, (1.4)
which gives a cutoff A=23 BeV. Equation (1.4) has
recently been obtained by Marshak ef al.® using the
Tamm-Dancoff approximation.®!® Previously Ioffe and
Shabalin® have calculated the K%K s° mass difference
in the W theory (which is an easier problem than in the
Fermi theory if one uses a Ward identity and “asymp-
totic conservation of currents”), and the result is
essentially the same as (1.4).

In Sec. 5 we use our general results on the #z-point
function to study the weak interactions to nth order.
It turns out that the leading divergency (in the uni-
versal Fermi interaction) is of the order (to all orders in
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strong interactions but neglecting electromagnetic

interactions)
G(GAY)™ 1, (1.5)

which shows that the behavior of the weak interactions
depends on two “coupling constants” G~10-%/M,?
and GA2~10~* [from Eq. (1.4)]. From the point of view
of principles, this reflects the well-known nonrenor-
malizable character of the weak interactions. From a
more practical point of view, Eq. (1.5) strongly suggests
that the perturbation series is an asymptotic expansion
(valid only with G=0), and since GA? is very small from
the K%K ¢° mass difference we can use this series for
an evaluation of the weak amplitudes up to a certain
order where the series starts blowing up. By simply
counting the number of terms contributing to the
leading term (1.5), one finds that the series should not
begin to blow up before #=10000. The results in this
section are certainly not proved, but should be con-
sidered as a conjecture.

In Sec. 6 we discuss radiative corrections to =— v
and w—>ev decays, which involve the three-point
function. It has been shown by Das and Mathur!! that
the radiative corrections to the branching ratio for
these decays are finite. It is not possible to arrive at a
definite conclusion concerning the possible infinities in
the decays. However, making an approximation of
keeping only the lowest intermediate states in a
particular term which cannot otherwise be calculated,
one finds that in none of the models for the equal-time
commutators (including the model of Johnson ef al. and
Cabibbo et al.}?) proposed so far are these radiative
corrections finite. However, because of the approxima-
tion involved this is certainly not a well-established

conclusion.
In Sec. 7 we point out that asymptotically approxi-
mations of the type

(A TGy () 702 (@) Fus() s 3)) | B)
~(4 l T(jm(x)jna(y))T(jnz(x)jm(y))IB>
H (A TG (®) Gl IT Gus®@) Jua(%)) | B) - (1.6)

are good approximations if one saturates with a few
intermediate states. The approximation (1.6) is a
generalized Tamm-Dancoff approximation®!® used
recently.®13

2. ASYMPTOTIC BEHAVIOR OF
n-POINT FUNCTION

Tn this section we shall discuss the asymptotic be-
havior of the z-point function, which we define as (we
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12K, Johnson, F. E. Low, and H. Suura, Phys. Rev. Letters 18,
1224 (1967); N. Cabibbo, L. Maiani, and G. Preparata, Phys.
Letters 25B, 31 (1967); 25B, 132 (1967).

135, N, Biswas and J. Smith, Phys. Rev. Letters 19, 727 (1967).
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leave out one integration since this is what one usually
encounters in practice)

T ypeeewn®™"2"(q1+ * *@n1)

= (..i)n—l/. . -/d“xl- o diy_jeinErte s Fign-12n-1

X4 ‘ (G (®1)* * * Funs® (®n=1) Jua®"(0)) l B).
2.1)

The case of the (virtual) asymptotic behavior of the
two-point function is the well-known Bjorken limit.}
In order to illustrate our technique, we shall briefly
indicate a simple method to obtain this limit. Consider

Tﬂwzawz(Q) = -—'i/d“.?& e

X(A| TG (%1) j1a"(0)) | B).  (2.2)

By considering the time integration and doing a partial
integration weobtain for oneof the two terms in Eq. (2.2)

/ Az A | fou1(x) js2(0) | B)

= (1/igo)[{4] ju*(x) 7us°*(0) | B)eiaa0g0]_70=
1 r> 0
— f dmae 0 A | —j,(x) j,s(0) | B)
g0/ 0 90
= (1/qo) (A Ijmal((),x)jnaz(()) | B)

1 <]
——<A "_'".7 “ax(x)]'”zaz(o) I B>x0=o
go®t 9w
+0(1/g%). (2.3)

Treating the second term in Eq. (2.2) in the same way
we obtain in the limit go— «, q finite,

el ()

1
2 / B 60 %(4 | [],0(0,%), j,,(0) ]| B)
do

| B)

7 0
+= / d ioe5(d | [——j#,m(x),jm(oﬂ
qo Jxq
+0(1/q®). (2.4)

This technique (which was first introduced in this
connection by Domokos and Karplus!) evidently
requires the commutator of the two currents to be
smooth on the light-cone. It can be shown that if the

OF #»-POINT FUNCTION 2167
commutator is not more singular than &(x*) and
derivatives of 8(x?), Eq. (2.4) is a consequence of local
field theory.’® Instead of using the technique in Eq.
(2.3), one can also use the Low equation satisfied by
the two-point function.! If the spectral functions in the
Low equation goes to zero sufficiently fast (faster than
1/g0) as qo— o, Eq. (2.4) follows. In the local field
theory discussed elsewhere,'® this is the case if there
are no contributions from Schwinger terms (e.g.,
because |A)7|B) and the Schwinger terms are ¢
numbers). In the following we shall therefore assume
that Schwinger terms give no contributions. This will
be the case in the applications in Secs. 4 and 5 if the
Schwinger terms are ¢ numbers. In principle it is possible
to take these terms into account,’ but in practice the
resulting formalism is very complicated. With no
further excuse we leave out the Schwinger terms, and
we also assume that the light-cone singularities are
sufficiently smooth for the operations in Eq. (2.3) to be
allowed.

It is then immediately obvious that the technique
exhibited in Eq. (2.3) can be apphed to the #-point
function (2.1). All we have to do is to apply part1a1
integration consecutlvely to the »—1 integrations in
Eq. (2.1). Since we are ignoring Schwinger terms we put

G=qe=""-=qn1=0, (2.5)

and let all the energies go to infinity. Let us consider
the three-point function

mewaxazas(q,p):: —ffd"xd'*y git=tiny
XA T (G (%) 7ua**(¥) us*(0)) | B).
Doing the w, integration [as in Eq. (2.3)] we get
)
T pspous™ (g, p) —> —— / d'y / d*x
q0—>% Qo
XA | T ()5 Jue"*() Jaomno
' )
X]',.g“"(O))lB)e‘(”p)”——/d‘y/dsx ey
qo

XA | T (), 545%(0) Joomos, uzaz(y)) | B)
+0(1/g). (2.7)

Now we see that we can perform the y, integration in
the same way if pos% —qo. Assuming this to be the case,
we get by use of the ordinary Bjorken expansion (2.4)

(2.6)

T 0) ./ / d*xd®y (A | (L7 (), Jue™) ], 755°*(0) ]| B) zgmyo—o
go(go+po)
"‘;; / / Bxd®y(A | [71222),LIm® (%), 515*(0) T | B) zomyomo
0g0 +0(1/q02p0)+0(1/p%q0), Go—> ©, po—>®, go+ —po. (2.8)

14 G, Domokos and R. Kar lzalus, Phys. Rev. 153, 1492 (1967).
15 P, Olesen, Phys. Rev. 172, 1461 (1968).
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We emphasize that this result is correct only if go# — po asymptotically.’® In other words, p and ¢ have to be

independent variables.

