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Strong-interaction dynamics is formulated on two main assumptions. The Grst is similar to the one
used in the Regge-pole-resonance interference model, and the other is that the potentials arising from the
exchange of a few dominant particles and resonances in crossed channels can be accepted physically in the
low-energy regions and that the convergent high-energy behavior of the potentials should be guaranteed
by the Regge-pole theory. A long-range potential which satis6es both the low-energy and the high-energy
boundary conditions stated above is introduced. The dynamical model with only Regge-pole exchange
potentials (as in the new form of the strip approximation) does not produce low-energy resonance behavior
as a dynamical output. Ke show that a potential which does produce the main low-energy resonance be-
havior as output can be constructed by an appropriate superposition of single-particle exchange potentials
and Regge-pole exchange potentials according to our second assumption. Also, two other potentials arising
from the large4 parts of the Mandelstam double spectral; functions are deaned under the 6rst assumption.

I. INTRODUCTION
" 'N this paper we present new approximation methods
~ - to the dynamical theory of strong interactions
based on the following two main assumptions. The 6rst
is similar to that used in the Regge-pole —resonance
interference model, ' in which Regge poles and reso-
nances are assumed to overlap in a broad intermediate-
energy region. In contrast to the strict strip approxima-
tion,"this 6rst approximation enables us to calculate
directly the contributions to the scattering amplitude
which arise from the large-t parts of the Mandelstam
double spectral functions, not only the usual small-t

parts but their corner regions as well. Two new poten-
tials corresponding to the above large-t parts are dedned.
The large-t parts have usually been neglected without

any quantitative justi6cation, 4' or they have been

simply treated as unknown parameters to be deter-
mined. ' The second main assumption is based on the
observations that a partial-wave long-range potential
which is given approximately by the sum of exchanges
of a few dominant particles and resonances in crossed
channels has some physically acceptable meaning and
reality, at least at and near elastic threshold'; that on
the other hand, the partial-wave potential must satisfy
the convergent high-energy behavior which is derived
from the Regge-pole-dominance hypothesis at high
energies and that in a broad intermediate-energy
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'If we assume an-asymptotic behavior for the amplitude
P(t)s &'&, with constant p(I) and with the linear approximation
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region single-particle exchange potentials and Regge-
pole exchange potentials overlap.

We apply these two basic assumptions to the con-
struction of the potential in the dynamical equation in
Sec. II. In Sec. III we give several justifications of our
theory from both an experimental and a theoretical
point of view. We shall also qualitatively discuss the
comparison of the present theory with other theories.

&+(—&)"'
A lr(s) =

2X'g8

1I
dk'A, r(s,1')Qli 1+ i, (1)

2g.si '

where A~'(s, 1) is the t absorptive part, and we use the
usual notation for the Mandelstam variables with
g,s=-', s—p,,'.s In deriving Eq. (1),we used the synunetry
property

A„'(s,t) = (—1)'A, '(s,1).

From Eq. (1), we define a function

Z(r(s) =-

w(q s)l+1

eo

dt'A, '(s,1')Q,
i 1+ i, (3)

2g,s)

which can be uniquely continued to the complex / plane
and coincides with physical partial-wave amplitudes
dlvldcd by (gg ) ' wllcll I+I ls all cvcll llltcgcl'. Ag (s)1)
is expressed in terms of the Mandelstam double spectral
functions by

A,gr(s', 1) 1 " A,„r(1,N')
A g'(s, t) =- ds'- ——+— dl'

for a Regge trajectory at 1=0,a(t) =eI,'0)+e'I,'0)t, the partia1-wave
amplitude given by this Regge pole behaves as 1/(s' ~&o& lns)
at high energies.

9 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).
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II. FORMULATION OF DYNAMIGS

We will treat pion-pion scattering as an example.
The 1th partial-wave amplitude for isotopic spin I is
given by
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To derive Eq. (16), we have also used the relation
Eq. (8).

We now make our first assumption: (I) As a function
of $ for a given value of s, the elastic t-channel dis-
continuity function Bp'&" (t,s) can be approximated
by a sumznation over direct-channel (t) resonances,
while the inelastic t-channel discontinuity function
B~' "'()',s) can be well approximated by a sum of
crossed-channel (s) Regge poles.

