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Analyticity and the Daughter Struchue of Conspiring
Regge-Pole Families
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By studying reactions involving unequal-mass particles with spin, we show that much of the structure
of possible families of conspiring Regge poles follows simply from imposing the t =0 analyticity constraints.
These requirements imply the necessity for both daughter and conspirator contributions, where in many
cases the daughter poles are themselves conspirators. We discuss the pattern of (t=0) singularity cancellation
by daughter trajectories in both the single-parity families and double-parity families for general mass and
spin processes and demonstrate that the two have rather different structure. As an application, the reactions
2' —+ VV, ~E —+ VE, and EE~SE are examined in detail from the point of view of analyticity con-
straints. We show that in all cases factorization of the (6rst} daughter residues is consistent with the required
analyticity properties of the amplitudes, and that in certain (nonevasive) cases the factorisation of the
daughter residues is directly implied by factorization for the leading pole when the conspiracy constraints
are obeyed. We conclude that our results, based on analyticity (and factorization), complement the group-
theoretic 0(4) classi6cation; the symmetry and analyticity methods give similar information when they
overlap, but supplement each other in certain cases when one method is not readily applicable.

I. INTRODUCTION

&~AUGHTER trajectories were introduced by Freed-
man and Wang' into the treatment of unequal-

mass spinless scattering to preserve the analyticity of
Reggeized amplitudes at 1=0. They and others' —'
pointed out that the existence both of daughter poles
in unequal-mass spinless scattering and conspirator
trajectories in the case of equal-mass scattering with
spin can be inferred from an analysis based on considera-
tions of the Lorentz group O(3,1). Several classes or
types of conspiring families of poles were isolated,
essentially only those which can couple to the Eg
system. Domokos' has argued that the classilcation' of
the spectrum of Regge poles into 0(3,1) families, where
each family corresponds to a single I orentz or Toiler
pole, ' is independent of the external masses in the
problem, and thus applies to unequal-mass scattering
as well.

By studying a more general case containing both
unequal masses and spins, we show that much of the
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detailed structure of possible conspiring families of
Regge poles follows simply from imposing the k=0
analyticity constraints. These constraints on helicity
amplitudes are of two types: (1) restrictions on the
analytic structure of individual parity-conserving heli-
city amplitudes (PCHA) R,s analyzed by Haras and
Wang; and (2) tile collsplIRcy equa'tlolls, wlllcll are
linear constraints between diferent helicity amplitudes
(at &=0).~" Such analyticity requirements (m the
case of unequal-mass scattering with spin) imply the
necessity for both daughter and conspirator contribu-
tions. ~ Although the work of Ref. 1 makes it plausible,
it is not obvious for general mass and spin processes
that the necessary daughter-conspirator contributions
can be supplied by a siege I.orentz pole. We demon-
strate explicitly that, once the parent pole(s) has (have)
been speciled, all I,=o constraints may be satisled by
including the daughter sequence.

Thus we show that analytic'. ty induces the same
Regge-pole family structure as that given by the O(3,1)
group-theoretic approach. This analyticity point of view
makes it easy to investigate solne types of (3I=0 and
M = 1) collspll'acy Ilo't pl'evlously discussed. It also
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allows the phenomenologist interested in fitting high-
encl'gy dRtR to slIQply constl"uct foiIQulRs which Rrc
correct in all kinematic details. We have assembled
enough details to allow one to construct appropriate
formulas for any mass case, with Lorentz-pole quantum
number %=0 or M=1. These formulas have the ex-
pected property that (because daughters have been
included) the leading term in the Regge expansion
dominates at, high energies for inelastic as well as elastic
processes for all values of the momentum transfer.
(Some coefEcients of secondary powers of s have,
however, heretofore unexpected singularities near
&=0.)

There are four conceivable families consisting of a
single leading pole, and all are similar in structure from
the point of view of analyticity. Only two of these have
previously been discussed (in Ref. 4). In unequal-mass
scattering, given the leading (parent) pole, the existence
of odd and even daughters is required by the analyticity
of individual PCHA. In 0(3,1) language this would be
saying that analyticity ensures that the entire Toiler'
pole contributes to the amplitude if the leading member
does. (When the parent trajectory intersects 1=0 at an
integer, only a finite number of daughters are required. )
For each amplitude, the most singular part of the
daughter residues is determined by requiring a cancella-
tion of unwanted singularities. For equal-mass scatter-
ing, daughters are not required in order to satisfy the
analyticity requirements on individual PCHA. Thus,
for this case the singularity-cancellation method gives
us no information about possible families of poles (al-
though if we wish to have a nonevasivc solution to the
conspiracy relations, daughters are necessary in some
cases). However, by imposing residue factorization to
link the equal- and unequal-mass processes, the equal-
mass daughter residues can usually be determined.
Analyticity plus factorization thus provide a great deal
of lnformatlon.

The daughter tra]ector1cs ln this single-parity type of
fRIQily may Rlso bc conspirators. "The two single-parity
families considered by Freedman and Wang in their
treatment of $1' scattering' differ in that the odd
daughters of a class-I family I with I' =C= (—I)~ lead-

ing pole) cannot couple to the EX system; and thus
only the class-II family Lwith I' =C= —(—I)~ leading

pole) allows a nonevasive solution, with the (odd)
daughters becoming conspirators. %e show that the
two M=O families not treated in Ref. 4 do not couple
to EX at 5=0 although there are other systems where

they may (and probably do) contribute. (The ordinary
physical pion may, in fact, belong to one of these
classes. )

The detailed structure of families with parity-doubled
leading poles is rather different from that of the single-

parity families. Such families appear only when one
studies reactions involving external particles with suK-

"B.Diu and M. Le Bellac, Nuovo Cimento 53A, 1% (1968).

cicntly high spiIl 1 fol spinlcss scRttciing tllc slnglc-

parity families of daughters are all that is needed t.o
preserve the desired analyticity. We find, in a parity-
doubled family, a succession ofparity-doubled daughters.
The daughters of each parity cancel singularities arising
from contributions due to both parities. There are two
M= 1 famll1es7 diGcrlng ln charge conjugationq oIlc of
these does not couple to 1'at 1=0 (this one had been
ignored previously). ' The pattern of t=0 singularity
cancellation is not what one would obtain from the
superposition of two single-parity M=0 families.

In addition to a discussion of daughters in general
mass and spin processes, the present paper contains a
detailed examination of the reactions e'er —+ VV, mÃ —&

VE, and EE~ XIV from the point of view of analy-
ticity constraints. This analysis supplements and clari-
fies recent work" '7 on these processes, which are
coupled by the requirements of Regge-residue fac-
torization. Besides giving a concrete illustration of our
approach, the residues we determine are useful in
treating recent forward inelastic experiments (e.g.,
re ~ pE) and ln the discussion of the 0(4) M quantum
number of the pion.

We also demonstrate for certain cases that factoriza-
tion of the residue of the parent Regge pole implies
factorization of the residue of the first daughter con-
tribution, when the conspiracy constraints are obeyed.
For other cases, factorization of the 6rst daughter
residues is consistent with all analyticity constraints,
but cannot be demonstrated a priori. Our work leads
us to believe that in general all daughters derived from
analyticity are consistent with factorization. Factoriza-
tion, moreover, is enormously useful because it links
equal- and unequal-mass reactions. It thus removes
much of the (unwanted) freedom left after all analy-
ticity requirements are satisfied.

In Sec. II we define the properties of "daughter"
trajectories and demonstrate why daughters are re-
quired. to preserve the k=0 analyticity of individual
Reggeized helicity amplitudes. We give the expansions
of parent- and daughter-pole contributions which form
the basis of our later discussion. These are an extension
of the well-known treatment of daughters in the spin-
less case.' In this section we indicate the pattern of
singularity cancellation for both single- and double-

parity families and describe the 3=0 behavior of the
successive residues. Section III introduces conspiracy,
the other Rnalyticity constraint at k=0, Rnd gives the
conspiracy relations between PCHA for the specific
processes we are considering. In Sec. IV, we show how
the analyticity constraints studied in Secs, II and III are

'4H the exchanged pole gives a 6nite contribution at I,=O, it
belongs to an 0(4) family with &&min(S;, Sy) where 5;(f) is the
total spin of the initial (Anal) t-channel state. See R. F. Sawyer,
Phys. Rev. 167, 1372 (1968).Also see M. Toiler, Ref. 3, and S. A.
Klein, Claremont College Report (unpublished}.

~~ L. Jones, Phys. Rev. 163, 1523 (1967).
'6 S. Frautschi and L. Jones, Phys. Rev. 167, 1335 (1968).
"H. Shepsrd, Phys. Rev. 168, 1572 (1968).



satisfied by families with a single leading pole, and thus
iBustrate how daughter poles may be conspirators. The
contribution of families with parity-doubled leading
trajectories to these reactions is discussed in Sec. V. In
Sec. VI we compare our results, based on analyticity,
with the group-theoretic O(3,1) classification.

Supplementary material is presented in the ap-
pendices: Appendix A summarizes the functions which
we use to expand the PCHA; Appendices 8 and C are
devoted to proofs that for the case of one leading
trajectory a single set of daughters removes singularities
from both "dominant" and "minor" PCHA. Examples
from perturbation theory, which we have found very
helpful, are collected in Appendix D.

II. DAUGHTERS AND THE REGGE-POLE
EXPANSION OF (INDIVIDUAL) PARITY-
CONSERVING HELICITY AMPLITUDES

In this section we wish to give most of the kinematic
details and techniques which will be (implicitly) used
in the remainder of the paper. Principally, we shaB
show how parent and daughter poles contribute to the
expansions of the Reggeized PCHA for general spins
and masses. Sy demonstrating the way in which daugh-
ters remove singularities from the coefficients of certain
powers of s in the Regge expansion, we generalize the
discussion given in Ref. 1 for sPi18lsss unequal-mass
scattering. The technique of singularity cancellation
presented in this section wiB be useful in other applica-
tions besides those given in the present paper.

The t-channel center-of-mass momenta are

q=—PL 8= P—(ms+m8)2j112Lt —(ms —m 8) 2] 1&2/2+t

=—Tl)8/2+t,
p=—p.&=9—(m.+m.)2jI129—(m —m )2718/2V't

(2.2)

Tg./—2+t,
and

cosg8 ——s8 ——s= (2st+t' —tZ+A48A„) (T„Ts8) '
= (2s+t X+A—s8A../t)(4Pq) I-
= (v+As8A-/t)(4PV) ' (2 3)

where

Z =m, '+m82+m, 2+ms2, E;;=m 2—mt2,
(2.4)v=s N=—2s+t Z—

The following will be useful:

(Pqs) =4 (v+6 A, /t) = 4 "v (1+6„b„/vt) . (2.5)

The last factor is equal to 1 for KE or KU scattering.
Study of the large-s, small-/region IQakes 1t conveni-

ent to expand the powers of cos8& as foBows:

fv+As8A, ./tj =—(I') =v (I.+t48A../vt)

~ v +nAs8A t 'v '+-'u(u —1)(A48A )'t 'v '+.

where (near t=0)

v =(2s+t—Z) -+2 s (1—Z/2s)

A. Preliminary Kinematics

We de6ne the s channel to be the reaction

=2 Ls ——,'nZs '—88n(a —1)Z2s '+. j. (2.7)
the t channel is

f84, 12——(V2 cos2'&,)-~"+&~(V2 sin'28, )-~l-v~f84», (2.1)
t384, »vo(t) =P„1v~(t)= (2a+1)E(t)y(t)(Pq)~~, (2.8)

~1 ~2 t4= &8—4. The f8412 are assu, med to
have only dynamical singularities in s; they have
'tile pal tlR1-wave expallsloll f84»=p (2J+1)T84»~s8&
The functions t,'),„~ are de6ned in Appendix A.

When m =m, and m~ ——m~, we have elastic s-channel
scattering. The initial and 6nal t-channel states each
consist of an equal-mass pair; we call this case KK
scattering. Similarly, we describe the case m, =m, and.
m~/m~ as KU scattering, and the ease m &m, and
mgWm~ as UU scattering.

IsM Ge~-Manns M Goldberger, F. Lovp, E. Marx, and F.
Zachariasen, Phys. Rev. 133, 8145 (1964).

where A=max(~X(, (84)) and the residue is defined by
(2u+1)T84, 12

v +P/J nat th—e Regg—e pole in the
Sommerfeld-Watson transform of the PCHA

f84 18 Z(2~+1)2(T84 12 ~T 84,12 )&lv--
+Z(2~+1)2(T84,» ~T-8-4,12 )&I 8

The superscripts I'C refer to the parity and charge-
conjugation behavior of the exchanged Regge pole in
the t channel (assumed to be a meson); this can be
described by specifying E, C= &(—1)s, or just & for
brevity. The factor E(t) contains the &inematic singu-

If 0. is an integer, the expansion eventually terminates.

D'(Xl)+b'(X2) ~ t,.'() 8)+A'(l%, 4), We form Reggeized parity-conserving helicity ampli-
tudes (PCHA) according to the method of Ref. 18.

where we have written the helicity of each t chann-el (Also see Ref. "I.) Examples will be given shortly. The
particle in parentheses. The t-channel helicity ampli- complete residue of the Regge-pole (a) contribution to
tudeswillbe written f84,12(s,t) andwedefineI8 the partial-wave (definite-parity) amplitude T84,»sl'

=2(T84,12 +T 8 4, )»wsill be written
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larities and zeros of the one PCHA with the quan. turn
numbers of the exchange; these can be isolated using
the rules given by Wang, ~ Notice that when ) and p are
both nonzero, once Pi„~c(f) is calculated for the PCHA
with "dominant parity" I', the contribution of this
Regge pole to the PCHA with the same X, p but with
"dominant parity" —I' is completely determined as

Piq eip L1+8 ' j/slnsa.

