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By studying reactions involving unequal-mass particles with spin, we show that much of the structure
of possible families of conspiring Regge poles follows simply from imposing the =0 analyticity constraints.
These requirements imply the necessity for both daughter and conspirator contributions, where in many
cases the daughter poles are themselves conspirators. We discuss the pattern of (#=0) singularity cancellation
by daughter trajectories in both the single-parity families and double-parity families for general mass and
spin processes and demonstrate that the two have rather different structure. As an application, the reactions
ar— VV, #N — VN, and NN — NN are examined in detail from the point of view of analyticity con-
straints. We show that in all cases factorization of the (first) daughter residues is consistent with the required
analyticity properties of the amplitudes, and that in certain (nonevasive) cases the factorization of the
daughter residues is directly implied by factorization for the leading pole when the conspiracy constraints
are obeyed. We conclude that our results, based on analyticity (and factorization), complement the group-
theoretic O(4) classification; the symmetry and analyticity methods give similar information when they
overlap, but supplement each other in certain cases when one method is not readily applicable.

I. INTRODUCTION

AUGHTER 'trajectories were introduced by Freed-
man and Wang! into the treatment of unequal-
mass spinless scattering to preserve the analyticity of
Reggeized amplitudes at ¢=0. They and others®™
pointed out that the existence both of daughter poles
in unequal-mass spinless scattering and conspirator
trajectories in the case of equal-mass scattering with
spin can be inferred from an analysis based on considera-
tions of the Lorentz group O(3,1). Several classes or
types of conspiring families of poles were isolated,
essentially only those which can couple to the NN
system. Domokos® has argued that the classification of
the spectrum of Regge poles into O(3,1) families, where
each family corresponds to a single Lorentz or Toller
pole,? is independent of the external masses in the
problem, and thus applies to unequal-mass scattering
as well.
By studying a more general case containing both
unequal masses and spins, we show that much of the
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detailed structure of possible conspiring families of
Regge poles follows simply from imposing the ¢=0
analyticity constraints. These constraints on helicity
amplitudes are of two types: (1) restrictions on the
analytic structure of individual parity-conserving heli-
city amplitudes (PCHA) as analyzed by Hara® and
Wang’; and (2) the conspiracy equations, which are
linear constraints between different helicity amplitudes
(at t=0).8" Such analyticity requirements (in the
case of unequal-mass scattering with spin) imply the
necessity for both daughter and conspirator contribu-
tions.? Although the work of Ref. 1 makes it plausible,
it is not obvious for general mass and spin processes
that the necessary daughter-conspirator contributions
can be supplied by a single Lorentz pole. We demon-
strate explicitly that, once the parent pole(s) has (have)
been specified, all /=0 constraints may be satisfied by
including the daughter sequence.

Thus we show that analyticity induces the same
Regge-pole family structure as that given by the 0(3,1)
group-theoretic approach. This analyticity point of view
makes it easy to investigate some types of (M =0 and
M=1) conspiracy not previously discussed. It also
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allows the phenomenologist interested in fitting high-
energy data to simply construct formulas which are
correct in all kinematic details. We have assembled
enough details to allow one to construct appropriate
formulas for any mass case, with Lorentz-pole quantum
number M =0 or M =1. These formulas have the ex-
pected property that (because daughters have been
included) the leading term in the Regge expansion
dominates at high energies for inelastic as well as elastic
processes for all values of the momentum transfer.
(Some coefficients of secondary powers of s have,
however, heretofore unexpected singularities near
1=0.)

There are four conceivable families consisting of a
single leading pole, and all are similar in structure from
the point of view of analyticity. Only two of these have
previously been discussed (in Ref. 4). In unequal-mass
scattering, given the leading (parent) pole, the existence
of odd and even daughters is required by the analyticity
of individual PCHA. In O(3,1) language this would be
saying that analyticity ensures that the entire Toller?
pole contributes to the amplitude if the leading member
does. (When the parent trajectory intersects /=0 at an
integer, only a finite number of daughters are required.)
For each amplitude, the most singular part of the
daughter residues is determined by requiring a cancella-
tion of unwanted singularities. For equal-mass scatter-
ing, daughters are not required in order to satisfy the
analyticity requirements on individual PCHA. Thus,
for this case the singularity-cancellation method gives
us no information about possible families of poles (al-
though if we wish to have a nonevasive solution to the
conspiracy relations, daughters are necessary in some
cases). However, by imposing residue factorization to
link the equal- and unequal-mass processes, the equal-
mass daughter residues can usually be determined.
Analyticity plus factorization thus provide a great deal
of information.

The daughter trajectories in this single-parity type of
family may also be conspirators.!® The two single-parity
families considered by Freedman and Wang in their
treatment of NN scattering? differ in that the odd
daughters of a class-I family [with P=C=(—1)’ lead-
ing pole] cannot couple to the NN system; and thus
only the class-IT family [with P=C= —(—1)” leading
pole] allows a nonevasive solution, with the (odd)
daughters becoming conspirators. We show that the
two M =0 families not treated in Ref. 4 do not couple
to NN at t=0 although there are other systems where
they may (and probably do) contribute. (The ordinary
physical pion may, in fact, belong to one of these
classes.)

The detailed structure of families with parity-doubled
leading poles is rather different from that of the single-
parity families. Such families appear only when one
studies reactions involving external particles with suffi-

13 B, Diu and M. Le Bellac, Nuovo Cimento 534, 158 (1968).
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ciently high spin'; for spinless scattering the single-
parity families of daughters are all that is needed to
preserve the desired analyticity. We find, in a parity-
doubled family, a succession of parity-doubled daughters.
The daughters of each parity cancel singularities arising
from contributions due to both parities. There are two
M =1 families, differing in charge conjugation; one of
these does not couple to NN at =0 (this one had been
ignored previously).* The pattern of {=0 singularity
cancellation is not what one would obtain from the
superposition of two single-parity M =0 families.

In addition to a discussion of daughters in general
mass and spin processes, the present paper contains a
detailed examination of the reactions 7w — VV, 7N —
VN, and NN — NN from the point of view of analy-
ticity constraints. This analysis supplements and clari-
fies recent work!®" on these processes, which are
coupled by the requirements of Regge-residue fac-
torization. Besides giving a concrete illustration of our
approach, the residues we determine are useful in
treating recent forward inelastic experiments (e.g.,
7N — pN) and in the discussion of the O(4) M quantum
number of the pion.

We also demonstrate for certain cases that factoriza-
tion of the residue of the parent Regge pole implies
factorization of the residue of the first daughter con-
tribution, when the conspiracy constraints are obeyed.
For other cases, factorization of the first daughter
residues is consistent with all analyticity constraints,
but cannot be demonstrated e priori. Our work leads
us to believe that in general all daughters derived from
analyticity are consistent with factorization. Factoriza-
tion, moreover, is enormously useful because it links
equal- and unequal-mass reactions. It thus removes
much of the (unwanted) freedom left after all analy-
ticity requirements are satisfied.

In Sec. II we define the properties of “daughter”
trajectories and demonstrate why daughters are re-
quired to preserve the ¢=0 analyticity of individual
Reggeized helicity amplitudes. We give the expansions
of parent- and daughter-pole contributions which form
the basis of our later discussion. These are an extension
of the well-known treatment of daughters in the spin-
less case. In this section we indicate the pattern of
singularity cancellation for both single- and double-
parity families and describe the {=0 behavior of the
successive residues. Section IIT introduces conspiracy,
the other analyticity constraint at /=0, and gives the
conspiracy relations between PCHA for the specific
processes we are considering. In Sec. IV, we show how
theanalyticity constraintsstudied in Secs. IT and IIT are

14Tf the exchanged pole gives a finite contribution at ¢=0, it
belongs to an O(4) family with M <min(S;,Sy) where Sy, is the
total spin of the initial (final) /-channel state. See R. F. Sawyer,
Phys. Rev. 167, 1372 (1968). Also see M. Toller, Ref. 3, and S. A.
Klein, Claremont College Report (unpublished).

15 L. Jones, Phys. Rev. 163, 1523 (1967).

16 S, Frautschi and L. Jones, Phys. Rev. 167, 1335 (1968).

17 H, Shepard, Phys. Rev. 168, 1572 (1968).
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satisfied by families with a single leading pole, and thus
illustrate how daughter poles may be conspirators. The
contribution of families with parity-doubled leading
trajectories to these reactions is discussed in Sec. V. In
Sec. VI we compare our results, based on analyticity,
with the group-theoretic O(3,1) classification.

Supplementary material is presented in the ap-
pendices: Appendix A summarizes the functions which
we use to expand the PCHA ; Appendices B and C are
devoted to proofs that for the case of one leading
trajectory a single set of daughters removes singularities
from both “dominant” and “minor” PCHA. Examples
from perturbation theory, which we have found very
helpful, are collected in Appendix D.

II. DAUGHTERS AND THE REGGE-POLE
EXPANSION OF (INDIVIDUAL) PARITY-
CONSERVING HELICITY AMPLITUDES

In this section we wish to give most of the kinematic
details and techniques which will be (implicitly) used
in the remainder of the paper. Principally, we shall
show how parent and daughter poles contribute to the
expansions of the Reggeized PCHA for general spins
and masses. By demonstrating the way in which daugh-
ters remove singularities from the coefficients of certain
powers of s in the Regge expansion, we generalize the
discussion given in Ref. 1 for spinless unequal-mass
scattering. The technique of singularity cancellation
presented in this section will be useful in other applica-
tions besides those given in the present paper.

A. Preliminary Kinematics

We define the s channel to be the reaction

a+b— ct+d;
the ¢ channel is

D' M)+ (Ag) = ¢’ (Ag)+A"(N9),

where we have written the helicity of each ¢-channel
particle in parentheses. The #-channel helicity ampli-
tudes will be written f34,12(s,f) and we define!®

Faa,10= (V2 cosdf,)~Mul (V2 sindf,)~#lfoq 15, (2.1)

where A=X\;—\g, u=X3—As. The fs4,1 are assumed to
have only dynamical singularities in s; they have
the partial-wave expansion fas,19=>_ (2J+1)T34,127er,”
The functions ey’ are defined in Appendix A.

When m,=m, and ms=1mg4, we have elastic s-channel
scattering. The initial and final {-channel states each
consist of an equal-mass pair; we call this case EE
scattering. Similarly, we describe the case m,=m, and
my#Emq as EU scattering, and the case m,#m, and
mp#Zmg as UU scattering.

18 M. Gell-Mann, M. Goldberger, F. Low, E. Marx, and F.
Zachariasen, Phys. Rev. 133, B145 (1964).
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The #-channel center-of-mass momenta are
q=poo=[1— (mat-m)* /21— (ma—ms)*]2/24/t
= pr/Z\/f, (2 2)
$=pea=Lt— mart-mPTLi— (ma—m P2/ 23/t
= TA c/ 2\/ t N

and

costy=3;=2z= (25t—|— 2— tE—i—A,ﬂ,Am) (T“Tdb)‘l
= (25+1—24+ApAca/t) (4pg)
= (V+AdbAm/t) (417?)—‘1 ) (23)
where
Z=ml+mi+mltmd, Aiy=md—m?,

2.4
y=s—u=20+i—2. 24)

The following will be useful:
(pgz)2=4"2(v+AsppAco/t) 2= 4" (1+ AgpA o/ v8) % (2.5)

The last factor is equal to 1 for EE or EU scattering.
Study of the large-s, small-# region makes it conveni-
ent to expand the powers of cosf, as follows:

[ AmAc/t]e= ()= ve(14+ A/ v1)*
— ve4-aA Al v Hta(a—1) (AapA o) 2024 - - -

§->00

=3 (a) (AspAca/t)wem,  (2.6)
n=0 \7
where (near {=0)

ve=(2s4+i—Z)*— 2%+ (1—2/25)*

~2-% (") -2/t

=0
= 2e[s*—$aZs* 1~ da(a—1)22%se2 - - ], (2.7)

If @ is an integer, the expansion eventually terminates.

We form Reggeized parity-conserving helicity ampli-
tudes (PCHA) according to the method of Ref. 18.
(Also see Ref. 7.) Examples will be given shortly. The
complete residue of the Regge-pole (a) contribution to
the partial-wave (definite-parity) amplitude Tss,107P
=1(T 34,127 = T—3-4,12”) will be written

Bs4,1:T¢ () =B P () = 2a+-1)K )y (£) (pg)*2,

where A=max(|A[,|u|) and the residue is defined by
(2a+1)T34,15°F — B/J—a at the Regge pole in the
Sommerfeld-Watson transform of the PCHA

J312P0=3 (2T +1)3 (Tss,12" =T—3-4,127)erw” ™"
+ 2 QT+ 1)3(Taa, 10" FT—3-4,12")ers” .

The superscripts PC refer to the parity and charge-
conjugation behavior of the exchanged Regge pole in
the ¢ channel (assumed to be a meson); this can be
described by specifying P, C=2=(—1)7, or just == for
brevity. The factor K (¢) contains the kinematic singu-

(2.8)



2120

larities and zeros of the one PCHA with the quantum
numbers of the exchange; these can be isolated using
the rules given by Wang.” Notice that when X and u are
both nonzero, once 8,,¢(¢) is calculated for the PCHA
with ‘“dominant parity” P, the contribution of this
Regge pole to the PCHA with the same A, u but with
“‘dominant parity” — P is completely determined as

B Cer, [1eim]/sinmar.

