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The available angular-distribution data on K*A photoproduction are analyzed using partial conservation
of axial-vector current (PCAC) and SU (3) XSU (3) algebra of currents. The off-shell extrapolation implicit
in the use of PCAC is contained in the limit (kaon four-momentum)? — 0 which reproduces the dynamical
singularities of the amplitude in detail. The results of the calculation show reasonable agreement with
experiment at low energy. The behavior of the angular distribution at high energy is also discussed.

1. INTRODUCTION

ECENTLY, there have been several attempts to
study the photoproduction processes using par-
tially conserved axial-vector currents (PCAC) and
SU(3)®SU(3) algebra of currents. These calculations?
were mostly confined to the determination of the mag-
netic moments and to the discussion of low-energy
theorems. Some of these calculations involve the soft-
meson limit g, — 0 for the off-shell extrapolation that
is necessary in the use of PCAC. However, this limit
is known to yield conditions on the amplitude at the
threshold,? and may not be justified for calculations in
the energy regions that are appreciably away from the
threshold. The purpose of this paper is to analyze the
angular-distribution data on K*A photoproduction in
the energy range E,=1000-1200 MeV. We use PCAC
and current algebra, but for the off-shell extrapolation
we adopt the limit ¢ — 0 instead of the usual soft-kaon
limit. This is certainly a less stringent condition and
more reasonable for comparison of our results with the
available experimental data.?
Thus in the present case we are faced with the problem
of the computation of the unknown “weak amplitude”
term that corresponds to the process

V4p— A+A,

and, as discussed later, this involves the knowledge of
various form factors. In view of the experimental un-
certainties associated with the coupling constants that
appear in the calculation, the results of the present
analysis show reasonable agreement with experiment in
the energy region under consideration.

The main body of our calculation has been divided

1 S. Fubini, G. Furlan, and C. Rossetti, Nuovo Cimento 40, 1171
(1965) ; Riazuddin and B. W. Lee, Phys. Rev. 146, B1202 (1966) ;
S. Adler and Y. Dothan, zbid. 151, 1267 (1966); S. Adler and
F. Gilman, ibid. 152, 1460 (1966) ; V. S. Mathur and L. K. Pandit,
ibid. 147, 965 (1966). Some accounts of earlier works on strange-
particle photoproduction may be found in M. Gourdin and J.
Dufour, Nuovo Cimento 27, 1410 (1963); S. Hatsukade and H.
Schnitzer, Phys. Rev. 132, 1301 (1963); S. Hatsukade, L. K.
Pandit, and A. H. Zimerman, Nuovo Cimento 34, 819 (1964).

2 This point is discussed in S. Adler and R. Dashen, Current
Algebras and Applications to Particle Physics (W. A. Benjamin,
Inc., New York, 1968).

3R. L. Anderson ef al., Phys. Rev. Letters 9, 131 (1962); also
C. W. Peck, Phys. Rev. 135, B830 (1964). Experimental points
are, however, reproduced from a compilation of data given by
H. Thom, ibid. 151, 1322 (1966).

into four sections. The first part of Sec. 2 is devoted to
introducing the notation and the various definitions, and
the second part deals with separation of the current
commutator from the so-called ‘‘weak amplitude”
term. In Sec. 3, we discuss a basic problem encountered
in any such calculation, namely, that the amplitude
does not satisfy the usual gauge-invariance requirement
when the final kaon is off the mass shell.* Section 4,
deals with the details of calculation of the weak ampli-
tude (in the limit ¢2— 0) and the subsequent compu-
tations for the angular distribution. Finally, we discuss
our results and compare them with available experi-
mental data.

2. PHOTOPRODUCTION AMPLITUDE
We define the .S matrix for the process

v(&)+p(p1) = K*(9)+A(p2) (0
as follows:
Sfi= ie(27r)46(4>(p2+ q—p1— k)

X (M pM s/4E ,Ergoko)* Ty, (2)
where e is the electric charge and the other symbols
have their usual meanings.

It must be emphasized that, when the final kaon is
off the mass shell, the photoproduction amplitude has a
nonvanishing divergence (as discussed in Sec. 3), and
consequently one must retain all six Lorentz-invariant
amplitudes in the equation

6
Ti= E Vita(p2)O(V )up(p1), ®
where

O(Vy)=ivs(v-e)(y-k),
O(Va)=1tys5(p1tp2)-e,
O(Vs)=1ivs(g-e),
OV =vs(y-e), @
O(Vs)=vs(v k) (pr+p2)-e,
O(Ve)=vs(v-k)(g-¢).

Using the standard reduction technique and PCAC,
the T-matrix element for the process (1), as defined by

4 M. Nauenberg, Phys. Letters 22, 201 (1966) ; also S. Adler and
Y. Dothan, cited in Ref. 1.
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Eq. (2), is given by

q2+mK2( ELEp )"2
M My

[i=
CK

% [—i f dte o723 (o) (A| [Ao(2),7(0) 11 )

_qv/d4x e_iq'z<Al T{4,(x)j.(0)} lP) €u

=T+ T7™, ®)

where T ;@ is the current-commutator term and 77,
is the so-called weak amplitude; cx is the PCAC con-
stant corresponding to the strangeness-changing axial-
vector current as defined by

04,/ X, = cxdx. (6)

