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For the M= I case, we Deed only cite the behavior
of the nudeon Born-term graph in pion photoproduction

ignore them. The leading terms in these two satisfy
conspiracy among themselves, paralleling the mell-

known case of axial-vector exchange, which gives
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which show in R very simple way the singularities of
thc M= 1 consplI'acy dlscusscd ln Scc. V, cvcn thoUgh
the graph does not represent R k-channel exchange.
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Currents as Coordinates in Nonrelativistic Quantum Mechanics*
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fhe formulation of nonrelativistic quantum mechanics using currents and densities as coordinates is
investigated. A general solution for a single-particle theory is presented, and several many-body problems
are discussed.

I. INTRODUCTION

KCE5TI.V, there has been considexable interest in
thc description of stx'ong lntcrRctlons ln terms of

currents. Dashen and Sharp' showed that nonrelativ-
istic quantum mechanics could bc described by using
currents and densities as coordinates rather than the
morc fRmlllar canonical cooldlnatcs, but they left
unanswered thc qucstlon of solvRblllty of such a theory.
In this paper we treat systems of Q identical hosons in

their formalism, and show how to obtain all of the
information that the usual formulation gives. For
single particles interacting with a fixed potential or
potcntlRl scattcling of two particles, thc Dcw formalism

turns out to require the solution of the Schrodinger

equation. Fol Inore pRrtlclcs lt ls not clcR1 what thc
form of the solution is except in some simple solvablc

examples.
It seems natural to formulate many-body problems

in terms of currents and densities, and perhaps this
approach might lead to better or di6erent approxima-
tion schemes. Although our original motivation for
solving problems this way was to learn how to work. with
descriptions of systems in terms of currents and densi-

ties, we also have shown that the formulation is a
feasible approach to nonrelativistic problems. There is

*%'ork supported by the National Science Foundation under
Grant No. NSF GP 6j.98 and the Ofhce of Naval Research under
Contract No. N00014-67-A-0305-0005.

' R. F. Dashen and D. H. Sharp, Phys. Rev. 165, 1857 (1968).

Do pretense made of mathclnatical rigor, and since wc
are in fact working with functional intcgrals —a rela-
tively unexplored area of mathematics —we may occa-
sionally adopt questionable mathematical procedures.

We start with a review of the work of Dashen and
Sharp" and refer the reader to their paper for further
details. ScctloD III ls dcvotcd to R dlscusslon of R single
pRl tlclc lntclactlIig with R 6xcd potential) and thcrc lt
is shown how to find solutions to the usual problems.
In Sec. IV we treat noninteracting systems and show
how to 6nd thc many"boson correlation functions. Wc
also discuss the di6erences between wave functionals
that. give identical results for a single-particle theory
but di6erent results for a many-particle theory. The
1Rst, section dlscUsscs . two problems of 1Dtcl actlDg
bosons —coupled harmonic oscillators and a one-dimen-
sional system of particles interacting through b-function
potentials. The form of the exact solutions to these
problems suggests approximation schemes for other
kinds of interactions, but it sheds no real light on how
to obtain solutions to more complicated systems.

II. REVIEW

In this section we review for completeness the formu-
lation of nonrelativistic quantum mechanics in terms of
currents and charge densities as given by Dashen and

' D. H. Sharp, Phys. Rev. 165, 1861' (I968).
3 We ahvays assume that integration by parts is permissible

and that the boundary terms vanish.
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total number of particles is a constant and is given bySharp. ' We consider a system of Q spinless identical
bosons interacting pairwise through local central poten-
tials, V(lx, —x„l),and through a fixed external local
central potential, U(lxl). The usual formulation is
written in terms of second-quantized field operators
satisfying the canonical colnmutation rules,

Q= d'x p(x).

p(x) =4'(x)4 (x)

P(x) I
p&= p(x) I p&J(x)=(In')E~'(x)~~(x)-~~'(x)~(x)r.

The set of components of l%) along such a basis is
then a wave functionalWe have taken the Inass of the bosons to be unity. It

is easily veri6ed that the commutators of these operators
are given by +(p) =(pl+&

Following Sharp, ' one now introduces a functional
representation of the algebra given by Eqs. (2.1)—(2.3).