A similar approximation will be applied to other
discontinuity functions. Although assumption (I) is
applied to the discontinuity function, it is quite similar
to that of the successful Regge pole-resonance inter-
ference modeV which assumes the overlapping of the
direct-channel resonances and crossed-channel Regge
poles not only in the intermediate-energy region but
even in the low- and high-energy regions. By dividing
the total discontinuity function B&()I,s) into elastic
and inelastic parts and. identifying the elastic part with
direct-channel resonances and the inelastic part with
the crossed-channel Regge poles, " we have formally
avoided the possible double counting of the same
contributions. This problem will be further discussed in
Sec. III.

Experimentally, one of the most important features
of strong interactions (especially in pion-pion scatter-
ing) is the fact that the resonance formation and decay
dominate in the elastic channel. In addition, the in-
elastic cross section may be regarded as having a
relatively smooth variation considered as a function of
energy even in the low-energy region, with, however,
small corrections arising from the inelastic resonances.
This relatively smooth behavior of the inelastic cross
section strongly suggests that the inelastic amplitude
can be well approximated only by the crossed-channel
Regge poles.

Assumption (I) is quite different from that used. in
the new form of the strip approximation'' which is
based on the assumption that the scattering is com-
pletely elastic up to some critical energy and that
scattering is completely diGractive beyond that energy.

Although the expansion of B(, "'('&(t,s) in Eq. (12)
into t-channel partial waves converges only up to s=s;,
we assume its convergence for all s.

We obtain the following expression from Eq. (12):
2 00

V~, »'(~) = Z P.~"' «' Z (2l'+1)
zI~ &(q 2)(+1 p~

s )X)~B,,r, a()(t')P((1+ lQ, 1+
~

()7)
2g,.2i 2qP&

'

where the subscript I.means, as we shall d.iscuss later,
» In this context, it should be noted that there is a possibility

of constructing the theory by dividing the discontinuity into
resonant and dift'ractive parts, as opposed to the elastic and in-
elastic parts. Therefore we might say that s;, t;, and e;, do not
necessarily mean the exact lowest inelastic threshold but the
beginning of the diGractive-type scattering in the total scattering
amplitude.

that Eq. (17) is valid at least in low-energy regions.
By the 6rst half of assumption (I), we approximate
Eq. (1"/) by taking only the dominant particles or
resonance poles. As is well known, the partial-wave
potential given by the exchange of the particles or
resonances has the desired threshold behavior, and
furthermore only with such contributions can we cal-
culate scattering lengths for soxne processes. ~ We can
therefore say that our approximation to Eq. (12) using
only the dominant particles and resonances is vahd in a
relatively low-energy region. However, a potential
given by the exchange of a particle with spin shows
divergent behavior at high energy. Thus we cannot
regard such a potential as being physically meaningful
at high energy. In order to construct a potential which
has both the correct low-energy and high-energy
behavior, we 6rst introduce the alternative Regge
representation of the long-range potential Eq. (12).

By integrating over 3 the second term of Eq. (10) and
using the crossing sgmnetries, we obtain the following
double dispersion relation from the contributions of
the small-t parts of the double spectral functions:

1 " 1 1 " A „z '"('& (~',t')
vg'(s)t) =— ds' — ch'

gi S —S X'
gP

1 1 " A "&"'(I't' )
dN' — dt' . (18)

Q —SK go

From the last half of assumption (I), Eq. (18) can be
expressed by the sum of the t-channel Regge poles as
follows:

(1 " R;z'(s', t)
Vi'(~, &) = 2 P.~"' Z I—

&;R;z'(I',t))
dN' i, (19)I'—I i

where

R z(s, t) = ,'~[2m z(t)+1)q -z(&)

X(—qP) '&"&.,' (—1—/2qP), (20)

P; means the sum ovei all possible Regge p~l~s, and
$; is the signature factor of the jth Regge pole. In Eq.
(20), we used the Regge form given by Chew and Jones. '
The partial-wave projection of Eq. (19) is given by
using the formula suggested by Kong "