The Wang K ~(t) for this "minor" amplitude agrees
with the net singularity of K+~(f)(PrJ) sei„, hence
the formalism is consistent in this regard. " (See further
dlscusslon of 'tllls poill't latel. )

The last factor in P(f), viz. , (Pq)" ~, can be derived
from the Froissart-Qribov expression for the partial-
wave amplitude. ss As P (f) thus defined is (2rr+1) times
the residue of the partial-wave amplitude, we require
the full P(f) to satisfy factorization for exchange of
poles with definite quantum numbers. Generally, we
will not be concerned with the e-dependent factors in the
residu- e.g., those due to sense-nonsense considerations.

%e shall assume the reader is famihar with Appendix
A of Ref. 17, which contains a summary of the parity
and charge-conjugation properties of PCHA. For the
purposes of this paper, we would simply like to recall
a few particulars:

(i) If XWO and Ii/O, the PCHA receive contribu-
tions from states with both kinds of parity, P=+ (—1)~.

(ii) For a boson-antiboson state in which the particle
is rot its own antiparticle, the states of de6nite parity
will also have de6nite C when X~= &X2.

For a boson-antiboson state in vhich the particle is
its own antiparticle, each helicity state wiB be an eigen-
state of C with eigenvalue +:

C
i
JXI),s)=+

i
JXI),s) .

Hence, each state of de6nite parity will have de6nitc
C=+, and only exchanges with C=+ at points with
physical signature can contribute. Additional informa-
tion can be obtained from the requirement of Bose
statistics": If Xl= X~, only even Jwill have a nonvanish-

'9 That is, the same type of singularities are present. If only one
pole is contributing, y(t) may be forced, by the behavior of the
"minor" amplitude, to have additional zeros.

"To establish this behavior for the residue, p (pq)~~, one
must consider the t-channel thrcsholds and pseudothresholds,
t = (ml+m2)', (mg~m4)', and also (for EU or UU) the point t=O.
In the plcscnt work lt 18 'thc t=O dependence which ls of Inost
interest; for there the relation im lies 1 neglecting other t depen-
dence included in the factors E I) and y(I) in Eq. (2.8)1: (a)
P~(t '")~(o) A for KU scattering, and (b) P (t ')~( & ~ for UU
scattering. This result is therefore a generalization of the behavior
of the partial-wave amplj. tudc @-a(0) derjved by Freedman an
Wang (Ref. 1) for backward (spiniess) sZ scattering. Following
the procedure of Ref. 1, one may construct a similar proof for
scattering with spin (with Jacobi polynomials replacing ordinary
Legendre polynomials). It is peihaps worth noting that daughters
are required in order to establish this t=O behavior, and also that
the resulting t dependence plays an important role in the fac-
torization conditions for unequal-mass processes.

"M. Jacob and G. C. Wick, Ann. Phys. (¹Y.) 7, 404 (1959),

ing contribution, and ifÃ1= —X2, only states with
P= (—1)~ can couple.

(iii) In UU scattering, the PCHA has in general no
de6nite behavior under charge conjugation, and tra-
jectories with either relation of C to Jmay be exchanged
for each parity.

If it should happen that each of the particles at a UU
vertex is its own antiparticle, the helicity amplitudes
will transform like C~ JXIXs)=rft'rfs'~ J)I,I)b,s). Again, only
exchanges v ith C= gl'g2' at points of physical signature
will be allowed. As the particles are not Mentical, there
are no restriction from statistics.

(iv) If the fermion-antifermion state in EU or EE
scattering has X3/ &'A4, the PCHA also has no de6nite
behavior under charge conjugation.

(v) When ) s ——+X4 for the FE state, each parity
part of the PCHA has a dehnite C as well. For EE we
always have X3=~X4.

3. Daughters

Since wc are not proceeding from a group-theoretic
point of view, we must de6ne what we mean by daughter
poles. All discussion here is based on analyticity re-
quirements at t= 0; the concept of daughters used below
is principally of value at that point and we shall not
attempt to generalize it to $/0.

In order that they contribute to the same processes,
all daughters of a parent or leading pole must have the
same internal quantum numbers (baryon number„ iso-

spin, hypercharge, charge conjugation) as their parent.
%e choose the daughters to have angular momentum at
]=0 spaced by integers from that of the parent so that
they have the possibility of cancelling the singular co-
eScicnts which arise when we make Regge-pole expan-
sions of the PCHA. In order that parent and daughter
contributions have the same phase at this point, wc
shall assume that the odd-numbered daughters (those
at rr —1, u—3, n —5, etc.) have opposite signature from
the parent pole, while the even daughters have the same
signature as the parent. '2

When there is a single parent pole, wc insist that thc
daughters have the same relation of I' to J as the
parent (e.g., a 1 parent would have a 0+ daughter);
this ensures that they would contribute to the same
UU spinless processes and would play the role there
outlined by Freedman and Wang. ' In order to have the
same intriesic charge-conjugation quantum number at
3=0, the daughters must correct for their spacing in the
definition of C= +(—1)~. That is, the Nth daughter
must have CI I

——(—1)"Cn„,„,. Summarizing, if P and
C are the parity and charge conjugation of the parent
as given by &(—1)~, then the odd daughters have

P(,dd)
——E', C(,dd)= —C, and the even daughters have

+(even) ~y C(eve11)

'~This choice of signature is in accord with the assumption
normally made in. Regge-pole theory that the phase below thresh-
old is completely determined by. signature and kinematic factors.
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C. Regge-Pole Expansion of PCHA

We shaH employ the expansions of the e» +(s) func-
tions" given in Appendix A and sometimes choose
specihc values of X and p to illustrate the method. As
examples which will be useful in Secs. IV and V, we
present the cases (a) X=O, t«=1, where (because e»~
=0 when X=O or p=O) only one parity enters, and
(b) X=1,t«= 1, where Regge poles of both parities can
contribute to the PCHA. Given the expansion of eq„+,
any other case can be done in the same manner.

Ke shall write the Regge-pole contribution to the
PCHA

fo«, »+"= fo«, io+(—1)"+ gart«( —1) '+ 'f—o-«, u (2 9)

in the form

fo«, n" ~P««, »"[(e '-'+r-z)/sms'nzje~;"(s)
+P«4 ioq&(e '-'+-rq)l»n~nq je»' (s) (2 1o)

where the poles eg and o.q have opposite I'. To obtairi

f ~, wc interchange It. and Q in (2.10); i.c., fo«, yo

f=o«»',(&~ Q). We call the parity of the pole associ-
ated with the e"+ term the "dominant" parity and the
parity of the pole in the e term the "minor" parity,
for reasons which will become obvious. Substituting
Eq. (2.8) for the residues, we have

fo4, »"=f,«o ~ (2am+1)&,«s(t) v,P(t)~'(r)
~(p~)--".-"()+(2-.+1)~."(t)

~v. '(t)x'( )(W)'-".' (), (2.11)

X(r)—= (e * '+r)/sin7rn.

The functions e» +(s) have simple expansion in s.
Symbolically,

e«+(s)=dos «+Aos « '+A«s « '+ ~ . .
a-(s) —g sa « 1++ s-a-«—8++ sa-« 5+. -. . (2.12)

For o. nonintegral, these expansions do not terminate.

As mentioned before, for X or p, =O, e =0, and only

the dominant-parity contribution to the PCHA remains.

Notice that e + and e contain diferent powers of s.
This means that when they are multiplied by the same

residue functions, as in f& and f &, the resulting ampli-

tudes will have di6'erent kinematic singularities at t=O
and at threshold (as required from crossing-matrix con-

siderations'~). Stated another way, the threshold singu-

larity of the total contributions of minor- and domi-

nant-parity types to a given PCHA is the same even

though the threshold behavior of the partial-wave

amplitudes for the opposite-parity cases must be
di6'erent. As it is generally easiest to think in terms of
the dominant contributions, we get E~(t) from f+o and

Kq(t) from f &, using the rules of Ref. 7.
Using Appendix A, we have (assuming for the mo-

ment only one pole of each parity)

fio"~ (2a+1)%oviox(pq) 'eoi +(s)

t 2 (2n+1) I'(n+1/2) n(a —1)(a—2)(pe)'(pcs) '
~ &mvxo&I a(pcs)

kI n(a+1)$"' I'(n+1) 2(2a—1) ) (2.13)

f»"~ (2az+1)&»'v»'X'(pq) ~'e»"'(s)+ (2nq+1)%PvxPxq(pq) ~'e»' (s)

(2"(2ns+1) I'(ns+ 1/2) nz(nz —1)(nz —2)'
Pv

RABBI

(pcs) " 'ns' (pz)'(pcs)—
& n~(a.+1) I'(n.+1) 2 (2ns —1)

2 q(2aq+1) I'(aq+1/2))
+&»qvixqxq- IPv (Pcs)' 'nq(nq 1)—(Pcf)'(Pres)~— '

nq(no+1) I'(nq+1) & -.(-.-1)(-.-2)(-.-3)
x +

2 (2nq —1)
(2.14)

Thc expression for f» "is obtained from f»" by' inter-
changing R and Q in (2.14). Using Eqs. (2.13) and
(2.14) as examples, we now examine the cases EE, EU,
aIld UU individually.

1. EE Scatterilg (m =m, =M, no=me=m)

From Eq. (2.3), s= v/4pq where v is given by Eq.
(2.7). pq=-,'(t—4M')"'(t —4m')'" and pq +g o Mm-—
In this case, for e~~, IsI ~~ for all t, and there is
no difFiculty with the Regge expansion near 1=0. Thus

the erst term in the expressions (2.13) and (2.14) is the
leading term as s ~00 for any t, l.e.,

f„«o (pcs) "~«~ s e «, dominant parity

(pcs) q « '-+s o « ', minorparity

and none of the succeeding terms for the R or Q
trajectory contain singular coeKcients. Therefore no
daughters are required to ensure the analyticity of the
PCHA, and we learn nothing about any possible family
of poles associated with the trajectories ag or o.q. Charge
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conjugation may restrict the C of the exchanged poles,
Rnd hence may limit the number of members which
could possibly contribute.

Z. EV Scattering

Let m, =m, =M, mg ——p, nsg=m. Now we have

—M l4222 —P2
l

pq= t )I2(3—4M2)"T4(/4 —e (2.15)
2v'ltl

s=)/4pq and for s-+e(, lsl~~ if t is small enough.
In fact, for t=0, s&——0 for all s. This is the diIIiculty
which historically was the motivation for the intro-
duction of daughter trajectories. '

As an example, consider (2.13) for f,()& Usin. g (2.5),
(2.6), and (2.15), we see that the first term in the curly
brackets of Eq. (2.13),which is proportional to (pqs) ~',
has R leading behavior s ' followed by all succeeding
lower powers; i.e.,

(pqs)» 2=4l apa-i~ 2»/~i(1 —g/2g)~l (2 16)

The second term in the curly brackets is proportional to

.„„—M2(2222 —)(42)2

(Pq)'(Pqs) ' ~ 2' 2 '(1—&/»)
4t

(21&)

Thus the factor (pq)' makes this term singular at 3=0
Similarly, the third term is proportional to (pq)'
&& (pqs)~', which near 3=0 is

~(—2pa-2+ 0(t-1pa-6)

RIll so on.
Note that besides the singular parts, each of the

second and succeeding terms also contain pieces which
are 240k singular (and do not vanish) at 1=0; e.g.,

(Pq)'= —M'(I' —)(42)2/4k+ —,', [(2)22—p2)2

+8M2(2)22+)(42)/+0(f)+0(P), (2.1&)

(pq)4=0(t 2)+0(&')+0(~)+" . (2.19)

Analyticity requires that those terms more singular
than the Wang E'(t) for the amplitude be removed
from the PCHA, and this may be done for the EU case
simply by including the contributions of the eeee
daughters. The even daughters have the same I' and C
(and signature) as the parent pole arid hence contribute
to the same PCHA. In defining the formula for the
contribution of the nth daughter (at 3=0), we merely
make the replacements &~&&-) and ~~~—& in all
of the above expressions, i.e., at t=0,

f oe ")=f 0"(7 +'Y ', g~(2-22) ~

The total contribution of the parent trajectory and all
of its even daughters to the PCHA is then

fe+fe(2)+f2(4)+. . .= g fe(4) (2 20)

At this point it is interesting to note that the odd
daughtcis will often not contribute to EU scattering
because of C."Thus it is particularly fortunate that
their contributions are not required for singularity re-
moval. (For a given family of poles, it may be that
because of C only the sequence of odd daughters con-
tributes to a particular EU PCHA and performs the
same cancellation which occurs in our discussion be-
tween the parent and even daughters. )

We determine the t=0 residues of the daughters
y(") by requiring the sum in Kq. (2.20) to have no
unwanted singularities. In this section, let us consider
a simple case in which all singularities at t=0 allowed

by the Wang kinematic factor occur in the leading
term for the dominant amplitude ( ) 4). In this case
the singularity of the leading tenn is the over-all kine-
matic singularity of the amplitude, and the higher
singularities which occur in the lower powers of v must
all be cancelled. More complicated cases are discussed
in Secs. IV and V below, where the conspiracy relations
at t=0 are taken into account.