Above we have first performed the %, integration, then the v, integration. In order for the method to make
sense it is evidently necessary that the order of integration be immaterial (which means that it is immaterial in
which order we obtain the limits po— @, go—> ). Since this point is perhaps not quite trivial let us do the yo

integration first,

i

7
T o™ 2%(q, p) —> —— d4x/d3y<A ' T([jmaz(y)’j“al(x)]zo=wjﬂaas(0))]B}ei(ﬁp)x_;/déixfdiiyeiqz
, 0

PO—>0 po

X( I1 (E j ( ) ] (D)] = j (ﬁf))l ) //d d3
B2 2 W H3 s y0=0J p1 1 B X
‘4' ] y .7 20 ( ) y

1
X(A][[jm"‘?(y),j,q“l(x)],j,,,aa(O)]]B)m,,,o;,o—l-———//d"‘xﬁy(A[[j,.l"‘l(x),[jm“?(y),j,,a%(o)]]]B),,o,,,0=o. (2-9)

g0

Using
1 -1

po(potqo) =90(P0+90) " pots”
as well as the Jacobi identity
[jmal(x);[j#za2(y)yjusa3(0)]]
+[[]‘Maz(y)’jmm(x)],]‘usas(o)]
= [jﬂzaz(y):[j#lal(x))jﬂsas(o)]] ’ (211)

it is seen that Eq. (2.9) is identical to Eq. (2.8). This
can also be shown for the O(1/¢%p) and O(1/p%) terms.
Hence

(2.10)

lim lim Tuwzusmmms(q’?)

PO>® go+%0
= lim lim Tuwzusamza?(g,P)’ (2.12)

qoQ->%° po—>0

provided that go+pi— %. The resulting asymptotic
expression for the tensor 7'y u,.,*1%2*(g,p) s, of course,
not covariant since the limit is not covariant. Because
we have assumed that Schwinger terms are absent, the
special values (2.5) of the vectors g can all be replaced
by finite values of - q, without altering the asymptotic
values (2.12). In this way we can define a Lorentz
frame where all time components are infinite and the
space components are finite. The question is then
whether it is possible to generalize the tensor (2.12) in
a covariant way. In the case of the two-point function
such a generalization is known to exist at least if the
light-cone commutator is “sufficiently” smooth.!
Similar arguments can be constructed for the three-
point function, but because of the very complicated
nature of these arguments we shall only give a recipe
for the covariant generalization of the limit (2.12). To
see how to proceed, let us return to the first Eq. (2.9)
where only the limit po— o has been performed,

16 A formula similar to (2.8) has been derived by M. B. Halpern,
Phys. Rev. 163, 1611 (1967), especially Eq. (8). His result is,
however, incorrect since an exponential (which is crucial in many
applications) has not been taken into account.

whereas ¢ is arbitrary. In the time-ordered products
the equal-time commutators can be evaluated from
current algebra (the quark model or the gauge-field
model) and the limit

ploi_r}}o T uypons®2%(q,) (2.13)

contains terms of the type

"
—_3M20fa2am4/d4x ei<q+p)z<A ' T(j“““(x)j”"*(O))[B) )

bo
which can be made covariant in only one way, namely,
by writing

—1i

o / B4 04| T(j(2) ()| B)-

Proceeding in this manner with the remaining
go+po— o limit, the covariant generalization of (2.12)
can be obtained. In many practical applications this
somewhat cumbersome method is not necessary. For
example, in order to estimate divergence or convergence
of various quantities, the special limit (2.12) is sufficient
(since the order of magnitude is unchanged).
The terms neglected in Eq. (2.8) are of the form

qo? (qj—f-ﬁo)/ / oty
(] [[%jm(x),jﬂzaz<y>],jp,~a<0)] 13),

2o=%0=0. (2.14)

These terms therefore involve the triple commutator
of the three currents with the Hamiltonian.

It is now obvious how to proceed to obtain the
asymptotic behavior of the four-point function. One
finds
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Tupeeens®” ""4(q1g2g3) = i/]fd‘%d“xﬂ“xs qu‘zl+iqzx#iqsx3<A l T(j“ax(xl)]’“zaz(xz)]‘usas(xa)]'“m(o)) ! B>

1
. v 4
(Ql)o(91+92)o(ql+92+gs)o

/ [ / d3x1d3x2d3x3<AI[[[j“"‘l(xl),j,,g"‘”(xg)],j,,3“3(x3)],j“"4(0):|IB)(M)P(H)‘,,(,”O,O

(Q1)0 (@t-ge(@)e / / / d1d%000%03(A | [ 5% (%8),[ [ Fur®(#1), Ju2"2(#2) 1, s®(0) 1| B) (ory0=(e2)0=(5)0=0

1

[ (g1)0(g2)o(g1t+g24g3)0
| 1

o (91)0(g2)o(g1+33)o

1

/ / [ d3x1d3x2d3x3<A[[[jyzai(xg),[j,,l"‘l(xl),j,,s""(xs)]],j“‘“(())]IB)(I1)0=(32)0=(,,)0=0

/ / / dPardPuyd®xe(A | [ (%1), 5 naaa(@)];[juzaz(%):jwm(o)]:l | B) (21)0= (2 0= (z8)0=0

_—_— 3x1d309d305( A | [ F45% 3; Fua®(%2), [ Fur®(%1), (0 B) (21)g=(22)0=(z8)0
+(91)o(92)o(€3)0//./dxdxdx< | [ (@), L e (#2), [ 711 (#1), 5ua®(0) TT]| B) (13 om Cnom a0

1
R
(91)0(92)0(412+Q3)0

where the (covariant) limit is

/ / / d3x1d8x2d3x3<A l [[j““z(xg),j,,,"‘s(xs)],[j,,,“l(xl),j w*(0)1] |B>(21)0=(zz>o=(zs)n=0 , (2.15)

lg2| = o, |g?|— o, |g?|— o, [(@1tge)?— o,
[(@1tgs)?| = 0, [(g2Fgs)?| = o, |(g1tgetgs)?| — ». (2.16)