LV(x)~4' (y) j=0~ Ef(x)A'(y) 3=0~ An abstract state in the Hilbert space is represented by
Ef(x),f"(y)(=8(x—y) . its components along a basis formed by a complete set

of eigenvectors of a commuting set of current operators.
The density and current operators are given by Because the eigenvectors of the operator p(x) form

such a set, we consider states labeled by the eigenvalues

d
of p(x),

Ep(x) p(y)3=0

8
Ep(x),~~(y)j= -' Eh(x-y)p(x)j,

Bx~
(2.1)

In this basis, the action of p(x) on l%') is just multiplica-
tion of 4(p) by the eigenvalue of p(x) and the action
of A(x) on these states may be represented by the
following functional derivative:

8
A(x) -+ —jp(x)

Bx"hp(x)

&+(p)=~(p)

and
8 (2 &)

E~~(x),~-(y)j= —~ Eh(x-y)~~(x)j
8$

8 The energy spectrum of the system is then determined+' Eh(x—y)~-(y) j.
g~&

The total momentum operator is given by

P= J(x)d'x (2.2)

The scalar product in such a functional representa-
tion is denoted by

(+IC&= +'(
p) c( p) D( p),

and the Hamiltonian by

H0 — d'x Ha(x) =xi—Q

l'= s 0'(x)f'(y) ~(l x—y l)4 (x)4 (y)d'xd'y

= s p(x)p(y) I'(l x—yl)d'xd'3+2 p(y) ~(0)d'3,

DL SINGLE-PARTICLE QUANTUM
MECHANICS

where the integral is over all functions p such that=80+I'+ U, (23) p(x))0 and f p(x)d'x=Q, the number of particles.
D(p) denotes a measure on the space of all functions
satisfying the constraints. We know of no way to

d'xEVj, p(x) —2i/g(x) j construct the measure D(p) for a general functional
~l integral. For quantum mechanics the measure must be

chosen so that the expectation value of an observable
is real. The form of the solutions to these functional
equations suggests that the correct measure is builtp x
into the wave functional. Although we have not been
able to do any of the functional integrals prescribed by
the theory, we are able to And the expectation values
of opeI'ators by making use of the reality condition on
observables.

V= d3x p(x) U(l xl). (2.5)

The term ~~ f p(y) V(0)d'y is a constant (possibly
infmite) and may be neglected in any calculation. The

In this section we show how to recover the solutions
to the ordinary Schrodinger equation for a particle
interacting with a fixed potential. We use only solutions
corresponding to f p(x)d'x= 1, which represents a
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S111cc p(x) ls cssclltlally Rl'b1tlal'y, tllc IIltcg1alld Illust slid t11c destruction opclatol' ls
be 0, i.e.,

L-,'V'f(x)+-', Vf(x) Vf(x)+U(x) —E)=0. (3.28)

The substitution f(x)= —lng(x) in (3.28) gives the
Schrodinger equation

a(k)= e-'&* e~
bp(x)i

p {k)— g~lc. xp (x)de

(4.3)

(4.4)

L
—l &'+ U(x) 3g(x) =&g(x) (3.29)

(4.5)+(P)=+0(u)~(k) =+0(I )~(k),
p(x) )

+(p) = cxp —k p(x)» ld'& ~ (3 30) where we expand
g'(x)i

then a one-particle state of momentum k is given by
Thus the general solution for an arbitrary potential
U(x) is

where g{x) is the solution of the Schrodinger equation.
Taking g(x) =gs(x)+engr(x), the expectation value of
p(x) and J(x) in such a state is

( (x)}=«""*'=~t:gs'(x)+g"(x)3

(J(x))= c~fr(—x)e 'I&&*&=—c Img*(x)V'g(x),

where c is determined by the condition J p(x)d'x= 1.
%ith this solution one may determine boundary con-
ditions, and define the 5 matrix, etc., in the usual way.

Iv. MANY-PARTICLE KONINTERACTING
SYSTEMS

In this section we brieQy extend the results of the
previous section to include many particles interacting
with a central potential but not with each other. The
physically measurable quantities in this case are the
densities and correlation functions, and they are im-

mediately obtainable from the wave functionals. %e
shall also see the differences between the. wave function-
als which gave identical results for one particle.