To describe how dRughtcr contiibutions rcmove un-
desired singularities, let us write schematically, at t=0,

f 2 Jt~[g pa 4+g (pq)2pa
—4——2

+g (pq)4pa
—4—4+. . .j

f e(2) lt~(2)[g p
—4—2+g (pq)2„—4—4

+g4(2)(Pq) & + ' ' j &

(2 21)
~ ~ ~

f ()—It ()[g
+g2( )(Pq)')' ' "+ ' ' '3

gl(„) (n) =gl((2 —22}.

As we have seen, singularities arise in these expansions
because (pq)' 1/t To remove .singularities in the sum,

Reve» fe We ieqlllle

[t[Vg2(pq)'+V"'«(2)3 jr=2= [0(&)12=o (2 22a)

(PLvg4(pq)'+7"'g2(2) (pq)'+7""«(4)l}~o
= [0(P)j() 0, for E=——2, 1, (2.22b)

~ ~ e

[P(coeflicientof ) 4 '"in+ f )]~e()——[0(P)]0=0,
for I)'/= k, k —1, , 1. (2.22k)

Equation (2.22a) implies that at 3=0, 7")/y=C&(2)/$
+C()(2), where the 1/3 part (i.e., Cl) is determined by

n. /~~, =.=-["~(pq) /". i-.=C. (223)

"In particular, if particles u and c are identical fermions, then
when the helicities of the t-channel equal-mass pair are Xa= ~) 4,
we are restricted to the exchange of a single particular C= &{—1)~
for each parity part of the PCHA. For the EE system, we always
have X3= &X4. When Xg

——) 4, we have p, =0 and the sole term has
C=+(—1)~. For ) 3

———X4, the minor parity term has opposite
E and C from the dominant term, where both terms have CI'
=+i. So either the 6rst has E=C=+(—1)~ and the other
I'=C= —(—1)~ or vice versa.
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Us111g 'tllls 1'csul't, Eq. (2.22b) 1111pllcs (at i= 0)

y(4)/y=C2(4)/P+C1(4)/t+C()(4) (2.24)

where (2.22b) with %=2 determines C2(4) once C)(2) is
known, and (2.22b) with X=1 determines C1(4& once
Co(2) has been speciled. Note that the less singular
parts of a residue are not determined by singularity
cancellation unless the constant pieces of higher daugh-
ter residues are specided.

It is obvious from the system of equations that we
obtain, in general, for the singular pieces of the even
residues (in EU scattering)

y ('2/)y=g Ca('o/3" where C„~ (m' —)42)2". (2.25)

Thus for the most singular piece

~(2))/~~ (2)22 )42)2$/]2 (2.26)

from (2.25} we see that if the parent residue y is non-
singular, all of its even daughters have singular residues.

If the parent residue y has a, zero of ord.er t", the
res&dues of tllc f)rst N(evc11) dallgll'tcl's (p( ))p( ), ' ' ',
p(2")) are not fixed by analyticity. The most singular
behavior of the remaining daughters is, however, fixed

by specifying the behavior of these first e. This freedom
in daughter residues in the event of evading parent
trajectories is discussed for a special case in Sec. V.

Note, from Eq. (2.25), that the si2)glt(2r pieces of the
daughter residues vanish for m= p, i.e., the coupling is
nonsingular for an equal-mass vertex. This agrees with
what we found above for the EE case, where no
daughters were required. Adding up the contributions
LEq. (2.21)] of all the even daughters, we have

Z f.o"=E(E~«j~ "+Lvo2(P&)'+v")«(2)3~
even

2k

+ ' ' '+L 2 V(')(222—) ()) (Pq)'
l=0,2, ~ ~ ~

)(&a-4-22+. . .) (2 2 "i)

where the singular (1=0) terms in each square bracket
L ) have been removed by the constraints (2.22a,b, ).
Note that if n is not an integer, our sum includes an
infinite series of daughter trajectories.

Then, with daughters included, the first term in
(2.27) dominates at large s for alt t and we have (for
any A)

Hence, daughters make the kuding term in the Regge
expansion of the unequal-mass PCHA dominate and
look identical to the leading term in an expansion of
equal-mass scattering. This property has been used by
many authors ' ' "*" ln previous Regge analyses.

'4 H. Shepard, Phys. Rev. 159, 133j. (1967).
"The number of actual fits rqa&le usin~~ this result is far too

jarge for enqrq. er@tiog,

Note that a parity-doubled family regularizes f„() in
the same way as above, since only one of the parity
families contributes to this PCHA.

%C may in a similar manner consider the KU case
when X and p are both nonzero. Now we have, from
(2.11) and (2.12),

f 12~ +R+RXB[+ R&aB 4+(2—R(p(i)2&aB 4 2+—.—. .j
+x()pox()(pg)L(224)) ()-4 '

+(224)(Pq)2) () 4 '+ .]. (2.28)

From OUl plcvlous dlscUsslon lt ls obvloUs that thc
singular terms in the square bracket P $ of the
dominant-parity part can be removed by including the
even daughters of O.g with suitably chosen residues, and
similarly the even daughters of 0,@ cancel the unwanted
t= 0 singularities of the minor-parity part of f„),2 (See.
Sec. IV for further comments. ) It can be demonstrated
that the same set of daughter residues which regu-
larizes f„)," also corrects the analytic structure of f„), 2,

as it must. A proof is given for the case X=@.=i in
Appendix B.

It is worthwhile to notice at this point that one does
not have to consider terms in the daughter residue func-
tion y(2") less singular than 1/t", in order to do proofs
about singularity cancellation or relations to other
amplitudes. Provided proofs can be carried through for
the most singular term, they follow automatically for
less singular terms; the arguments for less singular
terms are analogous to those for a parent residue with
the canonical residue function multiplied by powers of t.

To summarize: %C have demonstrated that the
proper analytic properties of the individual PCHA for
EU scattcrllig can bc achieved by lnclUdlng thc con-
tribution from the inhnite sum of even daughters of a
(single) parent pole. No odd daughters were required.
We have shown that these (even) daughters must have
singular residues at 1=0 as given in Eqs. (2.25) and
(2.26). With the daughter contributions added, the
resulting PCHA is dominated at large s by the leading
term in the dominant-parity or minor-parity part of
the amplitude, viz. , f„)2 s~™or s q " ', whichever
is larger.

We can brieAy note how a di6erent pattern of
singularity cancellation by daughters occurs for the
parity-doubled (EU) case. An example (in 2' —) VS)
will bc given in Sec. V.

Consider Eq. (2.28) and assume that the dominant-
and minor-parity parts of the PCHA also have dehnite
C. If (pq) Eo is more singular than the maximum
singularity allowed for this amplitude (viz. , E ), the
even daughters of two si22gle parity families -(2R and 424)

cancel all singularities except that in the (p)IE()) part
of the coeKcient of minor parity terms. %e therefore
require an extra (evasive) factor of t in yo in order that
Regge pole Q and its daughters have a properly be-
haved contribution.

But we may avoid these evasive zeros with a parity-
doubled family of poles (where the parents have the
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same C). We would need o(8 o——(Q+1 and either Q is the
odd daughter of the leading partner of R, or R is the
odd daughter of the partner of Q. Then only the odd

daughters of one family contribute to the minor-parity
part of the PCHA, and the parent and ewe daughters
of the other family contribute to the dominant-parity
part) ol Nce Mfa.

For example, with n=o(Q=(214+1,

f 12 ~ [gB~Bg + (p(t)+Qpo(b 7pn b I—+—. . .

and a cancellation occurs so that the square bracket has
a singularity no worse than E~. In the example in Sec.
V, this requires y (which is the residue of the first
daughter of the parity-doubled partner of Q) to have a
singular part. Thus, in contrast to the single-parity

ease, both odd and even daughters (of different parents,
however) contribute in the EU case and cancel singu-
larities arising from members of both parity families.
In the example begun above, one can show that fl,l 4

has an expansion with leading term v ~ and all suc-
ceeding even powers of z. The daughters required for
the regularization of f2 and f 2 have maximum singu-
larities y(') and y|:2)~t ', y(') and y&4)~t 2, etc., where
it must be remembered that the even and odd daughters
have opposite-parity parents. This case can be worked
in detail employing the procedure already described.

3. UU Scutterilg (m, Wm, (I2td mbWm~)

From Eqs. (2.2), (2.3), and (2.6) we have

(p(t)= T„Tgb/4t —+
l
t(,„Abel/4t= l

A l—/4t, 8=)'/4p(t= (I+t), /t)(4pq) ',

(8~1)~+(4Pq) 'f.+-abaca. (m.'+m.2)+A„,A,; (m, +m. )7 for A.,A„&&0.
t-+0

(2.29)

Thus, as in the EU case,
l
8

l
-& 44) for s —+00 if t is small

(for t=0, 8,=+1 for all s for hqbA„&&0) Beca.use
neither f-channel state is a particle-antiparticle pair,
the charge conjugation of the exchanged state is in
general unrestricted.

For UU scattering it is f24, 12 rather than the PCHA
which has an easily specified analytic behavior at t
=0.222 The maximum singularity (for A„t4q&0) al-
lowed, by the requirement that f24, 12 be nonsingular is

f24, 12~ (gt) ~" I'~. The conspiracy relations for PCHA
follow directly from this. (See Sec. III.)

For ) =0, since E„0=K „0, we can expand the
PCHA

f.o"~ Z (2«+1)T.b" 'co. "
i=1.,2

~&.OZ ~.2')((r')(«'(") ' '+«'(PC)'(") " ' '

+(I4'(p(J)4(I ') ' b-4+ 7, (2.30)

where the poles (21 (i = 1) and (22 (i= 2) have the same
parity but opposite charge conjugation. The expansion
of )', Eq. (2.6), shows that even for a single pole the
odd powers of ) (moduto p" b), as well as the even
powers, are present. , and aB have coeKcients which are
singular at t=o. Thus, for UU scattering the situation is
more complicated than the corresponding KU case.

Expanding, using (2.6), we have

—.-)( a—A~ A ~'
f,o ~Z«7 «Z I

—
l

~-' ' +«(pv)' pe—A—2

t ) t ) (2 t

~b-2b (2—A —2k)
-

u A
— -((I A~ c4

+(I (pq)2b
l

—l)"—'—" ' +. =Q«y I
-' a +It) ' 0

— n—A~ ((h„~2 n —A —2
+pa—b-2

ll l
g + (pr)'o +." (2»)

2 )(t) 0

FQI' m =m tile odd powcls (p p ' ' ') vanish~

and (2.31) reduces to the EU case. But for UU all

powcls of p are present, and since (Pq)2 1/t, the co-
efflclcnt of p " llas Izlaxllllulll slllglllR11'ty t ". (Fol
EU it is t "I' with only even 22 appearing. )

Consider the contribution of a single parent pole and
utt of its d.aughters to f„()2 In contrast t.o the EU case,
the odd daughters (which have opposite C from the
leading pole and the even daughters) alwa. ys can con-
tribute to the same UU PCHA as the parent. This is

"J.D. Jackson and G. E. Hite, Phys. Rev. 169, 1248 (1968).

fortunate since the odd daughters are necessary if we
are to cancel singularities in all of the coeS.cients in
(2.31).

%e represent the contribution of the eth daughter
at 1=0 by

2(n, ) f 4(~~ ~(e) ~~ ~ 22)

Notice that at 3=0 the signature-pole factor X is the
same for the parent and all of its daughters, since with

r(„)= (—1)"r, we have

Lo ' ( "'+r(~)7[sin2r(n 22)7 '= Lo '~~+r7Lsin2rn7 '.
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—
t
u—cl)) d„~~ A.—1—

~
l~&o+I Iv")«(I) =ho(~) jo=o

o )
—

n A th ~' ))n A—2~ ~(I A—1—6 Pn A 2—~
I

—
I v«+I lv«+ I ~")«(I)+I 6")«(2)

2 )ri E o i I, 1 t ) o i
= LO(P))0 ——0 for X= 2, 1,

0 4 0

LP(coefficient of )™"in Q f„o&)j) 0 LO——(P)]0——0 for X=e, e—1, ~ ~, 1.

In order that thc sum of parent and daughter contributions p f„p be free of unwanted singularities, we requi~e

(f, ~f1, )-1(V'&) '-

&=max(l a+pl, I
x—p, l).

(2.34)

However, for a single parity exchange, it is easy to see
that the leading term ( ) ~) in f„), and f „),must be
the same (up to a sign). This follows from

(fg,x) ~ (2~+1)&,)"(~)„+~~),; )

(modulo an over-all sign depending on the parity of the
exchanged pole) and we observe that the ) ~ term
which comes from e + is common to both f+„1 Hence, .
f„1and f „1have a common over-all singularity multi-
plying their highest power of v. This can be no worse

~~ Equation (2.33) has been written in a manner which does not
make evident the change of behavior as I„,~ 0 in the transition
from the UU to the KU case. All the formulas for the UU case do
go over smoothly to the formulas for the EU case, but this is most
easily seen if appropriate terms are written in terms of (pq)"
rather than (A„hing /4t)".

Equations (2.32) have as their solution daughter
residues with singular pieces

j (")/y=C„/P+C„ I/t" '+ +CI/t (2.33)
where

C.-(a.,~,.)..
Thus, if the parent residue y is nonsingular, all of its
daughters have singular residues. '~ As in the KU case,
evasive behavior (for y) makes some daughter residues
nonsingular and hence unrestricted by the analyticity
rcqulrcxIlcnts (slIlgulal'I'ty canccllatlOn) . Tllls freedom
becomes important when factorization is considered
(Sec. IV).