The Wang K—2(f) for this “minor” amplitude agrees
with the net singularity of K+F(¢)(pg)*2er,®"; hence
the formalism is consistent in this regard.’® (See further
discussion of this point later.)

The last factor in 8(¢), viz., (pg)*~4, can be derived
from the Froissart-Gribov expression for the partial-
wave amplitude.?’ As 3(¢) thus defined is (2a+1) times
the residue of the partial-wave amplitude, we require
the full B(¢) to satisfy factorization for exchange of
poles with definite quantum numbers. Generally, we
will not be concerned with the a-dependent factors in the
residue—e.g., those due to sense-nonsense considerations.

We shall assume the reader is familiar with Appendix
A of Ref. 17, which contains a summary of the parity
and charge-conjugation properties of PCHA. For the
purposes of this paper, we would simply like to recall
a few particulars:

(i) If As#0 and u>%£0, the PCHA receive contribu-
tions from states with both kinds of parity, P= = (—1).

(ii) For a boson-antiboson state in which the particle
is not its own antiparticle, the states of definite parity
will also have definite C when A\y=d:N,.

For a boson-antiboson state in which the particle is
its own antiparticle, each helicity state will be an eigen-
state of C with eigenvalue -+ :

C|IANe)=+ | Ahs).

Hence, each state of definite parity will have definite
C=+, and only exchanges with C=+- at points with
physical signature can contribute. Additional informa-
tion can be obtained from the requirement of Bose
statistics?: If A\;=\,, only even J will have a nonvanish-

19 That is, the same ¢ype of singularities are present. If only one
pole is contributing, v(¢) may be forced, by the behavior of the
“minor”’ amplitude, to have additional zeros.

2 To establish this behavior for the residue, B~ (pg)*~4, one
must consider the #-channel thresholds and pseudothresholds,
t= (myi=ms)?, (m3tm4)?, and also (for EU or UU) the point ¢=0.
In the present work it is the /=0 dependence which is of most
interest; for there the relation implies [neglecting other ¢ depen-
dence included in the factors K(f) and v(#) in Eq. (2.8)]: (a)
B~ (t112)2®—A for EU scattering, and (b) B~ (:1)=©®~4A for UU
scattering. This result is therefore a generalization of the behavior
of the partial-wave amplitude, #~*©®, derived by Freedman and
Wang (Ref. 1) for backward (spinless) =V scattering. Following
the procedure of Ref. 1, one may construct a similar proof for
scattering with spin (with Jacobi polynomials replacing ordinary
Legendre polynomials). It is perhaps worth noting that daughters
are required in order to establish this =0 behavior, and also that
the resulting ¢ dependence plays an important role in the fac-
torization conditions for unequal-mass processes.

2 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.} 7, 404 (1959).

L. JONES AND H. K. SHEPARD

175

ing contribution, and if A;=—DX\,;, only states with
P=(—1)7 can couple.

(i) In UU scattering, the PCHA has in general no
definite behavior under charge conjugation, and tra-
jectories with either relation of C to J may be exchanged
for each parity.

If it should happen that each of the particles at a UU
vertex is its own antiparticle, the helicity amplitudes
will transform like C|JA\2)=11n2°| JAA2). Again, only
exchanges with C=17,%,° at points of physical signature
will be allowed. As the particles are not identical, there
are no restriction from statistics.

(iv) If the fermion-antifermion state in EU or EE
scattering has \;#% 4=\, the PCHA also has no definite
behavior under charge conjugation.

(v) When Ag==z:\, for the FF state, each parity
part of the PCHA has a definite C as well. For NN we
always have Ag= A4

B. Daughters

Since we are not proceeding from a group-theoretic
point of view, we must define what we mean by daughter
poles. All discussion here is based on analyticity re-
quirements at {=0; the concept of daughters used below
is principally of value at that point and we shall not
attempt to generalize it to #20.

In order that they contribute to the same processes,
all daughters of a parent or leading pole must have the
same internal quantum numbers (baryon number, iso-
spin, hypercharge, charge conjugation) as their parent.
We choose the daughters to have angular momentum at
t=0 spaced by integers from that of the parent so that
they have the possibility of cancelling the singular co-
efficients which arise when we make Regge-pole expan-
sions of the PCHA. In order that parent and daughter
contributions have the same phase at this point, we
shall assume that the odd-numbered daughters (those
at a—1, a—3, a—35, etc.) have opposite signature from
the parent pole, while the even daughters have the same
signature as the parent.?

When there is a single parent pole, we insist that the
daughters have the same relation of P to J as the
parent (e.g., a 1~ parent would have a 0+ daughter);
this ensures that they would contribute to the same
UU spinless processes and would play the role there
outlined by Freedman and Wang.! In order to have the
same nirinsic charge-conjugation quantum number at
t=0, the daughters must correct for their spacing in the
definition of C==(—1)7. That is, the nth daughter
must have Cuy= (—1)"Cparent- Summarizing, if P and
C are the parity and charge conjugation of the parent
as given by =(—1)7, then the odd daughters have
Poagy="P, Coaqy=—C, and the even daughters have
P(even) = P: C(even) =C.

22 This choice of signature is in accord with the assumption

normally made in Regge-pole theory that the phase below thresh-
old is completely determined by signature and kinematic factors.
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C. Regge-Pole Expansion of PCHA

We shall employ the expansions of the e),**(z) func-
tions'® given in Appendix A and sometimes choose
specific values of X and u to illustrate the method. As
examples which will be useful in Secs. IV and V, we
present the cases (a) A=0, u=1, where (because e),*~
=0 when A=0 or p=0) only one parity enters, and
(b) A=1, p=1, where Regge poles of both parities can
contribute to the PCHA. Given the expansion of ey,*+,
any other case can be done in the same manner.

We shall write the Regge-pole contribution to the
PCHA

Faa,10%1= fau 100 (— DMy (—1)S+84F o 415 (2.9)

in the form

F34,12" = Baa,1oB[ (€™ *B+ 1) /sinwar Jer,*F* ()
+B34,120[ (67704 7¢) /sinmag Jer, 2@ (2), (2.10)

where the poles ar and aq have opposite P. To obtain
J~7, we interchange R and Q in (2.10); i.e., fau,157"
= f34,12"(R <> Q). We call the parity of the pole associ-
ated with the et term the ‘“dominant” parity and the
parity of the pole in the ¢~ term the “minor” parity,
for reasons which will become obvious. Substituting
Eq. (2.8) for the residues, we have

f34,12"= f,m” = ar+1)KnE@)vnk()XE(r)
X (pg) 27 ber,2®* (3)+ (209+1)K a2 (t)

Xy (OXU(7)(pg)*tern*@(2), (2.11)

J10"— (2a+1)K1¢710X(pg) * et ()
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where
X(r)=(e~*re+7)/sinma.

The functions ex,*(z) have simple expansion in z.
Symbolically,

eMa+(’z)= Aoz Aoz A2p 4 gt 212
e (2) = A1z A A g dmit Aggehb (212
For a nonintegral, these expansions do not terminate.
As mentioned before, for A or u=0, ¢*"=0, and only
the dominant-parity contribution to the PCHA remains.
Notice that e*+ and e contain different powers of z.
This means that when they are multiplied by the same
residue functions, as in f7 and f-, the resulting ampli-
tudes will have different kinematic singularities at =0
and at threshold (as required from crossing-matrix con-
siderations®7). Stated another way, the threshold singu-
larity of the total contributions of minor- and domi-
nant-parity types to a given PCHA is the same even
though the threshold behavior of the partial-wave
amplitudes for the opposite-parity cases must be
different. As it is generally easiest to think in terms of
the dominant contributions, we get KZ(t) from f+7 and
KQ(f) from f-7, using the rules of Ref. 7.

Using Appendix A, we have (assuming for the mo-
ment only one pole of each parity)

— Kioy10
m X([a(a+1)]1/2 T(at+1)

2¢(2a+1) T'(a+1/2) a(a—1)(a—2)(p9)*(pgz)**
)(a(;{)qz el AL +"'>,

Jur— Qar+ 1)K 1Py ®XE (pg) % len*®* (2)+ (2aq+ 1)K 11%119X @ (pg) *@ €119 (2)

29E(2
— KuR’YuRXR( Necksihioal 1/2)){

ar(ar+1) T(ar+1)

20(200+1) T'(ae+1/2)

+K11Q‘Y11QXQ(—
aqag+1)

The expression for fi;7" is obtained from fi;7 by inter-
changing R and Q in (2.14). Using Egs. (2.13) and
(2.14) as examples, we now examine the cases EE, EU,
and UU individually.

1. EE Scaitering (m;=mc=M , My=mg="1)

From Eq. (2.3), 2=v/4pg where v is given by Eq.
2.71). pg=31(—4M*'2(i—4m®)'2 and pq—>s.0— Mm.
In this case, for s—, |z| —o for all ¢, and there is
no difficulty with the Regge expansion near {=0. Thus

I'(ae+1)

o= (2.13)
—1 2 2 aR—3aR(aR—1)(aR—~2)2 |
(bt (o gy |
)pq{ (pa) o (aa—1)— (pa)" (paz) o+
aq(ag—1)(ag—2)(ag—3)
T L } (2.14)

the first term in the expressions (2.13) and (2.14) is the
leading term as s — for any ¢, i.e.,

Fat~ (pgz)er—r — sar—A, dominant parity
~ (pgz)*e¢ At — s*e=A=1 minor parity

and none of the succeeding terms for the R or Q
trajectory contain singular coefficients. Therefore no
daughters are required to ensure the analyticity of the
PCHA, and we learn nothing about any possible family
of poles associated with the trajectories ag or ag. Charge
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conjugation may restrict the C of the exchanged poles,
and hence may limit the number of members which
could possibly contribute.

2. EU Scaltering
Let mo=mc.= M, my=pu, mg=m. Now we have
—-M l me— ”2‘

?q___ If"llz(t—4M2)”2Td /4___)
e oyl

(2.15)

z=yp/4pq and for s—oo, 3|40 if ¢ is small enough.
In fact, for {=0, 2,=0 for all s. This is the difficulty
which historically was the motivation for the intro-
duction of daughter trajectories.!

As an example, consider (2.13) for fio" Using (2.5),
(2.6), and (2.15), we see that the first term in the curly
brackets of Eq. (2.13), which is proportional to (pgz)*™,
has a leading behavior ~s* followed by all succeeding
lower powers; i.e.,

(pgz)et=41-2yel — 2—ase1(1—3/25)* 1, (2.16)
The second term in the curly brackets is proportional to

o200 — M2 (m2___ﬂ2)2
(pa)*(pas) ™ = ————— 2512/ 25y,
2.17)

Thus the factor (p¢)? makes this term singular at ¢=0.
Similarly, the third term is proportional to (pg)!
X (pgz)>~%, which near (=0 is

Nt-2ya——5+0(t~—1ya~5)
and so on.
Note that besides the singular parts, each of the
second and succeeding terms also contain pieces which
are nof singular (and do not vanish) at {=0; e.g.,

(pg)t=— M2/ -2 (=)
+81(n -+ HO()+0(P),

(pg)*=0(H)+0H)+0(E)+---.

(2.18)
(2.19)

Analyticity requires that those terms more singular

than the Wang K (¢) for the amplitude be removed
from the PCHA, and this may be done for the EU case
simply by including the contributions of the even
daughters. The even daughters have the same P and C
(and signature) as the parent pole and hence contribute
to the same PCHA. In defining the formula for the
contribution of the nth daughter (at {=0), we merely
make the replacements vy — v and @ — a—n in all
of the above expressions, i.e., at {=0,

S ™= fuorly > v®, @ > a—n).

The total contribution of the parent trajectory and all
of its even daughters to the PCHA is then

f'n+j'n(2)+j'n(4)+ =Y f1o,

even

(2.20)
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At this point it is interesting to note that the odd
daughters will often not contribute to EU scattering
because of C.2 Thus it is particularly fortunate that
their contributions are not required for singularity re-
moval. (For a given family of poles, it may be that
because of C only the sequence of odd daughters con-
tributes to a particular EU PCHA and performs the
same cancellation which occurs in our discussion be-
tween the parent and even daughters.)

We determine the t=0 residues of the daughters
¥ by requiring the sum in Eq. (2.20) to have no
unwanted singularities. In this section, let us consider
a simple case in which all singularities at =0 allowed
by the Wang kinematic factor occur in the leading
term for the dominant amplitude (~»*~4). In this case
the singularity of the leading term is the over-all kine-
matic singularity of the amplitude, and the higher
singularities which occur in the lower powers of » must
all be cancelled. More complicated cases are discussed
in Secs. IV and V below, where the conspiracy relations
at t=0 are taken into account.

To describe how daughter contributions remove un-
desired singularities, let us write schematically, at ¢=0,

Juor=Kv[aor*24-as(pg)Pre2-2
Fau(pgit e,
fyo"(” = K’y (2)[00(2)Va~A—2+a2(2) (Pq)zva—A—4
+(l4(2) F?fg.)AiVa—A—G_}_ . '] ) (221)

J?,;o"(") =Ky ®[agmp*in

F s (p)tve 2t ],
where

Gy (@) =ai(a—n).

