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In a paper on the existence of a ghost-free solution of the unsubtracted partial-wave dispersion relation,
Frye and Karnock conjectured that the positive-de6nite value at threshold of the unitarity integral on
the physical region must be canceled by the short-range force (i.e., multiparticle-exchange contribution)
arising from the 6rst and second double spectral functions in order to guarantee the required p wave and
higher threshold behavior. Ke examined this conjecture explicitly in an unsubtracted dispersion relation
for the I=t = 2 pion-pion scattering amplitude. Vhth certain choices of the p Regge parameters, we show
in our approximation scheme that this conjecture is nearly satis6ed, and we can conclude that the so-called
subtraction constant or threshold factor which is usually arbitrarily introduced to correct the threshold
behavior could be expressed in terms of known physical quantities. However, with some other choice of
p Regge parameters, our numerical result shows that this conjecture is not satis6ed by our one-p-Regge-pole
approximation and indicates a need for additional Regge poles or Castillejo-Dalitz-Dyson poles.

L INTRODUCTION
' 'N the unsubtracted 1th partial-wave dispersion rela-
~ - tion, each potential coming from single-particle
exchange in the crossed channel generally has the
required threshold behavior, but the term involving the
unitarity integral over the physical region has a positive-
dehnite value at threshold. Therefore, if we construct
the dynamics with only the above two terms, we cannot
obtain a ghost-free solution (except for the s wave),
because this partial-wave amplitude does not behave
as (g,')' as s approaches the threshold, where q, s is
the three-momentum squared in the c.m. system.

Of course, any model which violates the threshold
behavior can be corrected by introducing a 6nite num-
ber of subtractions, by adding a function with a 6nite
number of poles, or by adding the special type of
Castillejo-Dahtz-Dyson (CDD) poles at threshold in
the E/D equations. '

But several questions remain unsolved at present.
For example, what is the physical meaning and origin
of these subtraction constants or pole parameters? Or
should these parameters be explained in terms of the
other known physical quantities at all? Usually we
speculate that the subtraction constant might represent
some effect of the inner region of the strong interaction,
and if we deride that the threshold behavior can be
corrected by adding the special type of CDD poles at
threshold, we can also speculate that this threshoM
correction might represent the efI'ect of an elementary-
particle pole. This pole may be a bound state of, say, a
nucleon-antinucleon or quark-antiquark pair whose
channel is switched off from the relevant dynamics at
some stage. From these considerations, we see that even
in the subtracted dispersion relation with correct thresh-
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1 G. Frye and R. L. Warnock, Phys. Rev. 130, 47g (1963).

old behavior, %e cannot de6nitely conclude that the
output of some dynamics is the consequence of input
alone or that it is the consequence of input plus some
unknown effects represented by the subtraction
constant.

In factq SImmons showed that In the I='J= 2 g-S
scattering amplitude the choices of diferent forms of
threshold correction factors very sensitively affect the
resulting phase shift and resonance-pole position, and
he argued that any dynamical calculation cannot be
accepted as physically meaningful unless the origin or
meaning of these threshold corrections is given uniquely.

Frye and tA'arnock' conjectured that in the Cini-
Fubini approximation of the Mandelstam representa-
tion the short-range force coming from the erst and
second double-spectral function guarantees the required
threshold behavior by cancelling the positive unitarity
integral at threshold.

Since the term of the unitarity integral is always
positive at threshold, the suggested short-range force
must therefore always be negative definite at threshold
(cxccp't f01' thc s-wave alIlphtudc).

Although Frye and %arnock argued that this short-
range force might not be zero at threshold in the pion-
nucleon scattering amplitude, it seems that there has
been no clear example which demonstrates explicitly
this suggested mechan1SIQ.

As an attempt to determine the origin of the threshold
factor and its energy dependence, we show in this paper
that in p-wave pion-pion scattering, with appropriate
choices of the p Regge parameters, such a negative
short-range force not only exists but approximately
cancels the positive value of the unitarity integral at
threshold, and that. this short-range force can be
consistently determined by the dynamics. However, it
will also be shown that with another possible choice of
the p Regge-pole parameters this conjecture is not
satisfl, ed by our one-p-Regge-pole approximation. In

~L. M. Simmons, Jr., Phys. Rev. 144, 2157 (2966). Further
references on the problems of the threshold behavior of the
partial-wave amplitude can be found in this paper,
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this case we must add other Regge poles with the same
quantum number as the p Regge pole, or CDD poles.
Although we cannot conclude which of these alterna-
tives is true because of the lack of the experimental
results on the p Regge parameters, we can at least say
that the Frye-Warnock mechanism is a possible one.

