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Scattering of isovector photons by spin-1 targets is considered in detail. To first order in photon frequency,
three new theorems are obtained. Two of these are analogous to the Cabibbo-Radicati theorem and the
Bég theorem (for the nucleon case). The third is a new theorem involving only the quadrupole moment.
We also obtain several new theorems up to second order in photon frequency by using Singh’s lemma. On
the basis of these results and the earlier results for spin-0 and spin-} targets, various theorems up to first
and second order are conjectured for arbitrary-spin targets.

I. INTRODUCTION

ECENTLY, there has been a great deal of interest
in obtaining various exact low-energy results for
hadron Compton scattering.! Besides being important
as a matter of principle, these theorems give rise to a
variety of sum rules if the relevant amplitudes satisfy
unsubtracted dispersion relations.? By studying their
properties with respect to saturation by a select set of
states, these sum rules, on the one hand, provide a basis
for investigations on the nature of dynamical sym-
metries’; on the other hand, saturation by low-lying
states may give rise to various useful coupling-constant
relations.

The earliest low-energy theorem for Compton scat-
tering of photons is, of course, Thomson’s zero-energy
theorem for spin-0 and spin-} targets. This states that
the total amplitude at zero energy is entirely given by
the total charge of the scatterer. A decade ago, Low!
and Gell-Mann and Goldberger! proved an important
theorem for Compton scattering on spin-3 targets. This
theorem states that the entire amplitude up to first order
in photon frequency w, to second order in ¢, and to all
orders in strong interactions is given by the static mo-
ments of the scatterer, namely, the total charge and the
total magnetic moment.

Recently, Bég,! using the techniques invented by
Low, considered the case of nucleon Compton scattering
when the photons also carry a “charge” label and are
associated with isovector currents of an octet satisfying
current commutation relations (non-Abelian Compton
scattering). He showed that in this way one can get
further low-energy theorems and that they lead to sum
rules like the Cabibbo-Radicati sum rule, which had
been derived earlier by the usual infinite-momentum-
frame method.? However, the low-energy-theorem ap-

1 For classical low-energy theorems, see F. Low, Phys. Rev. 96,
1428 (1954); M. Gell-Mann and M. L. Goldberger, sbid. 96, 1433
(1954). For recent work, see M. A. B. Bég, Phys. Rev. Letters 17,
333 (1966); A. Pais, bid. 19, 544 (1967); V. Singh, ibid. 19, 730
(1967); Phys. Rev. 165, 1532 (1968). In addition, a good account
of this subject may be found in A. Pais, CERN Report No.
TH.816 (unpublished); M. A. B. Bég, SINBI Lectures, Copen-
hagen, 1967 (unpublished).

£S, D. Drell and A. C. Hearn, Phys. Rev. Letters 16, 908
(1966); N. Cabibbo and L. Radicati, Phys. Letters 19, 697 (1967);
M. A. B. Bég, Phys. Rev. Letters 17, 333 (1966).

3 M. A. B. Bég and A. Pais, Phys. Rev. 160, 1479 (1967).
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proach has the advantage that, whereas the sum rules
may or may not be correct, the theorems are exact.

So far, all the low-energy theorems had been ob-
tained at most up to first order in w. This is because the
“excited-state contribution” to the scattering amplitude
that appeared in second order in w was not calculable.
Using current conservation, Singh! gave a lemma giving
the precise form of this contribution. Using this lemma,
several new low-energy theorems up to second order
were obtained by Singh for spin-0 and spin-} targets,
both for the physical and the “charged” photons.

Next, the case of scattering of physical photons by
spin-1 targets was taken up by Pais.! To first order in
w, Pais obtained three new theorems. In addition to the
generalizations of two earlier theorems, he obtained a
new zero-energy theorem (the Pais theorem). Using
Singh’s lemma, he also obtained a new quadrupole-
moment theorem in second order.

The present work is a generalization of Pais’s work
to non-Abelian Compton scattering on spin-1 targets.
To first order in photon frequency, we obtain three new
theorems. Two of these are analogous to the Cabibbo-
Radicati theorem and the Bég theorem (for the nucleon
case). The third is a new theorem involving only the
quadrupole moment. Using Singh’s lemma, we obtain
several new theorems up to second order in photon fre-
quency. On the basis of these results and the earlier
results for spin-0 and spin-} targets, various theorems
up to first and second order in frequency are conjectured
for arbitrary-spin targets.