As we have seen, singularities arise in these expansions
because (pg)2~1/t. To remove singularities in the sum,
> even 7, We require

[tlvas(pg)*+v®aoe 1imo=[0(8)10=0,

{t¥[yas(pg)*+vPasc) (p9)*+vP a0y ]} mo
—[0()]=0, for N=2,1, (2.22b)

(2.222)

[V (coefficient of y*=2-2% in 3~ f1)],o=[0(t¥)Jo=0,
for N=k,k—1,---,1. (2.22k)

Equation (2.22a) implies that at {=0, y®/y=C,®/¢
+Coy®, where the 1/t part (i.e., Cy) is determined by

[y ® /4 Jimo= —[axt(pg)*/ a0 Jmo=C1®. (2.23)

2 In particular, if particles ¢ and ¢ are identical fermions, then
when the helicities of the i-channel equal-mass pair are Ag==Xq,
we are restricted to the exchange of a single particular C=+(—1)J
for each parity part of the PCHA. For the NN system, we always
have A3==£Xs. When A3=X\4, we have u=0 and the sole term has
C=+(—1)7. For A\3=—N\4, the minor parity term has opposite
P and C from the dominant term, where both terms have CP
=-1. So either the first has P=C=+4(—1)7 and the other
P=C=—(—1)7 or vice versa.
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Using this result, Eq. (2.22b) implies (at ¢=0)
vO[y=Co®/24C1®/t+Co®, (2.24)

where (2.22b) with N=2 determines C,® once C1® is
known, and (2.22b) with N=1 determines C;® once
Co® has been specified. Note that the less singular
parts of a residue are not determined by singularity
cancellation unless the constant pieces of higher daugh-
ter residues are specified.

It is obvious from the system of equations that we
obtain, in general, for the singular pieces of the even
residues (in EU scattering)

1

v fy=3" C,®/t», where C,« (m?—p2)?*, (2.25)
n=1
Thus for the most singular piece
v D [y~ (P — 2P/ 8 (2.26)

from (2.25) we see that if the parent residue v is non-
singular, all of its even daughters have singular residues.

If the parent residue v has a zero of order ¢, the
residues of the first n(even) daughters (v®y®,---,
v©@m) are not fixed by analyticity. The most singular
behavior of the remaining daughters is, however, fixed
by specifying the behavior of these first #. This freedom
in daughter residues in the event of evading parent
trajectories is discussed for a special case in Sec. V.

Note, from Eq. (2.25), that the singular pieces of the
daughter residues vanish for m=y, i.e., the coupling is
nonsingular for an equal-mass vertex. This agrees with
what we found above for the EE case, where no
daughters were required. Adding up the contributions
[Eq. (2.21)] of all the even daughters, we have

Y fur=K{[vaoJvo+[vaz(pg)+vPao Jpa 12

even

2k
+oo L vPaw @ (pg)*]
1=0,2, .- -
X”a——A—“2k+ e } ,

where the singular (#=0) terms in each square bracket
[ Jhave been removed by the constraints (2.22a,b,- - -).
Note that if @ is not an integer, our sum includes an
infinite series of daughter trajectories.

Then, with daughters included, the first term in
(2.27) dominates at large s for all ¢ and we have (for

any A) ]
2 Jao—> 5o

even 8§ —>00

(2.27)

Hence, daughters make the leading term in the Regge
expansion of the unequal-mass PCHA dominate and
look identical to the leading term in an expansion of
equal-mass scattering. This property has been used by
many authors”1%17.2425 in previous Regge analyses.

% H. Shepard, Phys. Rev. 159, 1331 (1967).
26 The number of actual fits made using this result is far too
large for enumeration,
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Note that a parity-doubled family regularizes f,o in
the same way as above, since only one of the parity
families contributes to this PCHA.

We may in a similar manner consider the EU case

when N and p are both nonzero. Now we have, from
(2.11) and (2.12),

f,‘x” — KByBXE[ goRyar—At g B (pg)tyak—d—24 ... ]
+E X0 (pg) [ar oot
+a3(pg)tveei—4. ... (2.28)

. From our previous discussion it is obvious that the
singular terms in the square bracket [ ] of the
dominant-parity part can be removed by including the
even daughters of az with suitably chosen residues, and
similarly the even daughters of ag cancel the unwanted
{=0 singularities of the minor-parity part of f,\" (See
Sec. IV for further comments.) It can be demonstrated
that the same set of daughter residues which regu-
larizes f," also corrects the analytic structure of f,\~7,
as it must. A proof is given for the case A=p=1 in
Appendix B.

It is worthwhile to notice at this point that one does
not have to consider terms in the daughter residue func-
tion v @™ less singular than 1/¢*, in order to do proofs
about singularity cancellation or relations to other
amplitudes. Provided proofs can be carried through for
the most singular term, they follow automatically for
less singular terms; the arguments for less singular
terms are analogous to those for a parent residue with
the canonical residue function multiplied by powers of &.

To summarize: We have demonstrated that the
proper analytic properties of the individual PCHA for
EU scattering can be achieved by including the con-
tribution from the infinite sum of even daughters of a
(single) parent pole. No odd daughters were required.
We have shown that these (even) daughters must have
singular residues at t=0 as given in Egs. (2.25) and
(2.26). With the daughter contributions added, the
resulting PCHA is dominated at large s by the leading
term in the dominant-parity or minor-parity part of
the amplitude, viz., fa"~s*E=4 or ~s*¢—A—1 whichever
is larger.

We can briefly note how a different pattern of
singularity cancellation by daughters occurs for the
parity-doubled (EU) case. An example (in 7N — VN)
will be given in Sec. V.

Consider Eq. (2.28) and assume that the dominant-
and minor-parity parts of the PCHA also have definite
C. If (pq) K° is more singular than the maximum
singularity allowed for this amplitude (viz., K®), the
even daughters of two single-parity families ar and aq
cancel all singularities except that in the (pgK?) part
of the coefficient of minor parity terms. We therefore
require an extra (evasive) factor of ¢ in 4 in order that
Regge pole Q and its daughters have a properly be-
haved contribution.

But we may avoid these evasive zeros with a parity-
doubled family of poles (where the parents have the
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same C). We would need ar=aq==1 and either Q is the
odd daughter of the leading partner of R, or R is the
odd daughter of the partner of Q. Then only the odd
daughters of one family contribute to the minor-parity
part of the PCHA, and the parent and evern daughters
of the other family contribute to the dominant-parity
part, or vice versa.
For example, with a=ap=ar+1,

For = [KByRat (pg) KOyt -,

and a cancellation occurs so that the square bracket has
a singularity no worse than KZ. In the example in Sec.
V, this requires y® (which is the residue of the first
daughter of the parity-doubled partner of Q) to have a
singular part. Thus, in contrast to the single-parity
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case, both odd and even daughters (of different parents,
however) contribute in the EU case and cancel singu-
larities arising from members of both parity families.
In the example begun above, one can show that fa™
has an expansion with leading term »*~2 and all suc-
ceeding even powers of ». The daughters required for
the regularization of f» and f—7 have maximum singu-
larities y® and y@~¢L y@® and y®~12 etc., where
it must be remembered that the even and odd daughters
have opposite-parity parents. This case can be worked
in detail employing the procedure already described.

3. UU Scattering (maZm, and my#=ma)
From Eqgs. (2.2), (2.3), and (2.6) we have

(p9)=TacTar/4 = | Aachva| /4= |Am| /42, 2=v'/Apg= (v+An/1) (4pg)7",

(2.29)

(Z?l) t—_>0 =+ (4Pq)‘1[V+AbdAac~l (mﬁ—i—m{")-{—AM_Abd“ (mb2+md2):| for AacAbdz 0.

Thus, as in the EU case, |z| o for s —o if ¢ is small
(for t=0, z;==1 for all s for ApA,20). Because
neither #-channel state is a particle-antiparticle pair,
the charge conjugation of the exchanged state is in
general unrestricted.

For UU scattering it is fsu,12 rather than the PCHA
which has an easily specified analytic behavior at ¢
=0.726 The maximum singularity (for A,.Ap>0) al-
lowed by the requirement that fss,12 be nonsingular is
faa,1a~ (\/t)~1*#l, The conspiracy relations for PCHA
follow directly from this. (See Sec. II1.)

For A\=0, since K, =K_,, we can expand the
PCHA

Juo" = X Qait1)Tuoreo, "

i=1,2
= Koo 2 vuoX (r:)[ao*(v') 2+ as*(pg)* (v') =47
+adi(pg)t () A4+ ], (2.30)

where the poles a; (¢=1) and a, (¢=2) have the same
parity but opposite charge conjugation. The expansion
of v, Eq. (2.6), shows that even for a single pole the
odd powers of v (modulo v*), as well as the even
powers, are present, and all have coefficients which are
singular at {=0. Thus, for UU scattering the situation is
more complicated than the corresponding EU case.
Expanding, using (2.6), we have

N N8 © i e & o
1 Qi G Lo S N 0 W 0
(o Yo

For m,=m,, the odd powers (y*—41,yo=4=3 ...} vanish,
and (2.31) reduces to the EU case. But for UU all
powers of » are present, and since (pg)*~1/#, the co-
efficient of »*A—" has maximum singularity (. (For
EU it is £/ with only even # appearing.)

Consider the contribution of a single parent pole and
all of its daughters to f,o". In contrast to the EU case,
the odd daughters (which have opposite C from the
leading pole and the even daughters) always can con-
tribute to the same UU PCHA as the parent. This is

% J, D. Jackson and G. E. Hite, Phys. Rev. 169, 1248 (1968).

fortunate since the odd daughters are necessary if we
are to cancel singularities in all of the coefficients in
(2.31).

We represent the contribution of the nth daughter
at t=0 by

fu(’"(n)zfuon(')’_’ Y™, a— a—n).

Notice that at {=0 the signature-pole factor X is the
same for the parent and all of its daughters, since with
7my= (—1)"r, we have

I:e—iw(a—ﬂ) + 1(,,)][sin1r (a —_ n)]_l = [e—i‘”a—l— T:]I:simra]_l.
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In order that the sum of parent and daughter contributions ¥ f,o" be free of unwanted singularities, we require

(L)

a—A\ /Am\2 a—A—2 a—A—1\An a—A—2
{iN[< )(“) 7ao+( )vdﬁ-( )"‘7(1)00(1)+( )’Y‘z)doa)]}
2 t 0 1 ¢ 0 =0

(2.32)

=[0@¥)]o=0 for N=21,

[t¥ (coefficient of »*=4="in 3" fuo") Jmo=[0(¥)Jo=0 for N=n,n—1, ---, 1.

Equations (2.32) have as their solution daughter
residues with singular pieces

v [y=Cyp/t+Co/t 4 - - -4Ci/t, (2.33)
where

Cn'\’ (AacAbd)n .

Thus, if the parent residue v is nonsingular, all of its
daughters have singular residues.?” As in the EU case,
evasive behavior (for ) makes some daughter residues
nonsingular and hence unrestricted by the analyticity
requirements (singularity cancellation). This freedom
becomes important when factorization is considered
(Sec. IV).

With all unwanted singularities removed according
to Eq. (2.32), the dominant term in ¥ f,o" for large s
(any ¢) is the first term

2 Ju'— Kxyaostnse,

and thus for UU scattering (with A=0), daughters pre-
serve the simple (equal-mass) Regge asymptotic for-
mula. Because only one parity contributes to f,o, the
result is the same for a parity-doubled family of poles.

With )\ and u nonzero, we noted above that f,\ and
fur are allowed different =0 singularities. Thus, in
general, the PCHA f"and f~7 may both have maximum

singularity o
(Jintfo)~ W1t

g=max(|Mal, N—ul).

However, for a single parity exchange, it is easy to see
that the leading term (~»*4) in f,\ and f_,\ must be
the same (up to a sign). This follows from

(f:tn)\) - (2a+1)Tﬂ>\m(e)\ua+’—'|:3)\p“—)

(modulo an over-all sign depending on the parity of the
exchanged pole) and we observe that the y*4 term
which comes from e** is common to both fy,. Hence,
farand f_,\ have a common over-all singularity multi-
plying their highest power of ». This can be no worse

(2.34)
where

27 Equation (2.33) has been written in a manner which does not
make evident the change of behavior as As; — 0 in the transition
from the UU to the EU case. All the formulas for the UU case do
go over smoothly to the formulas for the EU case, but this is most
easily seen if appropriate terms are written in terms of (pg)*
rather than (AgcApa/48)™.

than the minimum common singularity, viz., (1/#)~*
where d=min(|A\+u|, |[\—u|). Thus for single-parity
exchange, choosing |A\+u|>|A—pu| to be specific, if
fux has its maximum allowable singularity removed as
an over-all factor K,,, we then permit no further
singularities to occur in coefficients of nonleading terms
when daughters have been included with suitably
chosen residues. This same single-parity family also
contributes to f_,\. We have

f > YK (P 9) Q—A% (en)\a++ ekna—> s
f—m\ — vK (PQ) e—Al (ekua+'_ ).

