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"Non-Abelian Compton Effect" on Spin-One Targets
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Scattering of isovector photons by spin-1 targets is considered in detail. To Grst order in photon frequency,
three new theorems are obtained. Two of these are analogous to the Cabibbo-Radicati theorem and the
Beg theorem (for the nucleon case). The third is a new theorem involving only the quadrupole moment.
We also obtain several new theorems up to second order in photon frequency by using Singh's lemma. On
the basis of these results and the earlier results for spin-0 and spin-$ targets, various theorems up to 6rst
and second order are conjectured for arbitrary-spin targets.

I. INTRODUCTION

ECKNTI Y, there has been a great deal of interest
in obtaining various exact low-energy results for

hadron Compton scattering. ' Besides being important
as a matter of principle, these theorems give rise to a
variety of sum rules if the relevant amplitudes satisfy
unsubtracted dispersion relations. ' By studying their

properties with respect to saturation by a select set of

states, these sum rules, on the one hand, provide a basis

for investigations on the nature of dynamical sym-
metries'; on the other hand, saturation by low-lying

states may give rise to various useful coupling-constant
relations.

The earliest low-energy theorem for Compton scat-
tering of photons is, of course, Thomson's zero-energy

tlicorem for spin-0 and spin--,' targets. This states that
the total amplitude at zero energy is entirely given by
the total charge of the scatterer. A decade ago, I.ow'

and Gell-Mann and Goldberger' proved an important
theorem for Compton scattering on spin-~~ targets. This
theorem states that the entire amplitude up to 6rst order

in photon frequency ~, to second order in e, and to aB
orders in strong interactions is given by the static mo-

ments of the scatterer, namely, the total charge and the
total magnetic moment.

Recently, Beg, ' using the techniques invented by
Low, considered the case of nucleon Compton scattering
when the photons also carry a "charge" label and are

associated with isovector currents of an octet satisfying
current commutation relations (non-Abelian Compton
scattering). He showed that in this way one can get
further low-energy theorems and that they lead to sum

rules like the Cabibbo-Radicati sum rule, which had

been derived earlier by the usual indnite-momentum-

frame method. ' However, the low-energy-theorem ap-

' For classical low-energy theorems, see F. Low, Phys. Rev. 96,
1428 (1954); M. Gell-Mann and M. L. Goldberger, ibid, 96, 1433
(1954).For recent work, see M. A. B.Beg, Phys. Rev. Letters 17,
333 (1966); A. Pais, ibid. 19, 544 (1967); V. Singh, ibid. 19, 730
(1967); Phys. Rev. 165, 1532 (1968).In addition, a good account
of this subject may be found in A. Pais, CERN Report No.
TH.816 (unpublished); M. A. B. Beg, SINBI Lectures, Copen-
hagen, 1967 {unpublished).

~ S. D. Drell and A. C. Hearn, Phys. Rev. Letters 16, 908
(1966);N. Cabibbo and L. Radicati, Phys. Letters 19, 697 (1967);
M. A. B.Beg, Phys. Rev. Letters 17, 333 {1966).

3 M. A. B.Bkg and A. Pais, Phys. Rev. 160, 1479 (1967).
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proach has the advantage that, whereas the sum rules

may or may not be correct, the theorems are exact.4

So far, all the low-energy theorems had been ob-
tained at most up to 6rst order in m. This is because the
"excited-state contribution" to the scattering amphtude
that appeared in second order in eo was not calculable.
Using current conservation, Singh' gave a lemma giving
the precise form of this contribution. Using this lemma,
several new low-energy theorems up to second order
wcle obtMDed by SiDgh for spin-0 RDd spin-g targets)
both for the physical and the "charged" photons.

Next, the case of scattering of physical photons by
spin-1 targets was taken up by Pais. ' To 6rst order in

Pais Obtained three ncw thcorcms. ID addition to thc
generalizations of two earlier theorems, he obtained a
new zero-energy theorem (the Pais theorem). Using
Singh's lemma, he also obtained a new quadrupole-
moment theorem in second order.