In Sec. II, we give the divergence conditions for the
non-Abelian case. Section III is devoted to the evalua-
tion of various terms occurring in our basic equation
(10). The tensor decomposition of the amplitude and the
crossing-symmetry requirements are discussed in Sec.
IV. Section V deals with the results obtained and the
possible generalizations to the case of targets with arbi-
trary spin. The Appendix gives the details of the spin-1
vertex function that we have used.

4In this sense, these theorems provide a more direct test of
current commutation relations than any of the standard results
of current algebra (e.g., the Adler-Weisberger relation), which in-
evitably use the partially conserved axial-vector current hypothe-
sis also. Note, however, that the latter uses the commutation rela-
tions of the “charges” and is thus free from the Schwinger terms,
unlike the present case.
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II. DIVERGENCE CONDITION
Consider the scattering of isovector photons by a
spin-1 target D:
P4D=y"+D, (btp=K+),

where o and g are the charge labels for the final and
initial photons, respectively.
The amplitude for this process is

Tb(p' k5 p,k) = e’ () TowB(p" K5 piR) (k). (1)

We have suppressed the spin- and isospin-wave func-
tions of the target; T, is thus a matrix in the spin and
the isospin spaces of the target.

We shall choose the transverse gauge so that

¢ kK=ek=0 (2)
and the physical amplitude is

T = e/ T e 3)
Next, we have

i(2m)404(p' + k' — p— k) AV Ep By ) P T %(p' k5 k)

=/ dtdty =i 0 (pf |[T(7,0),],%)}
~ipw()5"—y)]p). &)

The term p,,*#(k) compensates for the noncovariant
nature of the T product and ensures that T,,*f is a com-
pletely covariant object.

The basic assumption of this work is the following set
of current commutation relations®:

[V 0*(%),J () J0(wo— yo) =i f67T 07 (%) 64(x—y) ,
L7 0%(x),J B (y) J6(wo— y0) = i f*87T 7(x) 3*(x—y) ©)
+10m[ pmn*B(x)3*(x—3) ].

Partial differentiation of Eq. (4), together with Eq. (5)
and the current conservation 9,J,*=0, yields the fol-
lowing divergence conditions:
k,,’praﬂ: Tuxaﬂk)\____ _i(4V2EpEp,)l/2faﬁ’Y

X' 7,(0)|p). (6)
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Equations (6) are the divergence conditions for the
“non-Abelian” photons. It is clear that for physical pho-
tons (which do not have any charge label) these reduce
to the standard divergenceless conditions. Using Egs.
(6), one obtains the following identity:

kmlenaﬁkn= k4,T44aﬁk4+i(4V2EpEP')llzfa67
X(p' | 3(ks’+ k)T 47(0)— 3 (k' +km) T w?(0) | p). (7)

To proceed further, we put
Tw‘aﬂ= Upvaﬁ_l_EuvaB ) (8)

where U,,*? is the contribution due to the target inter-
mediate state and E,,*8 is the contribution due to all
the possible remaining “excited” states of the target.
We shall consider intermediate states with no photons
present, and thus our results will be true only to second
order in electromagnetism but to all orders in strong
interactions.

Next, define
T;w{aﬂ} = %(leaﬁ‘l' Tiwﬁa)
and
Tlo8l =1(T,,%8— T',,5%) . 9)
Therefore,

b/ Emn @B kn=— k' Umnt BV en+ k' U 44l 2Bl k4
Gk Esl*Blky  (10a)

and

km’Emn[aﬁ]knr‘ - km, Umn[amkn_'_ k4’U44[aﬂ]k4
+k4’E44[amk4+1:(4:V2EpEpr)1/2f°‘ﬁ7
X{p' |3 (ki + k)T 47(0) =3 (k' +km) T n?(0) | p).  (10b)

Equations (10) are the basic equations for getting vari-
ous results. The symmetric combination satisfies the
same equation as satisfied by physical photons. Equa-
tion (10a) thus gives results that are trivial extensions
of the results for the physical photons. However, Eq.
(10b) yields a variety of new interesting theorems.

