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which vanishes in the limit, n ~oo by virtue of (A4).
The argument goes through in similar fashion for E„(2&

which vanishes in the limit n —+oo by virtue of (A4).
We conclude ths, t with the replacements ReA t(s) ~

aft'(s) and InL4t(s) ~dr(s) the expansion (7) con-
verges for complex values of s such that s LEq. (Al)j
lies in region I and the expansion (8) holds for values of
s in region II.
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A generalization of the Bjorken limit {for the two-point function) to the three-point and four-point
functions is given. Some general features of the asymptotic behavior of the n-point function are also dis-
cussed. These results show that in calculating the various Ward identities for the n-point function all
currents are "asymptotically conserved. " We derive generalized Weinberg sum rules for the three-point
functions (these results can be generalized to the n-point functions). We show that the ICI, -Eg mass dif-
ference (in the universal Fermi theory) is quadratically divergent. Making a saturation assumption, we
calculate the coe%cient of the quadratic divergency and we get a weak-interaction cutoR h.=4 BeV, sug-
gesting that weak interactions are strongly nonlocal. By means of a simple power-counting argument, we
find that the nth order probably behaves like elG(GA. ')" ', and assuming that this is some kind of asymp-
totic expansion, we find that the series begins to blow up for n~104. The arguments for this do not con-
stitute a proof. We then study the radiative corrections to the decays x -+ eu and m ~ pv, which involve
a three-point function. We find that these decays cannot be discussed within the framework of current
algebra. Finally we show that a somewhat generalized version of the Tamm-Dance' approximation can
be justified if we use our results for the n-point function.

1. INTRODUCTION

S OME time ago Bjorken proposed' a method for
calculating the (virtual) asymptotic behavior of the

two-point function. This method has been very useful
in estimating the radiative corrections to P decay"
(coming from high virtual masses) as well as the electro-
magnetic mass difI'erences. ' ' In this paper we shall
generalize Bjorken's expansion to the three-point func-
tion as well as the four-point function; it is possible to
obtain general results for the n-point function also.
Such a generalization is required in order to discuss
several interesting physical problems, e.g., the EI, -Eq
mass difference (in the current-current interaction).
The main results of this paper are the following:

*Work supported in part by the U. S. Atomic Energy
Commission.' J. D. Bjorken, Phys. Rev. 148, 1467 (1966).

~E. S. Abers, R. E. Norton, and D. A. Dicus, Phys. Rev.
Letters 18, 676 (1967); E. S. Abers, D. A. Dicus, R. E. Norton,
and H. R. Quinn, Phys. Rev. 167, 1461 (1968).

g M. B. Halpern and G. Segrh, Phys. Rev. Letters 19, 611
{1967);19, 1000 (1967); G. C. Wick and B.Zumino, Phys. Letters
25B, 4'/9 (1967l.

In Sec. 2 we generalize the Bjorken expansion to the
three-point and the four-point functions. We also give
a method for calculating the n-point function.

In Sec. 3 we show that the results obtained in the
previous section can be used to prove the following
theorem: Assuming the ordinary current algebra, all
currents are "asymptotically conserved" in the sense
that in calculating Ward identities for the n-point
function

~ ~ ~ d'4g . . .d4g g'bgl&l+' ' '0 &On&n

X(A I~(f.,- &")

it is correct to assume that in time-ordered products

ctemj am(z ) =P (1.2)

for all n's in so far as we are only interested in the
leading terms of the n-point function. This theorem is
evidently of practical importance since it shows that
asymptotically the Ward identities allow us to express
the n-point function entirely in terms of the (n —1)-
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point functions. One can also obtain a somewhat related
result which is a generalization of Weinberg's 6rst sum
rule' (which has been shown to follow from the 3jorken
limit for the two-point function) s If the states

~
A) and

~B) in (1.1) are both equal to the vacuum state, our
result means that asymptotically we have SU(3)8SU'(3)
symmetry. The idea of asymptotic symmetry was
introduced in connection with Weinberg sum rules by
Das, Mathur, and Okubo. ' Intuitively one would

expect this to happen in the asymptotic limit because
the masses are not expected to play any role in the
limit; however, against this argument one can say that
our theorems apply to the asymptotic limit g„„~~
but infinitely off the mass shell, ~g

s
~

—+ ~, and it is
somewhat di8icult to apply physical intuition in6nitely
o6 the mass shell.

