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ignore them. The leading terms in these two satisfy
conspiracy among themselves, paralleling the well-
known case of axial-vector exchange, which gives
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For the M=1 case, we need only cite the behavior
of the nucleon Born-term graph in pion photoproduction
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Nys(y-£)(y-€)N. This gives (for a photon of mass my)

Joo,44=—pmy(cosdy)/M
Jro4 4= For044=V2pko/M
Jio 4+ Foro44=—V2Eq/M ,
Joo—=0,
Fro4—— f—10.+—=\/2—9 ’
Jro4—+F10,4-=0,

which show in a very simple way the singularities of
the M =1 conspiracy discussed in Sec. V, even though
the graph does not represent a ¢-channel exchange.
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The formulation of nonrelativistic quantum mechanics using currents and densities as coordinates is
investigated. A general solution for a single-particle theory is presented, and several many-body problems

are discussed.

I. INTRODUCTION

ECENTLY, there has been considerable interest in
the description of strong interactions in terms of
currents. Dashen and Sharp! showed that nonrelativ-
istic quantum mechanics could be described by using
currents and densities as coordinates rather than the
more familiar canonical coordinates, but they left
unanswered the question of solvability of such a theory.
In this paper we treat systems of ( identical bosons in
their formalism, and show how to obtain all of the
informatioh that the usual formulation gives. For
single particles interacting with a fixed potential or
potential scattering of two particles, the new formalism
turns out to require the solution of the Schrédinger
equation. For more particles it is not clear what the
form of the solution is except in some simple solvable
examples.

Tt seems natural to formulate many-body problems
in terms of currents and densities, and perhaps this
approach might lead to better or different approxima-
tion schemes. Although our original motivation for
solving problems this way was to learn how to work with
descriptions of systems in terms of currents and densi-
ties, we also have shown that the formulation is a
feasible approach to nonrelativistic problems. There is

* Work supported by the National Science Foundation under
Grant No. NSF GP 6198 and the Office of Naval Research under
Contract No. N00014-67-A-0305-0005.

1 R. F. Dashen and D. H. Sharp, Phys. Rev. 165, 1857 (1968).

no pretense made of mathematical rigor, and since we
are in fact working with functional integrals—a rela-
tively unexplored area of mathematics—we may occa-
sionally adopt questionable mathematical procedures.

We start with a review of the work of Dashen and
Sharp!? and refer the reader to their paper for further
details. Section III is devoted to a discussion of a single
particle interacting with a fixed potential, and there it
is shown how to find solutions to the usual problems.
In Sec. IV we treat noninteracting systems and show
how to find the many-boson correlation functions. We
also discuss the differences between wave functionals
that give identical results for a single-particle theory
but different results for a many-particle theory. The
last section discusses two problems of interacting
bosons—coupled harmonic oscillators and a one-dimen-
sional system of particles interacting through é-function
potentials. The form of the exact solutions to these
problems suggests approximation schemes for other
kinds of interactions, but it sheds no real light on how
to obtain solutions to more complicated systems.

II. REVIEW

In this section we review for completeness the formu-
lation of nonrelativistic quantum mechanics in terms of
currents and charge densities as given by Dashen and

2 D. H. Sharp, Phys. Rev. 165, 1867 (1968).
3 We always assume that integration by parts is permissible
and that the boundary terms vanish.
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Sharp.! We consider a system of Q spinless identical
bosons interacting pairwise through local central poten-
tials, V(|x;—x;|), and through a fixed external local
central potential, U(|x|). The usual formulation is
written in terms of second-quantized field operators
satisfying the canonical commutation rules,

[\bf (X) ;\” (Y):] =0, [‘p (X) W (Y)]= 0, :
@ (y)]=8(x—y).

The density and current operators are given by
p(x)=¢" (x)¢(x)
I = (1/2)[¥' Q)W (x)— W @y (x)].