Because we have removed from f_,\ a factor K,
and not K_,, terms as singular as (y/f)~1M#l+A—ul gre
allowed to occur in nonleading powers of f_,\ even when
the daughter contributions have been included. The
way in which this happens is demonstrated (for the case
A=p=1) in Appendix C. (See also some further com-
ments in Sec. IV.) With the even and odd daughters of
a single-parity family included, we therefore (for the
case A and u nonzero) are again able to remove all
unwanted singularities.

In order that both j_‘,‘)\ and f'..,‘)‘ have their maximum
allowed kinematic singularity multiplying the leading
power, we must consider the contribution of a parity-
doubled family. Schematically, if the trajectories a,
and @, have opposite parities, they contribute to fi,
as follows:

fp)\f\/a(yaz—f\_*_ oo )+A (yau—A+ . .) R
f_”)‘r\aa(yaz—l\_*_ . .)—A (Va"—A‘!" . .) .

With a,=ay=0a,

(2.35)

~ a—A

S~ (atd)e, (2.36)
J~ (a— A4,

and we are now allowed to have K~ (a+A4)
~ ()™ # and K_p~ (a—A)~ (W/t)~IM=l and the
Frx 10 longer have a common over-all singularity.

Since we now can factor out separately the maximum
allowed singularity from f,. and f_,\, the subsidiary
terms of each are allowed no further singularities. Be-
cause of this, the pattern of singularity cancellation by
daughters in 3" f.x and X f_,» is different from the case
of a single-parity family.
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TasLE I. Amplitudes for Vo — NN, Vo — Vr, and NN — NN.

Amplitude K@) Dominant P, C

Vr— NN :

Joutt=Fip10+7-—10 1 P=C=+(-1)
Sutt=Ffo 10+ Fos0 1/t P=C=+(-1)7
Sum=Ffi_ 10— Ff-110 1 P=C=—(-1)7
fw'_-'—"zf+_,oo 1/’\/t P=C=—<—1)J
Jot=Fi0—F_ 1/+/t P=—C=—(-1)7
Jor =271 1,00 1/t P==C=—(=1)7

Vo — Va:
Fut=fi0,10—F-1010 1/t P=(—1)7, C=x£(-1)7
Jim=fi0, 10+ F-10,10 1/t P=— (=17, C==%(-1)7
Joom=2J00,00 1 P=— (=17, C==%(—-1)7
P=

S =2f10,00 1/4/t — (=17, C=x(-1"
NN — NN:
fo=Fr et lis 1 P=C=+(-1)/
f4Efj+—.+-+f—+.+— 1 P=C=+(-1)7
f55f++.+—+f_'—-,+- Vit P=C=+(-1)7
fo=Femi— Tt 1 P=C=—(-1)
fi=Fferr—F—vt 1 P=—C=—(-1)!

For a double-parity family, we find

2 fem~Kin = V"‘““[(a;A> (vuao“:twao”):]

a—A
+»H—l[( 1 )an/dtrasv.an)
=+ g (Va1 Ev,01°)+ (vu Vs
:j:’Yv(l)aoa)”):l—l— ce } , (2.37)

where # and v refer to the opposite-parity families
(¢w=a,=0). Because the coefficients a; depend only on
the & of the trajectory involved, a;*=ax® at {=0. Thus,
Eq. (2.37) may be rewritten in terms of v, +v, and
Yu—"». To remove the 1/¢ singularity in the coefficient
of y*21for ¥ f,a and ¥ f_,\, we require

{{[ coefficient of »*~4~1 in Eq. (2.37)]} =0
=[0(®)1o=0. (2.38)

Equation (2.38) is actually two equations, one for the
upper signs in (2.37) and one for the lower signs. Adding
and subtracting these two equations, we have

a—A
( 1 )A’Wuao“‘i- (pgt)vsar’=—tyuP a0y,
(2.39)

a—A
( 1 )Am‘)’vao””i‘ (pgt)yumr*= —ty,Vaoy’.
This illustrates that we canhot decouple the # and v

families. The daughters in the # family cancel singu-
larities arising from higher poles in botk the % and v
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families and similarly for s-family daughters. Although
we shall not pursue it further here, by using the singu-
larity-cancellation procedure one can calculate the
singular parts of the lower daughter residues as well.
In general (for nonevasive parent residues), one finds
maximum singularities y O~ y @~ 72 oy Mg
where the behavior indicated holds for each of the two
daughter residues, v,™ and v,™.

The UU parity-doubled case is illustrated in Sec. V
for mw — V'V scattering.

III. CONSPIRACY

The conspiracy relations are restrictions on the
analytic behavior of linear combinations of helicity
amplitudes at {=0. These kinematic constraints are
necessary to complete the description of the analytic
properties of the amplitudes and must be considered in
any attempt to find the restrictions imposed by analy-
ticity on patterns of pole structure.

For the reactions considered as examples below
(xm— VV, NN — NN, =N — VN), the conspiracy re-
lations are easily obtained and have been cited several
times in the literature. We list them here for the sake
of completeness and for use in later sections. The
amplitudes given below are defined in Table I.

(a) In nucleon-nucleon scattering, the relation origi-
nally found by Volkov and Gribov®

f++,++“‘f++,——'5= f+—,+—t—f+—,—+t (3.1)

may be written in the form

f++.++'“ f++.——= (f+—.+~— f+—,-+)

+a (it fiomv) (3.22)
f1=f3+th4

which shows more clearly the role of contributions from
different PCHA (hence different quantum numbers).
The O(3,1) interpretation of this equation has been
given by Freedman and Wang.*

(b) The general conspiracy relations for processes of
the type 14N — 24N have been shown by Stack?® to
take the form (at {=0)

i fypao— o]+ [ froot for 12]=0.  (3.3)

For the process 7V — VN, this gives two relations'®-*—
one involving vector-meson helicity 1 and one in-
volving vector-meson helicity O.

[V fiJimo=—iL(VD oo "m0,  (3.4)
LV Futt]imo=—iL (V) for *Jimo- (3.5)

(c) For t-channel processes of the UU form, there are
no constraints at t=0 for the separate helicity ampli-
tudes, fs4,12, but there are relations between the PCHA
which must be satisfied to ensure proper singularity

or

(at t=0), (3.2b)

% J, Stack, Phys. Rev. 171, 1666 (1968).
» H, Hogaasen and Ph, Salin, Nucl. Phys. B2, 657 (1967).
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TasLE II. Residues of parent- and first-daughter trajectories in a family with single leading P=C= (—1)7 pole. The =0 residues
given [defined in Egs. (2.8) and (2.10)] are consistent with factorization, analyticity, and the conspiracy relations. Each residue in the
table has been divided by (2a+1), where « is the t=0 intercept of the leading trajectory. Only the most singular term in the daughter
residue is to be evaluated from the given entry. The momenta are p=34(—4M2)12 g=T,v /2612 and A= (my2—m,?). The functions B;
are analytic at /=0, but not necessarily at other values of #. The energy dependence of each amg]itude, shown in the column to the left

of the residue, comes from the first term in the expansion of the e function, which multiplies t

is residue.®

Amplitude Residue of leading trajectory Residue of first-daughter trajectory
N — VN:
Fott (s/29)*'Bu*Bu(p)=1p
Jutt (s/b9)=1(1/+/1)tB,*Bu(pg)*
S (s/29)*2(1//1)tB*Bu(pg)*
ar— VV:
, = 2a—1)(a—1)
Juts (s/¢® “"2<—‘(:‘1‘)"‘—“>Bw*3 w(g?) 2 (A%/44)
Jut (s/8)*1(1/1)tBu*Bu(gh) e
— Q2a—1)(a—1)
Ju (/g3 (——-————)Bw*Bw (» =2 (A%/42)
(e+1)
Jut (s/g)*2(1/8)tB.s* By (@)=
NN —> NN:
f2 (s/Pz)aBu*Bu (P2)a
J1 (3/ Pz) *Y4B,*B, (fg) a1
fs (s/89* (V) BJ*By(p%) =Y
fs (s/9)* 4B *By(pH) 1

s Because of certain phase ambiguities, we have checked factorization only of the absolute magnitudes of daughter- and conspirator trajectory residues.

See also footnote a, Table IV.

structure. It has been shown by Frautschi and Jones'¢
that these may all be put in the following form (with
Agchyg>0):

(VOPNHL (Faa,10F Fost,12)F (Faa,10— Fosms,12)]
~const, (3.6)

which implies (at =0)

(VOPHUL(furt Foun) £ (Jun—T=)1=0  (3.7)
for |Nu|2 | —u|. For mr— VV, this gives the

relation i i
(tf1r") o= — (tf117) mo0. (3.8)

The conspiracy relation is said to be satisfied by
conspiracy if any of the regularized PCHA involved in
the relation are nonzero at {=0. Otherwise (when each
term separately vanishes at {=0) the relation is said
to be satisfied by evasion.

IV. CONSEQUENCES OF SINGLE-FAMILY
EXCHANGE

In Sec. IT we demonstrated that for any single leading
Regge-pole exchange, a series of daughter trajectories is

30 It may seem at first that the factors of 7 introduced by certain
conspiracy relations indicate phases for Regge residues at variance
with standard assumptions (reality for meson residues below the
physical cut, etc.). If the amplitudes are examined carefully, how-
ever, it can be seen that the kinematic factors for the two f’s in-
volved differ by a term like ((—4M?)!2; perturbation-theory
examples show that in all cases the additional 7 comes from evalua-
tion of a term like this at #=0. These terms are removed from the
amplitude before dispersion relations can be written and hence do
not influence the phase of the dynamical residue function.

necessary and sufficient to restore proper analyticity at
t=0 to the individual helicity amplitudes. In that
treatment, we completely neglected the influence of
t=0 constraints between different PCHA. These con-
straints are considered in the present section. We work
through a series of examples (the reactions VN — NN,
7N — VN, and nr— VV), separating possible cases
according to the quantum numbers of the parent
trajectory. This separation allows us to compare with
the O(4) results of Freedman and Wang* (Sec. VI). Our
chief conclusion is that the set “parent-+daughters”
is sufficient to satisfy {=0 constraint equations, pro-
vided that the parent residue is appropriately chosen.®
This provides some insight into the possible applica-
tions of FW class-I and class-II conspiracies, especially
in EU and UU processes. (See Sec. VI1.)

At the same time, we are interested in the question
of factorization® for the daughter residues. 4 priori,
if (at =0) there is a single #-channel state with definite
P and C (or G) at each value of J=a(0)—#, then one
expects the residue of such a state to factorize. Hence
we do expect the daughters of a single- or double-parity
family (corresponding to one M=0 or M =1 Lorentz
pole) to factorize; these are the families we have been
considering (rather than a linear mixture of several
families). If the daughter residue did not factorize, one
would have difficulty associating it with a single Regge

3 This conclusion has been reached independently, using a
different method, by J. C. Taylor, Oxford University Report,
1967 (unpublished).

2 M. Gell-Mann, Phys. Rev. Letters 8, 263 (1962); V. N.
Gribov and I. Ya. Pomeranchuk, ib:d. 8, 343 (1962).
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trajectory; this would change the dynamical role played
by such daughters.

We wish to see under what circumstances the daugh-
ter residues determined by the conspiracy and singu-
larity-removal constraints necessarily factorize and in
what cases the factorization requirement is an addi-
tional constraint-one imposes on the residues.®® In the
latter case, the analyticity constraints do not fix (all
terms in) the residue (e.g., because of evasion in the
parent residue) and factorization helps remove some of
the freedom in such residues. However, we expect
factorization never to be inconsistent with the analy-
ticity requirements.

A. Leading Trajectory Has Quantum Numbers
P=C=(—1)7 (See Table II)

1. Contribution to the Process mw — VV

The general features of UU scattering have been dis-
cussed in Sec. IIC3. P=(—1)7 trajectories cannot
couple to helicity-0 states of the 7V system. Hence this
exchange will contribute only to the #-channel helicity
amplitudes fio,10° and fio,—10* with dominant contribu-
tion in the PCHA

Jirt= f10,10— F-10,10
= (2a+1)(T10,10"— T—10,10%en®  (4.1)

and minor contribution to fi;~. Assuming that

(T10,10%— T10,-10%)~ (pg)*t~ (1/t)*
so that _
f11+N (pq)a—l(z)a-—l,\,sa—l

(as happens in perturbation theory*), we see that con-
tributions of daughter trajectories are necessary to
reduce the singularity near {=0 of coefficients of lower
powers of s. No power of s may have a coefficient more
singular than 1/¢ [ = (1/4/¢)M+#] to remain consistent
with the singularity structure of helicity amplitudes
deduced from the crossing matrix.*®

When the daughter-trajectory contributions are in-
cluded, we then have

> f11+= > (o—2n41)(T'10,104 " — T10,—10% ")y (™™
n=0

=Y 2(2a—2m+1)T10,10% "1 ™7

n=0

4.2)

as the contribution of our P=C= (—1)” trajectory and
its family to the dominant PCHA. This implies a

3 This portion of the paper provides an answer to the questions
raised in unpublished portions of California Institute of Tech-
nology Synchrotron Laboratory report CALT-68-142 by S.
Frautschi and L. Jones.

3¢ See Appendix D.