The present work is a generalization of Pais's work
to non-Abelian Compton scattering on spin-1 targets.
To 6rst order in photon frequency, we obtain three new
theorems. Two of these are analogous to the Cabibbo-
Radicati theorem and the Beg theoreni (for the nucleon

case). The third is a new theorem involving only the
quadrupole moment. Using Singh's lemma, we obta'in

several new theorems up to second order in photon fre-

quency. On the basis of these results and the earlier
results for spin-0 and spin-2 targets, various theorems

up to first and second order in frequency are conjectured
for arbitrary-spin targets.

In Sec. II, we give the divergence conditions for the
non-Abelian case. Section III is devoted to the evalua-
tion of various terms occurring in our basic equation
(10).The tensor decomposition of the amplitude and the
crossing-symmetry requirements are discussed in Sec.
IV. Section V deals with the results obtained and the
possible generalizations to the case of targets with arbi-
trary spin. The Appendix gives the details of the spin-1
vertex function that we have used.

4In this sense, these theorems provide a more direct test of
current commutation relations than any of the standard results
of current algebra (e.g., the Adler-Weisberger relation), which in-
evitably use the partially conserved axial-vector current hypothe-
sis also. Note, however, that the latter uses the commutation rela-
tions of the "charges" and is thus free from the Schwinger terms,
unlike the present case.
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II. DIVERGENCE CONDITION

Consider the scattering of isovector photons by a
spin-1 target D:

yP+D=y +D, (k+p=k'+p'),

Equations (6) are the divergence conditions for the
"non-Abelian" photons. It is clear that for physical pho-
tons (which do not have any charge label) these reduce
to the standard divergenceless conditions. Using Kqs.
(6), one obtains the following identity:

k„'T „Pk =k4'T44 Pk4+i,(4V'E~E;)"'f"P&
x& 'l2(k4'+k4)J4 (o)—p(k '+k~)~„(0)I &. (7)

The amplitude for this process is To proceed further, we put

T P(p', k', p, k)= p„'(k')T„„P(p',k', p,k)p„(k). (1)

We have suppressed the spin- a.nd isospin-wave func-

tions of the target; T„„&is thus a matrix in the spin and
the isospin spa, ces of the target.

We shall choose the transverse gauge so that

e' k'= e k=0

a,nd the physical amplitude is

&P= U ~P+E ~P

where U„„&is the contribution due to the target inter-
mediate state and E„„&is the contribution due to a]l
the possible remaining "excited" states of the target.
We shall consider intermediate states with no photons
present, and thus our results will be true only to second
order in electromagnetism but to all orders in strong
interactions.

Next, de6ne

Next, we have

I(2')'8'(p'+k' p k)(4V—'EI,—E;) '"T„, P(p', k', p,k)
Therefore,

(aPj I (T aP+ T P~)

T„„I~PI=I(T„~P T P~)

k„'E„„~~»k„= O'U ~ »—k +k4'U44~ P~k4

+k4'E44t P~k4 (10a)

d'«'y p'"" '-"'&P'I-LT(~,™(~),~'(y))

-IP"'(~)b'(&-y) jl p& (4)
and

term pq„~P(g) colllpcIisatcs foi tile Iioilcovai'1ant
k pE (~PIk k IU (~PIk ~k gU I~PIkm m, n n= —

m tee e~ 4 44 4
nature of thc T product and ensures that T„. P is «om-
pletely covariant object.

Thc bs,sic s,ssum tion of this wolk is tile followlIlg sct
of current commutation relations': Equations (10) are the basic equations for getting vari

ous results. The symmetric combination satishes the
same equation as satis6ed by physical photons. Equa-
tion (10a) thus gives results that are trivial extensions
of the results for the physical photons. However, Eq.
(10b) yields a variety of new interesting theorems.