Again it can be shown [analogous to Eq. (2.12)] that the order in which the limit (2.16) is performed is immaterial.
It should now be obvious in principle how to find the asymptotic behavior of the #-point function. In practice
it is, however, cumbersome to find the asymptotic behavior of, e.g., the five-point function, although it is a straight-
forward task to do the four integrations. We shall not write down the result here. Instead we discuss some general
features of the n#-point function which will turn out to be important in Sec. 3.
Considering the #-point function (2.1), it is clear that the result of the (x1)o partial integration can be written
down without much work. Let us consider the time-ordered product of # operators,

(A l T(Dl(xl)D2(x2>' . 'Dn—l(xn—l)Dn(O))lB>= Tn(xr . 'xn—l)- (2.17)

In writing out the time-ordered product all permutations of the D’s occur multiplied with the relevant 6 functions.
Let us, e.g., consider the case where Di(xy) is the first operator,

(4| Dy(x1)Do(x,)- - - | B, (2.18)
where all p0351ble permutations of Dj- - - D, occur. The term (2. 18) has to be multiplied by 6 functlons, but (xl)o
only enters in 6(x;—x,). The (x1)o 1ntegrat10n is then trivial and gives
00 -
f d(xx)oe"“-'m"“"’(A | Dy(1) Ds(w) Dy (xr)' | BYO (=)
(z4)0

=[4/(g1)o (4| Di(x1) Ds() Dr(%r) + * + | B) (1) om(a) o€ 0@ (a0, —2,) - - . (2.19)
Now there will always be a term of the type

(4| Dy() Dy(21) Do(5) - - | B) (2.20)

‘also, and this term is multiplied by 8(x,— #1)0(x1—2x,), i.e., 0(x,—x,) with (x,)0> (#1)0> (%,)o. Now this gives two
terms,

0(we—y) / d(xl)oe““’”"‘)"(AlD (%) Da(w1) D (#1)+ - - | B)
(s %r)

( ) [4 ]Da(x,)Dl(xl)D,(x,)--- B) (a1)gm(zg)g€ (W0 (200
q qd1)o

— (4| Dy(e) Dy(x) Dr(r) - + | B) ayom (o€ @0 ] (2.21)
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and the first term on the right-hand side combines with the term (2.19) to give

[/ (910 1A | [D1(21), Do(%5) Jaryom(z)e Dr(r) - + + | BYO (s — ) - - -

(2.22)

In a similar way, one can see that if Di(x1) is not the first operator, the (1), integration gives rise to an equal-time
commutator. Using the fact that the time-ordered product is symmetric in its variables, we find for the #-point

function (2.1)

i(—i)n .
Tﬂl_““na,..-an(ql. s Qpey) ——> ———— | oo | a0 ¢ cd¥ny | dPxiei02erte s Hitn-ion

(g1) o~

(g1)o

Xi (A TG ®1)s (%) Jeoyom(emodua®®2) « =+ [ 5 1us?r (@)  » + 7ua®(0)) | B)einrer,

r=2

where [ j],,%(x,) means that the current j,,(x,) does
not occur in the product.

Now we can of course carry out the (#s), integration,
etc., and it is obvious that we ultimately end up with
a (complicated) combination of equal-time commutators
[as in the special examples (2.8) and (2.15)]. The
author has not succeeded in showing that the order of
the limits is immaterial; however, this appears likely
since this is so for the three- and four-point functions.
The number of terms in the final expression for the
n-point function can be shown to be

(n—1)! (2.29)

It is seen that this formula agrees with Egs. (2.8)
and (2.15).

3. ASYMPTOTIC CONSERVATION OF CURRENTS
AND GENERALIZED WEINBERG
SUM RULES

In this section we shall show that in calculating Ward
identities one can assume that all currents are conserved
as far as the leading asymptotic behavior is concerned.

Again let us consider the two-point function as an

illustration,

T umzm‘n@)

- / d4 69%(A | T(j () 7,:(O) | B).  (3.1)

For the n-point function we get the Ward identity

(2.23)

Contracting with respect to ¢, we get
71T ™ (q)

- / a4 eio3(x0) (A | [jo(), jua(0)]| B)

—; / di e | (9]0 1(2) js(O) | B).  (32)

Using the theorem!? that seagull terms [which we have
to add to the amplitude (3.1)] cancel Schwinger terms,
it follows from the usual current algebra!® or the algebra
of fields'® that the first term on the right-hand side of
Eq. (3.2) is a constant (independent of ¢). Using the
Bjorken limit, the second term on the right-hand side
of Eq. (3.2) becomes

1
- / d*x 3iqx(A ,[6‘”‘j,,1“‘(x),j,‘2"2(0)]g,o..oIB) ’ (3-3)
do

Again, since q#T,,,, is covariant,!? possible (but un-
likely) Schwinger terms in the commutator in Eq. (3.3)
combines with seagull terms and drop out. However, it
is also rather unlikely that the O(1/g) term contains
Schwinger terms. It is then seen that

qu uwzamz(g)
- [ BA o), (O] BlaomotO(1/0),  (3.4)

which means that asymptotically the current j,,*(x) is
conserved for all values of a;. It should be emphasized,
however, that this is true only for the leading (constant)
term. If one is interested also in the O(1/q) term, it is
no longer true.

n
QT ey @700 = (__i)n—‘l/. . ./d4xl. oo din,_jeiteerte e tian—1zn1 3 50— Kpm0)

m=2

X(4] T([jo‘“(xl),j,,,,‘“’”(xm)]j,,g""(xz)- L7 Jum®™(%m) « - * Fua®"(0)) IB>3mm
+(—i)"_1 / e / dixy- - .d4xn_1eiqwx+~--+iqn—1zn—1< A I T(am j“ax(xl) jﬂzaz(xz) vae j””a»(xn))f B). (3.5)

171, S. Brown, Phys. Rev. 150, 1338 (1966); D. G. Boulware and L. S. Brown, dbid. 156, 1724 (1967); R. P. Feynman, in
Proceedings of the 1967 International Conference on Pariicles and Fields (Interscience Publishers, Inc., New York, 1967), p. 111.

18 M, Gell-Mann, Physics 1, 63 (1964).

1T, D. Lee, S. Weinberg, and B. Zumino, Phys. Rev. Letters 18, 1029 (1967); T. D. Lee and B. Zumino, Phys. Rev. 163, 1667

(1967).
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Here we assume that the Feynman theorem'’ can be
generalized so that seagull terms again cancel Schwinger
terms, so that the left-hand side of Eq. (3.5) is co-
variant. That such a generalization is probably true
follows from the fact that this theorem is based on very
general arguments.’” Using Eq. (2.23), the last term on
the right-hand side of Eq. (3.5) becomes

i(—d)n1
————[. .o /d4x1. . .d4xn_lei02z2+'"+'iqn—11n—l
(g1)o .