In Sec. II we derive the unsubtracted partial-wave
dispersion relation with both long-range and short-range
potentials for pion-pion systems under assumptions
similar to those applied in our previous paper. ' In
Sec. III we show numerically for the I=I= I pion-pion
state how the unitarity-integral term and the short-
range force nearly cancel to guarantee the threshold
behavior. In Sec. IV, we discuss several physical im-
plications of our result. In this paper we treat only the
physical partial-wave amplitude and use the same
notation as that used in I; the unit of energy is p, '.

II. UNSUBTRACTED MSPERSION RELATION

To derive the unsubtracted partial-wave dispersion
relation for pion-pion scattering, we apply the same
assumptions and procedures as in I,

The 3th partial-wave amplitude for isotopic spin I in
pion-pion scattering is given by

1+( 1)I+(
A i'(s) =

2&g q

where A, r(s, t) is the t-channel absorptive part and we
use the usual notation s, t, and I, for Mandelstam's
variables with g,2= ~s—1. %e also used the following

symmetry 1'elatioil to derive Eq. (1):
A„r(s,t) = (—1)rA(r(s, t).

Since we consider only the physical partial waves,
Kq. (1) can be written as

Using Kq. (1') and applying the same procedures and
assumptions used to derive Eq. (27) in I, we obtain the
following unsubtracted partial-wave dispersion relation:

t (s')
I
A i'(s') I'

A &'(s) =— ds'

small4 parts of the 6rst and third double spectral func-
tions, while V(,2r(s) has the form of Eq. (13) in I multi-

plied by (g,')' and comes from the large-t part of the
third double spectral function. V(,sr(s) is given by

'. ds o-" (-1)(
Vi, ar (5)=—

&r „s'—s,;, —2(—q.') &r

This is the left-hand cut contribution obtained by
separating the s-channel elastic part of the 6rst double
spectral function into the right-hand cut unitarity
integral term and the above left-hand cut term. It is
evident that both V(,ir(s) and V(,sr(s) behave like

(g,')' when s approaches threshold value. However, the
first and last terms in Eq. (3) apparently do not vanish

individually at threshold. As is well known, the 3th

partial-wave amplitude should behave like (q,m)' near
threshold. Therefore if the ghost-free solution for
Kq. (3) really exists, the first term and V(,sr(s) must
cancel each other (except for the special case of the
s-wa, ve amplitude).

Hereafter we denote the real part of the Grst term
of Eq. (3) as

»(") IA '(")I'
P.V.I.=— ds'

To evaluate the V(,3r(s), we approximate the s-elastic
double spectral function A, &r "'&(s,t) by the sum of the
t-channel inelastic double spectral function'.

where p„rr' is the isotopic spin crossing matrix between
the s and the t channels and B„(t,s) is the t-channel
double spectral function. Approximation (8) can be
derived under assumptions similar to those used in
strip approximation. By using Kq. (8), we can rewrite

Eq. (6) as follows:

+Vi, ir(s)+ V(,2'(s)+ V(,&~(s), (3)

ImAir, ei(,)(s) t)(s) I
Air(s)

I

t (s) = L(s—4)/sj'". (5)

V&, ir(s) has the form of Eq. (12) in I multiplied by
(qP)' and represents the contributions coming from the

3 N. Masuda, preceding paper, Phys. Rev. 175, 2087 (1968),
hereafter referred to as I.

As discussed in I, the inelastic part of the double
spectral function can be well approximated by the ex-
changes of the leading Regge poles in the crossed
channel. This argument is strongly supported by the
phenomenological evidence that Regge-pole-like be-
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havior exists not only in intermediate- and high-energy
regions but even in quite low-energy regions. %C shaH
assume that Regge-pole-like behavior begins at the
lowest inelastic threshold. 4 If we assume that the in-
elastic amplitude rapidly becomes of diGractive type,
tllls RppI'oxlQlRtlon mRy bc a good onc. By this RppI'oxl-
mation, Eq. (9) can be expressed in terms of the s-
challncl Rcgge poles as