Kith all unwanted singularities removed according
to Eq. (2.32), the dominant term in P f„p for large s
(any t) is the f)rst term

Q f„o&~Kxy«v ) s~ ',
and thus for UU scattering (with X=o), daughters pre-
serve the simple (equal-mass) Regge asymptotic for-
mula. Because only one parity contributes to f„o, the
result is the same for a parity-doubled family of poles.

With X and p nonzero, we noted above that f„I and

f », are allowed different t=o singularities. Thus, in
general, the PGHA f"and f & may both have maximum
singularity

Because we have removed from f „1 a factor E„1
and not E „1, terms as singular as (g/) ) "+»+)" » are
allowed to occur in nonleading powers of f „1even when
the daughter contributions have been included. The
way in which this happens is demonstrated (for the case
X=)((=1) in Appendix G. (See also some further com-
ments in Sec. IV.) With the even and odd daughters of
a single-parity family included, we therefore (for the
case X and )() nonzero) are again able to remove all
unwanted singularities.

In order that both f», and f „),have their maximum
allowed kinematic singularity multiplying the leading
power, we must consider the contribution of a parity-
doubled family. SchematicaQy, if the trajectories n,
and n„haevopposite parities, they contribute to f+„1
as follows:

f.)-&(: '+ ")+~(""'+ ")
f 1-~(~ '+" )—~(~ '+" )

Kith n, =n„=n,
f„), ((I+A))

f „I (a A))— (2.36)

and we are now allowed to have E„1 (a+A)'
(Qt) )" )') and E „), ((J A) (Qt) )"+)'),—and the-

f~„),no longer have a common over-all singularity.
Since we now can factor out separately the maximum

allowed singularity from f„1 and. f „1, the subsidiary
terms of each are allowed no further singularities. Be-
cause of this, the pattern of singularity cancellation by
daughters in P f„),and P f „),isdifferent from the case
of a single-parity family.

than the mie&nN))I common singularity, viz. , (gt)-
where 8=min(l 'A+)I,

I
X—pl ). Thus for sillgle-parity

exchange, choosing X+))I) IX—pl to be specific, if

f„I has its maximum allowable singularity removed as
an over-all factor K„q, we then permit no further
singularities to occur in coeKcients of nonleading terms
when daughters have been included with suitably
chosen residues. This same single-parity family also
contributes to f „I We h.ave.

f„). pK„),(Pq)
'' ,'(('„I +-+e,„), -

(2.35)f „),~vE, 1(pq) '2(('1;+ ('), —)
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Amplitude

Vx ~ N1V.
/01++= f4.4., 10+f10,

fall

=f~ 10+-f, 4, 10—
f11 =f+ 10 -f, 410— ,

fl 0 =2f+-, pp

fal = f4.+,—1O f ,
—10--

fpp =2f++, 00

Vm. ~ V7i-.

f11 =fl 0, 10 f-10, 10

fll =flp, 10+f—lp, 10

f00 2f00=—00,
flo =2)1000,

XN —+E¹
fo f++ +++/ ,++--
f4= f+ , + —+f -+.+--
f0=f++.+ +—f ,+-—
fg —=f+-.+-—f-+.+-
f1 f++,++ f —,++—

&/v'4

1/Qt
&/dt
1./gt

1/t
1!t
1

&/v'4

1
1

gt

Dominant P, C

P=C=+(—1)
P= C=+ {—1)~
P= C= —(—1)~
P=C= —(—1)z
P= —C= —(—1)~
P= —C= —(—1)J

P= {—1)~, C=+{—1)~
P= —(—1)~, C=~(—1)~
P= —{—1)~, C=+(—1)~
P= —(—1)~, C=~(—1)~

P=C=+(—1)~
P= C=+(—1)~
P=C=+(—1)~
P=C= —(—1)&

P= —C= —(—1)~

For a double-parity family, we find

(o,—A

Zf~.),-E~.) v '
I (v ao"~y, ao")
k 0

0,—A.
+pe—A—l (6 /t) (y„ao"ay„ao")

Tmz.z I. Amplitudes for Vm —+ NX, Vm. ~ Vm, and SN ~ $$.

III. CONSPIRACY

The conspiracy relations are restrictions on the
analytic behavior of linear combinations of helicity
amplitudes at t=0. These kinematic constraints are
necessary to complete the description of the analytic
properties of the amplitudes and must be considered in

any attempt to 6nd the restrictions imposed by analy-
ticity on patterns of pole structure.

For the reactions considered as examples below

(oror —0 V V, J)tE —0 XIV, orlV —0 V1V), the COnSpiraCy re-

lations are easily obtained and have been cited several

times in the literature. We list them here for the sake
of completeness and for use in later sections. The
amplitudes given below are defined in Table I.

(a) In nucleon-nucleon scattering, the relation origi-

nally found by Volkov and Gribov

f++++ f++ , f+ + ——f+ — +— —(3 1)

families and similarly for v-family daughters. Although
we shall not pursue it further here, by using the singu-

larity-cancellation procedure one can calculate the
singular parts of the lower daughter residues as well.

In general (for nonevasive parent residues), one finds

maximum singularities y(') t-', y&" ] ' ~

where the behavior indicated holds for each of the two
daughter residues, y„&") and y, &"'.

The UU parity-doubled case is illustrated in Sec. V
for xw —+ VV scattering.

may be written in the form
~pc(v.a("~v.a)")+h' ")a«1)"

f++,++ f++ (f+ +—— f+— —+)——

+«(f+ + +f+-.;+)--+v. ")ao(4)') +, (2 37)
or

f1=fo+sl f4 (at t=0), (3.2b)

where I and v refer to the opposite-parity families

(n =n. =n). Because the coeff)cients a& depend only on

the 0. of the trajectory involved, aI,"——ur, ' at t=0. Thus,
Eq. (2.37) may be rewritten in terms of y„+p„and
y„—y, . To remove the 1/t singularity in the coefficient

of v o ' for P f„), and P f »„we require

(t[coefficient of v ~ ' in Eq. (2.37)]}0 0

= [o(t)Jo= o (2 38)

Equation (2.38) is actually two equations, one for the

upper signs in (2.37) and one for the lower signs. Adding

and subtracting these two equations, we have

which shows more clearly the role of contributions from
different PCHA (hence different quantum numbers).
The 0(3,1) interpretation of this equation has been

given by Freedman and Wang. 4

(b) The general conspiracy relations for processes of
the type 1+xV —+ 2+% have been shown by Stack'0 to
take the form (at t=0)

&[f++,»—f—,»3+ [f+—,»+f—+,»3 =0 (3.3)

For the process mX ~ VS, this gives two relations" "—
one involving vector-meson helicity 1 and one in-

volving vector-meson helicity 0.

n —A
Pllao + (P(tt)r0al t Y14 ao(1)

(2.39)

[(v't) f» jl o= —&[(«=)foo +]l=o,

[(«)f»"3=o= —o[(«)foi '3 =o.

(3 4)

(3.5)

(
n —A

6~+0ao + (P(tt)rllal tV0 ao (1)
1

This illustrates that we cannot decouple the I and e

families. The daughters in the I family cancel singu-

larities arising from higher poles in both the e and e

(c) For t-channel processes of the UU form, there are
no constraints at t=0 for the separate helicity ampli-

tudes, fo4 lo, but there are relations between the PCHA
which must be satisfied to ensure proper singularity

28 J. Stack, Phys. Rev. 171, 1666 {1968).
"H, Hogaaseg. aq.d Ph, S@lin, Nucl. Phys. 82, 657 {1967),
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TABLE II. Residues of parent- and first-daughter trajectories in a family with single leading 8=C= (—1)~ pole. The t=0 residues
given Ldefined in Eqs. (2.8) and (2.10)g are consistent with factorization, analyticity, and the conspiracy relations. Each residue in the
taMe has been divided by (2o.+1),where n is the i=0 intercept, of the leading trajectory. Only the most singular term in the daughter
residue is to be evaluated from the given entry. The momenta are p =$(t—4M')'/', q= T ~/2tl/~, and 6= (my' —m '). The functions Bs
are analytic at 1=0, but not necessarily at other values of t. The energy dependence of each amplitude, shown in the column to the left
of the residue, comes from the 6rst term in the expansion of the e function, which multiplies this residue. '

Amplitude

mX~ VX:
SI++

fll
fll

~n ~ t/'V:

fil

fll

Residue of leading trajectory

(s/PV)-'B'B (PC)-'P
(4/Pe)-'(1/v'&)4B'B (Pe)-'
( /Pc) (1/v'&)»'B (Pv)

(r/V') '(1/4)» 'B (V')

(s/q') '(1/t)tB *B„(q')~'

Residue of 6rst-daughter trajectory

—(2n —1) (n —1)
(4/V') ' B„~B„(q2) 2(a2/4t)

(++1)
—(2n —1)(n—1)

(4/e') B *B„(qs)«'(d'/4t)
(0,+1)

(/p). ~:~.(p')-
(,/p2)~It g *g (pm)~1

(~/P') -'(v't)~ *&.(P') -'P

(s/P') '»'B (P')

Because of certain phase ambiguities, we have checked factorization only of the absolute magnitudes of daughter- and conspirator trajectory residues.
See also footnote a, Table IV.

structure. It has been shown by Frautschi and Jones"
that these may all be put in the following form (with
A„Ass) 0):

(V 1) ((f84,1s+f 8 4, 1 )+s—(f—341s f-4—, 4, 1s)j
const, (3.6)

wlllcll llllplles (at )=0)

(V'1) "' "L(f»,1+f-»,1)+(f»,1—f-»,1)l=o (3 7)

for ()+4 ()((h—p( For ~~~ VV, t»s gi~~~ the
relation

(&fit+)~=o= —(&fit )~=o (3 8)

The conspiracy relation is said to be satisfied by
conspiracy if any of the regularized PCHA involved in
the relation are nonzero at 1=0 Otherwise .(when each
term separately vanishes at 1=0) the relation is said
to be satisfied by evasion. "

IV. CONSEQUENCES OF SINGLE-FAMILY
EXCHANGE

In Sec.II we demonstrated that for any single leading
Regge-pole exchange, a series of daughter trajectories is

"It may seem at 6rst that the factors of i introduced by certain
conspiracy relations indicate phases for Regge residues at variance
with standard assumptions (reality for meson residues below the
physical cut, etc.). If the amplitudes are examined carefully, how-
ever, it can be seen that the kinematic factors for the two f's in-
volved differ by a term like (t—4M')"s. perturbation-theory
examples show that in all cases the additional i comes from evalua-
tion of a term like this at t=0. These terms are removed from the
amplitude before dispersion relations can be written and hence do
not influence the phase of the dynamical residue function.

necessary and suIIicient to restore proper analyticity at
t=o to the individual helicity amplitudes. In that
treatment, we completely neglected the inQuence of
)=0 constraints between different PCHA. These con-
straints are considered in the present section. %e work
through a series of examples (the reactions 1V4V —+ NX,
rr/4/~ V4V, and orner &VV)—, separating possible cases
according to the quantum numbers of the parent
trajectory. This separation allows us to compare with
the 0(4) results of Freedman and Wang' (Sec. VI). Our
chief conclusion is that the set "parent+daughters"
is su6icient to satisfy t=0 constraint equations, pro-
vided that the parent residue is appropriately chosen. "
This provides some insight into the possible applica-
tions of F% class-I and class-II conspiracies, especially
in EU and UU processes. (See Sec. VI.)

At the same time, we are interested in the question
of factorization" for the daughter residues. A priori,
if (at 1=0) there is a single 1-channel state with definite
I' and C (or 6) at each value of 7=41(0) ts, then —one
expects the residue of such a state to factorize. Hence
we do expect the daughters of a single- or double-parity
family (corresponding to one M=O or M= I Lorentz
pole) to factorize; these are the families we have been
considering (rather than a linear mixture of several
famihes). If the daughter residue did not factorize, one
would have difhculty associating it with a single Regge

"This conclusion has been reached independently, using a
difterent method, by J. C. Taylor, Oxford University Report,
1967 (unpublished).

sIM. Gell-Mann, Phys. Rev. Letters 8, 263 (1962); V. N.
Gribov and I. Ya. Pomeranchuk, i'. 8, 343 (1962}.
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trajectory; this would change the dynamical role played
by such daughters.

Ke wish to see under what circumstances the daugh-
ter residues determined by the conspiracy and singu-
1arity-remova1 constraints necessarily factorize and in
what cases the factorization requirement is an addi-
tional- constraint-one imposes on- the residues. ~-In the
latter case, the analyticity constraints do not 6x (all
terms in) the residue (e.g., because of evasion in the
parent residue) and factorization helps remove some of
the freedom in such residues. However, we expect
factorization never to be inconsistent with the ana1y-
tlclty rcqull cmcnts.