V.-(*),~"(y)»(*.-y.) = f-P ~ "(*)~'(*-».
fzo (~),M(y) j&(~o yo) = f—'"~"( )~'(* y) —(5)

yea„Lp-'(~) ~'(*-y)3

partial differentiation of Eq. (4), together with Kq. (5)
and the current conservation B„J„=O,yields the fol-

lowing divergence conditions:
Using translational invariance, the target-inter-

k„'T„,'= T.i'4= I'(4V'E.En )'"f"— mediate-state contribution is easily obtained from Eq.
&&&1'II"(0)I p) (6) (4):

Z&p'I J4 (0) I f1+k, E(p+k))&11+k, E(p+k) I J4'(0)
I p&

(4V4E E,)—I/PU

E,+kp —E(y+ k)

Z&p'I ~4P(0)
I p—k', E(p—k') &&p

—k', E(p—k')
I ~4 (o) I p&

(11)
E~—kp' —E(p—k')

5 Note that we have identided the Schwinger term occurring in the commutator of time and space components of J„~(x) in Fq. (5)
with the quantity p„, t' of Kq. (4). Thus the T-matrix element de6ned here divers from the collision amplitude in some equal time
commutator terms. For a full discussion of this point, see L. S. Brown, Phys. Rev. 150, 1338 (1966).Also, note that p4„&=p„4~&=().
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where P stands for the spin summation over the intermediate state;

Z&p'I~. (o) IP+k, E(P+k)&&P+k, E(P+k) I
J.'(0)

I p&
(4V'E E ) "'U

E,yu, —E(P+k)

Z&p'I~-'(0) IP—k', E(P—k')&&0—k', E(P—k') I~- (0) I p&

E,—kp'- E(P—k')
Observe that

U„„s(p',Ip', p, k) = U.„s (p', —k; p, —k').

These are the crossing-symmetry requirements that will be used in Sec, IV.
%e next require the spin-1 electromagnetic vertex function'

&p'~'Iz„-(0)
I
ps&=(4V E,E,.)- &

&,&'&(p')x„„-(p',p)~, & &(p).

One can "unboost" the q(p) functions and get

&p'z'I s„-(0)
I
p~&= (4v E,E„.)- "~,"'(p'= o) v„,.-(p', p) ~.&'&(p= o) .

(13)

(14)

(15)

To exhibit the dependence of the vertex function on the spin vector s of the target explicitly, we suppress the

indices p and 0. Then
(p'A'I J .(0) I

pit&= (4v'E,E )
—'~'&&"'&(P'=0) v -(p' p)&&~&(P= 0) (16)

where 7„"is a matrix in the spin and the isospin spaces of the target. The explicit expression for I'„ is given in

the Appendix.
We shall be working in the laboratory frame (P=o). We put kp' ——a&', kp ——co, and k' k=&o&o' cos8, where 8 is the

angle of scattering in the laboratory frame. In this frame, we have the kinematic identity

(o' = (v[1+ (u(1—cos8)/M] —'.
Using this identity, we get

[E,+up —E(Pyk) j-'[2E(P+ k)]- =
1 ( CO 6) M

I
1+ — — +0(~4)

2M(ak 2M 4M' 4M'

[E„—lpo' —E( —k')] '[2E( —k')] '=— I co M cose
1+2') 2' M 4M

Gp cos8
+ — +o(~') I.

P 2MP 4MP j (19)

Using Kqs. (16), (18), and (19), we obtain in a straightforward way

k 'U t"s~k {Fp,Fps)
~' cos8(3—2 cos8)+O(pp'),

3f

[Fp",Fpsj
[oP(1+2 cos'8 —3 cos8)+2M'(2 cos8—1)],

GOGO 4M'

—U«l s~=+cos8 {Fp,Fps)+ppP(1/4M'){Fp", Fps)

+o&' cos8 ({Fp ',Fps)+ {Fp,Fp's} (1/2M') {Fp,Fxs) ——(1/2M'){FpPFi }

+p{Fp,Fps)+-'p{Fps, Fp")+(5/4M'){Fp, Fp ))—pp' cos'8 (1/2M'){Fp, Fps}

+cos8 (s k)'((1/2M')(FPFp~+Fg"FpP) —(Fp Fp +Fp FpP) —(1/2M'){Fp, FpP))

+cos8 (s k')'((1/2M')(FPFz +FPFP) —(Fop +FQ FQ ) (1/2M'){F(P,Fps}—)

(20)

+[is (kXk')/ppj((1/M)(Fx Fpp+FxpFp )—(1/M){Fp,Fpp})

+is (kXk')((1/2M')(Ft Fps+FPFp )—(1/2M') {Fpe Fps))

+i cos8 s (kXk')((1/2M') {FP,FpP) —(1/2MP)(FPFpP+Fq Fps)), (22)

where the P, 's are the form factors dehned in the Appendix.