We have taken the mass of the bosons to be unity. It
is easily verified that the commutators of these operators
are given by ‘

[p(x),p(y)]=0,

and

0 .
Lp(®),Jx(y)]= —i;c;[} x=yp®1, (21

and

9
[Je(®),Tm(y) 1= —i5—~[5 (x—y)Jx(x)]
xm
]
+i—{s(x—y) ()]
ay*
The total momentum operator is given by

P= f J(x)dw (2.2)

and the Hamiltonian by

H=H+V+U, - (23)

where

Ho=[d3xHo(X)=%g /dsx[Vkp(x)-—Zz]k(x)]

1
X—LVio(x)+2iT:(x)], (2.4)
p(x)

y=1 / P W ()Y (| x— | W W () Py

-1 / o)V (| x— ety / oV Oy,
and

U=/d3xp(x)U(]x]). (2.5)

The term % [ p(y)V(0)d®y is a constant (possibly
infinite) and may be neglected in any calculation. The
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total number of particles is a constant and is given by

Q=/ &*x p(x). (2.6)

Following Sharp,? one now introduces a functional
representation of the algebra given by Eqgs. (2.1)-(2.3).
An abstract state in the Hilbert space is represented by
its components along a basis formed by a complete set
of eigenvectors of a commuting set of current operators.
Because the eigenvectors of the operator p(x) form
such a set, we consider states labeled by the eigenvalues
of p(x),

p(xX)|p)=p(x)|p).

The set of components of |¥) along such a basis is
then a wave functional

¥(p)=(p|¥).

In this basis, the action of 5(x) on | ¥) is just multiplica-
tion of ¥(p) by the eigenvalue of p(x) and the action
of J(x) on these states may be represented by the
following functional derivative:

Ji(x) = —ip(x)—

25 o) 2.7

The energy spectrum of the system is then determined
by
H¥(p)=E¥(p).

The scalar product in such a functional representa-
tion is denoted by

(¥|®)= f ¥t (p)®(p)D(p),

where the integral is over all functions p such that
p(x)>0 and [ p(x)d*=(Q, the number of particles.
D(p) denotes a measure on the space of all functions
satisfying the constraints. We know of no way to
construct the measure D(p) for a general functional
integral. For quantum mechanics the measure must be
chosen so that the expectation value of an observable
is real. The form of the solutions to these functional
equations suggests that the correct measure is built
into the wave functional. Although we have not been
able to do any of the functional integrals prescribed by
the theory, we are able to find the expectation values

of operators by making use of the reality condition on
observables.

III. SINGLE-PARTICLE QUANTUM
MECHANICS

In this section we show how to recover the solutions
to the ordinary Schrodinger equation for a particle
interacting with a fixed potential. We use only solutions
corresponding’ to [ p(x)d®xr=1, which represents a
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single-particle theory. The potential is given by
U=/ U(|x])p(x)d?.

As a first example, consider a free particle at rest
which satisfies :
Hg¥=0. (3.1)

The free Hamiltonian is positive definite, and can be
written in the form

Hoz%i (3.2)

k=1

1
P At (X)—A(x),
% (x),, ® (x)

where

Ar(x)=3[Vip(x)+2iJx(x) ]
A x) =3[ Vio(x)— 2T, (x)]. (3.3)

The expectation value of the Hamiltonian in a state
¥ can be written in a form that explicitly exhibits the
positive definite character:

Clearly the zero-energy eigenstates will be solutions of
Ar(x)|To)=0, (3.4)
or, using (2.7) for Jx(x),

and

At (X)—Ak(X)

<‘I’|H°"I’>=%,§~, d3x<

é
(vP(x>+zp<x>vap (X))wo<p>=o. (3.5)

Relying on the similarity to an ordinary differential
equation, we find the solution

‘I'o(p)=6XP<—% / p(x) 1np(X)d3x)- (3.6)

Wo(p) appears in every wave functional and perhaps
represents a measure since we shall see that all wave
functionals can be written as

¥(p)=To(p)®(p). (3.7

The wave functional for a free particle with momen-
tum p is easily found by looking for solutions of

fJ(x)d3xW(p)=—i/

=p¥(p).

Since [ p(x)d®x=1, we can insert it on the right-hand
side and in that form it is easy to guess a solution

2()~exp(in / s ).

(3.8)
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This ® does not satisfy H®=13p*®, but multiplying it
by W, will correct this. Multiplication by ¥, does not
change the property J¥=p¥ since?

f J(®)dx Vo=1i / Vo (x)d% ¥o=0.

Thus a free particle of momentum p is described by
the wave functional

vi=eniv [ W@ ). ()

There is another state vector which also satisfies the
above conditions:

()= f e dr ). (3.10)

For a single particle these solutions seem to be equiva-
lent, but for many particles they are different. If we
let fp(x)d*x=Q, then the first solution describes Q
particles all with momentum p while the second solution
describes one particle with momentum p and the other
(Q—1 particles at rest.