X 3 810 2m0) (A | T3 s (@), fum™ () ]

Xjuz”(%) T [j]umam(xm) ce j#n‘*”(O))lB>

Xeiaen,  (3.6)

Now, by letting all the energies go to infinity the
integral (3.6) can be expressed in terms of equal-time
commutators, and the integral in (3.6) behaves in the
same way as a function of the ¢’s as the first term on the
right-hand side of Eq. (3.5) in the same limit (the
coefficients of the g-dependent terms are of course
different). Therefore

Q1"’Tu1--~nnmma”(gl' . .g”)
=qlm[T“1___Mna1- . 'an(gl. . Qn)]

with 7, conserved, (3.7)
in the asymptotic limit
(@)o— ®, (g2)o— o, -+, (gn-1)0—> =,
(g@)ot —(gm)o, (3.8)

if all the ¢’s are independent (this condition is essential).
We can obtain further Ward identities by contracting
with respect to other ¢’s. Again the result is

q# - 'Qr“'T“---p,,al”.a"(QI‘ . ‘Qn)
=g @ Ty, g1 * )]

with 7,4« - 7, conserved, (3.9)

in the same asymptotic limit (3.8). The right-hand side
of Eq. (3.9) gives the leading asymptotic behavior.

Hence, in obtaining all possible Ward identities from
the n-point function one can assume that all currents
are conserved as far as the leading asymptotic behavior
is concerned. This result has some implications in
connection with a recent work by Schnitzer and
Weinberg?® (using Ward identities for the three-point
function), but we shall not discuss this point further in
this paper.

It is also possible to obtain results which generalize
the first Weinberg sum rule.* Let us illustrate this by

20 H, J. Schnitzer and S. Weinberg, Phys. Rev. 164, 1828 (1967).
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considering the two-point functions.? For definiteness
let us consider two states |A) and | B) with the same
parity, and define the two-point functions

Apb(g)=—i j d e (4| T(A,(), A,50)) | BY,
(3.10)
Vw(g)=—1 / dx e’ (A | T(V ,~(x),V,#(0))| B),

where 4,%(x) is the axial-vector current and V,*(x) is
the vector current. Using the Bjorken limit and the
assumption

[A,,“(x),A,ﬂ(O)]xo=o= [V,."‘(x),V,,ﬂ(O)]xFo , (3.11)
it follows that

lim [4,,*%(¢)—Vw,**(¢)]=0 [as0(1/g)].

1¢% >

(3.12)

The assumption (3.11) is certainly valid in the current
algebral® (in the sense of the quark model) and the
algebra of fields.’® In using the Bjorken limit it is not
necessary to assume that Schwinger terms are absent.
If these terms are present 4,,*® and V,,*# are not co-
variant, but if Eq. (3.11) is satisfied it still follows from
the Bjorken limit that Eq. (3.12) is valid. Alternatively,
one can define covariant amplitudes (3.10), and in this
case Eq. (3.12) is also valid because the seagull terms
[which we have to add to (3.10) in constructing a
covariant amplitude] combine with the Schwinger
terms in such a way that the asymptotic behavior of the
covariant amplitudes is a constant (instead of 1/g), as
has been shown by the author.’ But if Eq. (3.11) is
satisfied, the Schwinger terms are identical for the
vector-vector and the axial-vector-axial-vector com-
mutators, and once again we arrive at Eq. (3.12). Hence
in all cases Eq. (3.12) is a consequence of Eq. (3.11).

If the states | 4) and | B) are identical to the vacuum
state, Eq. (3.12) gives the first Weinberg sum rule. The
fact that the first Weinberg sum rule is a consequence
of Eq. (3.11) is well known.5 In this case we can state
our result by saying® that Eq. (3.11) implies asymptotic
SUQB)®SU(3). However, we want to emphasize that
the consequences of Eq. (3.11) are much more general
than the first Weinberg sum rule, since |4) and | B) can
be arbitrary states with the same parity.

We now explore the situation for the #-point func-
tion. Since we found in Sec. 2 that by an appropriate
definition of the asymptotic limit it is possible to
express the z-point function in terms of #— 1 equal-time
commutators in the asymptotic limit, it is obviously
sufficient to consider the three-point function. The re-
sults can be extended quite trivially to the u-point
function. Let us this time consider two states |4) and
| B) with different parity and define
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Tyaseierea(q,p)A44= — / / died'y om0 A | T(A(x) A,2(3) Au(0)) | BY,

Tnxuznsawwa(%?) VVA=— / / d*xd'y eiqz—'—ip%A I T (me(x) V u®(9) 4 ,45°(0)) ,B> ’

Using now the asymptotic limit (2.8) for each of the
amplitudes (3.13) one can verify that in the algebra of

(3.13)
T2 47 == [ [58ty e 10,01 4,900V im0 B),
Tﬂluznaala2a3(Q;P)AVV= _//d4xd4y etertirv(4 'T(Amal(x) Vus®2(3) V 15%(0)) |B>
we get
122 >0, lple»lg.l [ (a+p)?] >0 (L™ 25(850)
+T”2”3"1aza3a1(1§’q)+T”““asnmz(p’g)} =0. (317)

fields,!® where
[70%(®),7,7(0) Jugmo=141*¢75,7(0)8°(x)

+¢628(8/ 921)8* (%) gui,  (3.14)
L[7x2(%),757(0) Jepm0=0,
where ¢ is a (finite) ¢ number, we get
Tmuwaamzas(q)p)AAA - Tﬂwznsawzaa(%?) vva
= o™ 2(q, )7
= Tgpugus™2(q,2)477
for
lgo] = @, |pol = o, |gotpol— . (3.15)

In the current algebra we cannot make a similar state-
ment since the Schwinger terms are not known to be
¢ numbers. However, if we assume that Schwinger
terms are ¢ numbers, it again follows that Eq. (3.15) is
valid in the (quark-model) current algebra. If one
wants to formulate quite generally what the condition
for the validity of (3.15) is, it turns out that one has to

require Eq. (3.11) as well as

[4,,1(%), L4122, A15°(0) T ay=yo=o0
= [Vﬂlm (x) )[Vllzw (y)sAmas (O) ]]’70'=ﬂo=°
=[4,2(®),[V 1),V 15°(0) TJaymsomo-  (3.16)

This condition is satisfied in the algebra of fields and
(with the assumption about c-number Schwinger terms)
in the current algebra.

Equation (3.15) shows that we have generalized
Weinberg sum rules also for the three-point function.
If |A) and |B) are vacuum states it also follows that
asymptotic SU(3)®SU(3) is valid for the three-point
function. All these results can be trivially extended to
the #-point function. :

Finally we mention that any three-point function
satisfies an asymptotic condition which is independent
of dynamics (it is, in particular, independent of current
algebra). Using Eq. (2.8) and the identity

[A’EB7C:I:I+ [By[C7A:|]+ [C:[A;B]] =0,

This is in general only true in the leading order.
Equation (3.17) can also be shown directly from
translational invariance and by using the fact that
asymptotically the momenta p and g are much larger
than the momenta of the states [4) and | B).