' See A. Pais, CERN Report quoted in Ref. 1.
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Similarly,
7 2 8M—U44' IS (2——M/op+1 co—s8)[PoN, Fos]+op if » F—p~+4MFp~ Fy~+ Fp+

2M M 3 i

1
—

( 7 1—(o cos8 [P—o,Fps]+(o' if~»I — FP 2Fp'—~+ FP oFo—'((—

( 9 1
+(o' cos8 if~s"I Fp+2Pp'& Fq—~+ ', Fp& -—(o' cos'8 (1/2M')[Fo Fop]

M2

(s k)'+(s k')' ( 1 1
+ if»l Fo~+ FF —2MF—

)(o 'E M M

1 1
+[(s k)'+(s k')'] if »I — Fo~+ Fp Fp I—

2M' 2M' )
1 1

+cose (c k)'((Ic'M FcE, )+ —pell Fc p, ')+ '[E—;,I j (
23II' 2M' )

1 1
+cos8 (s k')'I (PPFps —FosF& )+ (Fp Fg Fp Fg )+ [Fp,Pp ] Il 2' 2 2M' )

+i cos8 s (kXk')I (F~ Fps FPFo )——
(2M'

LPo 7'os]
I (23)

2M' )
(4V'F,P.;)'('f.s (p'I '. (1 '+& )J '-(o) l(&-'+&-)—~-'(0)

I p)/

=(o '( if »2MF-(p)—+( ij»FP)+c—os8 (if'»Fp")

4Fp 2F; 8M (4Fp& 2FP 8M
+4MFo'» — + Fp&

I
+(o cos8 if »I +4M1'o'~ — + Fo~

I

M M 3 ) ~M

+(o' if »I—— Fo~ 2Fo'"+ —pF—o"
I

+oo' cos8 —if 'I ~Po"+4Fo"— Fi'+-Fp"
I) EM' M' 3

2 Fp (s k)'+(s k')' —{s k, s k')
+&o' cos'8 if »I — Fp —2Fo'~ o4Fp~+ —+——

GO

(Ppv F~v P
X if »I — +2MFp&

I +[(s k)'+(s k')' —{s k, s k'}] if » — +Fp
2M 2MP

(Fo' Fi" q- s (kXk') s (kXk')
+[(s k)'+(s k')' —{s k, s k')] cos8 if »I — —+Pi~

I + f »Fp+ f »F,~

(2M' 2M' ) ops (o

s (kXk')
cos8 f »Fs&+s (kXk')(1 —cos8)2f~»Fi'&. (24)

Finally, let us calculate E44 &. According to Singh's

lemma,

F44"('= k 'k [A &(k'; k)+A & (—k; —k')] (25)
=k„'k„[A„„~&(0,0)+A ~ (0; 0)]+0((o'), (26)

where A„„"~(0;0) is a pure numerical tensor. Thus

Eg4' &'=s (k'Xk)B( (s,

where A, 8, and C are unknown constants.

(29)

A ~(0; 0) = b„„A~~+p „(s(B~&+{s,s„)C~&, (27)

L44t~~~(=(o' cos8 A( &~+{a k' s k)Ct &l (28)



ARVI N D KUMAR

Having obtained all the terms appearing on the right-
hand side of Eqs. (10a) and (10b), one needs the tensor
decomposi'ion of E „& in order to get various low-

energy theorems. This we now proceed to do.

IV. TENSOR DECOMPOSITION OF E„„&
Following Pais, ' we write down the "complete mini-

mal basis" for E & using I' and T invariance:

Crossing symmetry implies

E e(k', k; s) =E„el(—k, —k'; s).
This gives

E; ~(r»', I») =I»;E;e ( 4»,——4»'),

I»4=+1, for I',=1, 3, 4, 5, 6, 12 to 17

for i=2, 7 to 11.