A. Leading Trajectory Has Quantum Numbers
xIx= C= (—1)s (See Table 11)

X. CoetribeHoe to the Process xm —+ VV

The general features of UU scattering have been dis-
cussed in Sec. IIC3. I'= (—1)s trajectories cannot
couple to hehcity-0 states of the m V system. Hence this
exchange will contribute only to the t-channel helicity
amplitudes fxo, xo' and fxo, 10' with dominant contribu-
tion in the PCHA

ll 10,10 -10,10

= (2n+1)(Txo, xo
—T xo, xo )&xx (4.1)

and minor contribution to fxx . Assuming that

(Txo, xo
—Txo,—xo ) (Pq) ' (1/i)

so that
fxx+-(PV)-x(s) '-s-'

(as happens in perturbation theory" ), we see that con-
tributions of daughter trajectories are necessary to
reduce the singularity near t=0 of COCScients of lower

powers of s. No power of s may have a coefEcicnt more
sxngular than 1/~ t

= (I/g~) lxl+i "I]to remain consistent
with the singularity structure of helicity amplitudes
dcduccd from thc crossing DlRtrlx.

%hen the daughter-trajectory contributions are in-

c1udcd, we then have

contribution to thc minor PCHA

Q fxx = g (2n 2—I+1)(Txo,xo
" Txo,—xo ")&xx

= +2(2xx—210+1)Txo,xo "sxx' "' (4.3)

This amplitude is allowed a singularity 1/t (see Table
I), and exPansion of Eq. (4.3) with the Txo, xo chosen
above will clearly give a singularity of this order.

In Appendix C we display a proof that choice of the
daughters for proper analyticity of one PCHA ensures

proper analyticity of the other, and after this choice of
daughters, the t=0 constraint equation relating these
two axnplitudes, Eq. (3.8), is automatically satis6ed.
Hence no additional restrictions are imposed by the
t= 0 constraints.

Note that the odd daughters in this family have

P=+(—1)s, C= —(—1)s, and hence cannot couple to
the 1VÃ system, but they do couple to n.V and are
needed to regularize the ~x ~ VV amplitudes. In order
to separate the parent and daughter contributions in
Table II, we have written each xx —+ VV PCHA as a
sum of two amplitudes with opposite charge conjugation

fxx+=fxx+++fxx+ fxx =f11 ++f11
Clearly, the minor-parity part of fxx= receives a con-
tribution from the 6rst daughter pole.

It is interesting that the form of fully regularized
Rmp1ltudcs rcquil cs some 1cvlslon of Gttlllg forDlulRS

currently in. vogue. We see that (with k= L(n —1)/aj
)&1406„)

(fxo, xo
—fxoxo) ~s ,—+ (k/f)s

(4.4)
(fxo,xo+ fxo,—xo) —(k/&)s

Hcllcc, altllollgll fxo, xo
—fxoxo 'to ordc, r s the Ilcxt

terms may become important in very low-t 6ts, or for
8 =0 when t =—(mv' —m ')'/s. A similar situation
occurs for all UU processes (1'—+ ph, yX-+ EA, etc.).
Considering the present status of Rcgge 6tting, it is
not clea,r whether this modification will resu1t in any
signi6cant change in data interpretation.

Q fxx 2 (2& 210+1)(T10,10 Txo.—10 )oxx

= +2(2n —2xx+1)Txo xo exxX (4 2)

as the contribution of our P= C= (—1)s trajectory and.

it.s family to the dominant PCHA. This imp1ies a

» This portion of the paper provides an answer to the questions
raised in unpublished portions of California Institute of Tech-
nology Synchrotron Laboratory report CALT-68-142 by S.
Frautschi and L. Jones.

g4 See Appendix D.
"Should I;110,10 +10,-10 ) be less singular than (1jt) ', fewer

daughters would be required. However, in this case the s
would be multiplied by unnecessary powers of S. %e wish to impose
only the minimum constraints of analyticity. Therefore we do not
assume a zero in the coefBcient of s~'.

Z. Coetributims to the Process mX ~ VE

2 fxx++= 2 (2xx—2xx+1)Txo, x~o-xylo" "&xxI

n even

Q fxx = g (2&—210+1)Txo,xp —xylo "&xx

(4.5)

The odd daughters of the family do not couple to any
of the amplitudes. The leading trajectory and its even
daughters contribute to fox++, fxx++, axld. fxx (de6ned=
111 Table I). Wc wxll dxscxxss cxplIcxtly 011ly I'cgulal'Iza-

tion of fxx++ and fxx by daughters; the treatment of
fox++ (since it enters no conspiracy equation) is exactly
as in Sec. II.

The amplitudes can be written as
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Tmx.E III. Residues of parent- and erst-daughter trajectories in a family with single leading E=C= —(—1)~pole. See Table-II caption
for an explanation of thc notation and interpretation of the entries.

Amplitude Residue of leading trajectory Residue of first-daughter trajectory

AS-+ VS.
11

fll

f01 +

m2I ~ VV:
Al'-

f00

EE -+ SÃ:
f4

fl

(s/Pq)-'B*B.*(Pq)-'
(s/pq) 'B.B„*(pq)™
(s/pq) 'B B *q(pq)

(s/q2)-2(1/&)&B*'B*(q2) '

(/q'). '(1/4)». *-B*(q')

(s/q') 8 *8 (g')

(s/ql)a —1B B aq2a-1

(s/P2)~B 8B (pl)a —1

(s/pl)a-lB 2B (pl)a-1

(—(20.—1) (o,—1)'/'

(s/Pq) B„aB,(pq) ~2 (Mrs/2+4)
2n'/'(n+ 1)

2(2n —1)
(s/pq) B *B (Pq) '(~/2v'&)

nl/2 (n+ 1)1/2

—(2n —1) (n—1))
(g/qS) N-l ~B.*B.( ').-2(~2/«)

(n+1)

t/ —(2n —1) (n—1)
(s/q') B*'B*(q') 2(a2/44)

(n+1)
(s/q') '5—(2n —1)34*B.(q') '(~'/44)

t/n 1) 1/2

(s/q') ~2 —(2n—1)
~ ~

BaB.*q' '(&2/44)
I, +1)

—(2n —1))
(~/P') ~B„2B„(p)™2'

n(n+1) )

fll is allowed=no kinematic singularity at t=0. Hence
we reqllll'e T10,1/2—1/2 (I/Ql) near 1=0. This be-
havior, plus the choice of daughters to regularize fll
automatically regularizes fll++ and ensures that it
satis6es the 1=0 constraint, Eq. (3.5), by evasion.
This is proved in Appendix B. Notice that an evasive
behavior for f»++ is necessary because f21 + receives
no contI'lbutlons fI'oDl this family.

is consistent with factorization; evasion in mw —& Vt/'

and xE—+ VE would require evasion in ES—+ ES.If
the successive even daughters all factorize, then their
a,ppea, rance in the unequal-mass processes ensures their
appearance in ES—+ EÃ even though they are not
needed here for regularization. '6 As the odd daughters
appear in only one of the three processes, nothing is
learned about their factorization.

3. Coetribgtioe to the I'rocess XS—+ ES
As ~e saw in Sec. II, no daughters are required for

EE processes. The 1=0 constraint, Eq. (3.2b), is
satis6ed by evasion; this must be put in by hand if
only ana].yticity propert1es are cons1dered.

4. Ir/2pii calions of Factorisalio22 of the Icadi ssg Trajectory
(See Table II)

If it is assumed that the residues of the parent tra-
jectory satisfy the factorization theorem for the dehnite
P and C parts of each amplitude, additional informa-
tion may be obtained. In particular:

The evasive behavior required (in the leading power
of s) by 1=0 constraints in the amplitudes fll++
(srsr —+ VV), fll++ (sr% —2 VÃ), and f4 (EE~EE)

3. Leading Trajectory Has Quantum Numbers
I'= C= —(—1)s (See Tab1e III)

X. Contribetiol to the Process +g —& t/'V

The members of this family contribute to each of the
four amplitudes listed in Table I. The discussion for
fll+ and fll is identical to that in part A with fll+
now playing the role of dominant PCHA. The leading
trajectory can now also contribute to f« and f12, —

but each of these amplitudes may be separately regu-
larized by daughters (d la Sec. II) and both are iree
of linear constraints at t=o.

'6 Note that for even daughters the most singular parts of the
EU and UU residues are completely determined by analyticity,
when the parent residues are noncvasive. These have t=0 be-
havior vrhich obeys factorization; thc coeScients then determine
the EE residue.
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Z. Contribution to +X~ VE

The structure is rather di6'erent from that for a lead-
ing E=C=(—1)s exchange. Now the PCHA fii=
contains the dominant" ere"+ term. To obtain the
leading term s~' free of kinematic singularities, we
require Tio, i/s-i/s (1/gt) '. This is also what is
found in perturbation theory. ~ This behavior for T
plodllccs a 1/1 / slilglllal'ity 111

Z fii Z(2o 2rs+1)~10,1,'s-i/s ell

which cannot be removed by regularization with daugh-
ters. A singularity of this type is allowed by Wang's
analysis in this PCHA, but the constraint equation
(3.5) (which connects fii++ to fsi +) must also be
satisfied. The fsi + amplitude receives contributions
only from I' = —C= —(—1)s exchanges. Thus in order
to satisfy all constraint equations in this process
without evasion, a contribution from 8= —C= —(—1)s
exchange is needed.

The discussion in Sec. II 3 shows that these quantum
numbers correspond to those of the 6rst daughter of our
leading trajectory. The method of Reggeization ex-
plained in Sec. II shows that the energy dependence
given to fsi +from-this first daughter would be exactly
right to satisfy the /, =0 constraint equation (3.5) we
have been considering. This makes it plausible that the
conspirator needed is in fact the same object which

plays tllc role of tllc first daughter lil UU (c.g., mn. ~
VV) reactions. The discussion in Sec. IV 8 4 (below)
demonstrates that this interpretation is consistent with
factorization at t= 0.

Likewise, the fully regularized contribution to fis
requires a contribution to fss +to satis-fy the constraint
equation (3.4). Although we could satisfy this equation
by evasion and thus avoid the necessity for contribu-
tions from the 6rst daughter, we would like to avoid
extra zeros whenever possible. In addition, perturbation
theory again makes the conspiring course seem a natural
one.~

The daughter entries given in Table III for xÃ ~ VÃ
have been determined from the conspiracy relations,
Eqs. (3.4) and (3.5).

Hence the case (B) of unnatural-parity exchange with
I' =C differs considerably from the case (A) of natural-
parity exchange. For natural-parity exchange alone, we
saw that only an evasive solution to the xE-+ VE
collspll'acy cqlla'tiolls 18 possible. Fol' P=C= —(—1)
exchange, a conspiratorial solution is possible provided
a trajectory with. the quantum numbers of the 6rst
daughter is allowed to contribute.

3. Contribltion to ÃE —+ EÃ

The leading trajectory contributes to the dominant-
parity part of fs and the minor-parity part of f4
Clearly, a contribution from a trajectory with the

quantum numbers of the 6rst daughter allows a non-
evasive solution of the conspiracy relation, Eq. (3.2).
The entry given in Table III for fi follows from this.

4. Imp/icatioms of Factorssatiorr of the

Leading Trajectory

Imposition of the factorization condition on the resi-
dues of the leading trajectory leads to the dominant
contributions to PCHA listed in Table III, column i.
These amplitudes in turn require dominant contribu-
tions from the first daughter (in 7rir —+ VV) and from
the conspirator (in s-E ~ V/V and A/A/ -+ XÃ) which
are shown in column 2, Notice that the residues shown
ln column 2 also factorize. It ls therefore plausible that
the conspirator and the daughter in fact arise from the
same source and should be treated as one pole (at
t =0). With this interpretation, we have found that the
6rst daughter has a factorizing residue if the residue of
the leading trajectory factorizes. ""

5. Concllsions

The t=o analyticity requirements impose a de6nite
structure on the contributions of I'=C= —(—1)s ex-
change. Either the trajectory evades, or it must be
accompanied by a I'= —C= —(—1)s exchange one
unit lower in spin. This exchange has the right quantum
numbers to be the 6rst daughter of the 1eading tra-
jectory. This interpretation is supported by application
of the factorization of Regge residues. As the lower
exchange must also be regularized by daughters, aH odd
daughters are brought into play.

In Sec. VI we shaH consider the two other possible
single-parity families )with leading pole I' = —C
=—(—1) or I'= —C=+(—1)s] and show that they
evade when coupled to the EX system.

V. PARITY-DOUBLED LEADING TRAJECTORIES
(WITH C=+(—1)s)

In Sec. II we pointed out some general features of
the analytic structure of EU and UU amplitudes when

they receive contributions from a parity-doubled family
of poles. Now we look at the specihc processes mm —+ VV,
mE —+ VS, EE—+ EE and consider the exchange of two
opposite-parity leading trajectories with C=+ (—1)s.
As before, our concern is to satisfy all t=0 analyticity
constraints. LThe parity-doubled family with leading
C= —(—1)s trajectories will be discussed in Sec. VI.j

37At the present state of understanding, the question of
whether or not the singularity-removing pieces necessarily corre-
spond to dylumkA poles has not been conclusively answered. It
is not entirely clear, therefore, that the factorization found above
(for daughters) should necessarily hold anywhere other than 5=0.

"Notice that the "kinematicfactor" 1/gf in f00 +(sX~ VN)-
is balanced (in the iactorisation condition equation) by the 1/g
slngulallty of a daughter residue ln foe;oo ('If'x'~ VV). This ls a
case in which residues factor at E=O even though the Wang X(t)'8
do not; it suggests a solution to at least some of the factorization
problems studied by Leader (Rei. 10).