In the arguments above we have only made a first-
order asymptotic expansion, and the sum rules (3.15)
are therefore only valid to the leading order. If one
makes further asymptotic expansions, it is necessary in
the case of the two-point function that

[iA,‘“(x),AJ’(O):L .

(9000

- [iv,,a(x), V,ﬁ(O):L ~ (3.18)

axo

in order for Eq. (3.12) to be correct. In the algebra of
fields, Eq. (3.16) is correct for u=£%, »=s. However,
for u=0 Eq. (3.18) is not correct, e.g., if a=1,2,3, since
in this case the left-hand side of Eq. (3.18) does not
vanish whereas the right-hand side does vanish. There-
fore we do not believe that the results (3.12) and (3.15)
are valid to second order in the asymptotic limit. This
means, e.g., that we cannot obtain the second Weinberg
sum rule* by this method (this is only possible if the
o terms vanish),

4. K1%-K3* MASS DIFFERENCE

In this section we shall discuss the Kp%-Kg® mass
difference in order to learn something about the weak-
interaction cutoff A. The mass difference is given by?!

M*(K 1) —M*K.)

=—(2m)* Res / d4x(K°| T(H »(x)H(0)) | K%, (4.1)

21V, Barger and E. Kazes, Nuovo Cimento 28, 394 (1963).
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where the relevant part of the weak Hamiltonian is

H (%)= (G/2V2) sinf cosO[{V ,2}(x), V3 (x)}
+ {421 (x),4#3(x)} 14 (G/2V2) sinb cosd
XLV et (), 444%(x) }
H{Vi*(@), A% ()} 1+ He., (42)

in the usual tensor notation.” In the universal Fermi
interaction we are thus led to consider integrals of the

type
I=1 / (K| T((,1(x), 7#3()} 32(0) O | KD, (43)

where 7,1 --7,* are four currents distinguished by the
indices 1-- -4, and where we have used a symmetrized
(PC-invariant) Hamiltonian. It turns out that sym-
metrization of ,%(0)774(0) does not have any effect in
our method so we leave it out.

The integral (4.3) is extremely singular because the
theory of weak interactions is nonrenormalizable. It is
well known (see, e.g., Ref. 22) that in nonrenormalizable
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becomes a rather meaningless operation. In renormaliz-
able theories the singularities are not so strong?? and
the time-ordered product has therefore more meaning
in these theories. In the case of the integral (4.3), one
can easily see that a straightforward attack on (4.3)
leads to ambiguities in the form of contact terms, so
the 6-multiplication problem in nonrenormalizable
theories is not only a question of principles. In the
following we shall present a method which gives the
time-ordered product a more well-defined meaning than
Eq. (4.3) (in the sense that contact terms do not occur).
Let us consider the quantity

T2 (") = T(ju(2) (=) 5:*(0) 774(0))
= 0(x0") 0(wo— 0" )7 (), 5#(x") ] 7,*(0) 74(0)
—0(=%0")0(x0— ) 7,°(0) 7 (0) [, (%), 54*() . (4.4)

By writing out the definition of the time-ordered
product in terms of 6 functions and adopting the
definitions (which define how we are going to treat the
6-multiplication problem) :

theories the time-ordered product is not well defined, lim 6(9)=1, lim 6(—€)=0, (4.5)
because in the neighborhood of x,=0 the commutator
is extremely singular so that multiplication with 6(x,) we obtain

i T) = 6a0) (@) 72 500 40)+ 020 32(0)74(0) 1, (0) 4

— 0(x0) L7 (%),5+*(2) 15*(0) 7*4(0) — 6(— o) 7, (0) 7*(0) [ 5,2 (), 7#2(a*) ]
4 = 0(x0) ju* (&) 7 (%) 7,°(0) 4 (0)+6(— o) 5,*(0) 74(0) 7,2 (a") j#1() (4.6)

an

ol TG ) = 020) ) 744 540 PO+ 0(—20) 73(0) 407 o). (1)

Thus, by the definition (4.4) we have achieved that T'2(x,2) has the same value in the limits 20— %o’ — 0. The
addition of the terms containing the retarded propagator in Eq. (4.4) is absolutely necessary in order to achieve
this. Defining 7%'(%,4") as the same as 7"*(x,2") with j,'(x) — 7,2(x) and 7,2(x") — 7,1(2’), it is seen that Eq. (4.3)

can be rewritten in the form

=3 / / d*xd*s' 84 (x— &) [T (20" )+ T2 (x,2) ].

Introducing Fourier transforms,

we see that Eq. (4.8) becomes

(4.8)
le(x,x’)=-——1——- / / d‘*g 4g’eiq:v+iq’x’ A12(g g/)
(27!')8 ) ’
(4.9)
A%(g,q")= / / dixd*x'e—ie— i s T (x o) |
1
I=— [ d'g[A%(g, —9)+A%(g, —9)]. (4.10)

2(2m)*

Thus, the problem of extracting the most divergent part of the K1°-K¢° mass difference, is equivalent to studying
A(g, —q) for large values of |g?|. In view of the definitions (4.4), this problem can be attacked by use of the tech-
nique developed in Sec. 2. At the same time we shall show (asymptotically, at least) that Eq. (4.10) is regular

and does not give rise to contact terms.

2 K, Bardakci and B. Schroer, J. Math. Phys. 7, 10 (1966); 7, 16 (1966).
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Using Eq. (2.7), we get to order 1/go*

A(g, q)—‘—’_— % / @K | T([5,1%),74(&) Japmaw 5,°(0) 74(0)) | K )

Qo>

L / i / ()| T([——~ i), ]nz(x'>lozzo’jﬁ<0>fv4(0)) |Ko)
'L
— / d[ & 050 (KO| T(L7,4(2), 1(0) 4(0) Japmo j#2(')) | BO)

_/ f dod e~ 0 0(o”) O(wo— 0/ ) (K| [ (), 5#4(x") 17,°(0) 74(0) | K°)
+0(—2")0wo—2¢')(K°| 7,°(0) 7*(0) [ (2), 72 (+") ]| KO} . (4.11)

In the last term we can perform an ordinary Bjorken expansion by doing the x, integration (the retarded commu-
tator give the same result as the time-ordered product in the Bjorken limit’¥) and this term then gives

asymptotically
if d'a / {000 ) (K| [7,1(2),5#(%') Jaomew 55°(0)774(0) | K?)
qo
+6(—20/)(K°| 5,%(0) 5**(0) L7 (%), 5#(+') Jomar | K°)}

+£; / a / dsx{o(xo’) (K| [;%jﬂ’(x),1“2(96’)Lﬂo,jﬁ(ﬂ)j”“(o) |Re)

9 .
+9(—xo')(K°ljy“(O)j”“(O)[ajnl(x),j"?(x’)] {K")} . (4.12)

zo=20’

It is seen that to order 1/g? the terms (4.12) exactly cancel the two first terms in Eq. (4.11). Hence we are left
with the third term in Eq. (4.11), which by a further expansion gives

A%(q, ——g)—»——~ [ [ dadis! (K9 L[ ,0(8),30) 740) ], 7o) 1| B). “@13)

z0==x0"=0

By expanding the commutator and adding A®!, we get (we also use locality for equal-time commutators and

ignore Schwinger terms)
2
x(g, ~0) 870 —0) 2= [ [esesiaitio rox e, o1E
(K| [5,2(x),5,20) I, 74O ] K} a0
1 ~
- / f d%d%{(K°| 55 (O)[L7*(%),4(0) ], 5 () I K*)+(K°| 5, (O)[L4,2(x), 54(0) ], j#*(«') ]| K?)