In Sec. 4 we apply the technique developed for the
three-point function to calculate the EI.O-Ego mass
diBerence in the universal Fermi theory. Wc show that
this mass difference is quadratically divergent with
coeKcients of the type

(Ee
~
A„ss(0)Ass'(0)

~
Ee). (13)

CA„(x) Is tile RxIal-vcc'tol' clil'1'cnt, and we use the
tensor notation. rj To find the numerical value of the
coeKcient of the quadratically divergent term, one
therefore has to insert a set of intermediate states in

(1.3) and do some saturation with a few states. If one

only inserts the lowest states, one obtains

M'(K ') M'(E ')—
= (2.5G/16rrs) (GAs) sin'0 cos'8 Mx'Fx', (1.4)

which gives a cutoff A—3 BCV. Equation (1.4) has

recently been obtained by Marshak ef al.s using the

Tamm-Dancoff Rppl oxlmatlon. ' PI'cvlously Ionic Rnd

Shabalin' have calculated the EI,'-E80 mass difference

in the W theory (which is an easier problem than in the

Fermi theory if one uses a Ward identity and "asymp-

totic conservation of currents"), and the result is

essentially the same as (1.4).
In Sec. 5 we use our general results on the n-point

function to study the weak interactions to nth order.

It turns out that the leading divergency (in the uni-

versal Fermi interaction) is of the order (to all orders in

4 S. Weinberg, Phys. Rev. Letters 18, 507 (1967).' H. T. Nieh, Phys. Rev. 163, 1769 (1967).
6T. Das, V. S. Mathur, and S. Okubo, Phys. Rev. Letters 18,

761 (1967).
r J.J.De Swart, Rev. Mod. Phys. BS, 916 (1963), and references

therein.
8 R. N. Mohapatra, J. S. Rao, and R. E. Marshak, Phys. Rev.

Letters 20, 1081 (1968); S. L. Ioffe, in Proceedhngs oi the 1967
Ini'creational Conference on Particles and Iiidds (Interscience
Publishers, Inc. , Near York, 1967), p. 447 and references therein;
see also B.L. Io6e and E. P. Shabalin, Yadern. Fiz. 6, 828 (1967)
LEnglish transl. :Soviet J. Nucl. Phys. 6, 603 (1968)j.

9 H. P. Burr, W. Heisenberg, H. Mitter, S. Schlieder, and K.
Yamazaki, Z. Naturforsch. 14A, 441 (1959).

10 S.OhIIbo and R. F.. Marshair, Nnovo Cimento 20, 791 (1961).

strong interactions but neglecting electromagnetic
interactions)

G(GAs)" ', (1 5)

which shows that the behavior of the weak interactions
depends on two "coupling constants" G=10 '/M„'
and GAs =10 ' )from Eq. (1.4)$. From the point of view

of principles, this reQects the well-known nonrenor-
n1alizable character of the weak interactions. From a
more practical point of view, Eq. (1.5) strongly suggests
that the perturbation series is an asymptotic expansion
(valid only with G= 0), and since GLV is very small from

thc EJ -E8 mass dlGcrencc wc can usc this scIMS fol
an evaluation of the weak amplitudes up to a certain
order where the series starts blowing up. By simply
counting the number of terms contributing to the
leading term (1.5), one finds that the series should not
begin to blow up before n= 10 000. The results in this
section are certainly not proved, but should be con-
sidered as a conjecture.

In Sec. 6 wc discuss radiative corrections to m ~ p~

and x —+ er decays, which involve the three-point
function. It has been shown by Das and Mathur'» that
the radiative corrections to the branching ratio for
these decays are 6nite. It is not possible to arrive at a
definite conclusion concerning the possible ininities in

the decays. However, making an approximation of

keeping only the lowest intermediate states in a
particular term which cannot otherwise be calculated,
one 6nds that in none of the models for the equal-time

commutators (including the model of Johnson et ul. and

Cabibbo et al. is) proposed so far are these radiative

corrections unite. However, because of the approxima-

tion involved this is certainly not a well-established

conclusion.
In Sec. 7 we point out that asymptotically approxi-

mations of the type

are good approximations if one saturates with a fcw

11itcrmcdlatc s'tRtcs. Tllc appi'oxlIllatioll (1.6) ls R

gencrahzed Tamm-D ancoG Rppl oxlnlatlo11 ' used

recently. '"
2. ASYMPTOTIC BEHAVIOR OF

n-POINT FUNCTION

In this section we shall discuss the asymptotic be-

havior of the n-point function, which we define as (we

"T."Das and V. S. Mathur, Rochester report, 1967 (un-
published).