0

Vg, gaz(s)= — Ch Im Q( 1+
s (q,') '+' „2q.2

(1 " R (s', t)
gp zz p~

s' —s

4»"(I',&)q—
dN' ~, (21)

u' —m i
I~ D. Y. %'ong (private communication to G. F. Chew); see

also Ref. 3.
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where the subscript II means that Eq. (21) is valid in

a relatively high-energy region. The Regge representa-
tion (21) apparently gives us the correct convergent
high-energy behavior, but it does not satisfy the usual
low-energy threshold behavior. Therefore we regard
Kq. (21) as physically acceptable in the high-energy
region of the long-range potential; on the other hand,

Kq. (17) is acceptable in the low-energy region of the
long-range potential. Comparing the two alternative
expressions (17) and (21) for the long-range potential
which are valid in the low- and high-energy regions,
respectively, we now make our second main assumption:

(II) The high-energy limit of the summation of ex-

changes of particles and resonances belonging to the
same Regge family should lead to the Regge behavior

given by the exchange of the relevant Regge pole."
From this assumption we can construct a long-range

potential which satisfies both low- and high-energy
behavior by superposing the two potentials smoothly

in the intermediate-energy region.

As was stressed by Van Hove, in the broad inter-

mediate-energy region the single-particle-exchange

potential (17) and the Regge-pole-exchange potential

(21) overlap, and the appropriate potential becomes

dominant only in the low- or high-energy limit.

There are several possibilities for forming a composite

potential by the introduction of parameters. In the

following paragraph we show one of the most naive

ways to do this. If we denote by V&,», r (s) the potential

given by exchanges of the first few dominant particles

or resonances belonging to the same Regge trajectory
and denote by V&,»»r(s) the potential given by the

exchange of the relevant Regge pole, we can express the

desired long-range potential as follows:

V, ,,r(s) —P [V,, U, (s)f„(s)+V, ,,~. , (s)f„(s)J ~
. (22).

may use the following correction factor:

(
f2 (~) =I

kq,2+a„$
(24b)

Z«=o rr =o ~(q 2) l+1

t'
dt' Q ]~R~'(t', u)Q( 1+, (25)

. A 2g 2

and for V) ~'(s)

where a»)0. The factor s'/(s —so)' in Eq. (24a) is

inserted to avoid a possible threshold divergence of the
potential V(, gH,'(s).

The phenomenological damping functions (23) and

(24) were introduced only because there is no unique

formula to connect analytically U~, ~l,;r(s) and. V~,~~; (s)
at present, although they are, respectively, low- and

high-energy limits of the same potential. The param-
eters in the damping functions should be determined by
imposing boundary conditions such as the output
resonance position and width, output Regge trajectories,
and high-energy behavior of the partial-wave ampli-

tude. %hen these parameters are determined with the
boundary conditions, one can see that V~, ~r.;r(s) and

V&,»,'(s) overlap at intermediate energy and that
they approach pure V&, ir.;r(s) and V&, &H,I(s) behavior

at low and high energies, respectively.

We now turn to the new potentials (13) and (16)
which arise from the large-3 parts of the double spectral
functions. By applying the last half of assumption (I),
we obtain for V~ 2'(s)

where summation over j runs over all diferent kinds

of Regge families, and

2

V ?(g), Q P rI'P I'I
I'M

s 0—&in

ds'
s —s/

(S Spy

flj(~)= &+exp~ (23) 2 ( ~,2) l+1
(26)

s2j—S s'
fg, (s)= 1+exp, (24a)

(s—so)'

and where s]jy $2jWso, and b,~j and AQj are positive

constants. If we also assume the correct threshold

behavior for the Regge-pole exchange potential, ' we

'3 Although this fact had been generally believed, L. Van Hove
devised a simple model which clearly shows the above fact.
L, Van Hove, Phys. Letters 24B, 183 (1967). See also L. Durand,
III, Phys. Rev. 161, 1610 (1967).

'4 In Ref. 3 the same potential was used at the elastic threshold
s=s0 without a threshold correction.

1 " p(s') iAP(s') i'
gP(s) =— ds

s0 s —s

+«.x'(~)+ «,2'(~)+ &'i, s'(~) (27)

where RI,'(t,N) and R r(t, s) are given by Eq. (20).
The sum in k and i in Kqs. (25) and (26) run over all

possible families of the Regge poles in the I and s
channels, respectively. Both potentials (25) and (26)
have finite values at threshold and converge at high

energies.
Combining Eqs. (11), (14), (22), (25), and (26), we

obtain our final equation:
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In (27), V~, qr {s) is the long-range potential, and
Vt,sl(s) and Vt, sr(s) are short-range potentials. The
last two are newly introduced under assumption (I).
In Eq. (27), the most important point is the fact that
all potentials satisfy the required properties at both low
and high energies.