(33)

1.
$= 2: 6m~)St p

4=3: {s,s„)—448 „.
(31)

E „e(k',k, s) =E '(k', k,s)E; e(c»',4»).

Up to 6rst order in ~, only three basis functions7 are
1cqull cd j

In writing the above basis, we have not imposed the
tl'Rllsvcl'sall'ty condltlon fEq. (2)j.H wc now llllposc 1t
we 6nd that E ' for i=4, 6, 15, and 17 vanish.

Using Eq. (34), it is easy to expand E;(I»',4»). Thus

E;(I»' 4») =+E;(—4» —4»')

k k„+k„'k„',
x.u„'—h' h~ „,
k 'k„,
h s (kXk')+k'. ke„„lsl,
e ILkl(s k)+kl'(s lr.')j,
e„rfkI(s k')+kl'(s k)j,
k {SXk).k '(SXk')„—(4N+-+I),

k„(SXk') „+k„'(SXk)„
(III~ n—) 2k' ke„—„,sI,

8.„t(s k)+(s k') j,
b {sk„sk'), k' —k{s ,s„)„,
k {s„,s k)+k„'{s„,s k'),
k„{s',s k)+k '{s,s k'},
k„{s„,s k')+k. '{s„,s It) —2k' k{s,s.),
k {s„,s k'}+k '{s„,s k).

j,—4.
i=5'
i=6:
pe

i=8
i=9'
i= 10:
j=11:

E;{4»' I») = —E;(—r» —r»')

E;(4»',4») =e;(4»'+r»)+0(4»') . (35)

It 1S important to note that thc cxpaIlsion of E s
EEq. (35)j is made possible because the E s have
neither kinematical nor dynamical singularities. The
absence of kinematical singularities is "built in" in the
procedure of getting the "complete minimal" basis. ' It
is for removing the dynamical singularity (namely, the
target pole) that the separation of the complete ampli-
tudC Tsssss 1nto Ug~~ a11d ENs~ 1S ncccssa1y. ThC nCxt

singularity will be a cut arising from a photon in the
intermediate state. This would, however, contribute to
the amplitude only to order e', which is why all our re-
sults are true only to the order t,' but are true to all
orders 1n stiong interactions. s

Finally, we give the left-hand side of Eqs. (10a) and
(10b):

(32)

j= 12:
i= 13:
~= 14.

i=15:
i= 16:
j=17:

Up to secolld order III I», 14 more bRsls fllllctlolls can E.(&» ~4») —E.(0 0)+e. kf'(~& )+e, ( i+ )2+,0( I)
contribute. %C list these below:

d f

k 'E „(»k /4»&»'

= cos8 E,» e»{0,0)+4»'E4» e»(0,0)+4»' cos8 f—eII(»+4eI2»»+2E4»Ne»(0, 0)j+4»' cos'8 eII(N»

+I { )'+( . ')'j "'( )+L( )'+( ')'j o { ""(oo)+ '(oo))
—Ls (kXk')/&»](2e2» e») —s (kXk')e2(»/M+s (kXk') cos8em»"»/M

+({sk,s k')/4»')E4(»(0, 0)+({sk, s k')/3'»)E4»~e»(0, 0)—({s k, s k')/Aft») cos8 Es(~e»(0,0)
+{sk s k')(4e42» e» —e4I(»+2EI4» e»(0,0))+{sk, s k'} cos8 (eII»»), (36)

km Em+ 4/4»4»

=I» cos8 2el»» —4»' cos8 ell »/%+4»' cos'8 el»»/M

+({sk, s k')/4»)2eg»+{8 k, s k'}e4»»/M —{sk, s k') cos8 e4»»/M
—Ls (kXk')/I»']E2»»(0, 0)—t s (kXk')/M'4»jE2»»(0, 0)+Ls. (kXk')/M4»j cos8 E2»»(0,0)

+s (kXk')(e2I'» —4e22»"e» —2EIO' e'(0,0))—s (kXk') cos8 {e„l»). (3'I)

~ p „'for &=3 is somewhat diferent from the basis listed by Pais. In our case, it is an irreducible spin-two operator. %'ith this change
the quadrupole moment Q appears only in E3& &~ and not in E1&"&~.I am indebted to Professor V, Singh for pointing this out to me.