'~ K. Johnson, F. E.Low, and H. Suura, Phys. Rev. Letters 18,
1224 (1967); ¹ Cabibbo, L. Maiani, and G. Preparata, Phys.
Letters 258, 31 (1967);258, 132 (1967}."S. Ii; 1)iswas and J. Smith, Phys. Rev. Letters 19, 727 (1967),
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ASYM P TOTI C BEHAVIOR OF n —P0 I NT F UNCTION

Here we assume that the Feynman theorem" can be
generalized so that seagull terms again cancel Schwinger
terms, so that the left-hand side of Kq. (3.5) is co-
variant. That such a generalization is probably true
follows from the fact that this theorem is based on very
general arguments. 'r Using Eq. (2.23), the last term on

the right-hand side of Eq. (3.5) becomes

(gr)o

~ ~ ~ d4g . . .de ~sgQ&2+' ' '+std-1ts —1

X g b(xi —x o) (A
~
T([8"'j„(xl),j„„"(*}]

&&j..- (")" [j]..a™(x-)"j..--(0))I»
Xeisl*ia (3 6)

with j„' j„"conserved, (3.9)

in the same asymptotic Emit (3.8). The right-hand side

of Eq. (3.9) gives the leading asymptotic behavior.

Hence, ln obtalnlng all possible %ard ldentltles f lorn

the n-point function one can assume that all currents

are conserved as far as the leading asymptotic behavior

ls concerned. This result has some lmpllcations in

connection with a recent work by Schnitzer and

Weinberg" (using Ward identities for the three-point

function), but we shall not discuss this point further in

this paper.
It is also possible to obtain results which generalize

the Grst Weinberg sum rule. 4 Let us illustrate this by

"H. J. Schnitser end S.Weinherg, Phys. Rev. 164, 1828 (196/).

Now, by letting all the energies go to infinity the
integral (3.6) can be expressed in terms of equal-time

commutators, and the integral in (3.6) behaves in the
same way as a function of the q's as the erst term on the
right-hand side of Eq. (3.5) in the same limit (the
coeKcients of the g-dependent terms are of course
diferent). Therefore

g &'Ts ...„„''' "(gi ' g„)
=gr"'LT.,-'." '"(gi" g-)]

with j» ' conserved, (3./)

in the asymptotic limit

(gi)e~ ~i (ge)S~ ~i ' '1 (ga—1)S~ ~i
(gi)s~ —(g-)o, (3 8)

if all the g's are indepetsderif (this condition is essential).

Ke can obtain further Ward identities by contracting
with respect to other g's. Again the result is

giii1. .g iiiT a1'''aa(gi. . .g )
~g iii. . .g iii[T a1 "aa(gr. . .g )]

considering the two-point functions. ' For definiteness
let us consider two states

~
A) and

~
8) with the same

parity, Rnd define the two-point functions

A„, e(g) = —i d4x e'&*(A
~
T(A„(x),A.e(0))

~
8),

V„, e(g) = —i d4x e"*(A
~
T(V„"(x),V„e(0))

~
8),

where A„(x) is the axial-vector current and V„a(x) is
the vector current. Using the Bjorken limit and the
assumption

[A„(x),A,e(0)]., p= [V„(x),V„e(0)]„s, (3.11)

it follows that

»m [A"'(g)—V. '(g)7=o [as ~1(1/g)]. (3 »)

The assumption (3.11) is certainly valid in the current
algebra's (in the sense of the quark model) and the
algebra of fields. "In using the Bjorken limit it is not
necessary to assume that Schwinger terms are absent.
If these terms are present A„, & and V„, & are not co-
variant, but if Eq. (3.11) is satisfied it still follows from
the Bjorken limit that Eq. (3.12) is valid. Alternatively,
one can define covariant amplitudes (3.10), and in this
case Kq. (3.12) is also valid because the seagull terms
[which we have to add to (3.10) in constructing a
covariant amplitude] combine with the Schwinger
terms in such a way that the asymptotic behavior of the
covariant amplitudes is a constant (instead of 1/g), as
has been shown by the author. But if Eq. (3.11) is
satisfied, the Schwinger terms are identical for the
vector-vector and the axial-vector —axial-vector com-
mutators, and once again we arrive at Eq. (3.12).Hence
in all cases Eq. (3.12) is a consequence of Eq. (3.11).

If the states
~
A) and

~
8) are identical to the vacuum

state, Eq. (3.12) gives the first Weinberg sum rule. 4 The
fact that the 6rst steinberg sum rule ls a consequence
of Eq. (3.11) is well known. ' In this case we can state
our result by saying' that Eq. (3.11) implies asymptotic
SU(3)@SU(3).However, we want to emphasize that
the consequences of Eq. (3.11) are much more general
than the first Weinberg sum rule, since (A) and ~B) can
be arbitrary states with the same parity.