For the conclusion of this section we reexplain our
approximation for the double spectral function B.~(t,s)
in (5) by contrasting it to the new form of the strip
approximation. "

In the new form of the strip approximation, 23 the
double spectral function B„,(t,s) is separated into the
following three regions: (i) s smail and. t large, (ii) s
small and t small, and (iii) s large and t small. The
contributions of regions (1) and (ill) were approx1111ated

by the s- and t-channel Regge poles, respectively, and
the contribution of region (ii) was neglected.

In our theory, however, the contributions of region
(ii) plus (i) are approximated by the t-channel reson-
ances plus s-channel Regge poles under assumption (I)
without the introduction of any division such as strip
width. s s Also the contributions of the region (ii) plus
(iii) are approximated by the t-channel resonances plus
t-channel Regge poles under assumption (II) also with-
out any dlvlslon in enelgy region.

It should be emphasized that the same potcmtiul (17)
comilg from the cxchuegcs of the low clergy t chu-Inc-l

purticlcs urged resonueces sutispes both usslmptioe (I)
with s churlmel Rcgg-e poles urld ussemptiors (II) with
t chulncl E-eggs poles. From this fact one can understand
that assumptions (I) and (II) are closely related in the
construction of the dynamics and that both ussumpti ons
are rteccssury und sugcierst to describe ull regions of the
double spectral fstnctioe.

Note also that if we construct the potential with
only the Regge-pole-exchange contributions'3 we can-
not obtain a physically meaningful result. This problem
will be discussed in Sec. III in connection with discussion
of the criticism of the Regge-pole resonance-interference
model.

III. DISCUSSION

In Sec. II we constructed the dynamical Eq. (27)
with three convergent potentials based on two main
assumptions. However, there has been some criticism" "
of one of our main assumptions: There may be a possi-
bility of counting the same amplitude twice by adding
the Regge-pole exchange amplitudes and direct-channel
resonance amplitudes in assumption (I). In this section
we discuss this problem and related problems from both
experimental and theoretical points of view.

Although we have no data on direct pion-pion scatter-
ing at present, we may safely guess the general features

"C. B. Chiu and A. V. Stirling, Phys. Letters 26$, 236 (1968).
16 g.. Dolen, D. Horn, and Q. Schmid, Phys. Rev. Ig{j, Itt'$8

(1968).

of pion-pion scattering from other existing experimental
data such as s-p, p-p, and so on.

The most significant evidence for the Regge-pole
resonance-interference model is s -p charge-exchange
scattering and s.-p backward scattering. '

The s -p charge-exchange data have been analyzed
with the p Regge pole plus direct™channel resonances
down to 0.7 GeV/c incident pion energy. ""The fits

with this model to the experimental data are extremely

good and it seems that this model works at even lower

incident pion energies than 0.7 GeV/c.
On the other hand, Barger and Olsson" analyzed the

total cross-section data of s.-p, EX, E 'E-, and-EE-
scatterings in the intermediate-energy regions (1—6

GeV/c) in terms of a Regge-pole-exchange model

whose parameters were determined in the asymptotic-
energy regions. They showed that the data can be well

reproduced by the Regge-pole exchange model except
for some direct-channel resonance contributions.

The above phenomenological analyses clearly show

that even in the quite low-energy regions as well as in

the intermediate-energy regions, Regge-like behavior
really exists along with the resonance amplitudes.

As for the criticism over the possible double counting
of the same amplitude in the Regge-pole resonance-
interference model, it is well known that we can con-
struct a consistent theory with both direct-channel
resonances and. their background terms in nonrelativis-
tic theory. "Durand. "has recently discussed this prob-
lem and constructed a modified Regge-pole resonance-
interference model which avoids the possible double-

counting difficulty.

We may say that there is no theoretical inconsistency
in this model except for some technical problems" such
as the energy dependence of the elasticity factor, the
eGect of a background phase shift, on the Breit-signer
one-level formula, and the energy dependence of the
tails of the one-level formula.