III. EVALUATION OF TERMS

Using translational invariance, the target-inter-
mediate-state contribution is easily obtained from Eq.

(4):

2’ |Je(0) [ p+k, E(p+k)Xp+k, E(p+k)|J£(0)| )

(4V2E Ep) 12U 44 =

Ept+ko— E(p+k)

| Z{|T40)[p—K, E(p—K))p—K, E(p—k')|J.2(0)|p)

Ep—ko'— E(p—K’) v

¢ Note that we have identified the Schwinger term occurring in the commutator of time and space components of J,*(x) in Eq. (5)
with the quantity p,,*® of Eq. (4). Thus the T-matrix element defined here differs from the collision amplitude in some equal time
commutator terms. For a full discussion of this point, see L. S. Brown, Phys. Rev. 150, 1338 (1966). Also, note that ps,*=p,*=0.
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where Y stands for the spin summation over the intermediate state;
2P| Im(0) | pt+k, E(p+k))p+k, E(p+k)[7.50)]p)
Eytko—E(pt+k)

(AVAE,E ) V2 P =

| 2 1250) [ p=K, E(e—K))(p—K, E(p—K)|/n*(0)|p)

E,—k/~E(p—K)
Observe that
quaﬂ(P,7k’; P,k) = Ul’#ﬂa(P/) ‘—k; b — kl) .

These are the crossing-symmetry requirements that will be used in Sec. IV.
We next require the spin-1 electromagnetic vertex function®

<P,A’ ] Ju(0) !PA>: (4V2EPE11’)_1/277/2(A’)(P/)qua(f’:P)ﬂv(A)(P) .
One can “unboost” the n(p) functions and get
("N T, %(0) | pAY= (4V2ELE o)~ 2, A (p' = 0) Vs’ ,0) 1 (p=0).
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(12)

(13)

(14)

(15)

To exhibit the dependence of the vertex function on the spin vector s of the target explicitly, we suppress the

indices p and o. Then
(P'N'|T,u%(0)| pA)Y= (4V2E,E )~ 2@ (p'= 0) Y, *(3’,p)n D (p=0),,

(16)

where ¥ ,* is a matrix in the spin and the isospin spaces of the target. The explicit expression for ¥,* is given in

the Appendix.

We shall be working in the laboratory frame (p=0). We put ky'=¢’, ky=w, and k’-k=ww’ cosf, where 0 is the

angle of scattering in the laboratory frame. In this frame, we have the kinematic identity
o' =w[ 1+w(1—cosd)/M 1.
Using this identity, we get

1 %) w? w?
E,+ko— E(p+k) " [2E(p+k _1=——(1+——-—-——+O 4),
[ ho B+ W 2G0T =~ (14— =m0t

1 / w wcosl w? w?®  wd cosh

+O@)).

[y k= E@=K) B0 == A ™ e e i
Using Egs. (16), (18), and (19), we obtain in a straightforward way
b Unn“Bky  {Fo*,Fof}
wo’ B 4M2
k! Unn®Pkn [Fo*,F o]
2

we’

w? cos0(3—2 cos)+0(w?),

[w?(142 cos?—3 cosh)+2Mw(2 cosd—1)],

— U sgloB = F-cosb {Fo,Fo}+w(1/4M?){Fo*,Ff}

+w? cost ({Fo*Fof}+{Fo*Fo#}—(1/2M>){F¢*,F1f}— (1/2M*){F ,F 1}

2{Fy% F Y} +2{F:8 F o} + (5 /AMD{F %, F f}) — w? cos?d (1/2M%){F*,F o’}

+cosf (8- k)2((1/2M2)(FPF o+ F1°F o) — (FoPF o*+ F22F of) — (1/2M?){ F o*,F o*})

+cos8 (s-K)2((1/2M2)(FPF124-F *F18) — (F PF o+ F*Fof)— (1/2M){ F o*,F o})

+[is- (kX K)/wJ((1/ M) (F1oF f+F1PF o) — (1/ M){F 6% Fof})

+is- (kXK )((1/2M2) (F12F f+ F1PF %) — (1/2MH){ F *,F *})

+i cos s- (kXK )((1/2M2){F o, Ff} — (1/2M2) (FfF 2+ F1F ),

where the F;*'s are the form factors defined in the Appendix.