%e now explore the situation for the ~-point func
tion. Since we found in Sec. 2 that by Rn appropliate
definition of the asymptotic limit it is possible to

ress the e-point function in terms of n —1 equal-time
commutators in the asymptotic limit, it is obviously
suaicient to consider the three-point function. The re-
sults can be extended quite trivially to the n-point
function. Let us this time consider two states (A) and
[8) with different parity and define
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1'„,„,„, ' ' '(sp)"~~= —:fs'xd'pi~" (A"I1'(2„, '(x)A„, '(p)A„,"(0))Is),

asasas(g p) FFA— (f'nay s's~'»(A
I T(V„, )(z)V„, s(y)A„, s(0)) I 8),

(3.13)

"""(sP)'""=— fs'~'p~""""(~I)'()' "(*)~ -(p))'. (s))I»,

d'zd'y s'&~'»(A
I T(A )(x)V as(y) V s(0)) I a)

Using now the asymptotic limit (2.8) for each of the

amplitudes (3.13) one can verify that in the algebra of

6elds, '9 where

Ljs (&) i'(o) j*,=s=&f"i"(0)&'(*)
+cb.&{a/a*.)Ss(z)g„„(3.14)

Ci"(*),i'(0)j..-s =o,

where c is a (fmite) (; number, we get

T a)asas(~ P)AAA ~ T „a)asas(g P)FFA

a)asas((f p)F'AF

a)asas(g p)AFF

IPoI " I& +PsI

In the current algebra we cannot make a similar state-
ment since the Schwinger terms are not known to be

c numbers. However, if we assume that Schwinger

terms are (: numbers, it again follows that Eq. (3.15) is

valid in the (quark-model) curient algebra. If one

wants to formulate quite generally what the condition

for the validity of (3.15) is, it turns out that one has to
require Eq. (3.11) as well as

CA.,"(*),LA.."{y)A""(0)Z*s=.s=o

=LV„"(*),CV.;{y),A.."(0)jj.,=..=o

=CA„"(z),CV,."{y),V.. '(0)3j*.=..= (3 16)

This condition is satis6ed in the algebra of 6elds and

(with the assumption about (:-number Schwinger terms)

in the current algebra.
Equation (3.15) shows that we have generalized

Weinberg sum rules also for the three-point function.
If IA) and IB) are vacuum states it also follows that
asymptotic SV(3)(8)SU(3) is valid for the three-point

function. All these results can be trivially extended to
the e-point function.

Finally we mention that any three-point function
satis6es an asymptotic condition which is independent
of dynamics (it is, in particular, independent of current

algebra). Using Eq. (2.8) and the identity

CA, Cfl, t:jj+Ca,CC,A jj+CC,CA,aj7=0,

we get

+ )ps)ps)ps (P)g)+Tllsl4)ss (P)(())) 0 (3 17)

This is in general only true in the leading order.
Equation (3.17) can also be shown directly from
translational invariancc and by using the fact that
asymptotically the momenta P and q are much larger
than the momenta of the states

I A) and
I 8).

In the arguments above we have only made a 6rst-
order asymptotic expansion, and the sum rules (3.15)
are therefore only valid to the leading order. If one
makes further asymptotic expansions, it is necessary in
the case of the two-point function that

8—-A „(x),A„&(0)
-8$0

8
— V„(x),V„~(0)

-8'Jt'0
(3.18)

=—(2sr)s Res d'z(K'I T(H„(z)H„{0))IEs), (4.1)

"V. Barger and E. Kazes, Nuovo Cimento 28, 394 (1963).

order f«Eq. {3.12) to be correct. In the algebra of
fields Eq (3.16) is correct for y=k, F=s. However,
for @=0Eq. (3.18) 1s 110't colTect e.g. if (1=1 2 3 since

this case the left-hand side of Eq. (3.18) does not
vanish whereas the right-hand side does vanish. There-
fore we do not believe that the results (3.12) and (3.15)
are valid to second order in the asymptotic limit. This
means, e.g., that we cannot obtain the second %einberg
sum rules by this method (this is only possible if the
0 terms vanish).