We now turn to some quantitative aspects of our
theory. The sum of the contributions of P-, P'-, and
p-Regge-pole exchanges to the Regge-pole exchange
potential (21) in pion-pion scattering is always negative
for all states because the I"contribution dominates the
real part of the potential (21) according to the phenom-

Iv G. Hohler eI, al. , Phys. Letters 20, 79 (1966); A. S. Carroll
et a/. , Phys. Rev. Letters 16, 288 (1966).' V. Barger and M. Olsson, Phys. Rev. 151, 1123 (1966).

'9 V. Barger and M. Olsson, Phys. Rev. 148, 1428 (1966).
'-o See, e,g., L. D. Landau and E. M. Lipshitz, Qeewkuns Mech-

argics, (Pergamon Press, Inc. , ¹wYork, 1965), 2nd ed. ; J. M.
Blatt and V. %eisskopf, Theoretica/ Nuclear Physics (John Riley

Sons, Inc., New York, 1952)."L.Durand, III, Phys. Rev. 166, 1680 (1968).
"An excellent discussion of the criticisms of the Regge-pole

resonance-interference model was given by V. Barger and L.
Durand, III,)phys. Letters 26$, 588 (1968).
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enologically determined Regge parameters. "'4 This can
be easily understood from experiment as follows. The
ratios of real to imaginary parts of the forward scatter-
ing amplitudes are always negative in the Regge-
exchange-dominated energy regions and the amplitudes
strongly decrease as —3 increases. The fits with the
Regge-pole model to the above ratios have been well
established. Therefore, the partial-wave projections of
amplitudes with the above properties also give negative
real parts. "

Therefore, with only the Reggeized potential (21)
(as in the new form of strip approximation"), we

mostly obtain only the repulsive force due to primarily
E'-Regge exchange for all states and we cannot produce
a resonance as a dynamical output unless we use
unrealistic Regge parameters which enhance the p-

Regge pole contribution and suppress the P-Regge
contributions. ""In this sense we should stress that
the new form of strip approximation' which proposes
to construct the dynamics with only Regge-pole-
exchange potentials is not a correct one.

From the above discussion we see that the main force

"For example, V. Barger and M. Olsson LPhys. Rev. 146,
1080 (1966)g obtained the residues at t =0 for P-, P' , and p-Regge-
poles with trajectory intercepts at I,=O, a&(0}=1,o.z (0) =0.39
and a, (0) =0.48. The ratio for the above three Regge-pole residues
pz(0): pz (0): 7,(0) is about 1:9:1.3 in their energy scale of
1 GeV'. H we use the exact form of our Eq. (20) whose energy
scale is 2p ~ at t =0, the above ratio becomes about 1:94:10.The
dominant I" residue has also been obtained by Rarita et at. ,
Phys. Rev. 165, 1615 (1968).

24 E- and P'-Regge-pole exchanges give the negative real parts
and p-Regge-pole exchange gives the positive real part for the
potential (21).

'~ See also Y. Higuchi and S. Machida, Progr. Theoret. Phys.
(Kyoto) 36, 313 (1966)."P. D. B. Collins and V. L. Teplitz, Phys. Rev. 140, 3663
(1965);P. D. B. Collins, iNd. 142, 1163 (1966).

for producing the low-energy resonance phenomena as
dynamical output must come from the particle- and
resonance-exchange potential (1'l) which should coexist
with the Regge-pole-exchange potential (21).

In fact, we can quite naturally obtain the experi-
mentally established p-meson decay width as an output
in our formalism by using a potential constructed with
the particle- and resonance-exchange potential (17)
and the Regge-exchange potential (21)."Usually the
calculated meson decay width is several times as large
as that of the experimental one which is used as input'
and this situation seems not to change even when we
take into account the multichantml eRects.

Besides, the additional potentials such as Ur, sr(s)
and V&,sr(s) have not been seriously considered in the
older treatments. Actually we have found that V&,sr(s)
has an appreciable contribution. "

Pote added in proof. G. R. Bart and R. L. Warnock,
Bull. Am. Phys. Soc. 13, 106 (1968), have also discussed

boundary conditions similar to those in this paper. They
also claimed that with only the Regge-exchange poten-
tial one cannot produce the p-meson resonance as a
dynamical output. The author is indebted to Professor
V. Barger for discussions of the present situation of the
Regge-pole resonance-interference model.
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