1 " "" ds' (—1)'
I'. '()= Z ~."'~."Z-

s' —s —2(—q, ')
8~«}t

X d«'g R ~(s' «')I'i —1—
i

(10)
2g, .s&

'

where $; denotes the signature factor of the sth Regge
pole. Also, '

I«r{s «) = 'wr 2(s-'(s)+ 1]y (s)( (/, s)—«"('}.
X&- ( }(—1—«/2V ') (11)

where n,'(s) and y, r(s) are the ith Regge trajectory and
its reduced. residue function, respectively. Inserting
Kq. (11) into Eq. (10) and integrating in «, we obtain

~o-&i«1 (—1)i

Vg, s'(s) =P — ds'
s —s —2(.—(/, ~ )

X-',w(2(s, '(s')+11',r (s')

~(~'(~),~~(~))=
D—~"(~)jL~'(s)+«+ 1j

&
—(«+1)&i+~(~~(~))J'-,'(.}(~i(~))

+D—"()j~()~(~ ())~- . (~ ())
+L~"(s)+13'i(~~(~))J'- (.}+~(~~(s))} (13)

Zi(s) = —1—2«; /(s —4). (14)

Note also that in Eq. (10) Qy e'P.i"Pi."$;becomes
the unit matrix.

In Sec. III we show our numerical results for P.V.I.
and Vi.sr(s) for the /=I= 1 pion-pion state at threshold
and in other physical regions.

IG. NUMERICAL TEST OP THE FRYE-
WARNOCK CONJECTURE

In order to compute Eqs. (7) and (12) numerically,
wc 6rst determine the various parameters which are to
bc used ln thc calculations.

Since in the p-wave pion-pion state the p-meson
resonance dominates the amplitude in the low-energy
region, we can approxunate A i=iI '(s) in Eq. (7) by the

4 See also footnote. 11 of Ref. 3.' G. F. Chew and C. K. Jones, Phys. Rev. 13S, 3208 (19(}4l.

(se—0.25s) '*}
X

400L .()t (19a)
( I/

2)ap(s}

y, (i)=0.063X100 ~(e}

X
(se—s) ~('} 1 1

(19b)
400} ~('~ 1—s/50 (—(t,s) «('}

6 A. H. Rosenfeid ef el., Rev. Mod. Phys. 40, 77 (1968).
7 M. Roo., CERN Report, 19M (nnpubhshed).
8 %.Rarita, R.J.Riddell, Jr, , C. B.Chiu, and R.J.N. Phillips,

Phys. Rev. 165, 1615 (1968).

Brest-%1gner one-level formula for the p-mesonresonance�)

(g s)/p
A i'(s) = (15).——(~')"()I

where /= I= 1 and. s, is the p-meson mass squared. The
reduced width I" is related to the experimental p-meson

decay width I', by

I'=~.'"I'p!((/*~')'p(~~) (16)

Experimental data on the resonance energy and decay
width of the p meson fluctuate between '/75 and 780
MeV and between 90 and 150 MeV, respectively. ' %e
take tentatively the following two sets of choices:

m, = 774 MeV, I'p ——128 MeV, (17a)
Rnd

m, = /64 MeV, I'„=93 MeV. (17b)

The set (17a) was given by Roos' and the set (17b) is
the result of the t,+-e colliding-beam experiment. ' The
convergence of the integral in Kq. (7) can be assured in
principle if the elastic total cross section o"(s) decreases
at least as 1/Ins at high energies because p(s)

~
Air(s)

~

'
behaves at most as o"(s)/lns at high energies. However,
if we approximate Air(s) in Eq. ('7) by the one-level
formula (15), this integral diverges logarithmically. We,
therefore, cut off the high-energy side of the integral (7)
at s= 122 (Qs= 1.5363 BeV) in our numer'ical

calculation.
As the leading Regge poles contributing to Eq. (12)

we may list both the p and p' Regge poles. Since, how-

ever, we have no reliable data for the trajectory and
lcduccd I'cslduc function of thc p Rcggc pole and slncc
we can generally say that the contribution of the p'

Regge pole is smaller than that of the p Regge pole, we
ncglcct thc p conti lbutlon.