4. Ago-J 80 MASS DIFFERENCE

In this section we shall discuss the EI,O-E80 mass
difference in order to learn something about the weak-
interaction cuto8 A..The mass diGerence is given by'~

3P(K1,s) 3P(K,s)'—
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where the relevant part of the weak Hamiltonian is

II„(x)= (G/242) sin8 cos8L{V„s'(x),V&r'(x) }
+{A„sr(x)A&rs(x)}j+(G/242) sln8 cos8

XP{V„'(x),A '(x)}
+{V„rs(x),A&s'(x)}$+H.c., (4.2)

in the usual tensor notation. ~ In the universal Fermi
interaction we are thus led to consider integrals of the
type

I= rs d4x(X
~ T({j '(x) j&'(x)}j,'(0) j"'(0))~K ), (4.3)

where j„'~ j„' are four currents distinguished by the
indices 1 ~ 4, and where we have used a symmetrized
(PC-invariant) Hamiltonian. It turns out that sym-
metrization of j„'(0)j"'(0) does not have any effect in
our method so we leave it out.

The integral (4.3) is extremely singular because the
theory of weak interactions is nonrenormalizable. It is
well known (see, e.g., Ref. 22) that in nonrenormalizable
theories the time-ordered product is not well defined,
because in the neighborhood of @0=0 the commutator
is extremely singular so that multiplication with 8(xe) we obtain

lim 8(e) = 1, lim 8(—e) =0,e~o+ y-+0+

becomes a rather meaningless operation. In renormaliz-
able theories the singularities are not so strong" and
the time-ordered product has therefore more meaning
in these theories. In the case of the integral (4.3), one
can easily see that a straightforward attack on (4.3)
leads to ambiguities in the form of contact terms, so
the 8-multiplication problem in nonrenormalizable
theories is not only a question of principles. In the
following we shall present a method which gives the
time-ordered product a more well-dined meaning than
Eq. (4.3) (in the sense that contact terms do not occur).

Let us consider the quantity

T"(*,*')= T(j.'(*)j"'(*')j.'(0)j"(0))
—8(*o')8(*o—*o')Lj'(*) j"'(*')jj'(0)j"'(o)
—8(—xe')8(» —*o')j'(o)j"'(o)Lj'(*) j"'(*')j (44)

By writing out the dednition of the time-ordered
product in terms of 8 functions and adopting the
definitions (which define how we are going to treat the
8-multiplication problem)

T"(x,x') = 8(xe)j'(x)js'(x') j'(OU"'(o)+8( —xe)j'(0)j"'(0)j.'(x) j"'(x')xp-xp'~0
—8(*o)E~.'(x), r"'(x')jj s(0)q i(0)—8(—*o)j,s(0)q (O) E~„'(x),j"'(x')j

= 8(»)j.'(*')j"'(*)j'(0)j"'(o)+8(—xe)j'(o) j"'(o)j'(*')j"'(*)
lim T"(x,x') = 8(xe) j„'(x')j&'(x)j„'(0)j"'(0)+8(—xII)j„.'(0)j"'(0)j '(x') j&'(x).

(4.6)

(4.7)

Thus, by the definition (4.4) we have achieved that T"(x,x') has the same value in the limits xs—x, ~ 0. The
addition of the terms containing the retarded propagator in Eq. (4.4) is absolutely necessary in order to achieve
this. Defining T"(x,x') as the same as T"(x,x') with j„'(x)~ j„'(x) and. j„'(x')~ j„'(x'), it is seen that Eq. (4.3)
can be rewritten in the form

I=1
2 d4xdix'8'(x —x') LT"(x,x')+ T"(x,x')j.

Introducing Fourier transforms,

T"(x,x') =
(2x)s

$4gif4qlsiqx+iq x +12(~ ~&)

(4.9)

we see that Eq. (4.8) becomes

~"(aa') = d4xd4x'e-'~* —'~'~'&" ~p ''~ir+1 r

I= d'gLLv'(g, —g)+LB'(g, —g)j.
2(2s-)' (4.10)

Thus, the problem of extracting the most divergent part of the Ez,'-Ea mass difference, is equivalent to studying
h(g, —g) for large values of

~
g'

~
. In view of the definitions (4.4), this problem can be attacked by use of the tech

nique developed in Sec. 2. At the same time we shall show (asymptotically, at least) that Eq. (4.10) is regul~~
and does not give rise to contact terms.

"K.Bardskci and B. Schroer, J. Math. Phys. 7, 10 (1966); 7, 16 (1966).
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we 6nd

d'*(0(») &E'll:j'(x),j"'(x)jj'(o) j"'(o)I&')

+(}(—«)&Eol j„a(0)j"'(0)Lj„~(x),j~(x)3IEe)}, (4.16)

which is a contact term. As we saw in Eqs. (4.11) and
(4.12), these contact terms are exactly cancelled by
contact terms coming from the time-ordered product in
the definition (4.4) of 2'"(x,x'). Hence the net result is
that the contact terms never contribute. This has of
course only been shown to order 1jg'.