Tanxz IV. Residues of parent- and first-daughter trajectories in a family with parity-doubled leading poles, f = C= (-1)~ and
P= —C= —(—1)~. See Table H caption for an explanation of the notation. ' The energy dependence of amplitudes is indicated by the
following notation: (0/pg) ~"= (it); (s/4') ~"= (g); (r/p') ~"= (ag.

Residue of leading
Amplitude I' =—(—1)~ trajectory

mÃ-+ VE:
++

Residue of leading I'= (—I)~

trajectory

(&) & & *(Pv)" 'P

(a+1 'i' 1
(i) —iI g p]ils(pg)a —Ip

( n

Residue of first P= —(—1)~
daughter trajectory

fIO

f01 + (I) (1/V'&)&.&1"(P4) 'P

Ao + (0) (v'1)&.

five*(P4)

(2) —(2 —1) (1/1)&.*&.(4') '(n'/41)

(1) Gts b

ÃX~ ES:
fs
f4

(I ~&.'&.(P') ~

(1) E(o+1)/ol&1'&1(p')

(1) L(o+1)/o3'~(v'1)%'&. (P')

(2) E(o+1)/o34'ffi(p')

ss If a residue can be obtained only by factorization, its phase is in many cases undetermined. We have not indicated such possible phase ambiguities in
the Tables.

b This residue, though not fixed by analyticity requirements, is determined if ere assume that the residues of the first daughter trajectory factorize. See
Sec. V for the value thus determined.

In the examples discussed in Sec. IV, certain of the
constraint equations at 1=0 could be satisled by con-
spiracy only in lower powers of s. For example, the
dominant power of s in the PCHA for UU reactions
always has a singularity of the form

(1/gf)"', where 9=min(I) —ir I, I X+f1I),
provided exchanges of only one parity type are al-
lowed. This leads us to conjecture the existence of a
new method of satisfying the conspiracy equations:
Allow two trajectories with the same 0, at 1=0 but of
opposite parity types (so that each will contribute the
dominant term to a different PCHA). In this case, the
dominant power of s in each PCHA may have its
maximum singularity, (1/gf)""where V' =max( I

X—ii I,
IX+fsI), provided the residues of the conspiring tra-
jectories are such that Eq. (3.6) is satisfied. In our
analyticity approach, there appears to be no other way
to "derive" the existence of this type of pole structure.
It is just a natural solution to the constraint equations,

As we have shown for single-parity families, once we
assume that the top-lying trajectories exist, the lower-
lying daughters are needed to assure the proper analy-
ticity of the individual PCHA.

As we noted in Sec. II, close examination of UU
processes makes it clear that the pattern of daughters
required for singularity cancellation in this case is rather
di6'erent from a superposition of two single-parity
types. For example, in vrx —+ VV,

fii = (2&+&)T+10,10 &ii ++(2&+&)~10,10 &11

+daughters, (5.1a)

fll (2&+1)~ 10,10 &11 +(2&+1)T 10,10 &11

+daughters. (S.ib)

Our new conspiracy is marked by T + C/P —T»
for the most singular piece. The contribution of the
6rst daughter T~o, ~0& '&+eI~& '&+ of the unnatural-
parity parent pole to fii must then correct a singularity
of the form f 's -' arising from parents of both parities.
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(Pq)
' 2«(n+2)

n+1 I'(n+1) pql
(5.2)

It contributes to the corresponding minor-parity part
of the amplitude f»—something of the form

This is qui. te diGerent from the cases discussed in Sec.
IV, in which daughters were required to ren1ove singu™
larities of a unique parity. However, for UU amplitudes
with X or p=o, the pattern is similar to the cases in
Sec. IV, since then only a single-parity type contributes.

This kind of collaboration is also easily seen in EU
processes such as rr3T +Vs-V. {See Sec. II C 2.) The
appropriate conspiracy equation here is Eq. (3.5). Thus
the contribution of the leading natural-parity trajectory
to fir llRs R 1/Qf klilelllatlc slllgulRllty

(b) In rr2r ~ VV, fss + contains an extra factor of t
in the residue of the parent pole (to ensure factorization
among the parent residues in this reaction). This means
that the residue of the 6rst daughter is not determined.

by singularity cancellation. "
(c) In &&—+ XcV, the residue of the first daughter in

fs cannot be determined from the conspiracy condition
unless the contributions of the second daughter to fr
and f4 are known.

These three residues 8,; can, however, be determined
from the other ones (which are obtained completely
from singularity cancellation) if we ussN222e that the resi-
dues of the 6rst daughter satisfy factorization. The resi-
dues obtained in this fashion have proper singularity
structure to play the roles necessary of them. (We exam-
ine here only the most singular portions of the residue. )

From internal factorization in z~ ~ VV, me 6nd

(pq) ' 4(1—n)1"(n+2) I'&&

n+1 I"(n+1) &pq3
(5.3) Q

(R,= B.*B,qs— (2n —1)t.
R

which has a 1/f singularity at t=0. However, the
amplitude fir= is not allowed to have such a kinematic
singularity; hence it must be cancelled by another con-
tribution. The 6rst "daughter" of the leading un-
natural-parity exchange has the right quantum numbers
to contribute here; we therefore require its contribution
to cancel the singularity induced by the natural-parity
parent.

This behavior seems to indicate that in a conspiracy
of this sort, where parity is not a good quantum number
for the combined parents, it shouM not be considered
important in classifying the lower poles which remove
singularities.

By assigning daughter contributions in this fashion,
we have been able to study the implications of factori-
zation also in this case. The results cannot be stated as
strongly as those for the single-parity exchange cases.
This ls duc to klncn1atlc details which prcvcnt soInc of
the residues of the 6rst daughter from being entirely
determined from those of the parent by the require-
ments of singularity cancellation. For example, consider
the residue functions displayed in Table IV. The three
entries (it; (2=1, 2, 3) indicate residues of the first
daughter which cannot be determined by singularity
cancellation alone.

(a) In 2' ~ VX, the residue in fis—is determined
from that of fss + by the consPiracy condition. The
leading term in fss +, however, -has a residue function
with evasive behavior. This means that the residue of
the second daughter (which is the first daughter to
appear in the same amplitude as the parent) is not
determined by singularity cancellation, because the
singularity of the parent to this order of s is allowed.
Thus the sum of parent and second daughter is not
determined, and one cannot determine the residue of the
6rst daughter by the conspiracy condition.

Cross factorization of the three reactions gives

(2n —1)
(R3=- p2aIl @Il

n(n+1)

Then, using 64 and R3, one can obtain (R& by again

applying cross factorization

(phase) {2n—1) (pq) B,B(*gt(n—1)'"
(Rj =

(n+1) kn)
%e thus conclude that factorization of the 6rst

E=—(—1)~ daughter is consistent with the singularity
structure of the amplitude. The first I' = (—1)~ daugh-
ter appears only in the one reaction ++~ VV, hence
there is no question of factorization. The fact that we

could determine all the 6rst daughter residues from
singularity removal and factorization leads one to con-
jecture that these principles are enough to always ob-
tain the most singular pieces of the daughters from the
parent residues. Examples in Scc. VI demonstrate that
these principles are not enough to determine all daugh-
ters Nmqlely from the parents; for this, one requires a
speci6c model such as Feynman diagrams or thc Bethc-
Salpeter equation.

Note that the entries in Table IV are based on the
most singular terms in the residues of the leading poles.
As can be seen from Kq. (2.39), the daughters calculated
to cancel these terms are such that P= (—1)~ daughters
have the same residue function (up to a sign) as I'

'9 This is actually a good thing: The residue of this first daughter
in fio is the same as in the single-parity-exchange case (same
singularities to cancel), but the residue in fii is difterent (from
discussion shove). H the singularity in fos were determined by
multiplying the residue for single-parity exchange by t, there
mould be no hope of factorization among xx ~ VV residues of the
6rst daughter.



Tanrz V. Residues of parent- and erst-daughter trajectories in a family with single leading I' = —C= (—1)s pole. The residue of the
leading pole has been divided by (2n+ I) and that of the Grst daughter by (20,—j.}.Another satisfactory solution is to have all of the
3.21.~ VV daughter residues multiplied by t, vvith the ES-+ EE residues divided by I,. See Table-II caption for an explanation. of the
notation. '

Amplitude Residue of leading trajectory

m-P~ VS:

me~ VV:

Residue of 6rst-daughter trajectory

(s/pg)~ '(2 +o1)"P( o 1)/—(o+1)3'"(Q&)B~*Bs(PV)

(s/pg) ~'(2o+ 1)'~E(o—1)/(o+1)7"SB*B (Pg)

(./Pg). -'(2o+1)'~'((o-1)/(o+1) 3'~'».*B(Pg)- sg

fu+

11

~+
11

ES~XE:
fs
f4

fs
f3

(s/g') '(1/&)»*'B*(g')

(s/g')-'(1/S)1B. *B*(g')-'
(s/g') -'L—(2n+1) 7L (n—1)/(n+ 1))B.*B.(g') ~ '

(s/g )= E—(2o+1)X(o—1)/(&+1)3B.B,(g )--

(s/P')-'L &B-*B.(P—')-'3
(s/ps)a-2L pB 4B (P2)a-sj

(s/P2)~p gl~sQ3 4B psa-8)

(s/P') 'E ~'B'B.(P')

See Table IV, footnote a.

= (—) (—1)s daughters; differences in the forms
of daughters of different parity types are obtained
entirely from the less singular portion of the
parent Iesidue functions. Only the most singular
daughter contributions are shown in Table IV; we
will not consider the details of lower singularities
here.

VI. COMPARISON WITH THE O(4) ANALYSIS
OF FREEDMAN AND WANG

The three types of pole structure discussed above in
Secs. IV A, IV 8, and V clearly correspond to the three
types of conspiracy in ÃE scattering discussed by
Freedman and Wang'. the discussion in Sec. IV A to
their type I, the discussion in Sec. IV 3 to their type
II, and the case of Sec. V to their type III.Our analysis
suggests that the only difference between Freedman-
Kang types I and II is that the 6rst daughters of
type-I trajectories cannot couple to the EX state,
whereas those of type-II trajectories can, and thus type
II allows a nonevasive solution to the conspiracy
relations.

The restriction that one is coupling to EE states
placed other limits on the types of conspiracy Freedman
and Wang could hope to 6nd. Simple counting of quan-
tum numbers would lead one to believe that there
should be two other types of M=O conspiracies )one
with leading trajectory I'= —C= (—1)s and one with
leading trajectory I'= —C= —(—1)s], and at least
one other type of 3f=1 conspiracy Lwith leading tra-
jectories having C= —(—1)sj. It is not very dificult
to demonstrate that there are reactions in which con-
spiracies of this type will play an important role. In the

following paragraphs we discuss each of these types in
turn and demonstrate that they necessarily evade in
SX scattering. (Only the most singular portions of the
residues are considered. )

A. Single-Parity Exchange with Leading Trajectory
Having I'= —C= (—1)s

The leading trajectory cannot couple to EE states;
hence the contributions to EE—+EÃ must all be
given by odd daughters and these must all evade. One
would expect that a pattern of contributions to mm —+

VV similar to that of Freedman-Wang class I should
be possible. However, under factorization across the
three reactions (see Table V), one then obtains con-
tI'lbutlons to Kg ~ Vg which hRve the wl'ong singu-
larity structure at t= 0. It appears that leading terms in
one of the reactions m7i-~ VV and ES—+LE must
"doubly evade" (i.e., contain a double-zero P in the
residue function), and that the residue of the other
reaction must "singly evade" to produce proper be-
hRvloI' ln Vl E~ VE.

OIle could cons'tI'Uct an EE 1eRctlon contmnlng a
conspiracy led by a pole with P= —C= (—1)s by the
following formal device: The reaction EE' —+E'E,
where 2P is a particle with the mass and spin of the
nucleon but with opposite parity, has the same con-
spiracy relation as EE scattering. The parity identi6ca-
tion of all the PCHA is, however, reversed and charge
conjugation has ceased to be a good quantum number
with which to identify the states (because the X'E
state is not a particle-antiparticle state). Both C types
of E= (—1)s conspiracy are then possible, with non-
VRnlshlng I'esldues.
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TABLE VI. Residues of parent- and first-daughter trajectories in a family with single leading I = —C= —(—1)~ pole. The residue
of the leading pole has been divided by (2n+1) and that of the daughter by (2n —1). See Table-II caption for an explanation of the
notation. '

Amplitude

2' —+ UlV

f01

f00

vrx~ UU:

fll

f ++

fll
f00

f10

fll
f00

f10

Sg —+ %37:

f4

fa

fl

Residue of leading trajectory

(s/Pq) '(v'&)Bb'Bs(pq) 'P

(s/Pq) (v'i)B *B.(Pq)

(s/q2) 2(1/$) )Bf,+By(qm) ~

(s/q ) '(1/]) ]Bf,*Bf,(q')

(s/q') B-*B.V)
(s/q') 'B *Bye'

Residue of first-daughter trajectory

(s/Pq) '(2n+1)'~'[(n —1)/(n+1)]'~b(gt)B, oBb(Pq) 'q

(s/pq)N b(2n+ 1)b/oL(n —1)/(n+1)jVb(V $)Bg*Bb{pq)& bq

(/Pq ~( n+ '"(V'1)B*'B.Pq) q'

(s/q') 't —(2m+1}jl(0' —1)/(~+1}jB~*Bs(q')' '

(S/q2) tx—2L (2O+ 1)j((0—1}/(&+1)jB&+B&(q2) bx 1

(s/q') ~ 'L —(2n+ 1)]B,"B q'»

(s/(P)o L
—(2O+1)jL(o —1)/(&+1)] B +Bt,g

(s/P') 'L —».*B.(P')

(s/p') '$ tB,"B,(p')—

a If a residue can be obtained only by factorization, its phase is in. many cases undetermined. We have not indicated such possible phase ambiguities in
the Tables.