¢ See A. Pais, CERN Report quoted in Ref. 1.

(17

(18)

(19)

(20)

(21)

(22)
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Similarly,

7 2 8M :
- U“[ﬂlﬁl = (2M/w+ 1— COSG)[:Fo“,FoB]‘*'wI:’L.faﬂ'y(;ﬂFo'y‘*-4MF0’7—EF17+TF27>]

1 7 1
—w COSG —[Fo“,FoB]‘*‘sz:ifaﬂy(- F07— 2F0/7+~'—'~F17'~ %ng):l
M 4 M?

MZ

9 1
+w? cosf [1 faﬂv(4 For+ 2F0’7—]I—[—2F17+§F27>:|——w2 cos? (1/2M2)[F o, Fof]

M?2

(s- k)24 (s-k’)? 1 1
+———————|:if°‘ﬁ“’(-—~——F07+——F1‘f—-ZMFZV)]
w M M

+[(s-k)2+(s~k’)2][i f«ﬂv(— 2;42F0"+2;42F1"’—F2"):|

1 1
+C059 (S' k)2((F20‘Foﬂ'-FzﬂFo“)"}-"z—]l};(FlﬂFo“— F1“Foﬂ)+~2—]"};[Fo“,FOB])
1 1
—+cos@ (S' k’)2((Fan26—FoﬁF2a)+—(F0'3F1°‘—Fanlﬂ)'*-—'—-l:Foa,Foﬁ:')
2M? 2M*

1 1
-+ cosf s- (kx k/) (EE;(Fl"‘FOB'—Fl’SFoa)—Z—'A};[Foa,Foﬁ]) , (23)

i(4V2ELEp) 2 {81 (p' |5 (ki +ka) T £1(0) =5 (k' +km) T (0) | p)/cocs’
= WY (— i fBY2MF ¢7)+ (—ij*PrF oY) +-cosd (if=PrFyY)

4F g7 2F 8M 4F 2Fy 8M
+w[——i faﬂv( +4MF/7— +—F27):|+w cosf [i f“ﬂ‘f( +4AMFT— +~sz)]
M M3 M M3

2 Fyr 4 2 8
+w2[—-if"”5"(———-—-F07— 2Fol7+“——‘ %F27)i|+w2 cosf Ii""l:f“ﬂ"(*—"po"‘*— 4Fo’7"——F17+—F27>j|
M? M? M? M? 3

2 Fin (5K (s K)*—{s-k,s K}
+w? cos’d l:_ if"ﬂy(_—Fo"'— 2Fy7— %F27+—->:|+
M2 M2

w

iSRS )|

_;l-_—ﬂ; 2M? 2M?
+[(s-k)2+(s-kK)2—{s-k,s-k’}] cosf [— if“ﬂ“f( sk . sz)j|+s- (ka/)faﬁ"rFlv—}-MfaﬂvFlw
2M?* 2M* w? )
s- (kXK

cosf feBvF 748 (kXk')(1—cosd)2f=F7Fy/r. (24)

wM

Finally, let us calculate E4*P. According to Singh’s Ann®(0; 0)= 8,0 A B+ €mniSi B+ {55} CoB,  (27)
lemma,

Euu®8= k' Bal Amn®(k'; B)+Annf(—k; — k)] (25) ,
= knkalAn®8(0,0)+ A nn®(0; 0)]+0(w),  (26) Eulefi=s- (kXI) Bl (29)

where A,,*8(0; 0) is a pure numerical tensor. Thus where 4, B, and C are unknown constants.

Eyl*fl=0? cosf A8+ {s-Kk';s-k}Cle8) | (28)
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Having obtained all the terms appearing on the right-
hand side of Egs. (10a) and (10b), one needs the tensor
decomposi'ion of E.,*# in order to get various low-
energy theorems. This we now proceed to do.

IV. TENSOR DECOMPOSITION OF E,,*

Following Pais,’ we write down the “complete mini-
mal basis” for E.,* using P and T invariance:

Enn®®(K k,8)= E (k' Kk 8) Es*¥ () .