For the p Regge trajectory we use the following form
for the negative-s regi.on:

~,(s)=2.42+3/L1 —(s/130)j, for ~,(s) & —0.99

n, (s) = —0.99, for. a, (s)(—0.99.
(18)

Our cholcc of thc p Rcggc trajectory ls almost cqulvR-
lent to one determined phenomenologically. ' Consider-
ing the lack of the reliable knowledge of the energy
dependence of the p Regge reduced residue function,
we assume the following three forms:

y, (s) =0.063X100«~'e}
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1 r&s(s)—
I~I'(s)= p(s) IAI'(s) I'+

4p(s)
(20)

where r&(s) is the inelasticity factor. By splitting
ImAI'(s) into elastic and inelastic parts, we obtain

ImA II sII'&(s) =p(s) I A&I(s) I

'

y, (s)=0.063X100 ~I'&

(ss—s)"~I.'& 1 1
X . (19c)

400~ ~& & ~ 1—s/10 (—q,s)"I &

All three reduced residue functions (19) have the
numerical coeKcient 0.063. This value is obtained by
converting the ratio yI*(0):y, (0)=3.17:4.24 with

trajectory intercept nI (0)=1 and n, (0)=0.48 (Barger
and Olsson's results' with energy scale 1 Geg') into our
parametrizations (11) with n& (0)=1 and y, (0)=0.58
and with energy scale 2p, s at s=0. The value yI (0)
=0.01 roughly corresponds to the pion-pion total cross
section 15.7 mb at the high-energy limit. The s depend-
ence of the parametrizations (19) is obtained by con-

verting the results of Rarita et aL' for s with energy
scale 2 GCV' to our form (11)under the assumption that
the E and p Regge reduced residue functions have

roughly same s dependence for the negative s region.
For the s dependence of the residue function we obtain
the factor

100~~~'& X (ss—s) «"/400

from the difference of the energy scales between that of
Rarita eI al. and ours "In .Eqs. (19), we have also

suppressed the large-( —s) parts of the reduced residue
functions. The denominators (—g.')~~I'& in Eqs. (19)
are inserted to cancel the same term in Eq. (11).

To test the reliability of the Regge parameters given
111 Eqs. (18) aIld (19)~ We. use 'tile unltarlty I'estl'IctloII.

From the unitarity relation, we obtain'

imaginary part of Eq. (19) in I;
0

ImA ' '"I'& (s) =
gs —x

t
dt Im QI 1+

2q,')

X P P P,P'R,~'(s, t), for s&s; (23)
I/=0 j

where R;I'(s, I) has the same form as Eq. (11). Using
the relation

Im Qi(l+ )

sine/ '+"

2(II
dk g g P "'R~'(st)

XQ, I

—1— . (25)
2q,s

The last term of Eq. (25) vanishes for the physical
partial waves. Using Eq. (11) and the p Regge param-
eters (18) and (19), we can numerically calculate the
finite integral of the ftrst term of Eq. (25). In Fig. 1, the
calculated values of p(s) ImAII 'aI'&(s) are shown as
function of s in three sets of the p Regge parameters.

0.55-

0.45-

1 q for —1& 1
2g,sk 2q, s

= sins-l QII
—1— I, for 1+ &—1 (24)

2g,si
'

2gII

we rewrite Eq. (23) as

ImA ""'&(s)
0

dI Q gp»'R~'(sI)P, 1+

1—r&I'(s)
ImA I ' I'&(s)=

4p(s)
(21)

0.25

From Eq. (21), we set the following unitarity restriction
for the imaginary part of the inelastic amplitude:

0& (s) ImA" I'(s)&-' (22)

On the other hand, ImAII 'at' &(s) can. be expressed

by the 1th partial-wave projection of the imaginary part
of the 5-channel Regge-pole contributions, i.e., the

O.I 5—

o.o5 —So=4 50
I

loo Ioo

' V. Barger and M. Olsson, Phys. Rev. 146, 1080 (1966}.I For the diffraction width of pion-pion scattering, - see T. T.
Chou and C. N. Yang, in Proceedings of the Conference on High-
Energy Physics and Nuclear Structure, Keizmann Institute,
1967 (unpublished).

Fn. 1. Unitarity restriction of the Regge parameters. The
values p(s) ImAP ~('&(s) calculated with the p Regge trajectory,
Kq. (18) and the reduced residue functions, Kqs. (19),are-shown.
Line (i) is the value with the reduced residue function, Kq. (19a).
Line (ii) is similarly the value with Kq. (19b).Line (iii) is similarly
the value with Eq. (19e).
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tions the major part of P.V.I. at threshoM is canceled
by VI, sr(s), and that even if there remains some con-
tribution of P.V.I. which is not canceled, this part
would be small compared to the canceled one.