+(K°| [[7:4(),5.2(0) 1, 72 (¢')154(0) | KO+(K° | (L2 (%), 55 (0) ], 7#(%) 157(0) | B} ayrmmomo.  (4.14)

the contribution of the terms containing the retarded
contact terms of the form propagators (4.4) to the mass difference. Calculating
this contribution to the integral

RONZONE (4.15)
fd4qu2(q, _g) ,

etc. The reason for this is the following. Let us consider

It is seen that this expression does not contain and
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we find

/ 44 000) (K| 7,1, 28 13:3(0) j(0) | )
T 0(— ) (K] 530) 4O i), )] RO, (4.16)

which is a contact term. As we saw in Egs. (4.11) and
(4.12), these contact terms are exactly cancelled by
contact terms coming from the time-ordered product in
the definition (4.4) of T12(x,x’). Hence the net result is
that the contact terms never contribute. This has of
course only been shown to order 1/¢2.

Inserting the expression (4.14) into Eq. (4.10) we see
that the mass difference is quadratically divergent.
This result is based on the expansion in Sec. 2 and the
assumption that Schwinger terms do not enter.!'> No
other assumptions have been made. It is very unlikely
that Schwinger terms enter. If they are ¢ numbers with
the same structure as in the algebra of fields,!? it can be
shown that these terms do not enter.

Using the equal-time commutators in the algebra of
fields,'® it can be seen that Eq. (4.14) reduces to the
matrix elements of two currents. Hence, to calculate
the numerical coefficient of the quadratic divergency it
is necessary to saturate. Saturating with the lowest
possible state, namely, the vacuum state, and using the
explicit form of the Hamiltonian (4.2), we get

M2(K %) —M*(K,°)
2.5 sin?6 cos?6

=G\ F?M 2,

(4.17)
162

which gives A=24 BeV. This is a very nice result in the
sense that A is far below the unitarity limit. In Sec. 5
we shall discuss the physical importance of this.

Recently Mohapatra, Rao, and Marshak® have
calculated the K%K ¢° mass difference using a general-
ized Tamm-Dancoff approximation.®!® The result is
the same as Eq. (4.17). In Sec. 7 we shall show why the
Tamm-Dancoff method gives the same result as the
asymptotic expansion if one keeps only the vacuum
state.

In general, Eq. (4.14) leads to the expression

MK 1Y) —M2(K 5) = (G/V2)? sin?6 cos?0
X (82/167*)(K°|{ 7,5°(0),5+%°(0)} | K®), (4.18)

where j,X°(x) is the neutral isotopic partner of the
current. We shall not attempt any estimate of contri-
butions from other states than the vacuum state. It is
easy to see, however, that the matrix element on the
right-hand side of Eq. (4.18) has a behavior which
depends very much on the dynamics of the strong
interactions. Assuming a dipole form factor for the
vertex

(K°| 5, %(0) | %), (4.19)

the matrix element in Eq. (4.18) is convergent, whereas
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it diverges if one assumes a single pole form factor for
the vertex (4.19).

We shall not discuss the evaluation of the mass
difference in the vector-boson theory. However, we
mention that the theorem on ‘“asymptotic conserva-
tion” of currents discussed in Sec. 3 cannot be applied
in this case since the relevant four-vectors are not
independent.??

5. WEAK-INTERACTION CUTOFF AND HIGHER-
ORDER WEAK INTERACTIONS

The main result of Sec. 4, namely, the indication
that A is a “small” quantity (in the sense that it is much
smaller than the umitarity limit 300 BeV), is very
interesting from a practical point of view. The order of
magnitude of the mass difference is then (we disregard
the depression coming from sin?6)

M (K L") —M*(Ks°)~G(GA?) 6.1

and
G~10"%/M .2, (5.2)
G'=GA =101, (5.3)

In this section we would like to give arguments which
support (but which do certainly not prove) that as far
as the leading (mathematically speaking, divergent)
order is concerned one can view the perturbation series
as an expansion of the type G(G')*, involving two
“small” coupling constants. Taking this for granted,
we can then estimate where this asymptotic series
(mathematically valid only for G=0) begins to blow up,
and we find that this happens for n~ 10

Let us first try to apply simple power-counting
arguments to the weak (universal Fermi theory) inter-
action. We include strong interactions to all orders but
completely ignore the electromagnetic interactions. If
we include the latter our conclusions are not valid, and
one can find definite counter-examples. In this connec-
tion we also mention the work by Lee and Yang.24

We divide the weak interactions into three classes.
The first class consists of the processes involving only
leptons as external particles. In this case the power-
counting argument has been used by Feinberg and
Pais® for the W theory. They find that for diagrams
containing uncrossed ladders the leading term is of the
form

G(GA?21 or G(GAZ)H, (5.4)

28 If one calculates the K;°— Ks® mass difference in the inter-
mediate W-boson theory, a genuine four-point function is in-
volved. We found that not much can be done since the calculation
depends on commutators like

[(8/00) T u1*(%), T 521 (%) Jeo=vo, [(8/0%0)J; a%(2),(3/9y0)J, 2! () Jogmvor

and even in the algebra of fields this leads to matrix elements
which we are not able to evaluate. Thus, in the W case we are not
able to find support for the calculations in Ref. 8.

#T. D. Lee and C. N. Yang, Phys. Rev. 128, 885 (1962); T. D.
Lee, ibid. 128, 899 (1962).