35 Should (T10,10%— T'10,~10%) be less singular than (1/2)*71, fewer
daughters would be required. However, in this case the s*!
would be multiplied by unnecessary powers of £. We wish to impose
only the minimum constraints of analyticity. Therefore we do not
assume a zero in the coefficient of s*7%,
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contribution to the minor PCHA

Z f11—= Z (2(1_ 2n+ 1)(T10'10“_"—- TlO.—lﬂa_n)ﬁl(a_n)—

n=0

= Z 2(20!—- 2%+1)T10,10“—”611(°‘—'")_.

" n=0

4.3)

This amplitude is allowed a singularity 1/¢ (see Table
1), and expansion of Eq. (4.3) with the T'1o,10* chosen
above will clearly give a singularity of this order.

In Appendix C we display a proof that choice of the
daughters for proper analyticity of one PCHA ensures
proper analyticity of the other, and after this choice of
daughters, the {=0 constraint equation relating these
two amplitudes, Eq. (3.8), is automatically satisfied.
Hence no additional restrictions are imposed by the
t=0 constraints.

Note that the odd daughters in this family have
P=+4(—1)7,C=—(—1)7, and hence cannot couple to
the NN system, but they do couple to 7V and are
needed to regularize the 7w — V'V amplitudes. In order
to separate the parent and daughter contributions in
Table II, we have written each 7w — VV PCHA as a
sum of two amplitudes with opposite charge conjugation
behavior—viz., firt= firtt+ f; 11+”',_ Jum=fumt fu.
Clearly, the minor-parity part of fi;~— receives a con-
tribution from the first daughter pole.

It is interesting that the form of fully regularized
amplitudes requires some revision of fitting formulas
currently in vogue. We see that (with k=[(a—1)/a]
XAnAca) )

(F10,10— fro,—10) ~s* 14 (k/1)s*2,

(F10,10+ fro,—10)~ — (k/D)s*2.

Hence, although fio,10% — f10,—10 to order s*~1, the next
terms may become important in very low-¢ fits, or for
0,=0 when fnin=~ — (my*—m,2)?/s. A similar situation
occurs for all UU processes (N — pA, YN — KA, etc.).
Considering the present status of Regge fitting, it is
not clear whether this modification will result in any
significant change in data interpretation.

(4.4)

2. Contribution to the Process tN — VN

The odd daughters of the family do not couple to any
of the amplitudes. The leading trajectory and its even
daughters contribute to fort+, firt+, and fi—— (defined
in Table I). We will discuss explicitly only regulariza-
tion of firt+ and fir— by daughters; the treatment of
fort* (since it enters no conspiracy equation) is exactly
as in Sec. II.

The amplitudes can be written as

Zj—'ll‘l"": Z (2(,!—"21’L+I)T]_O'l/z_l/zv"’”ell(a"’n)""
‘ .5)

Z f11~_= Z (20[— 21’L+ 1)T10’1l2__1/2“""311(°‘—'")—.

n even



175

CONSPIRING REGGE-POLE FAMILIES

2129

TaBLE III. Residues of parent- and first-daughter trajectories in a family with single leading P=C= — (—1)7 pole. See Table-II caption
for an explanation of the notation and interpretation of the entries.

Amplitude Residue of leading trajectory Residue of first-daughter trajectory
aN— VN:
Jutt (s/p9)=*B.By* (pg)**

T (s/p9)'B.By* (pg)**

fio (s/p9)*1B:By*q(pg)*?
. — (2a—1)(e—1)12
Jor=* (VM)“(———)B:,*B: (p9)H(MA/2V/1)
2022(a+1)
(2a—1)
Jo* (s/pg) (z—~)3v*Bz (p9)1(A/20/1)
a2 (a+ 1)V
ar— VV:
- 2)e=2(1/8)tB,*B,(¢?)*!
fjn (s/g9=2(1/1) (» (~(2a~1)(a~1))
fll++ (s/q2) a3 Bz*Bz (q‘Z) a—2 (A2/4t)
(at1)

Ju~ (/g (1/t)tB.*B.(gH)*!

0 (S/qz) 2B.*B. (qz)"‘

0 (s/g¥)*1B,B * g2t

. —2a—1)(a—1)
fu~t (s/¢» “‘2(—*—— B.*B.(¢%)*(A%/4)

(at+1)
St (/@) [~ 2a—1)1B.*B,(¢)* 1 (A%/41)
—1\12
ft (s/¢® “‘3[— (2a—1) (a—_!_-I) :IB;Bz*qz”"'" (A2/4z)
NN — NN «

fa (s/p8)*2By*By (%)

fa (s/p%)*B,*By (pH*! ) )

f1 (S/ﬁz) a-1 (———-——)B,,*By (Pz) a2 2

ala+1)

far— is allowed no kinematic singularity at ¢=0. Hence
we require To,1/9-1/2%~ (1/4/8)*2 near {=0. This be-
havior, plus the choice of daughters to regularize fi——,
automatically regularizes fi;t*+ and ensures that it
satisfies the {=0 constraint, Eq. (3.5), by evasion.
This is proved in Appendix B. Notice that an evasive
behavior for fi;t+ is necessary because fo,~+ receives
no contributions from this family.

3. Contribution to the Process NN — NN

As we saw in Sec. I, no daughters are required for
EE processes. The ¢t=0 constraint, Eq. (3.2b), is
satisfied by evasion; this must be put in by hand if
only analyticity properties are considered.

4. Implications of Factorization of the Leading Trajectory
(See Table IT)

If it is assumed that the residues of the parent tra-
jectory satisfy the factorization theorem for the definite
P and C parts of each amplitude, additional informa-
tion may be obtained. In particular:

The evasive behavior required (in the leading power
of 5) by t=0 constraints in the amplitudes fit+
(rm— VV), fut*t (#N — VN), and fs (NN — NN)

is consistent with factorization; evasion in 7r— VV
and =V — VN would require evasion in NN — NN. If
the successive even daughters all factorize, then their
appearance in the unequal-mass processes ensures their
appearance in VNV — NN even though they are not
needed here for regularization.®® As the odd daughters
appear in only one of the three processes, nothing is
learned about their factorization.

B. Leading Trajectory Has Quantum Numbers
P=C=—(—1)’ (See Table III)

1. Contribution fo the Process mw — VV

The members of this family contribute to each of the
four amplitudes listed in Table I. The discussion for
fut and fi;— is identical to that in part A with fi,*
now playing the role of dominant PCHA. The leading
trajectory can now also contribute to foo~ and fig—;
but each of these amplitudes may be separately regu-
larized by daughters (dJe Sec. IT) and both are free
of linear constraints at ¢=0.

3 Note that for even daughters the most singular parts of the
EU and UU residues are completely determined by analyticity,
when the parent residues are nonevasive. These have =0 be-

havior which obeys factorization; the coefficients then determine
the EE residue.
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2. Conltribution to tN — VN

The structure is rather different from that for a lead-
ing P=C=(—1)7 exchange. Now the PCHA f;;—
contains the ‘“dominant” e;;%t term. To obtain the
leading term s*~! free of kinematic singularities, we
require T'yo,172-12%~ (1/4/%)*"1. This is also what is
found in perturbation theory.* This behavior for T«
produces a 1/£/2 singularity in

> futt=Y (2a— 2n41)T10,170-1/0% "ers ",

which cannot be removed by regularization with daugh-
ters. A singularity of this type is allowed by Wang’s
analysis in this PCHA, but the constraint equation
(3.5) (which connects fit+ to for ) must also be
satisfied. The for~+ amplitude receives contributions
only from P=—C=—(—1)7 exchanges. Thus in order
to satisfy all constraint equations in this process
without evasion, a contribution from P= —C=— (—1)7
exchange is needed.

The discussion in Sec. IT B shows that these quantum
numbers correspond to those of the first daughter of our
leading trajectory. The method of Reggeization ex-
plained in Sec. II shows that the energy dependence
given to for~t from this first daughter would be exactly
right to satisfy the {=0 constraint equation (3.5) we
have been considering. This makes it plausible that the
conspirator needed is in fact the same object which
plays the role of the first daughter in UU (e.g., 7r —
VV) reactions. The discussion in Sec. IV B 4 (below)
demonstrates that this interpretation is consistent with
factorization at t=0.

Likewise, the fully regularized contribution to fi—
requires a contribution to fo~+ to satisfy the constraint
equation (3.4). Although we could satisfy this equation
by evasion and thus avoid the necessity for contribu-
tions from the first daughter, we would like to avoid
extra zeros whenever possible. In addition, perturbation
theory again makes the conspiring course seem a natural
one.®*

The daughter entries given in Table I1I for 7N — VN
have been determined from the conspiracy relations,
Egs. (3.4) and (3.5).

Hence the case (B) of unnatural-parity exchange with
P=( differs considerably from the case (A) of natural-
parity exchange. For natural-parity exchange alone, we
saw that only an evasive solution to the #N — VN
conspiracy equations is possible. For P=C=—(—1)7
exchange, a conspiratorial solution is possible provided
a trajectory with the quantum numbers of the first
daughter is allowed to contribute.

3. Contribution to NN — NN

The leading trajectory contributes to the dominant-
parity part of f; and the minor-parity part of fi.
Clearly, a contribution from a trajectory with the
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quantum numbers of the first daughter allows a non-
evasive solution of the conspiracy relation, Eq. (3.2).
The entry given in Table III for f; follows from this.

4. Implications of Factorization of the
Leading Trajectory

Imposition of the factorization condition on the resi-
dues of the leading trajectory leads to the dominant
contributions to PCHA listed in Table III, column 1.
These amplitudes in turn require dominant contribu-
tions from the first daughter (in 7= — VV) and from
the conspirator (in 7N — VN and NN — NN) which
are shown in column 2. Notice that the residues shown
in column 2 also factorize. It is therefore plausible that
the conspirator and the daughter in fact arise from the
same source and should be treated as one pole (at
¢=0). With this interpretation, we have found that the
first daughter has a factorizing residue if the residue of
the leading trajectory factorizes.’7:38

5. Conclusions

The =0 analyticity requirements impose a definite
structure on the contributions of P=C=—(—1)7 ex-
change. Either the trajectory evades, or it must be
accompanied by a P=—C=—(—1)7 exchange one
unit lower in spin. This exchange has the right quantum
numbers to be the first daughter of the leading tra-
jectory. This interpretation is supported by application
of the factorization of Regge residues. As the lower
exchange must also be regularized by daughters, all odd
daughters are brought into play.

In Sec. VI we shall consider the two other possible
single-parity families [with leading pole P=—C
=—(—1)? or P=—C=+(—1)"] and show that they
evade when coupled to the NN system.

V. PARITY-DOUBLED LEADING TRAJECTORIES
(WITH C=+(—1)7)

In Sec. II we pointed out some general features of
the analytic structure of EU and UU amplitudes when
they receive contributions from a parity-doubled family
of poles. Now we look at the specific processes rr — V'V,
«N— VN, NN — NN and consider the exchange of two
opposite-parity leading trajectories with C=+4-(—1)".
As before, our concern is to satisfy all =0 analyticity
constraints. [The parity-doubled family with leading
C=—(—1)7 trajectories will be discussed in Sec. VI.]

37 At the present state of understanding, the question of
whether or not the singularity-removing pieces necessarily corre-
spond to dynamical poles has not been conclusively answered. It
is not entirely clear, therefore, that the factorization found above
(for daughters) should necessarily hold anywhere other than £=0.

8 Notice that the “kinematic factor” 1/4/¢in for=+ (xN — VN)
is balanced (in the factorization condition equation) by the 1/¢
singularity of a daughter residue in foo;00 (v — VV). This is a
case in which residues factor at =0 even though the Wang K (¢)’s
do not; it suggests a solution to at least some of the factorization
problems studied by Leader (Ref. 10).
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TaBLE IV, Residues of parent- and first-daughter trajectories in a family with parity-doubled leading poles, P=C=(— 1)7 and
=—C=—(—1)7. See Table-II caption for an explanation of the notation.* The energy dependence of amplitudes is indicated by the

following notation: (s/pg)* "= (); (s/g)* "= (n); (s/p?) "= (n).

Residue of leading

Residue of leading P= (—1)7

Residue of first P=—(—1)7

Amplitude P=—(—1)7 trajectory trajectory daughter trajectory
N — VN:
Jat+ (1)  B.B*(pg)=p
. by (" 1) : 3 22D ,,+1)m< ! )B Bi*(b)*p
+ D) —il—) (— )B.B#(pg)= ——) (—)B o
Ju (€] 1( - ) (\/t *(pg)*p ( otD) ( - w (P
_ a+1)‘/2 1 ) *(p) ) —£(2a—1) a+1)‘/3( 1 )B B (pa)™p
_ 5) —if —— — \B,B a= 2) ——e| —— — |B:Bi¥(pg)*™
Ju 2 1( - (\/t (PP — ( N i ¢
0" 2 our
Ja=* (1) (1/+/)B.B*(pg)=p

00" (0) (VBB (pg)=
ar— VV:
Jut- ) —Qa—1)(1/)B*B,(¢?)="2(A%/4)
futt () (I/HB*B.(gH)= (1) —(1/5)B,*B,(¢)*?
fur (2) = (a=1) (1/)B2B (¢)(8%/4)
Joo™™ (1) @®®
a—1\12
Ji™ (2) —(20“‘1)(;;;) B.*Bag**3(A%/41)
Ju=t (1) (1/)B*B.(¢H? (2) —@/)B*B. (g1
Jo=t  (0) tB*Bs(gH)*
w0t (1) B,*B,g21
NN — NN:
f2 (©) ¢B*B.(p)*
fa 1) [(a+1)/alB#Bi(pY)= (3 @®s®
fs @) [lat+1)/aT2 (/) B#B.(p%)*
fs (2) [lat1)/a]B*Bi(p?)= 2 ®s?®
h Q) B#*Bi(p?)

a If a residue can be obtained only by factorization, its phase is in many cases undetermined. We have not indicated such possible phase ambiguities in

the Tables.

b This residue, though not fixed by analyticity requirements, ¢s determined if we assume that the residues of the first daughter trajectory factorize. See

Sec. V for the value thus determined.