B. Single-Parity Exchange with Leading Trajectory between parent andhrst and second daughters imposed

Having p= —C= —(—1)s by the conspiracy.

At the NS vertex, trajectories such as the pion with
P= —C= —(—1)s can couple only to states of spin 0.
This means they can couple only to amplitudes with

zero helicity change at this vertex. Because of the

energy dependence f» sn a[with h—.=max( (
X (, t p ) )g,

no trajectory of this kind can be the leading trajectory
in the NN —+ ÃN conspiracy. Hence it is only in less

common reactions that we can hope for 3=0 constraint
equations which allow the pion-like trajectories to be
leaders in a conspiracy relation. '

For example, the conspiracy relation for 7rm —+ V V, as-

siimingm. =srsv, is0= (froio+ fioio), +s(fro, —ro fioio), ,—
—foo, oo. This allows a solution by a trajectory family

led by a pole with P= —C= —(—1)s, e.g. , 8 or sr

meson. (To avoid a restriction on C, we take the case

where the sr and/or the V is charged. )
Study of this kind of conspiracy in our three reactions

shows (Table VI):

(1) All trajectories in the family evade in 1VA'-b $$.
(2) The structure in srsr —+ VV is similar to that for

Freedman-Wang types I and II.
(3) Although leading powers of b are not involved in

conspiracy in mN —+ VN there is a complicated relation

' Recent evidence indicates that the physical pion may belong
to this M=0 Lorentz family, as was proposed earlier by R. F.
Sawyer, Phys. Rev, Letters 18, 1212 (1967),

C. Parity-Doubled Leading Trajectories with
&=- (-1)'

These would produce a singularity structure in the

vrx —+ VV amplitudes exactly like that displayed above

for the class-III C=+(—1)s case. However, because

the P= —C= (—1)s exchanges cannot couple to EN
states, the contributions to the other two reactions will

again be quite diferent from those of a leading pair
with C= (—1)s. Only the odd daughters in the P
—(—1)s sequence will play a role.

Fewer of the daughter residues can be discovered

solely from singularity cancellation and conspiracy con-

ditions in this case than in the corresponding case for

parity-doubled leading trajectories of the other C. If,
however, it is assumed in addition that the 6rst daugh-

ters must factorize, we learn that (Table VII):

(1) All parent- and first-daughter residues must

evade in NÃ~ NN.
(2) In sr% —+ VX, the relation between fir++ and

fro + is satisfied by conspiracy, but it is not possible

to determine completely the individual contributions of

the two first daughters in terms of the parent residue.

The relation between fio= and foo + is similar to the

case of C=+(—1)s parents in that evasive behavior

of the parent residue (necessitated by factorization)
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TABLE VII. Residues of parent- and first-daughter trajectories in a family with parity-doubled leading poles, P= C= —(—1) and
P= —C= (—1)~.The residues of the leading poles have been divided by (2n+1) and those of the daughters by (2n —1). See captions of
Tables II and IV for an explanation of the notation. ' b

Residue of leading
Amplitude P= —(—1)~ trajectory

Residue of first E=—(—1)~
daughter trajectory

Residue of first I'= (—1)~
daughter trajectory

f01++

fll
fll
flo
fol

f00

x~~ UU:

fll

flo

f —+

00

flo

$Ã~ Ã$.
f~

f4

f5

f3

fl

(2) B„*ay(pq)~ '

(1) B„*B(pq).-l

(i) ta.*a„(pq)--lq

(2) (1/t) a„*a,.(q')

(1) (1/t)a, *a,(q)--
(0) ta,*a,(q~)-

(1) B.*a.(q)-- q

(J2 tB„*B„(p2)--1

(1) ta„*a„(p') —1

(2) {2n+1)'/'B„*B (pq)

(1) {2~+1)'/2I:(~ —1)/(~+ 1)j'"ta.*a.(pq) 'q

(3) —(2 +1)(1/t) B„*a„(q')

(2) —(2++1) (1/t) B„*a„(qm) -1

(1) —(2o+ 1)L (o—1)/(o+ 1)]t&*'&.(q')

(2) —(2o+1)L(o—1)/(o+ 1)3"'&.'ff q" '

(1) ta B *(ps)a—1

(2) (2o+1)'"(V't)&r& '(Pq)

(2) (2o.+1)'/'B.B,*(pq)" 'q

(3) {2 +1)'/'B, B„*(pq) 'q

( ) —( ~+1)(1/t)a *a (q)--

(3) —(2~+1)(1/t) B,*a,(q') ~-'

(1) —pa&*a&(p~) ~-1

(2) —t& '& (p')

(2) (gt)ta;ff, p—s-s-
(3) -ta.'B.(p')--'

If a residue can be obtained only by factorization. its phase is in many cases undetermined. We have not indicated such possible phase ambiguities in
the Tables.

The residues of' the leading I' =(—1)~ trajectory in (the ~~ ~ VV amplitudes) f11+ and fit are both —(l/t)gr~gr(q ) 1, with energy dependence
(s/q~)~ ' and (sfq')~ ~, respectively.

prevents analyticity from completely fixing the residue
of the first daughter.

Notice that it frequently happens in these three re-
actions that conspiracy, analyticity, and factorization
are not enough to completely determine the first-
daughter contribution in terms of the parent contribu-
tion. This seems to be due to the fact that the parent
evades in so many of the reactions. In all cases, however,
factorization of the daughter residues is consistent with
the required analyticity properties of the amplitudes.
This agrees with the notion that the contribution of a
single Toiler pole is composed of an infinite sum of
factorizing Regge trajectories. "

We conclude that the analyticity and 0(4)-symmetry
approaches complement each other and agree when they
overlap. For equal-mass scattering, when analyticity

"Note that for the examples we have chosen, all information
about the second and lower daughters is obtained from singu-
larity cancellation and factorization {as opposed to conspiracy).
In EE reactions, no information may be obtained from analyticity
arguments. Hence we always have the freedom to force factoriza-
tion of these lower daughters, Combining this with the study in
Tables II-VII (which demonstrates that the first daughters
factorize), we conclude that factorization of all daughters is con-
sistent with the analyticity constraints.

tells us little, the 0(4) analysis gives much stronger
results because of the 0(4) itsvariatsce of the scattering
amplitude. The unequal-mass reactions with spin,
which are difFicult to treat from a group-theoretical
viewpoint, are the ones which provide the most in-
formation when analyticity is involved. For Regge-pole
models, in which one would like to invoke the addi-
tional dynamical postulate of factorization, the com-
bination of this with analyticity considerations can
then give information about equal-mass scattering and
and also about cases in which the parent residue evades.
Hence the joint requirements of analyticity and fac-
torization enable one to specify many features of any
strong-interaction theory.

/t'/ote added iN proof. The use of factorization to
determine the equal mass residues of daughter tra-
jectories, as described above, has been worked out in
detail for the spinless case by J. B. Bronzan and C. E.
Jones [Phys. Rev. Letters 21, 564 (1968)j.Application
of the analyticity (singularity-cancellation) approach
to derive relations between slopes of parent and
daughter trajectories, i.e., "mass formulas, " has been
investigated by several authors: J. Bronzan, C. Z.
Jones, and P. K. Kuo, Phys. Rev. (to be published);
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P. Di Vecchia and F. Drago, Frascati report, 1968
(unpublished); P. K. Kuo and J. F. Walker, Phys.
Rev, (to be published).

Arguments favoring the M=O pion type discussed
in Sec. VI and Table VI have been given by R. F.
Sawyer, Phys. Rev. Letters 21, 764 (1968).

(t) ~—t), z~ —z)

with
(A2)

A. =max(ll(!, l)((!).
From eq „~+(z)=+ (—1)"+bey„s+(z), it follows that

ego =0. (A3)
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APPENDIX A: PROPERTIES OF e FUNCTIONS

We use the functions defined in Ref. 18:

The e functions are related to jacobi polynomials (up
to a sign) as follows:

( (J+A) ((J—A) ) i'12
1+—2—b—

(l [Ps ~(tb—( I, I&+((I)

k(J+N)!(J—N)!)
(—1)b+bP (ib+"i'[b-"i)] (A4)

where N=min(l)(l, l)(l) and the Jacobi polynomials
have normalization

eb„~(z)= (42 co—s-', 8) i"+('i(V2 sin20) i' ('idb„s(0)

= e),„++eb„-, (A1)

)I+(bi
&.' "(z=1)= I )

where eq„~+ have opposite behavior under parity In order to expand e~+ in powers of s, we use

2sP (J+2) ( J(J—1) J(J—1)(J—2) (J—3)
P, (z) =

P(J+1) i 2(2J—1) 2X4X(2J—1)(2J—3)

2'r (J+-,') (—1)'"J(J—1) . (J—k+1)zs "~ ~ ~

~I'(J+1) b=(), , 4, " [2X4X Xk][(2J—1)(2J—3) (2J—k+1)])
(A5)

where we have neglected the other branch of the
Legendre function for nonintegral J. (If we used the
Mandelstam form of the Sommerfeld-Watson Reggeiza-

tion, we would be using E, and not e, functions. See
Appendix Il of Ref. 18.) For J nonintegral, the sum in

Eq. (A5) does not terminate.
Using (AS), we can calculate the expansions needed

in the processes xx —& VV, xX —+ VÃ, and ES—& ÃE,
where X, p, =O, 1:

2 I'(n+-')
eoo =coo =~e~—

I'(a+1)
( —1)

Xl z — z" '+ l, (A6)
2 (2n —1)

eoo
P 2 I'(u+-,')

e01 e10 [ (+I)]) [ (+I)yr(+1)
n(n —1) (u—2)

x! .='— z '+ l, (A7)
2 (2a—1)

eo1 Op

P '+zP " 2 I'(a+2)
e11a+

n(a+1) a(a+1)P(n+1)
n(n 1)(n—2)'—

X ~'& s '+ A8
2(2n —1)

e11

P" —2 P(n+2)
! n(n —1)z

n(a+1) a(a+1)P(n+I) i

n(n —1)(n —2) (n —3)
z 4+ . . (A9)

2(2n —1)

and
2 T- .b' P's b(" "(z)+&s-~""'(z)]

2 Tcs ab P's ~'""(z) &s ((""'(z)], — —

wh~~e n= I)( ) I
(t= I)+el, ) =(b b, )(=c d, —and-

h. =max(l)(l, !pl). A pole in one integer spin state (at
J=A+I) would then produce a major amplitude of

the form
T e b(( [P (|('())(z)+P (()'|()(z)]

APPENDIX B ' DAUGHTERS IN EU SCATTERING
(2= tb= 1)

In this appendix we show for the KU case that
daughterization (i.e., removal of undesired singularities

by inclusion of single-parity daughter contributions) of

the minor amplitude P(2J+1)T,e bs ~eb„s ensures

daughterization of the major amplitude P(2J+1)
XT,e,,b

~ eb„+ (or (i)ce ebs(b). For this purpose, it is
most convenient to absorb functions of J into the
partial-wave amplitudes and to reexpress (using Ap-

pendix A) the major and minor amplitudes, respec-

tively, as



foI' cvcn 0 and all v+ Q—2, with s—0'—p cvcn. Likewise,
the condition for daughterization of the Inajor ampli-
tude ls

82

P &»'&(s) =P s"g(lI 8 I e)

fn-V]

Q C,g(0, 2, I, e—o)=08„&'»(s)=Q s"g(e g I e)
vM

(for e =I+A.). We will deal in this appendix only with unwanted singularities at 1=0 may be restated as
integer e and with the special values ll=p=1 (g=O,
0= 2), but the method can be extended to other cases.

Q C g(0, 2, r —1, e—o)=0
Expanding in powers of s (since s goes like gf), one has
for integer e

where the Jacobi polynomials have the symmetry

which implies

( 1)"—"g (q—,e,l,n) =g ({t,q, l,e) (BBb)

Thus wc may represent the contribution of the lead-
ing pole and all of its even daughters to the major
amplitude by

with thc SRme constI'alnts on thc indices. To bc ID@re
exact, these conditions are those which pertain to
unnatural-parity exchange in xÃ —+ VÃ; the major and.
minor residues for natural-parity exchange may be
obtained, respectively) by multiplying the major and
minor residues obtained here by gt.

%'ith the replacement l=e—~ for / even, we can re-
wl'I'te (BS) 111 the foD11

fG

Q C„,g{0,2, e—/ —1,I—o)=0,

g(0, 2, e—o —l, e—o) e—o —/+1)
(B7)I—o—l &

(we use [I1 to represent the largest even integer smaller
than ~, and [Oj to represent the smallest integer al- g(0, 2, ~—o—1—1,~—o)
lowed in t}le su111, glve11 tile I'es'tl'lctlons oil P and &),
where o is restricted to be even {o»y even daughters
are needed) and I-o-I is also even (other terms cancel in
summing the two Jacobi polynomials). The contribution
to the minor amplitude then becomes

g(0, 2, e—x, e—o) (n gy1)—
g(0, 2, e—x—1, N —o) {, n gj—

fe] n-e

From the functions in Appendix A, one can deduce that

fQ

P C, ,g(0, 2, N —k—1, N —o)fe] n-e
=Q T"' 'Q 2s 'g(g 8 I —1-I—o) (B4b)

a'~0 V= fo]

where 0' Rnd s—r—p RI'c again cvcn.
As pointed out in Sec. II, we need only consider the

most singular terms in the daughter residue in this
proof (the proof for less singular pieces then follows);
it was also shown there that the most singular pieces of
parent and daughter residues all have the saIne be-
havloI' near 1=0» viz. ~

(const) C
Tn'-u ~ ~ (e) (pg)

m—o ~
]o'/2] (e—Ir) /2 If{,/2

Because s behaves like Qt near t=O for the EU case,
thc requirement that thc minor amplitude hRvc no

and thc onc set of conditions for regularization by
daughters implies thc other.