It is instructive to solve the problem of the free
particle in a one-dimensional box as it illustrates both
how probability densities can be found and how
boundary conditions can be applied. We start out by
guessing the form of the solution by analogy with the
free particle. The solution will be taken to be of the
form

¥ (p)="To(p) exp(% / In[sin?(kx) Jo (x)dx) . G

It is easily verified that H¥=%k>¥, and the problem is
to find the allowed values of k. The idea is to impose
the condition that the expectation value of p must
vanish at the boundaries of the box, where

(p(x))=(T|p(x) | ¥)/(¥|¥). (3.12)

One way of computing (3.12) would be to do a functional
integration. An alternative is to use the fact that J(x)
is Hermitian and therefore its expectation values must

be real;
(¥|J (x)|¥)=real function,

T@¥ ()= —-ip<x>vzap':x)[exp(—% [+ Inp (s

Xexp(% / ‘bp(x) 1n[sin2(kx)]dx>]

= —ip(x) Ve —} Inp ()=
3 In[sin (k) ¥ (o)
= i[3V.0(x)—kp(2) cot(t) T (o).
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The expectation value of J is therefore pure imaginary
and must vanish, giving the differential equation

(%f—k cot(k) ) 0))=0.

X

(3.13)

The solution is {p(x))~sin%x with the proportionality
constant determined by [ p(x)dx=1. The requirement
that {p(x))=0 at =0 and x=L gives the usual
allowed values of %.

We next consider the harmonic oscillator potential

U=1w? / 2% (x)d%x. (3.14)

For this potential the Hamiltonian density is -

3 1
H= / P H)= 3 dsx(%[vkp@)—wk(x)]@

k=1

1
X[ Vip (x)+2:J 5 (x) [ Sw?rip (X)——21p (x)) . (3.15)
p(x)

The eigenstates of this Hamiltonian may be found
using raising and lowering operators similar to those
used in the ordinary formulations. Defining

Ar(x) =3[ Vip(x)+2iT & (x)+2wxip (x) ]
and (3.16)
At (x) =3[ Vip(x) — 24T 1 (x) + 20010 (x) ],

the Hamiltonian (3.15) may be written as

H=/d3xH(x)=/d3x

3 1
><{%ZAJ<x)——Ak<x>~%wx'vp<x> . (3.17)
p(x)

k=1

integrating the last term by parts,® the Hamiltonian
density becomes

8 1

H(x)=%2 A" (x0)—4:(x)+3wp(x). (3.18)
k=1 p(x)

Because the first term in Eq. (3.18) is positive, the

ground-state wave functional, ¥,(p), for the harmonic

oscillator must satisfy

A(x)¥,(p)=0. (3.19)
And clearly :
H0,6) =10 [ (0P 1) =5t 0).
Assuming ¥,(p) =¥ ®,(p), we have
é
v( +%wx2)¢’g(p)=0. (3.20)
dp (x)
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Equation (3.20) has the solution

3,640 [ pwa),

therefore
()= ¥u() exp( ~ho f P, (320

The commutation relations of the operators 4; and
Ayt, where A= [ & Ax(x), with the Hamiltonian,
are easily found to be

EA k,H]=wA ky
(41, H]=—wd,. (3.22)

Thus the excited states of the harmonic oscillator may
be obtained by well-known methods. The #th excited
state of the oscillator obtained in this way is

qf,.(p)=Hn[ f (S)llzxkp(x)d"’x]\ll,,(p), (3.23)

where H, is the #th Hermite polynomial. For the single-
particle case there are many other solutions, two of
which are

()= [ P (O H [, 1 W, (),

and

¥,y = e / InCH () ()6 4.

These are equivalent for a single particle, but differ
for the many-particle system. This point will be dis-
cussed later.

The density can be found in the same way that we
found the density for a free particle in a box. The
requirement that expectation values of J(x) be real
leads to the differential equation (for the ground state)

GFV+wx)(p(x))=0, (3.24)
with the solution
(p(x))= (w/m)*2e—02", (3.25)

Having built up some necessary techniques, we
consider the general problem of a single particle in a
potential, and look for solutions of the form

¥ (p)="o(p) eXP<— / f(X)p(X)d%)- (3.26)
The equation
BYG)=E [ p@ite e

leads to

/ FaLIV ()Y ()Y (%)

+U®—EJp(x)=0. (3.27)
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Since p(x) is essentially arbitrary, the integrand must
be 0, i.e.,

[Av2f(x)+1iV/f(x) - V/(x)+U(x)— E]=0.