The energy dependence of VI,sr(s} near threshold in
Fig. 2 agrees with the result calculated by Igi and
Kawai" by assuming the strict strip approximation. ' "
Igl Rnd KRwai trcatcd thc Rmp11tudc

~ I'(s) =~I'(s)/(a. ')'

and calculated the contribution. coming from the large-t
part of the 6rst double spectral function. Their short-
range force V~, sr(s) can be expressed in terms of VI,sr(s)

VI,s'(s) =LVI,s'(s) —VI. '(so) j/(C ')' (26)

-0.20-

-030"

Pro. 2. Energy dependences of P.V.I. and Vg, p(s). Line (a) is
P.V.I. with p-resonance parameters, Eq. (1/a). Line (b) is P.V.I.
with p-resonance parameters, Eq. (1/b). Line (i) is V~, P(s) cal-
culated by the p Regge trajectory, Eq, (18) and its reduced residue
function, Kq. (19a). Line (ii) is Vg, 3 (s) with Eqs. (18) and
(19b). Line (iii) is V(, , (s) with Eqs. (18) and (19c).

From Fig. j. we can say the combination of trajectory
(18) and reduced residue function (19c) completely
satisfICS the restriction (22). The combinations of
trajectory (18) and reduced residue function (19a), or
(19b), slightly violate the restriction (22) in some
regions, but. we regard these latter two choices of Regge
parameters as not differing very much.

Even though the integral of the Eq. (12) with the p
Regge parameters (18) and (19) is highly convergent,
our actual numerical calculations were done by taking
the lower limit of the integration region at s= —1694
in all cases.

In Fig. 2 the computed values of P.V.I. and VI,sr(s)
are shown as a function of s.

Considering the fact that the one-level formula (15)
suppresses the low-energy side of the resonance peak
and strongly enhances the high-energy side of the peak,
it may be said that the threshold value of P.V.I. lies
between about 0.1 and 0.2. As for the threshold value
of VI,sr(s), we cannot derive de6nite results because the
calculated values depend strongly on the choices of the
reduced residue functions. It seems, however, that the
value of VI,sr(s) at threshold probably lies between
about —0.05 and —0.13.

As Rn immediate consequence of oUr numerical coIQ-

putations, Fig. 2 thus shows that at least Rll'the
threshold value of VI,sr(s) have the required negative
sign and that the absolute values of both P.V.I. and
VI,s (s) at threshold do not dIffer by very much.

Consrdcrmg possible fill tllcl' coll'tl'lbutlolls to VI, s (s)
from the p' Regge pole, we can say that in the choices
of (19a) and (19b) of the p Regge reduced residue func-

They obtained a positive constant for this quantity.
But from Fig. 2, we can say that in our approximation
VI,s'(s) decreases sharply as s increases, in contradiction
to the Igi-Kawai result. "Since the strict strip approxi-
mation applied in their paper is very doubtfuls except
at threshold, we do not consider the di8erence serious.
They also discussed the CBect of this term on the
dynamical output. Because of the rather strong energy
dependence fol' VI,s (s) wlllcll wc 6Ild& contrary 'to

their numerical results, reexamination of the eftcct of
the short-range potential seems necessary. Numerical
results with the choice (19c) for the p Regge reduced
residue function (Fig. 2} shows that VI,sr(s) using only
the p Regge pole cannot cancel the value of P.V.I. at
threshold. In order to preserve the correct threshold
behavior of the partial-wave amplitude, we must in
this case llltroducc Rn Rdditional p Rcggc pole with.
allllost flic salllc coIltl'lbll'tloI1 to VI, s (s) Rs 'tllat of 'tlM

p Regge pole, or we must introduce the CDD pole
parameters into the amplitude.

IV. DISCUSSION

In Sec. III we showed numerically that the repulsive
force VI,sr(s) arising from the large-f part of the 6rst
double spectral function can cancel the major part of
the value of P.V.I. at threshold.