APPENDIX C: DAUGHTERS IN UU SCATTEMNG
(X=p= 1)

Using thc saDlc notation as lIl Appcndlx Bq wc pI'ovc
in this Appendix that for a UU process the regulariza-
tion of flo, lo Tlo, lo P„ I{o" by including even and
odd daughters~

Tlo. lo &n-I""(s) ~Z Tlo lo "(~)&~ ~ I{o'I(s)
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(so that the result behaves like a constant near 3=0),
onslros the regularization of f1o, 1o T1o,1o P 1' o~ by

depends on that of

n n 1—(S—$) v n—v—1

2 &I,»"' f. .oo(s)=Z
I I p 2'1o, 1o"'.-o & 2 i

(i.e., this latter amplitude then behaves like 1/t near
t= 0). Again we give the proof for integer spin only.

As shown in Eq. (2.29), s—1 behaves like t near t= 0
for h„h~d, &0. It is therefore convenient to use, as a
representation for the Jacobi polynomial, ~

(8+n n+8+g+v) (s—&i"
&.1' "(s)=Z

I
I. (Cl)

n+8+& ik 2 i
Hence,

where
y (o, o) (s) p (o,o}(s)+f o,o(s)

o-o-1(8—
g n—1 ( g+n

f."(s)= Z I

g~ ( j .~ (8+v—ji
(n+q+8+ v~ (s—1~

"

xI (C3)J(2J
{we assunM 8) tf fol' 'tllls formula).

Following the discussion in Sec. II, the daughter
residues are chosen such that

ns—op (0,2)

0'M

n—v (n —o (n —o+2+v) s—1)"
g &1o.1o"' ' Z I &n —o+2J 2J

is regular at I,=o. It was shown there that the most

singular pieces have the behavior Tn' v(C„. ,—/p)
where C„,is a constant. Then

(n o—+2+v) 1 (2 n —o.

xI I&I . (c|.)
J ~Ej

Again, 1=0 behavior is governed by the coe%cients of
(s—l)". For PWn —l, the coeflicient

(n o+2+—v') 1 (2) ( n o—
v i ~-o (ji &2+v ji—

canleput1ntot cform

(n —o)! {n—o+v'+2)!
~10,10

(n —o+2)! (n—o —v')!(v' —l)!(v'+ l)!
where v'&n (C.7)

However, the conditions for regularization by daugh-
ters are LEq. (C5)j

2 2'1o, 1o"' 'fn —v"(s)~1/$.

APPENDIX D: PERTURBATION-THEORY
EXAMPLES

(n —o)! (n —o+v+2)!
C

(n —o+2)! (n —o —v)!v!v!

T"us (C~) 1s also zero, a11d the only contribution to
(C6) behaves like (z—1)"-'T"' l/~ near ~=0. Thus
we have shown

const (C4)
implies

(v—f)" (v—) (v—+2+
)10,10

v~ 2 vnO V P

i.e., fol p+8,

n-v (n o) (n 0+2+—v)—'

Z C'. —.I

The behavior of the associs, ted amplitude f1o1o, ,

n

g 2'1o 1on' 'E„~so~(s)=g &1o,1o"' '&n —v
' (s)

During the course of this work. , we have found the
study of individual Feynman graphs to be extraordi-
narily helpful. ~ Because ea,ch Feynman graph is Lorentz-
inva, riant, it must have the proper singularity structure.
Thus the singularity cancellation between parents and.

const, (C4') daughters may be made marufest simply by decompos-
ing the calculated helicity amplitudes into a sum of the
appropriate Jacobi polynomials. The daughters are
particularly obvious in our examples because they are
nonpole contributions to the graph.

Unfortunately, many graphs seem to contain con-
tributions from more than one Toiler pole at f=o,
especially in nonleading powers of s. %e do not wish to
include in this paper a complete theory of Feynman
graphs in terms of Toiler poles~; therefore we have

+Z &1o,1o" 'f.-"(s),
0'M

~ G. Szego, OtIhogowal I'olyeomiuls (Edwards Brothers, Inc.,
Ann Arbor, Mich. , 1948).

~ See also L. Durand, Phys. Rev. Letters 1S, 58 (1967); R.
Blankenbecler and R. Sugar, Phys. Rev. 16S, 1597 (1968); R.
Nankenbecler, R. Sugar, and J. Sullivan, ibid. 172, 1451 (1968);
R. L. Sugar and J.D, Sullivan, ibid. 166, 1515 (1968}.

44 This may be done using the technique of R. I . Sawyer, Phys.
Rev. 167, 1372 (1968).



chosen to present a series of graphs which demonstrate
the particular singularity structures discussed in the
text and to explain them in terms of the Toiler poles
they do contain. This exercise is doubly gratifying: It
is amusing to see how the diagrams reproduce in a
particular case for integer spin the results derived from
more general considerations, but it is also handy when
calculating the diagrams for other purposes to be able
to check the results. without further excuse, therefore,
we present some examples.

First, consider the pattern of singularity cancellation
in a UU process like mm ~ VV. For the two possible
types of single-parity exchange, we calculate spin-2
exchange (which is the lowest spin to show daughters
in the helicity-Rip-1 amplitude).

For 2+ exchange in xm —+ VV, one may take the
amplitude

o»»g~olggqpkl (kl —ql) P„."'0"g*goog«*k2'(k2 —«)'
fgo, 1/2—1/2' —fgo.—1/2 1/2' =

—2p g cos8g

where k = &v./2+t and kp= (t+oggr2 g—gg.2)/2+t. This
clearly demonstrates the equal and opposite singu-
larities in fll+ and fll multiplying s '. When the
amplitudes are reexpressed in terms of Jacobi poly-
nomials, it is found that the residues of the leading pole
factorize at 3=0 as shown in Table IV. As the nonlead-
ing terms arising from this graph contain M=O Toller-
pole pieces as well as the daughters of both poles, there
is considerable complication in the lower powers of s
and we will not discuss them here.

If one looks instead at the EU reaction xg ~ VE,
one obtains from the graph qI'~ I'„"'Xy5y"NI'i' for 2
exchange (q» is pion momentum; Pl' is one of the nu-
cleon momenta):

where k; are the momenta of the vector mesons in-
volved, e; are their wave functions, and q; are the mo-
menta of the pions. If one uses for I'„,"' the 2+ pro-
pagator given by Durand, "this results in

(t gggoo)—(flQ, 1Q flQ, —1Q') = 32»gt' cos8g —(4/t2/ggg. 2)

&( (gggr2 —2/2, 2)2(g/2. 2—t),
(t—ggg» ) (fgo, lo'+ flo,-lo') = —&6»gt g

flo, l/2 1/2 +f10—;1/2 1/2

(t+gN. 2 2/g&2—)I—
(t

92M &g/2„2 j '

where m, is the mass of the exchanged particle and q= 2'1 /2gt. Hence, the PCHA flo, lo' flo, 10'—behaves
like s'=s ' and all singularities at /=0 occur in lower
powers of s. Notice that the "Ininor" amplitude con-
tains a singularity like 1/t which matches the one in
the "major" amplitude, and that this one in the
"major" amplitude arises from both the parent and the
6rst daughter.

Similarly, a graph for 2 exchange is

This results in
Epy 6g g2 ~

(t—gn» )(flp, lo +f10, 10 )=8/ cos8g —4«(1—t/ggo» ),
(t ggg» ) (f10, 10 flp, 10 ) 4gt-

which have properties similar to those noted above.
In contrast, one may consider a graph for parity-

doubled exchange of the type given by Blankenbecler,
Sugar and S1111van

Lo' k'0' k' —0' 0'k'kolk' k2

This gives

flo, lp+flp. -lp ko I s+
flo, lo—fgo,-lp= k E s+2~1/ j g

foo, oo=(glv'/2)Ls/2k'+&lL —s+2~v ~

foolo (kpggoV/2V, 2)——p S+2gggV j—

flpl/2 1/ 2f,101/2'1,/—2=-
F2

foo, 1/2 1/2=
P cos8g (gggy2 gN 2)2—

—
(ggg 1 2+2/2. 2)

4m'

2 JEST Eke
— -(l—t/ gggg)+2

3 esp' 35$p'

f00,1/21/2-p gkp cos8g pE
+ (l—t/ ~ggg)2

M~,

(gggg
2—

2/2 ')2
—

(gggg 2+2N ')

Here, g and ~o have the. same defjnitions as above.
«=+»—kog &=2V't

g
&= 2 (t—43fo)'/2; and M is the nu

cleoll Inass. Note tERt tile dominantgg Rmphtude f"
has no singularity at t=O, and behaves like s'=s
The "minor" amplitude fig++ does have a singularity
at t=0, which conspires with flp + The consp. iracy
equation between fpo + and fpl is also satisfied by
conspiracy. For these, the subsidiary terms in s conspire
among themselves and again play a role diferent from
that of the Toiler pole discussed in the text, so we
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(i+my' IJ,')—(t 43—P) '~'

0,1f2-1/2
4+tm p M (t tip—')

0,1/2 1/2

(L&—(~~—~)'jL»—(~~+~)'3) '"

(2+1)mph'. '

For the M= I case, we Deed only cite the behavior
of the nudeon Born-term graph in pion photoproduction

ignore them. The leading terms in these two satisfy
conspiracy among themselves, paralleling the mell-

known case of axial-vector exchange, which gives

Ey0(y k)(y 0)X This gives (for a photon of mass mv)

f00,++= —posy(coseg)//3E,

f10,++ f 10-++, ~~P~0/~ p

f&0&+++f &0 +-+ ~~@V/~ i

foo.+

f~0.+-—f—M.+—=v2C ~

fio.+ +f-to.+—=O—,

which show in R very simple way the singularities of
thc M= 1 consplI'acy dlscusscd ln Scc. V, cvcn thoUgh
the graph does not represent R k-channel exchange.
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Currents as Coordinates in Nonrelativistic Quantum Mechanics*
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fhe formulation of nonrelativistic quantum mechanics using currents and densities as coordinates is
investigated. A general solution for a single-particle theory is presented, and several many-body problems
are discussed.

I. INTRODUCTION

KCE5TI.V, there has been considexable interest in
thc description of stx'ong lntcrRctlons ln terms of

currents. Dashen and Sharp' showed that nonrelativ-
istic quantum mechanics could bc described by using
currents and densities as coordinates rather than the
morc fRmlllar canonical cooldlnatcs, but they left
unanswered thc qucstlon of solvRblllty of such a theory.
In this paper we treat systems of Q identical hosons in

their formalism, and show how to obtain all of the
information that the usual formulation gives. For
single particles interacting with a fixed potential or
potcntlRl scattcling of two particles, thc Dcw formalism

turns out to require the solution of the Schrodinger

equation. Fol Inore pRrtlclcs lt ls not clcR1 what thc
form of the solution is except in some simple solvablc

examples.
It seems natural to formulate many-body problems

in terms of currents and densities, and perhaps this
approach might lead to better or di6erent approxima-
tion schemes. Although our original motivation for
solving problems this way was to learn how to work. with
descriptions of systems in terms of currents and densi-

ties, we also have shown that the formulation is a
feasible approach to nonrelativistic problems. There is

*%'ork supported by the National Science Foundation under
Grant No. NSF GP 6j.98 and the Ofhce of Naval Research under
Contract No. N00014-67-A-0305-0005.

' R. F. Dashen and D. H. Sharp, Phys. Rev. 165, 1857 (1968).

Do pretense made of mathclnatical rigor, and since wc
are in fact working with functional intcgrals —a rela-
tively unexplored area of mathematics —we may occa-
sionally adopt questionable mathematical procedures.

We start with a review of the work of Dashen and
Sharp" and refer the reader to their paper for further
details. ScctloD III ls dcvotcd to R dlscusslon of R single
pRl tlclc lntclactlIig with R 6xcd potential) and thcrc lt
is shown how to find solutions to the usual problems.
In Sec. IV we treat noninteracting systems and show
how to 6nd thc many"boson correlation functions. Wc
also discuss the di6erences between wave functionals
that. give identical results for a single-particle theory
but di6erent results for a many-particle theory. The
1Rst, section dlscUsscs . two problems of 1Dtcl actlDg
bosons —coupled harmonic oscillators and a one-dimen-
sional system of particles interacting through b-function
potentials. The form of the exact solutions to these
problems suggests approximation schemes for other
kinds of interactions, but it sheds no real light on how
to obtain solutions to more complicated systems.

II. REVIEW

In this section we review for completeness the formu-
lation of nonrelativistic quantum mechanics in terms of
currents and charge densities as given by Dashen and

' D. H. Sharp, Phys. Rev. 165, 1861' (I968).
3 We ahvays assume that integration by parts is permissible

and that the boundary terms vanish.