The substitution f(x)=—Ing(x) in (3.28) gives the
Schrodinger equation

[V +U(x)Jg(x)=Eg(x).

Thus the general solution for an arbitrary potential

U(x) is
¥(=em| =4 [ o0 1(’; ((i))d} (3.30)

where g(x) is the solution of the Schrodinger equation.
Taking g(x)=gr(x)+1igr(x), the expectation value of
p(x) and J(x) in such a state is

Ap(@)=ce ™ =c[gr*(x)+gr(x)],
J@))=—cVfr(x)e 2@ =c Img*(x)Vg(x),
where ¢ is determined by the condition [ p(x)d*x=1.

With this solution one may determine boundary con-
ditions, and define the S matrix, etc., in the usual way.

(3.28)

IV. MANY-PARTICLE NONINTERACTING
SYSTEMS

In this section we briefly extend the results of the
previous section to include many particles interacting
with a central potential but not with each other. The
physically measurable quantities in this case are the
densities and correlation functions, and they are im-
mediately obtainable from the wave functionals. We
shall also see the differences between the wave function-
als which gave identical results for one particle.

Consider first the problem of describing Q free
particles of various momenta. The state with Q particles
all having momentum k is just the same as in the
single-particle case. One can verify, by operating with
the Hamiltonian and the total momentum operator,
that the state

V()= exp(ik- / Xp (x)dsx)\po (@.1)

has energy E=31QF? and momentum P=Qk.

It is somewhat harder to construct the states with
momenta ki -k, and energy 3(ki2-+kot+-- -4k,
and we shall simply give the prescription without the
proof. To simplify the algebra it is convenient to define
creation and destruction operators that do not act on
the ¥, part of the wave functional. The creation
operator subject to this restriction is then

A (k)= f e"“p(x)‘exp(— >d3x, (4.2)

dp(x)
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and the destruction operator is

- [ enfen ) -iJee @

If we define

5(1)= f ()P, (4.4)

then a one-particle state of momentum k is given by
¥ (p)=¥o(p)A4 (k) =0 ()5 (k) , (4.5)

where we expand

and only the first term contributes, because there are
no p’s to operate on. This corresponds to a state where
one particle has momentum k and the other particles
are at rest. Similarly a state with a particle of momen-
tum p and a second particle of momentum q is given by

¥ (p)=¥o(p)A4 (q)4 (p)
=¥o(0){p(p)s(q0)—5(p+q)}-

A state with # particles having momentum k;- - -k, is
given by
¥ (p)=¥o(p)A (k1) A (ks) -« - A (ky).

(4.6)

4.7)

One interesting point is the effect of creating more
momentum states than there are particles, i.e., if in
Eq. (4.7) »>Q, what happens? It is easier to see the
solution if we place the particles in a box so that the
density can be calculated. For example, if we construct
a state

¥ () =Ta(p) / cos (k) (4)dx
Xexp(% / ln[sin2(kw)]p(x)dx), (4.8)

where k=x/L, we find a density

{p(x))=[14 sin?(kx) cos?(kx)
+(0—1) sin2(kx)J2/L.

This density corresponds to one particle in the first
excited state and the other Q— 1 particles in the ground
state. If Q=1 then there is only a particle in the first
excited state since the coefficient of the second term
vanishes. The result is that, although it is not obvious
that the wave function takes care of such problems, all
expectation values seem to have the appropriate
Zeroes.