Up to first order in w, only three basis functions’ are
required;

(30)

Omn s

(31

EmnlSl,y

{SmySn}—50mn.

i=1:
1=2:
1=3:

Up to second order in w, 14 more basis functions can

contribute. We list these below:

i=4:  Eumkatka'ks,

i=5:  kuk/—K -Kéun,

i=6:  ka'ka,

i=T7:  Omn8- (KXK)+K -Kennisi,

i=8:  emmlki(s-kK)+E/(s k)],

i=9:  emm[ (s K)+E/(s k)],

i=10: kn(sXK)ukn'(sXK)n—(m < n),

i=11:  ku(8XK)atEn'(sXK)n (32)
—(m > n)— 2K - kemnisi,

i=12: 8na[(s-k)24(s-K)2],

i=13: bpafs-k,s-K'}—K k{sm,sa},

i=14: kn{sn,5-k}+kn {sms-k'},

i=15: ka{sms k) +En'{sn,s- K},

i=16: En{sn,8 K} +En {sm8 K} — 2K -k{sm,5n},

i=17: kn{Sm,s-K}+kn'{sn,8-k}.

km,Emn{ aﬂ}k"/ww’

ARVIND KUMAR
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Crossing symmetry implies

En®8(k k; 8)= Ennfe(—k, —Fk';s). (33)
This gives
Eiaﬁ(wlaw)=77iEiﬂa(“w; _w,) ’ (34)
where
=41, for i=1,3,4,5, 6,12 to 17

1=2,7 to 11.

In writing the above basis, we have not imposed the
transversality condition [Eq. (2)]. If we now impose it,
we find that E.,° for =4, 6, 15, and 17 vanish.

Using Eq. (34), it is easy to expand E;(v’,w). Thus
if

=—1, for

Ei(w,;w) = +E1'(—w} "O)’) )
then
E,;(w,'w) = Ei(0,0)—f—euM(w'— w) -l—eig(w'+w)2-|—0(w3) y

and if
E(ww)=—Ei(—ow, —o'),
then
E (o ) =e:(0/+w)+0(w?) . (35)
It is important to note that the expansion of E’s
[Eq. (35)] is made possible because the Egs have
neither kinematical nor dynamical singularities. The
absence of kinematical singularities is “built in” in the
procedure of getting the “complete minimal”’ basis.® It
is for removing the dynamical singularity (namely, the
target pole) that the separation of the complete ampli-
tude Tmyn into Umy and E,. is necessary. The next
singularity will be a cut arising from a photon in the
intermediate state. This would, however, contribute to
the amplitude only to order ¢, which is why all our re-
sults are true only to the order e but are true to all
orders in strong interactions.?
Finally, we give the left-hand side of Egs. (10a) and
(10b):

= cosf E1{*81(0,0)+w2Es{*8}(0,0)+w? cosf [ —e11{*Fl-+4e1pl 2814 2E,(261(0,0) ]+ w? cos eq(2F)
F[(s-K)*+(s-K)] 2B 81(0,0)+[(s-k)*+(s-K')?] cosd { Exa!*8)(0,0)+2E14*8)(0,0)}
—[s- (kX K')/w](2est*#) —s- (kX k") es!*8) /M +s- (kX K') cost est*8/M

(8K, K}/ Eot8)(0,0)+ ({5 s K'} /M) Enl8)(0,0)— ({s-k,s-K'} /M) cost Esl=#)(0,0)

B! B ®8 By / o’
=w cosl 2e1[*81—w? cosh e1!*Al /M +w? cos?d e, Pl / M

+({s-k,s-k'} /w)2estf4-{s-k,s- k)¢5 /M — {s-k,s-k'} cosd esl*f1/ M

+{s-k,s-k'} (deso! 2Bl —e51 {281+ 2 E151283(0,0))+ {s- k,s- K’} cosb (ezl2Bl), (36)
—[s- (kXK')/w?]E5121(0,0)— s+ (kX k') /Mo ]E5!*A(0,0)+s- (kX k') /Mw] cosd E,l=£1(0,0)
45 (kX K) (e211##1 — 4egol2Al — 2 E1,181(0,0)) — s - (kX k') cosf (exn!f). (37)

7 Emg’ for i=3 is somewhat different from the basis listed by Pais. In our cas, it is an irreducible spin-two operator. With this change,
the quadrupole moment Q appears only in E3l*fl and not in Z;[#4l. T am indebted to Professor V. Singh for pointing this out to me.
8 Low-energy theorems up to order e* have recently been obtained in the framework of S-matrix theory by S. M. Roy and V. Singh

(to be published).
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V. RESULTS AND DISCUSSION

One can now read off all the low-energy theorems by
comparing coefficients of various terms. We state these
below.