In the examples discussed in Sec. IV, certain of the
constraint equations at {=0 could be satisfied by con-
spiracy only in lower powers of s. For example, the
dominant power of s in the PCHA for UU reactions
always has a singularity of the form

(1/+/8)¥, where N=min(|A—p|, [\ au]),

provided exchanges of only one parity type are al-
lowed. This leads us to conjecture the existence of a
new method of satisfying the conspiracy equations:
Allow two trajectories with the same a at {=0 but of
opposite parity types (so that each will contribute the
dominant term to a different PCHA). In this case, the
dominant power of s in each PCHA may have its
maximum singularity, (1/4/%)* where N’ =max(|A\—u/|,
|A+u|), provided the residues of the conspiring tra-
jectories are such that Eq. (3.6) is satisfied. In our
analyticity approach, there appears to be no other way
to “‘derive” the existence of this type of pole structure.
It is just a natural solution to the constraint equations,

As we have shown for single-parity families, once we
assume that the top-lying trajectories exist, the lower-
lying daughters are needed to assure the proper analy-
ticity of the individual PCHA.

As we noted in Sec. II, close examination of UU
processes makes it clear that the pattern of daughters
required for singularity cancellation in this case is rather
different from a superposition of two single-parity
types. For example, in 77— V'V,

Jir= Qa+1)T+10,10%1% + (2a+1)T—10,10% 1%

~+daughters, (5.1a)
f11+= (2a+1)T10,10%11% + 2o+ I)T"lo.lo"en"‘+
+daughters. (5.1b)

Our new conspiracy is marked by T*t~C/te~ — T
for the most singular piece. The contribution of the
first daughter T'yo,10¢* Dtep¢e~D+ of the unnatural-
parity parent pole to fi;~ must then correct a singularity
of the form ¢~2s%~2 arising from parents of both parities.
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This is quite different from the cases discussed in Sec.
1V, in which daughters were required to remove singu-
larities of a unique parity. However, for UU amplitudes
with A or p=0, the pattern is similar to the cases in
Sec. IV, since then only a single-parity type contributes.

This kind of collaboration is also easily seen in EU
processes such as #V— VN. (See Sec. II C 2.) The
appropriate conspiracy equation here is Eq. (3.5). Thus
the contribution of the leading natural-parity trajectory
to fut* has a 1/4/¢ kinematic singularity

() 2 r(a+%)>(s )”“‘. (5.2)

Vi \at1T(ar1)/\pg

It contributes to the corresponding minor-parity part
of the amplitude fi;—— something of the form

o) a(1—e) I‘(a+%))( s )“’2’ (5.3)

Vi \ att Tlat1)/\pg

which has a 1/¢ singularity at /=0. However, the
amplitude fi;~ is not allowed to have such a kinematic
singularity ; hence it must be cancelled by another con-
tribution. The first ‘“daughter” of the leading un-
natural-parity exchange has the right quantum numbers
to contribute here; we therefore require its contribution
to cancel the singularity induced by the natural-parity
parent.

This behavior seems to indicate that in a conspiracy
of this sort, where parity is not a good quantum number
for the combined parents, it should not be considered
important in classifying the lower poles which remove
singularities.

By assigning daughter contributions in this fashion,
we have been able to study the implications of factori-
zation also in this case. The results cannot be stated as
strongly as those for the single-parity exchange cases.
This is due to kinematic details which prevent some of
the residues of the first daughter from being entirely
determined from those of the parent by the require-
ments of singularity cancellation. For example, consider
the residue functions displayed in Table IV. The three
entries ®; (1=1,2,3) indicate residues of the first
daughter which cannot be determined by singularity
cancellation alone.

(a) In 7N — VN, the residue in f1;— is determined
from that of foi~* by the conspiracy condition. The
leading term in foi~*, however, has a residue function
with evasive behavior. This means that the residue of
the second daughter (which is the first daughter to
appear in the same amplitude as the parent) is not
determined by singularity cancellation, because the
singularity of the parent to this order of s is allowed.
Thus the sum of parent and second daughter is not
determined, and one cannot determine the residue of the
first daughter by the conspiracy condition.
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(b) In wr— V'V, for~* contains an extra factor of ¢
in the residue of the parent pole (to ensure factorization
among the parent residues in this reaction). This means
that the residue of the first daughter is not determined
by singularity cancellation.?®

(¢) In NN — NN, the residue of the first daughter in
f3 cannot be determined from the conspiracy condition
unless the contributions of the second daughter to fi
and f, are known.

These three residues ®; can, however, be determined
from the other ones (which are obtained completely
from singularity cancellation) if we assume that the resi-
dues of the first daughter satisfy factorization. The resi-
dues obtained in this fashion have proper singularity
structure to play the roles necessary of them. (We exam-
ine here only the most singular portions of the residue.)
From internal factorization in = — V'V, we find

Ro=— Bs*Bsqza(

o 1) 2a—1)t.

Cross factorization of the three reactions gives

(2a—1)
(R3= - PzaBt*Bt .
ale+1)

Then, using ®; and ®3, one can obtain ®; by again
applying cross factorization

3 (phase) 2a—1) (pg)"‘BsB,*\/t/a—— 1)1’2
3 (a+1) \a /'

We thus conclude that factorization of the first
P=—(—1)7 daughter is consistent with the singularity
structure of the amplitude. The first P= (—1)”7 daugh-
ter appears only in the one reaction == — V'V, hence
there is no question of factorization. The fact that we
could determine all the first daughter residues from
singularity removal and factorization leads one to con-
jecture that these principles are enough to always ob-
tain the most singular pieces of the daughters from the
parent residues. Examples in Sec. VI demonstrate that
these principles are not enough to determine all daugh-
ters uniquely from the parents; for this, one requires a
specific model such as Feynman diagrams or the Bethe-
Salpeter equation.

Note that the entries in Table IV are based on the
most singular terms in the residues of the leading poles.
As can be seen from Eq. (2.39), the daughters calculated
to cancel these terms are such that P= (—1)”7 daughters
have the same residue function (up to a sign) as P

1

39 This is actually a good thing: The residue of this first daughter
in fip is the same as in the single-parity-exchange case (same
singularities to cancel), but the residue in fy is different (from
discussion above). If the singularity in foo were determined by
multiplying the residue for single-parity exchange by ¢, there
would be no hope of factorization among zmw — V'V residues of the
first daughter.
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TaBLE V. Residues of parent- and first-daughter trajectories in a family with single leading P=—C= (—1) pole. The residue of the
leading pole has been divided by (2a--1) and that of the first daughter by (2a—1). Another satisfactory solution is to have all of the
mm — V'V daughter residues multiplied by ¢, with the NN — NN residues divided by ¢. See Table-II caption for an explanation of the

notation.®
Amplitude Residue of leading trajectory Residue of first-daughter trajectory
N — VN:
Jot+ (s/p9)* 2 (2a+1)*2[ (@—1)/ (a@+1) J2(v/9) Bu*B. (pg)**
Jutt (s/09)22a+ 1) (@—1)/ (a-+1)J*%B*B.(pg)**q
Ju (s/p9)**Qa+ 1) (a—1)/ (@+1) JBs*B.(pg)**q
mr—>VV:
Jut= (s/g8)*"1(1/1)tB.*B. (g%
Jut* (/¢ [~ 2a+1) I (e—1)/(a+1)IB*B.(g?)*?
Ju== (s/¢)%2(1/0)tB.*B.(¢*)*1
ut (/8> [— 2a+1) I (a—1)/(@+1)1B.*B.(g?)*?
NN — NN:
fe s/t [—tB.*B.(pH)* 1]
fa (s/2)**[—B*By(p9)=2]
fs (s/$2) [ — 11%4B * B, p2e]
fs (s/?)* 3 —2B,*B,(p?)* 7]

a See Table IV, footnote a.

=(—)(—1)7 daughters; differences in the forms
of daughters of different parity types are obtained
entirely from the less singular portion of the
parent residue functions. Only the most singular
daughter contributions are shown in Table IV; we
will not consider the details of lower singularities
here.

VI. COMPARISON WITH THE O(4) ANALYSIS
OF FREEDMAN AND WANG

The three types of pole structure discussed above in
Secs. IV A, IV B, and V clearly correspond to the three
types of conspiracy in NN scattering discussed by
Freedman and Wang*: the discussion in Sec. IV A to
their type I, the discussion in Sec. IV B to their type
II, and the case of Sec. V to their type ITI. Our analysis
suggests that the only difference between Freedman-
Wang types I and II is that the first daughters of
type-I trajectories cannot couple to the NN state,
whereas those of type-II trajectories can, and thus type
II allows a nonevasive solution to the conspiracy
relations.

The restriction that one is coupling to NN states
placed other limits on the types of conspiracy Freedman
and Wang could hope to find. Simple counting of quan-
tum numbers would lead one to believe that there
should be two other types of M =0 conspiracies [one
with leading trajectory P=—C=(—1)” and one with
leading trajectory P=—C=—(—1)7], and at least
one other type of M =1 conspiracy [with leading tra-
jectories having C=—(—1)7]. It is not very difficult
to demonstrate that there are reactions in which con-
spiracies of this type will play an important role. In the

following paragraphs we discuss each of these types in
turn and demonstrate that they necessarily evade in
NN scattering. (Only the most singular portions of the
residues are considered.)

A. Single-Parity Exchange with Leading Trajectory
Having P=—C=(—1)7

The leading trajectory cannot couple to NN states;
hence the contributions to NN — NN must all be
given by odd daughters and these must all evade. One
would expect that a pattern of contributions to 7w —
VV similar to that of Freedman-Wang class I should
be possible. However, under factorization across the
three reactions (see Table V), one then obtains con-
tributions to #NV— VN which have the wrong singu-
larity structure at {=0. It appears that leading terms in
one of the reactions 7w — VV and NN — NN must
“doubly evade” (i.e., contain a double-zero # in the
residue function), and that the residue of the other
reaction must “singly evade” to produce proper be-
havior in 7NV — VN.

One could construct an EE reaction containing a
conspiracy led by a pole with P=—C= (—1)7 by the
following formal device: The reaction NN’'— N'N,
where N’ is a particle with the mass and spin of the
nucleon but with opposite parity, has the same con-
spiracy relation as NNV scattering. The parity identifica-
tion of all the PCHA is, however, reversed and charge
conjugation has ceased to be a good quantum number
with which to identify the states (because the NN
state is not a particle-antiparticle state). Both C types
of P=(—1)7 conspiracy are then possible, with non-
vanishing residues.
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TasLE VI. Residues of parent- and first-daughter trajectories in a family with single leading P=—C=— (—1)7 pole. The residue
of the leading pole has been divided by (2a41) and that of the daughter by (2a—1). See Table-II caption for an explanation of the

notation.?®
Amplitude Residue of leading trajectory Residue of first-daughter trajectory
N — VN:
jju* * (s/p9)** Qa1 (a—1)/ (a+1) (/1) BBy (pg)* ¢
qu“ (s/99)* Qa4 1)L (a—~ 1)/ (a+1) (/) BBy (p0)*
Ji™~ (s/p9)* 2 (2a+1)22(\/1) B.*Ba (pg) %"
St (s/p9)* 1 (/1) By*By (pg)*'p
Joo™+ (s/9)*(/t)Ba*By (pg)*
ar— VV:
qu*“ (s/¢)*[— Qa+1)I(a—1)/(a+1)1B*By(g)*"
futt (s/g®*2(1/6)tBy*By (g1
f:n“‘ /L~ Qa+1) I (@—1)/(a+1)1Bs*Bs(¢) "
Joo™~ (s/¢)* [~ (2a+1)]Bo*Bag*
me“ (/@[ = 2a+1)I(a—1)/(a+1) J/2Bo*Byg™™!
St (s/g)* 2 (1/DtBy* By ()"
Jo* (s/¢®*Ba*Ba(g®)®
fi ™t (s/g)*'Ba*Beg**
NN — NN:
fa (s/p®)e3[—tB*B.(p%)=*]
f3 (s/p®) [ —1B.,*B.(p?) o]
fi (s/p%)By*By (p)*

a If a residue can be obtained only by factorization, its phase is in many cases undetermined. We have not indicated such possible phase ambiguities in

the Tables.