As a further illustration, we consider Q particles
interacting with a fixed harmonic-oscillator potential

(4.9)
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but not with each other. It was shown in the previous
section how to calculate expectation values of densities,
and we now show how to calculate the correlation
functions which are necessary to completely describe
the system. Consider Q particles all in the ground state.
The wave functional is given by Eq. (3.21) as

¥ =w0ip) e 1o [ #o0i), G21)

and the expectation value of the density is

po(x)=(p(x))=Q(w/m)*2e~**. (3.25)

To calculate the two-particle correlation function in
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the ground state (p(x)p(y))s, we use the fact that
J(®)o(x)+p(x)Jk(y) is Hermitian. This leads to a
differential equation

i)
—{p(y))e—3(y—x).
6yk

d
+(d—y;+2wyk)<p<y>p<x>>o=o, (4.10)

which has the solution

{(p(®)p(¥))o=po(®)3(x—y)+ (1—1/Q)po(X)po(y). (4.11)

The three-particle correlation function is found to be

1
(p(x)p(¥)p(2))o= po(2)d (2—x)8(z— Y)+(1"é){P0(X)P0(Y)5(Z— X)+p0(X)po(2)8(y—2)+po(Y)po (2)8(x—y)}

+(1—5)(1—5),)0@»0(y)po<z>. @.12)

To derive the n-particle correlation function we use Hermiticity of

J(¥)p(x1)p(X2)* - - p(Xa)Fp(x1)p(x2) - - - p(xx)I (¥).

The n-particle correlation function is very ugly, but it is useful for computing expectation values in excited states.

It is given by

) o= 11 (1—5)];:0(&)- oot E [g’(1——)] >

=1 Q k1<ke<ks-+: <ke
X > O0(Xpy—Xny)* * - 8(Xkq—Xna)  II  po(Xm). (4.13)
n1<ki, .- na <ka m#k1- - cka
m#kai=1,-a
Although we derived the above result for the har- obtain

monic-oscillator ground state, it is true for any system
of particles in the same state interacting only with a
central potential. Again we point out that, if one asks
for a correlation function for more particles than are
present in the system, the extra terms are automatically
eliminated like (N—0Q) in Eq. (4.12).

Having found the correlation functions, we now
return to the original problem. In the previous section,
we found more than one harmonic-oscillator solution
with the same energy and it was not possible to differ-
entiate between them for one particle. With Q particles,
however, there is a difference which can be determined
by calculating the density of the particles in that state.
For example, consider the state

V= / H, (o' 2x)p(x)d*x
with

V,=¥, exp(—%w/x%(x)d‘*x),

and calculate the density using Eq. (4.11) to

(p(x))=(¥[p(x)[¥)

= / BadPy H, (' 2y,)H , (0! 22;)
Xy |p(X)p(¥)o(2) | ¥,)

=(1—i)po<x>+3ﬂn2<w”2xk>po(x); (4.14)
o/

the energy of the state is
E,=3Qw+mw.

From this expression it is easily seen that this wave
functional corresponds to one particle in the nth state
and Q—1 particles in the ground state.

On the other hand, the density as given by the wave
functional of Eq. (3.23) is, for n=2,

1
(p(x))= —Q;[ (Q—1)4-2(Q—1)H (0 2y,)
+H22 (w1/2xk)]p0 (X) .
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This functional corresponds to a mixture of two parti-
cles in the first excited state and one particle in the
second excited state. The other states corresponding to
the same energy can also be constructed and their
densities calculated similarly. Of course, the correlation
functions are also directly calculable with the use of
Eq. (4.12). Because there are obviously many different
states with the same energy for the many-particle
system, we can now understand why there were
several wave functionals describing the same state in
the single-particle case discussed in Sec. III. For
single particles, all the observables are the same, but
for many particles they are now different.

V. MANY-PARTICLE INTERACTING SYSTEMS

There are very few exactly soluble many-particle
problems, and we have not been able to extend the
list. It is possible that this new formulation may have
some use in approximation schemes; however, we have
not attempted to develop any as yet but instead have
confined ourselves to finding the exact solutions of two
problems—particles interacting through harmonic-oscil-
lator potentials and particles in one dimension interact-
ing through §-function potentials.

For the harmonic oscillator, the potential is

V=t / (o) e—dsdy,  (5.)

where for simplicity we consider only one dimension.
To simplify the notation we introduce a new variable,

z(x)=Qx— f yo(y)dy,
and a new frequency,
v=w/v Q.