Bccausc of our crude Rpproxonatlon fox' both P.V.I.
and the parameters used in VI,sr(s), we cannot say
whether the exact threshold behavior of the unsub-
tracted partial-wave dispersion relation is really
guaranteed, by dynamical short-range forces represented
only by the s-channel Regge poles or whether it is
necessary to introduce unknown CDD pole-type con-
tribution. But from our numerical results (using (19a)
and (19b) for the p Regge reduced residue functions),
even if it turns out to be necessary to introduce unknown
arbitrary parameters, these contributions may be
smaller than those coming from the dynamical origin.
Therefore, wc can say that in these cases the energy
dependence of the threshold correction factor should

"K. Igi and T. Kavrai, Nuovo Cinmnto 43A, 1028 (1N6)."G. F. Chem, Phys. Rev. 129, 2363 (1963).
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be approximately the same as that given by Eq. (12).
Also the introduction of the usual subtraction constant
to correct the threshold behavior is not physically
acceptable because the subtraction constant may
contribute a force different from that of Eq. (12). If we
were to treat the formally subtracted dispersion relation
with corrected threshold behavior, the dynamics would
be meaningful only were we to include a short-range
force corresponding to V~,3r(s), because the contribu-
tions from the subtraction constant may be smaller
than those coming from the dynamical short-range
force Vg, ~ (s). On the other hand, if the Regge param-
eters (19c) turn out to be the correct ones, it would be

necessary to introduce either a p' Regge pole with very
large reduced residue function near s=o, or unknown

parameters such as COD poles. In conclusion, with the
present phenomenological determination of the p and
p' Regge poles, we can at least say that there is some

possibility that the Frye-%arnock conjecture is actually

satisfied and that we can eliminate those unknown

parameters used to satisfy the threshold behavior.
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Corrections due to the exchange of the resonances lying on the leading crossed-channel Regge trajectory
are calculated for a linearly rising Regge trajectory in a single-channel, single-trajectory model. The correc-
tions are small, and the equations force no restriction on the slope or intercept of the trajectory. The integral
equations for the Regge parameters are derived, and detailed numerical results for the p trajectory are
given. A method for determining the slope of the trajectory is proposed.

I. INTRODUCTION
' ~OR several years there has been increasing interest

in applying dispersion relations for the Regge
parameters to bootstrap calculations as an alternative
to the more usual approximations based on the 1V/D

method. We wish to report here some new develop-

ments in this general direction. '
The basic approach consists of deriving approximate

expressions for the imaginary parts of the Regge
parameters from unitarity and from a "potential, "and

inserting these into the dispersion relations. This leads

to integral equations for the trajectory which are rather

complicated, but which can be solved by computers.
The method, at various levels of sophistication, has

been extensively tested in potential theory, and is

capable of yielding trajectories which are in quite

good agreement with the exact ones. ' The extension to
*Work supported in part by the U. S. Atomic Energy Com-

mission. Prepared under Contract Nos. AT(11-1)-68 and AT-
(11-1)-34for the San Francisco Operations Ofhce, U. S. Atomic
Energy Commission.' S. C. Frautschi, P. Kaus, and F. Zachariasen, Phys. Rev. 133,
81607 (1964); S. Mandelstam, ibid. 166, 1539 (1968); G. Epstein
and P. Kaus, ibid. 166, 1633 (1968).

~H. Cheng and D. Sharp, Phys. Rev. 132, 1854 {1963);D.
Hankins, P. Kaus, and C, g. Pearson, ibid. 137, S1034 (1965);
W. J. Abbe, P. Kaus, P. Nath, and Y. N. Srivastava, ibid. 140,
B1595 (1965); 141, 1513 (1966);J. Slue, Ph.D. thesis, California
Institute of Technology, 1966 (unpublished).

Geld theory and to bootstrap calculations is, however,
considerably more diKcult.

Basically, there are four diGerences between potential
theory and a full-relativistic bootstrap model which
cause problems. These are (i) the difhculty of construct-
ing a credible field-theoretic "potential, "which can be
used in the same way as a potential in the Schrodinger
equation; (ii) the fact that trajectories apparently
rise—perhaps linearly —in the real world, while they
approach negative integers in potential theory; (iii)
the fact that more trajectories are likely to be numeric-

ally important in calculating a Geld-theoretic amplitude
than in potential theory; and (iv) the perennial problem
of many channels and multiparticle intermediate states
in the relativistic case, which is not present in potential
theory.

It is to the solution of the first of these difhculties
that we primarily address ourselves in this paper.
First, let us elaborate a bit on the other three.

The mechanics of incorporating rising trajectories

into the general framework of dispersion relations for

the Regge parameters has been understood by Mandel-

stam and by Epstein and Raus. ' However, their

prescription, which includes using a twice-subtracted

dispersion relation for the Regge trajectory, introduces

two subtraction constants, and hence two new param-