B. Single-Parity Exchange with Leading Trajectory
Having P=—C=—(—1)’

At the NN vertex, trajectories such as the pion with
P=—C=—(—1)7 can couple only to states of spin 0.
This means they can couple only to amplitudes with
zero helicity change at this vertex. Because of the
energy dependence fa~se4 [with A=max(|\],|u])],
no trajectory of this kind can be the leading trajectory
in the NN — NN conspiracy. Hence it is only in less
common reactions that we can hope for =0 constraint
equations which allow the pion-like trajectories to be
leaders in a conspiracy relation.*

For example, the conspiracy relation forrr— V'V, as-
suming m.=my,is0= (f10,10+ J10,-10)+2(f10,10— f10,-10)
— foo,00. This allows a solution by a trajectory family
led by a pole with P=—C=—(—1)7, eg, Bor =
meson. (To avoid a restriction on C, we take the case
where the = and/or the V is charged.)

Study of this kind of conspiracy in our three reactions
shows (Table VI):

(1) All trajectories in the family evade in NN — NN.

(2) The structure in 7w — V'V is similar to that for
Freedman-Wang types I and II.

(3) Although leading powers of » are not involved in
conspiracy in 7N — VN there is a complicated relation

40 Recent evidence indicates that the physical pion may belong
to this M =0 Lorentz family, as was proposed earlier by R. F.
Sawyer, Phys. Rev, Letters 18, 1212 (1967).

between parent and first and second daughters imposed
by the conspiracy.

C. Parity-Doubled Leading Trajectories with
C=—(—1)

These would produce a singularity structure in the
xm — VV amplitudes exactly like that displayed above
for the class-III C=+(—1)7 case. However, because
the P=—C=(—1)" exchanges cannot couple to NN
states, the contributions to the other two reactions will
again be quite different from those of a leading pair
with C=(—1)7. Only the odd daughters in the P
— (—1)7 sequence will play a role.

Fewer of the daughter residues can be discovered
solely from singularity cancellation and conspiracy con-
ditions in this case than in the corresponding case for
parity-doubled leading trajectories of the other C. If,
however, it is assumed in addition that the first daugh-
ters must factorize, we learn that (Table VII):

(1) All parent- and first-daughter residues must
evade in NN — NN.

(2) In #N — VN, the relation between furtt and
fi~* is satisfied by conspiracy, but it is not possible
to determine completely the individual contributions of
the two first daughters in terms of the parent residue.
The relation between fio~— and fo~t is similar to the
case of C=+4(—1)7 parents in that evasive behavior
of the parent residue (necessitated by factorization)
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TaBLE VIL Residues of parent- and first-daughter trajectories in a family with parity-doubled leading poles,”P=C= — (—1)7 and
P=—C=(—1)’. The residues of the leading poles have been divided by (2a+1) and those of the daughters by (2a— 1). See captions of

Tables IT and IV for an explanation of the notation.*?

Residue of leading

Amplitude P=—(—1)7 trajectory

Residue of first P=—(—1)7
daughter trajectory

Residue of first P=(—1)7
daughter trajectory

N —> VN:
Fortt
Jut# (2) B*B,(pg)=1
Jur- (I) B*By(pg)=t
jjw'; (@) tB*B, (pg)*q o
Sor~
Jo i

e — VV:
Jut—
Furtt
Ju— (1) (1/9B*B. (g9

[ (0) ¢Bs*Bs(g)=
10 (1) B#*Bs(¢)* g
fu_+
Jo*
St
NN - NN:
S
fa (2) tB,*B,(p9)!
fs
fs (1) tBy*By(p)
B! (1) —tB.B.*(p?H)!

(2) (1/HB*B, (g

@) = Qe+1)(1/)B*B.(¢)=?

@) = Qa+1)(1/5)B*B. ()=
(1) = Qa+D(a—1)/(a+1)]B:*B.(g*)*
() = Qat+D(e—1)/(a+1)1"B,*Bsg>!

(2) Qa+1)2(v/1)ByB*(pg)
(2) (a+1)2B.B*(pg)*
(3) (2“+1)x/2BeBr*(1>(I)a_2q

) (2a+1)'2B,*B.(pg)*?
D) Qat+1)"[(a—1)/(a+)TB*Bs(pg) g

2) —(2a+1) (]-/t)Br*Br(qZ)m-1

3) = Qat+1)(1/0)B*B, (g)>?

(1) —2Bs*By(pH=?
(2) —tB*B.(pH)?
(@ — (W)tBH*B.prat
(3) —tBXB.(p1)*?

» If a residue can be obtained only by factorization, its phase is in many cases undetermined. We have not indicated such possible phase ambiguities in

the Tables.

b The residues of the leading P =(—1)7 trajectory in (the == — V'V amplitudes) fu*~ and fi1~~ are both — (1/¢) B/*B,(¢%)*"1, with energy dependence

(s/¢)*! and (s/¢»)*"2, respectively.

prevents analyticity from completely fixing the residue
of the first daughter.

Notice that it frequently happens in these three re-
actions that conspiracy, analyticity, and factorization
are not enough to completely determine the first-
daughter contribution in terms of the parent contribu-
tion. This seems to be due to the fact that the parent
evades in so many of the reactions. In all cases, however,
factorization of the daughter residues is consistent with
the required analyticity properties of the amplitudes.
This agrees with the notion that the contribution of a
single Toller pole is composed of an infinite sum of
factorizing Regge trajectories.

We conclude that the analyticity and O(4)-symmetry
approaches complement each other and agree when they
overlap. For equal-mass scattering, when analyticity

“t Note that for the examples we have chosen, all information
about the second and lower daughters is obtained from singu-
larity cancellation and factorization (as opposed to conspiracy).
In EE reactions, no information may be obtained from analyticity
arguments. Hence we always have the freedom to force factoriza-
tion of these lower daughters. Combining this with the study in
Tables II-VII (which demonstrates that the first daughters
factorize), we conclude that factorization of all daughters is con-
sistent with the analyticity constraints.

tells us little, the O(4) analysis gives much stronger
results because of the O(4) invariance of the scattering
amplitude. The unequal-mass reactions with spin,
which are difficult to treat from a group-theoretical
viewpoint, are the ones which provide the most in-
formation when analyticity is involved. For Regge-pole
models, in which one would like to invoke the addi-
tional dynamical postulate of factorization, the com-
bination of this with analyticity considerations can
then give information about equal-mass scattering and
and also about cases in which the parent residue evades.
Hence the joint requirements of analyticity and fac-
torization enable one to specify many features of any
strong-interaction theory.

Note added in proof. The use of factorization to
determine the equal mass residues of daughter tra-
jectories, as described above, has been worked out in
detail for the spinless case by J. B. Bronzan and C. E.
Jones [Phys. Rev. Letters 21, 564 (1968)]. Application
of the analyticity (singularity-cancellation) approach
to derive relations between slopes of parent and
daughter trajectories, i.e., “mass formulas,” has been
investigated by several authors: J. Bronzan, C. E.
Jones, and P. K. Kuo, Phys. Rev. (to be published);



2136 L.

P. Di Vecchia and F. Drago, Frascati report, 1968
(unpublished); P. K. Kuo and J. F. Walker, Phys.
Rev: (to be published).

Arguments favoring the M =0 pion type discussed
in Sec. VI and Table VI have been given by R. F.
Sawyer, Phys. Rev. Letters 21, 764 (1968).
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APPENDIX A: PROPERTIES OF e FUNCTIONS
We use the functions defined in Ref. 18:

exe? (2)= (V2 cos30)~ M4l (V2 sing6)~12+Idy,7 (6)

= e)\"”'-l—e)\,,,"_, (Al)

where e, have opposite behavior under parity
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O—>7—0,3— —2)
en'E(—2)= £ (—1)" e %(2) (A2)

with
A=max(|\],[u]).

From e)_,7%(2) = &= (—1)M4e,, 7 £(3), it follows that
(A3)

The e functions are related to Jacobi polynomials (up
to a sign) as follows:

" 2—-A—-l< J+A)!(T—A)!
e = —_—
J+MI(J=N)!

4 (—1)MAP . (kalD=u] - (A4)

where N=min(|\|,|x|) and the Jacobi polynomials
have normalization

P (3=1)= <"+a).

n

e)\o"—= 0.

12
) [P y_p{r—ul D

In order to expand e/* in powers of 2, we use

2T+, JU-1) JUI=1)(T=2)(J—3)
Ps(z)= s 2I—24 gI—4 .. )
TU+D \ 227—1) IX4X (2] —1) (27 —3)
2T+ ( (— 1)) (J—1)- - - (J—k1)z7—*
T(J+1) k=02t \[2X4X - - - XEJ[ (2T —1) (2T —3)- - - (2T —k+1)]

where we have neglected the other branch of the
Legendre function for nonintegral J. (If we used the
Mandelstam form of the Sommerfeld-Watson Reggeiza-
tion, we would be using E, and not e, functions. See
Appendix B of Ref. 18.) For J nonintegral, the sum in
Eq. (AS) does not terminate.

Using (AS5), we can calculate the expansions needed
in the processes 7w — VV, 7N — VN, and NN — NN,
where \, u=0, 1:

2°T (a+3%)
ego®t=eg*=Pog—> ———
T(a+1)
ala—1)
X(z"‘—————z“‘z—l—- . -), (A6)
2(2a—1)
ew* =0,
P, 2T (oa+%)
eq®t=—e1°t= -
fa(a+1]"?  [a(let+1)]"T(a+1)
ala—1)(a—2
AN
2(2a—1)
en* =0,
P, 42P," 2T (a+3)
en*t=

wlatl)  ale+DIt1)
ala—1)(a— 2)22'!_

S ... A8
2(2a—1) + > (48)

X (a2za—l_

). (43)

—P," 2T (a+3) (
en® = — a(a—1)z272
ala+1) a(a+1)P(a+1)\
ale—1)(a—2)(e—3)
— go—4 Ll ... ), Al
2(2a—1) + ) (49)

APPENDIX B: DAUGHTERS IN EU SCATTERING
Q=u=1)

In this appendix we show for the EU case that
daughterization (i.e., removal of undesired singularities
by inclusion of single-parity daughter contributions) of
the minor amplitude > (2J41)Tcq,a”'er,’” ensures
daughterization of the major amplitude >-(2J+1)
X Toa,ap” Per,”" (or vice versa). For this purpose, it is
most convenient to absorb functions of J into the
partial-wave amplitudes and to reexpress (using Ap-
pendix A) the major and minor amplitudes, respec-
tively, as

3 Toa,ar” FLP 710 (2)+P a7 (2)]

Z Tca,abJ’P[PJ—A(T"a) (z)—PJ—A(e'ﬂ) (Z)],

where n=|A—p|, 6=|\+u|, A=a—b, u=c—d, and
A=max(|)|,||). A pole in one integer spin state (at
J=A+n) would then produce a major amplitude of
the form

and

Toa,ap” [Pu? (2)+Pn®7 (2) ] (B1)
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(for #'=n-+A). We will deal in this appendix only with
integer # and with the special values A=p=1 (n=
6=2), but the method can be extended to other cases.
Expanding in powers of z (since z goes like 4/%), one has
for integer »n

P,v?@)=3 wg(nfvm),
=0
(B2)
P” [(CR)] (Z) = Z ng (0’77,1},%) ’
=0

where the Jacobi polynomials have the symmetry

Pad(—g)= (~11P,00 (), (B3a)
which implies
(_ 1)n~vg (7),0,1/,%) =£ (0’177”7”) . (Bsb)

Thus we may represent the contribution of the lead-
ing pole and all of its even daughters to the major
amplitude by

1
Z T”I—'F[Pn—a(ﬂ'o) (74)+‘Pﬂ-"(0’") (Z)]
o=0

[n] n—a

=3 Iv=e X 227g(n,0,v,n—0) (Bda)

v==[0]

(we use [#] to represent the largest even integer smaller
than #, and [0] to represent the smallest integer al-
lowed in the sum, given the restrictions on » and o),
where o is restricted to be even (only even daughters
are needed) and #-o-» is also even (other terms cancel in
summing the two Jacobi polynomials). The contribution
to the minor amplitude then becomes

[n]
Z Tﬂ’—”[Pn—v(q'a) (Z)—Pn—v(o'") (Z)]
=0

(4

n—o

—Z ™= 3 257'g(n, 0, v—1,n—0),

o=0 v=[0]

(B4b)

where ¢ and #—o— are again even.

As pointed out in Sec. II, we need only consider the
most singular terms in the daughter residue in this
proof (the proof for less singular pieces then follows);
it was also shown there that the most singular pieces of
parent and daughter residues all have the same be-
havior near (=0, viz.,

) (const) Cu—p
Tn -0 ,y(a) (Pq)n—a,\, .

lalZ[(n—-o’)/2 ln/2 :

Because z behaves like 4/¢ near =0 for the EU case,
the requirement that the minor amplitude have no
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unwanted singularities at /=0 may be restated as

[n—»]

> Cn—0g(0,2, v—1,n—0)=0 (B5)
=0

for even ¢ and all y<n— 2, with n—o—» even. Likewise,
the condition for daughterization of the major ampli-
tude is

[n—]

> Cn’——vg(oy 2,v,n—0)=0 (B6)
=0

with the same constraints on the indices. To be more
exact, these conditions are those which pertain to
unnatural-parity exchange in 7V — VN ; the major and
minor residues for natural-parity exchange may be
obtained, respectively, by multiplying the major and
minor residues obtained here by 4/¢.