Inserting the expression (4.14) into Eq. (4.10) we see
that the mass difference is quadratically divergent.
This result is based on the expansion in Sec. 2 and the
assumption that Schwinger terms do not enter. ' "No
other assumptions have been made. It is very unlikely
that Schwinger terms enter. If they are c numbers with
the same structure as in the algebra of 6elds, "it can be
shown that these terms do not enter.

Using the equal-time commutators in the algebra of
fields, "it can be seen that Eq. (4.14) reduces to the
matrix elements of two currents. Hence, to calculate
the numerical coefBcient of the quadratic divergency it
is necessary to saturate. Saturating with the lowest
possible state, namely, the vacuum state, and using the
explicit form of the Hamiltonian (4.2), we get

M'(Er. ')—M'(E', ')
2.5 sin'8 cos'8

O'A'Frr'M»' (4. .17)
16m'

which gives A—4 BeV. This is a very nice result in the
sense that A is far below the unitarity limit. In Sec. 5
we shall discuss the physical importance of this.

Recently Mohapatra, Rao, and Marshaks have
calculated the EL, -Eg mass difference using a general-
ized Tamm-Dance approximation. 9' The result is
the same as Eq. (4.17). In Sec. 7 we shall show why the
Tamm-Dancoff method gives the same result as the
asymptotic expansion if one keeps only the vacuum
state.

In general, Eq. (4.14) leads to the expression

M'(Ez, ') M'(E8 ) = (Gjv2—)' sin'(} cos'e

&&(A j16-)&E'I&j."(0),j"'(0» IE'), (4»)
where j„x'(x) is the neutral isotopic partner of the
current. We shall not attempt any estimate of contri-
butions from other states than the vacuum state. It is
easy to see, however, that the matrix element on the
right-hand side of Eq. (4.18) has a behavior which
depends very much on the dynamics of the strong
interactions. Assuming a dipole form factor for the
vertex

(E I
j„'(0)Is' ), (4.19)

the matrix element in Eq. (4.18) is convergent, whereas

it diverges if one assumes a single pole form factor for
the vertex (4.19).

We shall not discuss the evaluation of the mass
difference in the vector-boson theory. However, we
mention that the theorem on "asymptotic conserva-
tion" of currents discussed in Sec. 3 cannot be applied
in this case since the relevant four-vectors are not
independent. "

and

M'(EI, ')—M'(Ea') G(GA').
G=10 '/M ',
O'=—GX2= )0-4.

(5.»

(5.2)

(5.3)

In this section we would like to give arguments which
support (but which do certainly not prove) that as far
as the leading (mathematically speaking, divergent)
order is concerned one can view the perturbation series
as an expansion of the type G(G')" ', involving two
"small" coupling constants. Taking this for granted,
we can then estimate where this asymptotic series
(mathematically valid only for G= 0) begins to blow up,
and we 6nd that this happens for n 104.

Let us 6rst try to apply simple power-counting
arguments to the weak (universal Fermi theory) inter-
action. We include strong interactions to all orders but
completely ignore the electromagnetic interactions. If
we include the latter our conclusions are not valid, and
one can 6nd definite counter-examples. In this connec-
tion we also mention the work by Lee and Yang. '4

We divide the weak interactions into three classes.
The first class consists of the processes involving only
leptons as external particles. In this case the power-
counting argument has been used by Feinberg and
Pais" for the H/' theory. They find that for diagrams
containing uncrossed ladders the leading term is of the
form

G(GA')'"-' or G(GA')»+r (5.4)

"If one calculates the ICI,'—Eg' mass difference in the inter-
mediate 8'-boson theory, a genuine four-point function is in-
volved. We found that not much can be done since the calculation
depends on commutators like

L(8/sxo) j„'(x),j,g'(y) j,~ „o, L(8/Bxo)J '(s), (a/ayo) J, '(y) j,
and even in the algebra of 6elds this leads to matrix elements
which we are not able to evaluate. Thus, in the 8' case we are not
able to Gnd support for the calculations in Ref. 8.

'4 T. D. I ee and C. N. Yang, Phys. Rev. 128, 885 (1962);T. D.
Lee, ~bid. 128, 899 (1962)."G. Feinberg and A. Pais, Phys. Rev. 181, 2724 (1963).