8 Low-energy theorems up to order e'have recently been obtained in the framework of 8-matrix theory by S. M. Roy and p, Singh
(to be published).



One can now read oG all the low-energy theorems by
comparing coeKcients of various terms. We state these
below.

Symmetric case. First-order theorems:

Eat "»(pp) = {Fo,FpP}+0(op'), (Si)

eii~ »=0
eai~ »=0,

(S4)

(Ss)

Egos'P~(0, 0)+2Eg4t "P~(0,0)
= (1/2MP) (Foie+ FpPFiN)+ (Fp0|FpP+FoPFP)

—(1/2M') {Fo,FoP} (S6)

Antisymmetric case. First-order theorems:

Egt P'(M) = ((2/3M)LFp, Fog+ 4MI Fp,Fo'P]
—(2/3M) t Fo,FP))ru, (Ai)

Ep[ae](~) faAF~yyO(ppo) (A2)

Ep' '(P~) = pf P~(2MF—F+Fo'/M —F /rM) pp (A3)

Second-order theorems:

epgt P& =p((i/2M') {FjPFo —FpFpP)
+(1/2MP)fFp Fpe))+2f PyFg y (A4)

Theorems (Si), (S2), (S3), and (S6) are, of course,
trivial extensions of those obtained by Pais earlier for
physical Compton scattering. In addition, as has been
shown by Pais, (Si), {S2), and (S3) are generalizable
to arbitrary spin in terms of the gyromagnetic ratio g
(see the Appendix).

The remaining theorems are the new theorems for
spin-1 targets. However, most of them are analogous to
theorerns for the spin-~~ case. We proceed to discuss them

(i) Theorem (A2) is the zero-order low-energy
theorem for non-Abelian Compton eGect that is exactly
analogous to Beg's theorem for the nucleon case, which
leads

Ep&"P'(co)= 2f »Fq~, for spin-—-,' targets.

Generalization of this theorem to arbitrary spin seems
obvious, if we introduce the g factor. %'e therefore
conjecture

E ' '(~) ——
gf Fq for arbitrary spin

(ii) Theorem (A3) is a new theorem peculiar to the
spin- j. case. The most interesting feature of this theorem
is that the three form factors Fo, Pj, and F~ occurring in
this combine to give a pure quadrupole momemt term. -

t(~) = (p/M)f{Fo, FoP}—(Fi Foe+Fop )j~, (S2)

Ept P&(ca) =0+0(co'). (S3)

Second-order theorems:

(ul) Theorem (A1) ls analogous to the CalMbbo-
Radicati theorem for the nucleon case. The amplitude
in question requires for its determination not only the
cha,'rge and the magnetic moment Iio and I'q, but also
the charge distribution through Fo'. Explicitly, for the
nucleon case, the theorem reads

Ed P'= ((1/2M)P'o, Fpei+4MtFo, Fo'Pj
—(1/M) $Fo,FP))o) .

Note that the explicit form for the spin-1 case is not
identical to the spin-~ case even when one uses the g
factor. We are therefore as yet unable to conjecture the
generalization of this theorem for arbitrary spin.

(iv) The second-order theorem (S4) is exactly analo-
gous to Slngh s theorem for the spin-2 case. TheoleIQ
(SS) is peculiar to the spin-1 situation. These, together,
satisfy the following .generalized second-order theorem
first conjectured by Singh'. Let

Tr(p '2'„ t Plp )/Tr(1)
= Tgt~et(pp'p)s' a+Tot~»(co', pp)(s' 4 k' —Ir' 4' e),

where the trace is over the spin states, and let

Tgt Pt(a)', po) = Tgt~e~(0, 0)+tgt »M(&p' —pp)

+( +-) t.t-»

In the same way, theorem (A4) is analogous to Singh's
corresponding theorem for the spin--,' case.