With the replacement J=#—y for / even, we can re-
write (BS) in the form

[7]

2 Co—eg(0,2, n~1—1,n—0)=0, (B5)
o=()
and (B6) in the form
U] .
> Cu—og(0,2, n—1, n—g)=0. (B6)
o=0

From the functions in Appendix A, one can deduce that
2(0,2,n—0—1,n—0)
2(0,2,n—0—1—1, n—a)_

(n—-cr- I+1

n—o—I|

) @

for all 7 such that n—o—1>0, i.e.,

2(0,2,n—x,n—0) (ﬂ—x—{— 1)
£(0, 2,n—x-—1,n—a)“ n—x
Hence,

[
> Cuw—eg(0, 2, n—1—1, n—0)
=0

( i ))Ifl.c (
= n'—o, 02n l -
—I1 $ n=o)

and the one set of conditions for regularization by
daughters implies the other.

APPENDIX C: DAUGHTERS IN UU SCATTERING
=u=1)

Using the same notation as in Appendix B, we prove
in this Appendix that for a UU process the regularlza-
tion of fi0,10~710,10%P a1 by including even and
odd daughters,

T'10,10°P 12 (2) — 2 T10,10% " (t) P51 (3)
o
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(so that the result behaves like a constant near ¢=0),
ensures the regularization of fio—10~7'10,10°Pa—1%? by

> T10,10 (1) Paeo1?9(2)

(i.e., this latter amplitude then behaves like 1/¢ near
t=0). Again we give the proof for integer spin only.
As shown in Eq. (2.29), 2—1 behaves like ¢ near =0
for AgcApa>0. It is therefore convenient to use, as a
representation for the Jacobi polynomial,

n (0+n\ /n+04+9+v\ 72— 1\"
RIS gon
=0 \f+» n+0-+9 2

Hence,
P,0(g)=P 10 (2)+ f"0(2),

(C2)
where

far?(z)= eglc;") g (ej—tfj)

(N @

v

(we assume 0> for this formula).
Following the discussion in Sec. II, the daughter
residues are chosen such that

n
Z TlO,lOn’—aPn—a'(o’”
=0

is regular at ¢=0. It was shown there that the most
singular pieces have the behavior T~ (Cu—o/t")
where Cp/—o is a constant. Then

n rg (n—a)(n—-u—l—Z—{-v)(z—— 1)”
T n'—o —_—
Z Tu™ 20N et N\
~const (C4)
implies

n fg—1\? n—» n—a\ fn—o+2+v
£ () Eme(,N)
=0 \ 2 =0 v v

~const,

(C4')

i.e., for v#n,

n—v n—a\ /m—ao—+2-+v
Z Cn’—v( )( )= 0 .
=0

14 14

(Cs)
The behavior of the associated amplitude fio,—10,

Zn: T10,10" " "Pue®® (8)= 2 T10,10" " Pn—s " (2)

o=0 =0

4+ T10,10" " fa-o?(2),
o=0

2 G. Szego, Orthogonal Polynomials (Edwards Brothers, Inc.,
Ann Arbor, Mich., 1948). .
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depends on that of

n n—1 fg— 1\? n—v—1
’—
2 T1030™ ™ fu-(2) =2 (—“) 2 Tio00™™
o= y=0 2 o=0
n—ao

RO o

Again, =0 behavior is governed by the coefficients of
(z—1)*. For v#n—1, the coefficient

n—v—1 n—ao+2-+v\ 1 /2 n—o
o G-
a=0 v =0 \j/\24v—j

can be put into the form

n—y’ (n—o)! (n—o+4v'+2)!

2 Ti0""

o=0 (n—042)! r—a—v)!('—1)!1(»"+1)!
where »'<n. (C7)

However, the conditions for regularization by daugh-
ters are [Eq. (C5)]

m—o)! (n—o+v+2)! o
(h—o+2)! (r—o—2)ply!

n—yv

Z Cn’—v rv<m.
o=0

Thus (C7) is also zero, and the only contribution to
(C6) behaves like (z—1)»1T*~1/¢ near ¢t=0. Thus
we have shown

> Ti0,10™  fao?2(3)~1/1.
o=0

APPENDIX D: PERTURBATION-THEORY
EXAMPLES

During the course of this work, we have found the
study of individual Feynman graphs to be extraordi-
narily helpful.® Because each Feynman graph is Lorentz-
invariant, it must have the proper singularity structure.
Thus the singularity cancellation between parents and
daughters may be made manifest simply by decompos-
ing the calculated helicity amplitudes into a sum of the
appropriate Jacobi polynomials. The daughters are
particularly obvious in our examples because they are
nonpole contributions to the graph.

Unfortunately, many graphs seem to contain con-
tributions from more than one Toller pole at {=0,
especially in nonleading powers of s. We do not wish to
include in this paper a complete theory of Feynman
graphs in terms of Toller poles*; therefore we have

4 See also L. Durand, Phys. Rev. Letters 18, 58 (1967); R.
Blankenbecler and R. Sugar, Phys. Rev. 168, 1597 (1968); R.
Blankenbecler, R. Sugar, and J. Sullivan, sbid. 172, 1451 (1968);
R. L. Sugar and J. D. Sullivan, :bid. 166, 1515 (1968).

# This may be done using the technique of R. F. Sawyer, Phys.
Rev. 167, 1372 (1968).
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chosen to present a series of graphs which demonstrate
the particular singularity structures discussed in the
text and to explain them in terms of the Toller poles
they do contain. This exercise is doubly gratifying: It
is amusing to see how the diagrams reproduce in a
particular case for integer spin the results derived from
more general considerations, but it is also handy when
calculating the diagrams for other purposes to be able
to check the results. Without further excuse, therefore,
we present some examples.

First, consider the pattern of singularity cancellation
in a UU process like 7 — VV. For the two possible
types of single-parity exchange, we calculate spin-2
exchange (which is the lowest spin to show daughters
in the helicity-flip-1 amplitude).

For 2+ exchange in nw— V'V, one may take the
amplitude

e"“ﬂ”el""ql’ykl“(kr—ql)”P,..,""e"“oezsqfkgo (kZ_q2)‘r

where k; are the momenta of the vector mesons in-
volved, e; are their wave functions, and ¢; are the mo-
menta of the pions. If one uses for P,,’” the 2+ pro-
pagator given by Durand,® this results in

(t— m,ﬁ) (flo,mt— flo,_lot) = 32tq* cosf,— (4q2/ma2)
X (my*—m )2 (ma2—1),

(t—ma2) (F10,10"+ Fro,-10%) = — 161g*,

where m, is the mass of the exchanged particle and ¢
= T'yx/2+/t. Hence, the PCHA fi0,10'— f10,—10* behaves
like s'=s%"1 and all singularities at {=0 occur in lower
powers of s. Notice that the “minor” amplitude con-
tains a singularity like 1/¢ which matches the one in
the “major” amplitude, and that this one in the
“major” amplitude arises from both the parent and the
first daughter.
Similarly, a graph for 2~ exchange is

GI“QIVP;W”QVQQT .
This results in
(t—ma2) (F1o,10"+ J10,-10%) = 8¢% cos,— 4qe* (1 —t/m.2) ,
(t—ma2) (F10,10°— fro,—10) = —4¢?,
which have properties similar to those noted above.
In contrast, one may consider a graph for parity-

doubled exchange of the type given by Blankenbecler,
Sugar, and Sillivan®:

[ k2 -kl—el- 2kl k2 ]k1- k2.
This gives
F10,10+F fro,—10= k[ —s+2my?],
f10,10— fr0,—10= — k[ —s+2my?],
Joo.00= (mv*/2)[s/2k*+ 1] —s+2mv*],
Joo,10= (Komy/2V2)[—s+2mv*],
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where k=Ty,/2¢/t and ko= (t+my*—m,?)/24/t. This
clearly demonstrates the equal and opposite singu-
larities in fit and fii~ multiplying s, When the
amplitudes are reexpressed in terms of Jacobi poly-
nomials, it is found that the residues of the leading pole
factorize at t=0 as shown in Table IV. As the nonlead-
ing terms arising from this graph contain M =0 Toller-
pole pieces as well as the daughters of both poles, there
is considerable complication in the lower powers of s
and we will not discuss them here.

If one looks instead at the EU reaction 7N — VN, y
one obtains from the graph g*¢°P,,”"Nysy* NPy for 2-
exchange (¢* is pion momentum; P;7 is one of the nu-
cleon momenta):

) ) — 2% cosf;
Jro,172-172'— fro,-1/2 12t =—-—r
Y
P t
e — "2__ 2 ——
\/EM( +m " )(mA2 1) ’
+7%
Jro,70-12 4 fro,—172 172'= ,
® v
_ P90
S10,12 12— fro,~1/2 —yj2=—,
Y
_ P cosﬂtl‘ (my2—m,2)?
Joo,1/2 172= o | t (mvz-l-m«?):l
v
2 gEgd ERo
— (=t mit—,
3 my 3my
i Plgkocosd;  pE
Joo,1/2-172=— } 1—t/m42
Wy a0
(my2—m,2)?
X [————~—— (mv2+m,2):| .

Here, ¢ and ko have the same definitions as above;
go=+/t—ko; E=§7/t; P=3%(t—4M?)\2; and M is the nu-
cleon mass. Note that the “dominant” amplitude fy,——
has no singularity at /=0, and behaves like s'=so1,
The “minor” amplitude fi;++ does have a singularity
at {=0, which conspires with fi;~+. The conspiracy
equation between fo~* and fo; is also satisfied by
conspiracy. For these, the subsidiary terms in s conspire
among themselves and again play a role different from
that of the Toller pole discussed in the text, so we
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ignore them. The leading terms in these two satisfy
conspiracy among themselves, paralleling the well-
known case of axial-vector exchange, which gives

(t+-my?— u2) (1— 4D 112

thvM (t—-— mAZ)

{[t— (my—p)?t— (my+u)? ]} 12
(zvt)meaz ’

Soo0,1/2—1/2"=

t

f00,1/2 1/2

For the M=1 case, we need only cite the behavior
of the nucleon Born-term graph in pion photoproduction

L. JONES AND H. K.
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Nys(y-£)(y-€)N. This gives (for a photon of mass my)

Joo,44=—pmy(cosdy)/M
Jro4 4= For044=V2pko/M
Jio 4+ Foro44=—V2Eq/M ,
Joo—=0,
Fro4—— f—10.+—=\/2—9 ’
Jro4—+F10,4-=0,

which show in a very simple way the singularities of
the M =1 conspiracy discussed in Sec. V, even though
the graph does not represent a ¢-channel exchange.
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The formulation of nonrelativistic quantum mechanics using currents and densities as coordinates is
investigated. A general solution for a single-particle theory is presented, and several many-body problems

are discussed.

I. INTRODUCTION

ECENTLY, there has been considerable interest in
the description of strong interactions in terms of
currents. Dashen and Sharp! showed that nonrelativ-
istic quantum mechanics could be described by using
currents and densities as coordinates rather than the
more familiar canonical coordinates, but they left
unanswered the question of solvability of such a theory.
In this paper we treat systems of ( identical bosons in
their formalism, and show how to obtain all of the
informatioh that the usual formulation gives. For
single particles interacting with a fixed potential or
potential scattering of two particles, the new formalism
turns out to require the solution of the Schrédinger
equation. For more particles it is not clear what the
form of the solution is except in some simple solvable
examples.

Tt seems natural to formulate many-body problems
in terms of currents and densities, and perhaps this
approach might lead to better or different approxima-
tion schemes. Although our original motivation for
solving problems this way was to learn how to work with
descriptions of systems in terms of currents and densi-
ties, we also have shown that the formulation is a
feasible approach to nonrelativistic problems. There is

* Work supported by the National Science Foundation under
Grant No. NSF GP 6198 and the Office of Naval Research under
Contract No. N00014-67-A-0305-0005.

1 R. F. Dashen and D. H. Sharp, Phys. Rev. 165, 1857 (1968).

no pretense made of mathematical rigor, and since we
are in fact working with functional integrals—a rela-
tively unexplored area of mathematics—we may occa-
sionally adopt questionable mathematical procedures.

We start with a review of the work of Dashen and
Sharp!? and refer the reader to their paper for further
details. Section III is devoted to a discussion of a single
particle interacting with a fixed potential, and there it
is shown how to find solutions to the usual problems.
In Sec. IV we treat noninteracting systems and show
how to find the many-boson correlation functions. We
also discuss the differences between wave functionals
that give identical results for a single-particle theory
but different results for a many-particle theory. The
last section discusses two problems of interacting
bosons—coupled harmonic oscillators and a one-dimen-
sional system of particles interacting through é-function
potentials. The form of the exact solutions to these
problems suggests approximation schemes for other
kinds of interactions, but it sheds no real light on how
to obtain solutions to more complicated systems.

II. REVIEW

In this section we review for completeness the formu-
lation of nonrelativistic quantum mechanics in terms of
currents and charge densities as given by Dashen and

2 D. H. Sharp, Phys. Rev. 165, 1867 (1968).
3 We always assume that integration by parts is permissible
and that the boundary terms vanish.