Consider first the problem of describing Q free
particles of various momenta. The state with Q particles
all having momentum k is just the same as in the
single-particle case. One can verify, by operating with

the Hamiltonian and the total momentum operator,
that the state

cxpl ——/= &——+
hpi 5p

and only the 6rst term contributes, because there are
no p's to operate on. This corresponds to a state where
one particle has Inomentum k and the other particles
are at rest. Simil. arly a state with a particle of momen-
tum y and a second particle of momentum g is given by

+(~)=+0(I )~(Il)~(P)
=+o(~)(P(p)u(q) —~(p+q) } (4.6)

One interesting point is the cBcct of creating morc
momentum states than there are particles, i.e., if in
Eq. (4.7) e)Q, what happens' It is easier to see the
solution if we place the particles in a box so that the
density can be calculated. For example, if we construct
a state

+(p) =xI 0(p) cos(kx)p(x)dx

Xexp~ —,
' InLsin'(kx)Q(x)dx ~, (4.8)

'I

where k= Ir/J, we Gnd a density

A state with e particles having momentum k1 ~ k is
given by

@(P)=40(P)A (k1)A (km) ~ 2 (k„). (4.'I)

e(p)=exp( ik xp(x)d'x ]@0i

has energy 8=-', Qk' and. momentum P= Qk.
It is somewhat harder to construct the states with

momenta kI .k„and energy —x2,:(kxm+kx,'+ +k„x),
and we shaB simply give the prescription without the
proof. To simplify the algebra it is convenient to dane
creation and destruction operators that do not act on
the 0'0 part of the wave functional. The creation
operator subject to this restriction is then

This density corresponds to one particle in the 6rst
excited state and the other Q—I particles in the ground
state. If Q= I then there is only a particle in the first
excited state since the coeflicient of the second term
vanishes. The result is that, although it is not obvious
that thc wave function takes care of such problems, all
expectation values seem to have the appropriate
zeroes.

As a further illustration, we consider Q particles
interacting with a fixed harmonic-oscillator potential

b

A (k) = e*".*p(x) expi-
Bp(x)

(4.2)

(4.&)

{p(x))= L4 sin'(kx) cos'(kx)

+ (Q—I) sin'(kx)$2/L. (4.9)
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8—&p(y))o b(y —«)
pa

(d
+~I +2 3.)(x(3)x(x)),=O, (3.)O),

kdyk

and the expectation value of the density is
which has the solution

po(x) = (p(x)) =Q((d/zr)z( e "". (3.25') &P(x)p(y))o ——po(x)()(x—y)+ (1—1/Q)Po(x)Po(y) ~ (4.11)

To calculate the two-particle correlation function in The three-particle correlation function is found to be

but not with each other. It was shown in the previous the ground state (p(x)p(y))o, we use the fact that
section how to calculate expectation values of densities, Jk(y)p(x)+p(x) Jk(y) is Hermitian. This leads to a
and we now show how to calculate the correlation differential equation
functions which are necessary to completely describe
the system. Consider Q particles all in the ground state.
The wave functional is given by Eq. (3.21}as

( 1
&p(x)p(y)p(z))o ——po(z)()(z —x)()(z—y)+~ 1——{po(x)po(y)l)(z —x)+po(x)po(z)5(y —z)+p, (y)p, (z)b(x —y))

To derive the m-particle correlation function we use Hermiticity of

1( 2q
+I 1--

(
1-- )po(x)po(y)po(z) . (4.12)

QE Q)

J(y)p(x1)p(xz) p(x„)+p(x1)p(xz) p(x„)J(y) .

The e-particle correlation function is very ugly, but it is useful for computing expectation values in excited states.
It is given by

n—1 ))' n 1 n —xx 1( Z)
&p(»)" p(x-)&= III 1—po(») 'po(x-)+Z II I

1—
~

Q 1 '-1 k Q) k &k &k ~ ~ ~ &k

X P l)(x,—x ,) ()(x .—x„.) g p (x ). (4.13)
3+a (ka m gk1. ~ ka

mI gka, i =1, ' ',a

with

H „((o'"Xk)p (X)d'X +o,

31 o
——31 O e«P~ —-', (O X'P (X)d'X ~,

and calculate the density using Eq. (4.11) to

Although we derived the above result for the har-
monic-oscillator ground state, it is true for any system
of particles in the same state interacting only with a
central potential. Again we point out that, if one asks
for a correlation function for more particles than are
present in the system, the extra terms are automatically
eliminated like (X—Q) in Eq. (4.12).