Why do most of these theorems so easily generalize to
the case of arbitrary spin? The reason for this can be
traced by studying the vertex functions, say, for the
spill-2 and spin-1 targets. The followBlg lmpol tant
properties can be noted by comparing the expressions
given in the Appendix: (a) Up to ffrst order, the form
of the vertex (p'

I
7 (0) I p) is identical for both cases if

expressed in terms of the g factor; (b) the coefficient of
s (p)& p') occurring in the vertex {p'I~o(0) I p) is again
identical for both cases if expressed in terms of the g
factor; and (c) the coeKcient of tio occurring in the
vertex (p'~ Jp(0) j p) is not identical in the two cases
even in terms of g.

The three ffrst-order theorems (S1), (S2), and (S3)
given by Pais, the Beg theorem (A2) for the antisym-
metric case, and the second-order theorems of Singh
owe their generalizations in terms of g to properties (a)
and (b) stated above. These theorems are independent
of the coeKcient of g' occurring in the (p'~ Jp(0)

~ p)
vertex.

However, the amplitude given by the Cabibbo-
Radicati theorem depends on this coeKcient of q', and
that is why the Cabibbo-Radicati theorem does not ap-
pear to be quite the same in the two cases. It is, of
course, possible that the form of vertex (p'~ Jp(D) tp)
may after all be generalizable to higher spins in a less
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obvious may. One possibility is that there mig'ht be gen-
eralized Sachs form factors in terms of vrhich this vertex
may be expressible in identical forms in the tv(0 cases.
If Such R generalization of the vcltcx function cxlsts,
m'c shall, of course, gct a generalized Cabibbo-Radicati
theoxem also.

This aspect of the problem and explicit proofs of the
VRllous con)ccturcs MRde fol arbitrary spin %'ill bc rc-
portcd else%'herc.

F=p'+p. Smularly,

(I"~P'/~')'"(p'f Io(o) I P)

( Fa(0)—2Fg(0)= 5'I Fo(V')+~ s (t»&y')
2&2

Fo(0) Fo(0)—2Fg(0)
+ (y'+y")+ --'«' lk+O(p') .' )
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APPENDIX

A. Electromagnetic Vertex for a Syin-~~ Particle

(p'I ~.(0) I p) = (~'/I"&n&') "&(p')
XLv.Fo(q')+~~"q"f~(v') jl(P) v=p' —P.

Here F,(0}=s, f~(0)= (e/2 '')(p —I), and p is the total
magnetic moment. Berne

Fg(0) =ep=2M fg(0)+F0(0}.

One can now "unboost" u(p') and N(p) by using

K Electromagnetic Vertex for a Syin-I Particle

Ke give here the explicit expression for I'„dined in
Sec. III (for more details, see Ref. 6):
F„/2M= (1/2M)LF~O(0)+i(sX«) Fg(0)j+O(p'),

I'.= (Fo(V') —Ds «)'——:«'3F~(0)

&&i~(y)+&(y)'3+(Fo(0)—F~(0))~
XCia (y&&y')+«' —(s «)'j

Fo(0)=e, Fg(0) = e»»,

F2(o) = (e/2~')(Q+» —I}
Here»» ls the magnetic moment 1I1 ulllts e/23' and Q 1s

the quadrupole moment in units e/M'.
To see its similarity with the nucleon vertex, vm

rewrite

Fg(0)—Fg(0)
=Fo(V')+~ s (y&y')

2M2

Fo(0) Fo(0)—Fg(0)
+ (y'+y")+ lq2

43f2 2M~

+(a term involving only Q) .

This gives

where $ is the two-component spinor, s=-,'e, and

(p+~)N(0) p'+~ It is then clear that F is completely generalizable in

N(y) = +(y )=N(0) . terms of the gyromagnetic ratio g=»»/s, The coeKcient
L2~(&+~)O' ' L2~(++~)j'" of s (yxy') occurring in (p'

~
Jo(0}

~ p& is also the same in
terms of g. However, the coeKcient of q' is di8erent in
the two cases,

Finally, up to third order, in the laboratory frame

&= (F~(g') —Ds «)'—3«'jF2(o))P+~(sX«)F~(e')
+E(F.(0)-F (0))/2~'jL«'-('«)'jP.