Symmetric case. First-order theorems:

Eql98)(w) = {Fo*, Fof}+0(w?) , (S1)
Eqt8)(w)= (/ M)[{Fo*,Fof} — (F1°F f+F1#F *) Jw, (S2)

E3(98) () = 0+0(w?) . (83)
Second-order theorems:

ent*?=0, (89)

PNLE R (S5)

E451283(0,0)+ 2 E14{*8}(0,0)
= (1/2M*)(Fo*F 1P+ F PF1%)+ (F *F 28+ F P F »)
—(1/2M*){Fo*Fof}. (S6)
Antisymmetric case. First-order theorems:
Eyl*8(w)= ((2/3M)[Fo*F ¥ J+4M[F*,F (7]

—(2/3M)[Fo*Fif])w, (A1)
Eylefl(w)= — f*87F17+4-0(w?) , (A2)
E;lefl(w) = —ife8Y(2M Fy*+Fot/M—F1"/M)w.  (A3)
Second-order theorems:
enl*Fl=i((1/2M2)(F1PFy*— F1°F f)
+(1/2M*)[Fo* FFD+2167F,r.  (A4)

Theorems (S1), (S2), (S3), and (S6) are, of course,
trivial extensions of those obtained by Pais earlier for
physical Compton scattering. In addition, as has been
shown by Pais, (S1), (S2), and (S3) are generalizable
to arbitrary spin in terms of the gyromagnetic ratio g
(see the Appendix).

The remaining theorems are the new theorems for
spin-1 targets. However, most of them are analogous to
theorems for the spin- case. We proceed to discuss them
now.

(i) Theorem (A2) is the zero-order low-energy
theorem for non-Abelian Compton effect that is exactly
analogous to Bég’s theorem for the nucleon case, which
reads

E,lof)(w)=—2f*67F,7, for spin-} targets.

Generalization of this theorem to arbitrary spin seems
obvious, if we introduce the g factor. We therefore
conjecture

E,[*f(w)=—gf*fvFy7, for arbitrary spin.

(ii) Theorem (A3) is a new theorem peculiar to the
spin-1 case. The most interesting feature of this theorem
is that the three form factors F, F1, and F, occurring in
this combine to give a pure quadrupole-moment term.

NON-ABELIAN COMPTON EFFECT
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(iii) Theorem (A1) is analogous to the Cabibbo-
Radicati theorem for the nucleon case. The amplitude
in question requires for its determination not only the
charge and the magnetic moment F, and Fy, but also
the charge distribution through Fo'. Explicitly, for the
nucleon case, the theorem reads

Ellaﬁ] = ((I/ZM) I:Fo“,FOB]fI"]lM[FOa,FO,ﬂ]
—(1/M)[Fo*,Ff])w.

Note that the explicit form for the spin-1 case is not
identical to the spin-} case even when one uses the g
factor. We are therefore as yet unable to conjecture the
generalization of this theorem for arbitrary spin.

(iv) The second-order theorem (S4) is exactly analo-
gous to Singh’s theorem for the spin-} case. Theorem
(S5) is peculiar to the spin-1 situation. These, together,
satisfy the following generalized second-order theorem
first conjectured by Singh!: Let

Tr(en' Trmn!*Flen) /Tr(1)
= T8} (o', w) e’ - e+ Tl B (o' ) (¢/ - ke - K'— K" -ke'- &) ,
where the trace is over the spin states, and let
Ty1e8) (o) = T8} (0,0 + (91 M (&' — )
()l
then
IALCET IR

In the same way, theorem (A4) is analogous to Singh’s
corresponding theorem for the spin-% case.