S. WEAK-INTERACTION CUTOFF AND HIGHER-
ORDER WEAK INTERACTIONS

The main result of Sec. 4, namely, the indication
that A is a "small" quantity (in the sense that it is much
smaller than the unitarity limit 300 BeV), is very
interesting from a practica, l point of view. The order of
magnitude of the mass difference is then (we disregard
the depression coming from sin'8}
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particles. 26 This class consist of diagrams where the
external leptons originate from the strong-inter. " I;ion
bubble (Fig. 1(a)j as well as diagrams where c e or
more external lepton pairs originate from ~ Irely
leptonic processes I Fig. 1(b)]. Clearly, throug the
Feinberg-Pais argument'k diagrams of type 1(1 can
easily be taken care of once we know the behavior of
the diagrams of type 1(a). These diagrams are of the
type Lwe consider for de6nitcness Fig. 1(a)j

FIG. 1. Typical fourth-order diagrams
for a semileptonic process.

the last result being true if the lowest-order process is
forbidden. Ke have translated the results of Feinberg
and Pais from the 8" theory to the universal Fermi
interaction, which can be done either by repeating the
arguments of Ref. 25 for the latter case or by letting
~~—+ oo in a suitable way. The only complications in
this argument come if, e.g., a virtual lepton pair
annihilates and then undergoes a scmilcptonic process,
creating, e.g., a neutral pion, which undergoes some
comp11catcd pl'occss (111volvlllg stl'ollg IIl tel'Rctlolls) Rlld

fInally decays to a virtual lepton pair. This type of
intermediate process was not considered in Rcf. 25. Thc
Inatrix element for processes of this type involves the
vacuum-expectation value of the time-ordered product

of a certain number of weak currents. From Sec. 2 wc

know that th18 cxpcctRt1on VRluc asymptotlcRlly can

be expressed, in terms of equal-time commutators, and

current algcbI'a ajIovvs us to I'cducc thcsc commutators

a sum of various currents. Thus the leading order in

an asymptotic expansion vanishes (this is true in the

algebra of 6elds at least, since the space-space com-

mutators vanish), and it then follows that diagrams of

th1s type glvc r1sc to less divcl gent 'contributions

than (5.4).
The second class of processes are the semileptonic

processes where at least one of the external particles is
llot. R lcptoll (wc include also p dccRy 111 this class) bll't

where not all external particles aI'e strongly interaction

)(SCklzx+ikkek+fkkek (5 5)

with an asymptotic behavior of the order 1/O'. We
furthermore have three propagators which behave like
1/O'. We have three virtual momentum integrations,
so a simple power-counting argument gives the result
that the diagram behaves like G'A. '= G(GA')' in accord-
ance with the conjecture. Figure 1(b) behaves in the
same way. The arguments can of course trivially be
extended to eth order. '~ In the 8-matrix expansion
there is a factor 1/I , but .it is well known that it is
cancelled by the fact that there are n I diferent distribu-
tions of the points x1 ~ x„. Hence, according to Eq.
(2.24) there are in general (n —1)!terms Lsome of them
can of course vanish, but (I—1)!is an upper limit on
the number of terms) in the asymptotic expansion of
thc FoUI'1cI' tI'RnsfoI'IQ of thc time-ordered pI'odUct of tb

currents. From current algebra each of these terms is
of order 1 fat least when compared to (I 1)!j and —in
diagrams of type 1(b) there are (I—2)!, (n—3)!, etc.,
terms, so altogether ts should be an upper limit on the
sum of terms in the eth order. Hence, as a rough
numerical estimate of the nth-order perturbation
theory» wc have

I!G(G+k)n—1~@nG(Ggk) e—1

To gct a diIQcns1onlcss quantity wc multiply by ~&2,
Rlld Rsk tllc question: Suppose (5.|k) is sn asymptotic
expansion, when does the perturbation series start to
blow upI Taking the values (5.2) and (5.3) and estimat-
ing the "blow-up number" from

(5.7)

"The third class consists of only strongly interacting external
particles. This class has been discussed by M. 3.Halpcrn, Phys.
Rev. 163, 1611 (LNP), and his arguments coxdirm our hypothesis
for the third class also. %e shall therefore not discuss this class
further.

~~ In estimating the behavior of the nth order we have ignored
the possibibty that Schwingcr terms can coIltr1bute. If they
contribute, the power series would become more divergent (see
Refs. 1 and 15), but we could still introduce a "coupling constant"
QA.2. The "blow-up number" would, however, be reduced con-
siderably. In some cases Schwingcr terms can contribute (even
if they are c numbers), and in these cases perturbation theory
would not behave so nicel.
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we get n 104!Now this number may of course in some
cases be too high, 2~ but at least we can take it as an
indication that with a cutoff A. =3 BeV we do not have
to worry about the perturbation series from the point
of view of numbers, since the 6rst couple of hundred
orders are very small.