% G. Feinberg and A. Pais, Phys. Rev. 131, 2724 (1963).
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F1c. 1. Typical fourth-order diagrams
for a semileptonic process.

the last result being true if the lowest-order process is
forbidden. We have translated the results of Feinberg
and Pais from the W theory to the universal Fermi
interaction, which can be done either by repeating the
arguments of Ref. 25 for the latter case or by letting
mw—> o in a suitable way. The only complications in
this argument come if, e.g.,, a virtual lepton pair
annihilates and then undergoes a semileptonic process,
creating, e.g., a neutral pion, which undergoes some
complicated process (involving strong interactions) and
finally decays to a virtual lepton pair. This type of
intermediate process was not considered in Ref. 25. The
matrix element for processes of this type involves the
vacuum-expectation value of the time-ordered product
of a certain number of weak currents. From Sec. 2 we
know that this expectation value asymptotically can
be expressed in terms of equal-time commutators, and
current algebra allows us to reduce these commutators
to a sum of various currents. Thus the leading order in
an asymptotic expansion vanishes (this is true in the
algebra of fields at least, since the space-space com-
mutators vanish), and it then follows that diagrams of
this type give rise to less divergent contributions
than (5.4).

The second class of processes are the semileptonic
processes where at least one of the external particles is
not a lepton (we include also 8 decay in this class), but
where not all external particles are strongly interaction
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particles.?8 This class consist of diagrams where the
external leptons originate from the strong-inter: tion
bubble [Fig. 1(a)] as well as diagrams where ¢ 2 or
more external lepton pairs originate from | iwely
leptonic processes [Fig. 1(b)]. Clearly, throug the
Feinberg-Pais argument? diagrams of type 1(] can
easily be taken care of once we know the behavior of
the diagrams of type 1(a). These diagrams are of the
type [we consider for definiteness Fig. 1(a)]

///d4x1d4x2d4x3

X (Kof T(Fps(%1) Jua(22) Fua(%3) 7u4(0)) | 0)

X gik1zrtikozet-ikaes , (5.5)
with an asymptotic behavior of the order 1/k3. We
furthermore have three propagators which behave like
1/k3. We have three virtual momentum integrations,
so a simple power-counting argument gives the result
that the diagram behaves like G*A%=G(GA?)? in accord-
ance with the conjecture. Figure 1(b) behaves in the
same way. The arguments can of course trivially be
extended to nth order.?” In the S-matrix expansion
there is a factor 1/#!, but it is well known that it is
cancelled by the fact that there are #! different distribu-
tions of the points #;---x,. Hence, according to Eq.
(2.24) there are in general (n—1)! terms [some of them
can of course vanish, but (#—1)!is an upper limit on
the number of terms] in the asymptotic expansion of
the Fourier transform of the time-ordered product of %
currents. From current algebra each of these terms is
of order 1 [at least when compared to (z—1)!] and in
diagrams of type 1(b) there are (n—2)!, (z—3)!, etc.,
terms, so altogether # should be an upper limit on the
sum of terms in the nth order. Hence, as a rough
numerical estimate of the nth-order perturbation
theory, we have

nlG(GA?) " 1~n"G(GA2)"1, (5.6)

To get a dimensionless quantity we multiply by M x?,
and ask the question: Suppose (5.6) is an asymptotic
expansion, when does the perturbation series start to
blow up? Taking the values (5.2) and (5.3) and estimat-
ing the “blow-up number” from

WG (GA?) 1k (5.7)

26 The third class consists of only strongly interacting external
particles. This class has been discussed by M. B. Halpern, Phys.
Rev. 163, 1611 (1967), and his arguments confirm our hypothesis
for the third class also. We shall therefore not discuss this class
further.

%7 In estimating the behavior of the nth order we have ignored
the possibility that Schwinger terms can contribute. If they
contribute, the power series would become more divergent (see
Refs. 1 and 15), but we could still introduce a “coupling constant”
GA?. The “blow-up number” would, however, be reduced con-
siderably. In some cases Schwinger terms can contribute (even
if they are ¢ numbers), and in these cases perturbation theory
would not behave so nicely.
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we get #~10*! Now this number may of course in some
cases be too high,?” but at least we can take it as an
indication that with a cutoff A=3 BeV we do not have
to worry about the perturbation series from the point
of view of numbers, since the first couple of hundred
orders are very small.

From the point of view of principles, the behavior
(5.6) is of course not very satisfactory. The non-
renormalizable character of the weak interactions is
obvious since we cannot even renormalize the leading
term (5.6). In nth order one can of course introduce a
renormalized coupling constant G"A**2=Gie. But in
(n+1)th order one has to introduce another renormal-
ized coupling constant, etc., so the number of renor-
malized constants depends on the order. The most
economical way to proceed is to define the two “coupling
constants” (5.2) and (5.3) and forget that A is infinite.
We then “renormalize” A to give the correct K%K g°
mass difference. Clearly this is an unsatisfactory theory

from the point of view of principles, but because of the

lack of a better theory we think that the above estimate
of the blow-up number is encouraging from a practical
point of view.

If one looks upon the perturbation series as an
asymptotic expansion, it follows that the terms of order
G(GA?)» ! are also the leading terms in each order. This
implies that one can calculate the most important con-
tribution in each order in a relatively simple way. If
one also wishes to calculate the nonleading terms this is
usually an impossible business, since detailed knowledge
of the strong interactions is necessary. A simple way to
test this view is to predict some other higher-order weak
processes with A=~3 BeV and compare the result with
experiments. At present the experimental situation does
not allow us to make such comparisons, and more
accurate experiments are therefore badly needed. The
program of calculating the weak-interaction cutoff from
some process and then using this information for pre-
dictions has been discussed by Ioffe in several interesting
papers.®

Finally we mention that the need for two coupling
constants G and GA? might be an indication that a more
satisfactory theory of weak interactions requires two
coupling constants. Such a modification would possibly
be nonlocal, since A=23 BeV means a nonlocal theory.2?
Also, let us emphasize once more that the arguments in

%8 A=~3 BeV indicates a strong nonlocality, since a local theory
has A= . This immediately leads to the question: Where does
the nonlocality come from? One might think that somehow the
strong interactions are able to cut off the weak interactions (in the
form of nonlocal “forces”). If this is true, it is reasonable to assume
that the mysterious division of the forces (strong, weak, and
electromagnetic) among the various particles will find its solution
once we really understand the weak interactions. Of course one
can produce models of nonlocal theories giving finite weak inter-
actions in terms of one or more “form factors”; however, this does

not solve the problem as long as we do not understand the origin
of these form factors.
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this section do not intend to prove anything, but should
be considered as heuristic.

6. RADIATIVE CORRECTIONS TO = — ev
AND = — uv

As another application of the analysis in Sec. 2 of the
asymptotic behavior of the three-point function we
consider the radiative corrections to w— ev and m— u.
We do this mainly because this example indicates that
the expansion obtained in Sec. 2 cannot be applied to
all cases.

Berman?® observed in 1958 that the radiative correc-
tions to the ratio of the decays #— ey and 7#— v is
finite in a special phenomenological model. Recently
Das and Mathur derived the same result by use of
current-algebra methods.!* The very interesting point
in their paper is that this result is true independently of
any model for the equal-time commutators. Hence, if
one wants to learn what the correct set of commutators
is, one has to study the radiative corrections to the
individual processes m— ev or m— uv.