Why do most of these theorems so easily generalize to
the case of arbitrary spin? The reason for this can be
traced by studying the vertex functions, say, for the
spin-3 and spin-1 targets. The following important
properties can be noted by comparing the expressions
given in the Appendix: (a) Up. to first order, the form
of the vertex (p’|J.(0)|p) is identical for both cases if
expressed in terms of the g factor; (b) the coefficient of
s: (pXp’) occurring in the vertex (p’|Jo(0)|p) is again
identical for both cases if expressed in terms of the g
factor; and (c) the coefficient of q* occurring in the
vertex (p'|Jo(0)|p) is not identical in the two cases
even in terms of g.

The three first-order theorems (S1), (S2), and (S3)
given by Pais, the Bég theorem (A2) for the antisym-
metric case, and the second-order theorems of Singh
owe their generalizations in terms of g to properties (a)
and (b) stated above. These theorems are independent
of the coefficient of q2 occurring in the (p’|J4(0)] )
vertex.

However, the amplitude given by the Cabibbo-
Radicati theorem depends on this coefficient of q2, and
that is why the Cabibbo-Radicati theorem does not ap-
pear to be quite the same in the two cases. It is, of
course, possible that the form of vertex (p’|J(0)|p)
may after all be generalizable to higher spins in a less
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obvious way. One possibility is that there might be gen-
eralized Sachs form factors in terms of which this vertex
may be expressible in identical forms in the two cases.
If such a generalization of the vertex function exists,
we shall, of course, get a generalized Cabibbo-Radicati
theorem also.

This aspect of the problem and explicit proofs of the
various conjectures made for arbitrary spin will be re-
ported elsewhere.
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APPENDIX
A. Electromagnetic Vertex for a Spin-1 Particle

<P’ [ ],‘(0) |P>= (M2/ V2E17Ep’)”2ﬂ(?,)
X[vuFo(g)+iowg f1(g)Ju(p), q=p"—p.

Here Fo(0)=e, f1(0)=(e/2M)(u—1), and p is the total
magnetic moment. Define

F1(0)=eu=2M f(0)+Fo(0).

One can now “unboost” #(p") and %(p) by using

(p+21)u(0) y+M
= g(p)=a(0)———— 8 .
u(p) TS a(p")=1i( )[2M YIS L
This gives

(VzEpEp’/ M 2) llz(P, i J m(O) , P)
= §{(1/2M)[PuF o(0)+ (s X q)m2F1(0) ]} £+0(p?) ,

where £ is the two-component spinor, s=1e, and
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P=p’+p. Similarly,
(V2E,Ey/MHVXp'| To(0)| p)

Fo(0)—2F,
o 0280,

Fo(gh)+7 (pXp)

Fo(0)
4M2

0+ '2)¢F°(O)_2F1(O)’~2)s+o( 9
prpo)T oM 1q ?°)-

+

B. Electromagnetic Vertex for a Spin-1 Particle

We give here the explicit expression for ¥, defined in
Sec. IIT (for more details, see Ref. 6):

Von/2M = (1/2M)[PrFo(0)+i(s X @)nF1(0) ]+ O0(p?)
Vo= {Fo(g®)—[(s-@)*—3¢*]F2(0)
XLE(@)+E(p) 14 (Fo(0)— F1(0))M
X[is-(pXp)+q*—(s-9)*],
where
Fo(0)=e, Fi(0)=en,
Fy(0)=(e/2M?)(Q+n—1).
Here p is the magnetic moment in units ¢/2M and Q is

the quadrupole moment in units e/M2.
To see its similarity with the nucleon vertex, we

rewrite

Fo(0)— F41(0)
__.._‘)._—_-FO q2 z'.~_0__1—s.

(PXp")

Fo(0) Fo(0)—F1(0)
@+t
4M? 2M?
+(a term involving only Q).

It is then clear that ¥, is completely generalizable in
terms of the gyromagnetic ratio g=u/s, The coefficient
of s+ (pXp’) occurring in (p’|Jo(0) | p) is also the same in
terms of g. However, the coefficient of ¢? is different in

the two cases.
Finally, up to third order, in the laboratory frame

(p= 0),
Y={Fo(¢)—[(s-q)*—3q*]F2(0)} P+i(s X @) F1(¢?)
+[(Fo(0)—F1(0))/2M*][¢*— (s-q)*]P.