Having found the correlation functions, we now
return to the original problem. In the previous section,
we found more than one harmonic-oscillator solution
with the same energy and it was not possible to differ-
entiate between them for one particle. With Q particles,
however, there is a di6erence which can be determined

by calculating the density of the particles in that state.
For example, consider the state

obtain

(p (*))= &'p
I p (x) I

'p)

d38dap II M~~2pq II CO~I281,

X&+ Ip( )p(y)p( ) ~@,)

=~ 1——~po(x)+-& '((o'"x )po(x); (4.14)
Qi

the energy of the state is

En=-', Qoo+zz(o.

From this expression it is easily seen that this wave
functional corresponds to one particle in the eth state
and Q—1 particles in the ground state.

On the other hand, the density as given by the wave
functional of Eq. (3.23) is, for n= 2,

1
&p(x) &=—L(Q—1)'+2(Q—I)&1'(~'"»)

2

+%'((o'"xk)jpo(x).
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Therefore, the energy is

E= (—X'/24) Q'.

However, there is still the problem of V(0)Q, which
means that there is some arbitrariness in terms linear
in Q. We require that E=O for Q=O or 1 and thus
obtain

Note added in proof. Since this paper was written, we
have learned how to deine a measure and scalar product
for the Hilbert space. I'he functional integration must
be done on the set of eigenvalues p(z) of the physical
density operator p(x), and, as indicated by Percus in
the book "The Many Body Problem, " these are just
8 functions

which is the correct answer. ' This seems to be an
appropriate way to handle the V(0) term. Note that
there is no problem like this for the harmonic oscillator
since V(0)=0.

The form of the solution for these two examples was
very simple. Other potentials will have much more
cornpli. cated solutions which probably cannot be found.

exactly. However, it may be useful to 6nd approximate
solutions using variational techniques or other methods.
%e have not yet investigated any of the various
possibilities.

VI. CONCLUSIONS

VVe have shown how a nonrelativistic theory of
bosons based on currents may be solved and how to
extract the information from the solutions necessary
to give a complete description of single-particle quantum
mechanics in terms of currents and densities. Still
lacking is a 6rm mathematical understanding of func-
tional techniques, especially functional integration.
Nevertheless, the success we have had in these attempts
convinces us that the techniques and the formulation
are basically sound. Furthermore, we expect the
methods described here and the insight gained. into the
nature of the solutions of the functional equations will

prove useful in the approximate solution of many-body
problems and in the solution of relativistic theories,
where the formulation in terms of currents may have
some real advantages.

4 C. N. Yang, Phys. Rev. 168, 1920 (1968).

p(z) =Q b(g a -)

see also a recent unpublished report by David Gross.
The functional integration is simply the integration over
the Q coordinates u;. Direct calculation verifies that
this yields all expectation values and the con6guration-
space wave functions.

Gross argues that the existence of the operator 8/bp(x)
forces certain undesirable features on the theory. Note
that the dynamical equations employ functional deriva-
tives only in the form p(z) V'(b/bp(x) j, which does not
share the properties that Gross ascribes to b/bp(z). In
particular, it does not connect states of different Q. In
fact, the operator b/8p(x) does not exist for the above-
mentioned scalar product —its matrix elements are all
in6nite.

Because we are working formally in a much larger
space than Fock space, there may be the possibility of
either not obtaining the entire spectrum of H or obtain-
ing too large a spectrum. One obtains the latter if there
exists a set of states 4 such that (II E)/= 0 and if a—ll
of the states in the set have norm zero. %e have not
been able to construct such states, and suspect that
they do not exist. The other possibility arises if there
exist states such that (H E)ip=X where X—has zero
norm, and there is no tp satisfying formally (H —E)/=0.
%e have not investigated this situation. Ke would like
to thank David Gross for making his report available
to us. See also Hong-mo Chan and J.E.Valatin, Nuovo
Cirnento 19, 118 (1960), who have done some very
slm&lar work.