Das and Mathur! have shown that the total matrix
element for #~— I=5, with radiative corrections is given

by
MO =—mF(14af)a(p) (1+vs)v(p2) ,
fi=(1/8a*F.)[A+Bi+Cy].

Bj can be calculated from the usual Bjorken limit and
C, is trivial; one then obtaing’%:30

6.1)
(6.2)

d'q
By=%iF,(2a+d—11/3) / —+convergent part,
¢

) (6.3)
L[4
C;=F,|:21 / ——-—1171'2:| .
g4

The constant 4, which is independent of the lepton
mass, is given by

1 [dyg
A=—o / —kT (k)
m1r2 g2 .

(6.4)
Tuvo(kyg)=1 f / dxdy eir=—ity

XQO[T(V e (2) V@ (0)4,P () |[7— (%)),

where V,e™)(x) is the electromagnetic current. If we
can find the asymptotic behavior of 7., we can find
whether f; is finite or not.

Using the methods of Sec. 2, Eq. (6.4) can be written
asymptotically as

205 M. Berman, Phys. Rev. Letters 1, 468 (1958).
% The constants ¢ and d determine the model for the space-
space equal-time commutators. See Ref. 11 for these definitions.



2178

P. OLESEN

175

Tonollsg) — ;—’ / diy f B3 00| TV o (2), V> e (0) Jeoadd o 5)) | 7~ (4))

_g_ [ [ T([;Z;V,Kem) @7, @m)(o)lo‘oA,(y))lvr‘(k»

L f ay [ G =530 TV, (1), Ao (3) Jromael @™ () |7~ (8)).  (6.5)
do

The last term is of order 1/g¢?, as can be seen by further expansion. The first term does not contribute to the
constant 4 for symmetry reasons. The constant 4 can then be expressed as

A= ——mizk" { / f dbydis e+v(0) T(I:B%V,. (om) (z7), o) (0)]“‘0.4,(3')) [7~)

+ff Py O |V, A,V O ) [aae. G0

20=y0=0

The interesting question in connection with Eq. (6.6) is
the following: In Ref. 12 a model was constructed
which gave finite radiative corrections to 8 decay. Does
this model also give finite radiative corrections to
a—> Iy decay? The point is, as we see from Eq. (6.6),
that the problem of w—# does not have much in
common with 8 decay, which depends on commutators
like

[V e (x),4,(0) ] z0=0 6.7)

but 7ot on the commutator

3
[Lreare=o] . 6
920 20=0

which enters Eq. (6.6). Hence, without some detailed
model of the Hamiltonian, the model in Ref. 12 does
not say anything about the finiteness of =— /v decay.
In the algebra of fields the commutator (6.8) can be
expressed in terms of the product of two currents'®
[only space-space components contribute in (6.6)], but
this does not help us since we cannot evaluate the
resulting matrix element. One can make an approxima-
tion of keeping only the vacuum as intermediate state
in the first term of Eq. (6.6), and it is then seen that in
all models this term vanishes trivially since (0| # | 0)=0.
One can than calculate the last term in (6.6), and by
adding the result to (6.3) one obtains a value for (6.2).
Tt turns out that in none of the models for (6.7) does
one get a finite result. Because of the approximation
involved this is not a well-established conclusion.

7. GENERALIZED TAMM-DANCOFF METHOD

In this section we would like to point out that the
formulas for the asymptotic behavior of the z-point
function developed in Sec. 2 sheds some light on the
validity of the generalized Tamm-Dancoff method.®1¢
In its simplest form, this method says that it is a good
approximation to write

(O] T(5*(x) () 7°(0)7(0)) | 0)
~ (0] T(5'(%) 7*(0))| 0){0] T(j*(x) 7(0)) | 0)
+{0] T(5*(x) 7°(0)) [0)0] T(5*(x) 7(0)) | 0)

where 71 .-, 7* are four local operators. We shall now
show that our formalism in Sec. 2 gives rise to approxi-
mations similar to Eq. (7.1) under certain circumstances
to be specified later on.

Suppose we want to calculate the quantity

(7.1)

I= f (A | T, PO FO0) ] B), (12)

where |A) and | B) are at the moment arbitrary states.
The integral I is characteristic for the calculation of
second-order mass differences, and the K%K gs® mass
difference calculation in Sec. 4 is a typical example of
Eq. (7.2). In the same way as in Sec. 4 we have [see

Eq. (4.10)]

I= 202m)" / d*q[A%(g, —q)+A%g, —¢)], (7.3)

where the A’s have the asymptotic behavior [see
Eq. (4.14)]
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2
g, =870, ~0) = | [P I 7016, 011B)

+ (A I []2(x)’]3(0) ][]1(90/)7]4(0)] ’ B)} 20=x0’ =0

1
—— [ [ @i 4 #OLL@, 402 B+ A PO, O B)
q

+ (4| [0 #),5°(0)1,5*)15*(0) | B)+(4 | [[72(x),7(0)],5*(&") ]74(0) | B)} somzqrmo.  (7:4)

Now, let us make the following two approximations:
(i) It is a good approximation to keep only the vacuum
state in sums over intermediate states in Eq. (7.4).
(ii) The matrix elements (4| 73(0)|0) and (0| 74(0)| B)
are either identically zero (e.g., because of quantum
numbers) or they are very small.

With these two conditions satisfied, Eq. (7.4) reduces
considerably. We can then imagine that the resulting
expression is the asymptotic expansion of

A%(g, —g)+A%(g, —¢)
~2 f / d*xd*x' (4| T(j*(x) 73(0)) | 0)
X{0| T(52(x") j4(0)) | B)eiartit-=0a’
12 f f ded's' (4| TG) %(0))] 0)

X (0] (@) 740)) | Byeie—ie,
which, when inserted into Eq. (7.3), gives

Iz/d"x

XA T ) 200 00| T(5*(x) 4(0)) | B)
H(A] T (@) 72(0)|0XO| T5'(%)5*O0D [ B)}, (7.6)

(7.5)

which is a result very similar to the Tamm-Dancoff
type of approximation (7.1).

In the K1°-K g mass difference calculation condition
(ii) is trivially satisfied because of quantum numbers.
The reason why the calculation by Marshak ef al.8 gives
the same answer as the calculation we performed in
Sec. 4 is precisely that, with assumption (i), condition
(ii) is trivially satisfied.

The work in this section suggests (but does certainly
not prove) that the Tamm-Dancoff approximation is
best for small values of .

Finally, let us mention that it is easy to extend the
considerations in this section to more than four opera-
tors. The result again confirms the Tamm-Dancoff type
of approximation if (i) is valid and if a generalized
version of (ii) is valid.
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