The potential becomes

V=13 / p(®)z2(x)dx, (5.2)

and the Hamiltonian may be written

1
H=% / dx AY(x)—A (x)+30(Q0—-1), (5.3)
p(x)
where
A(x)=3[Vp(x)+2iJ (x)+2vz(x)p(x)].  (5.4)

As before, we look for solutions of

A®)¥,(0)=0
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and find that
¥0(5)=To(o) exp(—;é / zﬂ(x)p(x)dx)

— %) exp(—ﬁ—é f dudy

XpWp() =) (59
The energy of the ground state ¥, is

Eg=%vQ<Q—1)=-2——°°~Q<Q—1>. (5.6)

Vo

The excited states are easily found by analogy with
the single-particle case to be

¥, ()= / p(x)dxan[(&g:ﬁ)l'2z<x)]w,,(,,), (5.7)

with energies

w e
E,=—QQ—1)+—0. 5.8
Y« )+\/QQ (5.8)

2WQ

Although the solutions were found by a trick, it is
quite easy to guess the form of the solution and then
operate on it with the Hamiltonian to find the correct
energy.

The next example is very instructive as it illustrates
the problem of the additional term in the Hamiltonian,
J p(x)V (0)dx=QV (0). The potential is a one-dimen-
sional & function,

Ve—in / 3= () 1)

and of course V(0)=4§(0) is infinite. The solution is
found by guessing and is

¥ =20(s) xp —1 [ dodyls—lo (o). 59)
Operating on (5.9) with the Hamiltonian gives a term

HY=—} / p(@p (e

X e(z—x) e(z—y)dadydz ¥, (5.10)
where
e(x)= 1, x>0
=—1, x<0.

If the expression is symmetrized, it is easily seen to be
1
HY= (—2—4%2 / p(x)p(y)p (Z)dxdydz)‘l’

(%

)\If. (5.11)
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Therefore, the energy is
E=(—N/24)Q%.

However, there is still the problem of V(0)Q, which
means that there is some arbitrariness in terms linear
in Q. We require that E=0 for Q=0 or 1 and thus

obtain
E=(—N/24)(¢*-Q),

which is the correct answer.* This seems to be an
appropriate way to handle the V(0) term. Note that
there is no problem like this for the harmonic oscillator
since V(0)=0.

The form of the solution for these two examples was
very simple. Other potentials will have much more
complicated solutions which probably cannot be found
exactly. However, it may be useful to find approximate
solutions using variational techniques or other methods.
We have not yet investigated any of the various
possibilities.

VI. CONCLUSIONS

We have shown how a nonrelativistic theory of
bosons based on currents may be solved and how to
extract the information from the solutions necessary
to give a complete description of single-particle quantum
mechanics in terms of currents and densities. Still
lacking is a firm mathematical understanding of func-
tional techniques, especially functional integration.
Nevertheless, the success we have had in these attempts
convinces us that the techniques and the formulation
are basically sound. Furthermore, we expect the
methods described here and the insight gained into the
nature of the solutions of the functional equations will
prove useful in the approximate solution of many-body
problems and in the solution of relativistic theories,
where the formulation in terms of currents may have
some real advantages.

4C. N. Yang, Phys. Rev. 168, 1920 (1968).
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Note added in proof. Since this paper was written, we
have learned how to define a measure and scalar product
for the Hilbert space. The functional integration must
be done on the set of eigenvalues p(x) of the physical
density operator p(x), and, as indicated by Percus in
the book “The Many Body Problem,” these are just
d functions

b= 8(x—a),

i=1

see also a recent unpublished report by David Gross.
The functional integration is simply the integration over
the Q coordinates a;. Direct calculation verifies that
this yields all expectation values and the configuration-
space wave functions.

Gross argues that the existence of the operator 8/8p(x)
forces certain undesirable features on the theory. Note
that the dynamical equations employ functional deriva-
tives only in the form p(x)V[8/6p(x)], which does not
share the properties that Gross ascribes to §/8p(x). In
particular, it does not connect states of different Q. In
fact, the operator §/8p(x) does not exist for the above-
mentioned scalar product—its matrix elements are all
infinite.

Because we are working formally in a much larger
space than Fock space, there may be the possibility of
either not obtaining the entire spectrum of H or obtain-
ing too large a spectrum. One obtains the latter if there
exists a set of states ¥ such that (H—E)¥=0 and if all
of the states in the set have norm zero. We have not
been able to construct such states, and suspect that
they do not exist. The other possibility arises if there
exist states such that (H—E)y=X where X has zero
norm, and there is no y satisfying formally (H—E)¢=0.
We have not investigated this situation. We would like
to thank David Gross for making his report available
to us. See also Hong-mo Chan and J. E, Valatin, Nuovo
Cimento 19, 118 (1960), who have done some very
similar work.