From the point of view of principles, the behavior
(5.6) is of course not very satisfactory. The non-
renormalizable character of the weak interactions is
obvious since me cannot even renormalize the leading
term (5.6). In nth order one can of course introduce a
renormalized coupling constant G"A2" '—=G„„.But in
(e+1)th order one has to introduce another renormal-
ized coupling constant, etc., so the number of renor-
malized constants depends on the order. The most
economical way to proceed is to define the two "coupling
constants" (5.2) and (5.3) and forget that h. is infinite.
We then "renormalize" A to give the correct EI,'-E8'
mass difference. Clearly this is an unsatisfactory theory
from the point of view of principles, but because of the
lack of a better theory we think that the above estimate
of the blow-up number is encouraging from a practical
point of view.

If one looks upon the perturbation series as an

asymptotic expansion, it follows that the terms of order
G(GA')" ' are also the leading terms in each order. This
implies that one can calculate the most important con-
tribution in each order in a relatively simple way. If
one also wishes to calculate the nonleading terms this is
usually an impossible business, since detailed knowledge
of the strong interactions is necessary. A simple way to
test this view is to predict some other higher-order wea, k
processes with h —3 BeV and compare the result with
experiments. At present the experimental situation does
not allow us to make such comparisons, and more
accurate experiments are therefore badly needed. The
program of calculating the weak-interaction cutoff from
some process and then using this information for pre-
dictions has been discussed by Ioffe in several interesting
papers. '

Finally we mention that the need for two coupling
constants G and GA2 might be an indication that a more
satisfactory theory of weak interactions requires two
coupling constants. Such a modi6cation would possibly
be nonlocal, since A—3 BeV means a nonlocal theory. '
Also, let us emphasize once more that the arguments in

+ A—3 BeV indicates a strong nonlocality, since a local theory
has h.= 00. This immediately leads to the question: Where does
the nonlocality come fromm One might think that somehow the
strong interactions are able to cut off the weak interactions (in the
form of nonlocal "forces"). If this is true, it is reasonable to assume
that the mysterious division of the forces (strong, weak, and
electromagnetic) among the various particles will find its solution
once we really understand the weak interactions. Of course one
can produce models of nonlocal theories giving finite weak inter-
actions in terms of one or more "form factors"; however, this does
not solve the problem as long as we do not understand the origin
of these form factors.

this section do not intend to prove anything, but should
be considered as heuristic.

f&= (1lg~'F.)P&+A+ C&j. (6.2)

Bt can be calculated from the usual Bjorken limit and
C~ is trivial; one then obtains" "

de
B& 43iF (2a+d ——11/3) +—convergent part,

g4

de
CI,——Ii 2i —11+2

(6.3)

The constant A, which is independent of the lepton
mass, is given by

de
k T„~.(k),

2 2

T„,.(k,g) =i g4&d4& &iqx—iky
(6.4)

X(OI7'(V, '-&(*)V,&-&(0)~.'+&b))
I -(k)),

where V„!'m&(x) is the electromagnetic current. If we
can find the asymptotic behavior of T„, , we can 6nd
whether f& is finite or not.

Using the methods of Sec. 2, Eq. (6.4) can be written
asymptotically as

~' S. M. Herman, Phys. Rev. Letters 1, 468 (1958).
'~ The constants u and d determine the model for the space-

space equal-time commutators. See Ref. 11 for these definitions.

6. RADIATIVE CORRECTIONS TO e —& ev
AND m~yv

As another application of the analysis in Sec. 2 of the
asymptotic behavior of the three-point function we
consider the radiative corrections to m ~ ev and x —+ pv.
We do this mainly because this example indicates that
the expansion obtained in Sec. 2 cannot be applied to
all cases.

Berman29 observed in 1958 that the radiative correc-
tions to the ratio of the decays ~~ei and x —+ p,v is
Gnite in a special phenomenological model. Recently
Das and Mathur derived the same result by use of
current-algebra methods. "The very interesting point
in their paper is that this result is true independently of
any model for the equal-time commutators. Hence, if
one wants to learn what the correct set of commutators
is, one has to study the radiative corrections to the
individual processes m ~ ev or x~ pv.

Das and Mathur" have shown that the total matrix
element for m ~ l v~ w ith radiative corrections is given
by

M~'&= —m&F~(1+uf&)N)(p&)(1+y~)v(p2), (6.1)
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