Now, using the equal-time current commutation
relation

8(%0)[40(®),7u(0) 1=axd u(%)5*(x), M

we obtain

Ty@=—1 _;-"aK<A‘An(0)|P>5m (8)

.( EpEA )1/2 sz
A

where the off-shell extrapolation ¢>— 0 is implicit.
The evaluation of the antisymmetric SU(3) coefficient
ax is facilitated by recalling the SU(3) structure of the
electromagnetic current,

Ry RORE, JRON
whence, from the standard table of isoscalar factors,®
we get

ag=—3%V3. (9
Thus one finally obtains

tha (B)ty
X (gAA(iz)WYs——A‘-j—s)%p (Pv)es

P A

1 me®_ ()
=——Td
\/g CK * P2

( @0t ow >)u (), (10)
X\ ga 4 YERTA 3) Jup(P1),

where t=g—Fk and g42(#*) and k4%(1?) are, respectively,
the A B-decay axial-vector and induced-pseudoscalar
form factors evaluated at the momentum transfer £.

6 P, McNamee and Frank Chilton, Rev. Mod. Phys. 36, 1005
(1964).
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3. GAUGE INVARIANCE AND OFF-SHELL
AMPLITUDE

We begin with a brief outline of the derivation of the
gauge condition satisfied by the photoproduction
amplitude.

If we define the total transition matrix element by

Ty= T,,e,,, (11)

then its divergence, which is obtained by the replace-
ment e, — &, is given by

T k=

q2+mz<2< E E,

M,,MA)W{"i““AlAn(O)Ip)k"

CK

——q,,/d“x ez {A| T[Aa(x)ju(o)]li’>ku}

q2+mx2< E,E,

MPMA)W{_M"(AIAM(O)IP)]%

CK
+igs f d'x e"""xé(xoxAl[Aa(O),J‘o(—x)]l;P)}

_ax(g+me?) [ ByF
o \u,um,

1/2
) i(qu—ku)(A| 4,(0)| ).
(12)

From (12), on reimposing PCAC, one obtains after a
little calculation

Tukuy=[ax(g®+mg?)/(E2+mg?)]
X gy (1Daa(pa)vsun(pr), (13)

which reproduces the usual on-shell gauge condition
T ku=0 for ¢?=—mg? However, the difficulty of this
nonvanishing divergence caused by the off-shell final
kaon is inherent in any such current-algebra calculation.
It can be eliminated altogether if we envisage a smooth
extrapolation to the physical amplitude from the limit
mg?— 0, corresponding to the production amplitude
of a zero-mass kaon. This conjecture is supported by the
calculations of Berman® and of Roy.”

4. CALCULATION OF WEAK AMPLITUDE
AND ANGULAR DISTRIBUTION

It is obvious that under a K-pole dominance the
photoproduction amplitude receives a vanishing con-

6 S. M. Berman, Phys. Rev. Letters 18, 1081 (1967).
7P. Roy, Phys. Rev. 162, 1644 (1967); 172, 1849(E) (1968).
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tribution from the weak-amplitude term,

sz EpEA 1/2
Tf‘,(w)=__~( ) q.,/d"x e—iq-x
CK M,,MA

XA T{A4: @)7u(0)} [P)e,  (14)

in the soft-kaon limit ¢— 0, and consequently sup-
presses the dynamical details of the process to a con-
siderable extent. However, an extrapolation from the
limit ¢?=0 reproduces all the dynamical singularities
of the amplitude, and hence is certainly a better repre-
sentation of the facts.

In ordér to calculate the weak amplitude we saturate
the complete set of intermediate states with p, A, 2,
and Y* single-particle states. The §~ resonance Yo* is
excluded because of the lack of experimental data on its
electromagnetic form factor. The reasons for including
only these low-lying states are discussed below:

(a) N3;3*(1238) (in the direct channel) does not
contribute, because of isospin conservation at the
strong vertex N*KA.

(b) The N*+(1400;3%) and N*(1570;17) can, in-~

principle, contribute to our weak amplitude. Their
contributions, however, involve the unknown vertices
N*3)£N~y and N*(3)£KA.8 In view of the uncertainties
in these couplings we have not attempted to estimate
these contributions.

(c) The possible higher-spin resonances have also
have also been neglected on similar grounds.

We now write the matrix elements of the vector and
the axial-vector currents, where Y,* is treated as a
stable spin-§ Rarita-Schwinger particle:

(» I Ju™ l P) =il WPP Uy,
(A juom ! J=taaT Ay, j=A,2
(Al juom| ¥V 1*)= (iCa/mr) A Y10y V iy sty ,

(15)

where C3AY1*7 ig the dominant one of the three gauge-
invariant couplings obtained by Gourdin and Salin®
and

I‘,‘= F17“+iF20”pk,, V,‘y= ka,,,,—-'y,,k.,.

8 The N*(3)~KA coupling may be obtained under the following
assumptions: (a) The N*(3)~ belongs to an SU(3) octet, and
(b) the d/f ratio for this coupling is the same as for the NNr
coupling. Under these assumptions ga*q/2)-xa®/4w~0.02. The
N*(3)~Nvy coupling involves in the simplest approximation the
knowledge of the N — N* ()~ transition dipole moment. In view
of the uncertainties in these couplings, we have not attempted to
estimate this contribution. This problem needs further investi-
gation. The N*(})*Ny vertex is also not known, and, furthermore,
one finds that the N*(3)*KA coupling is difficult to estimate at
present. '

9 M. Gourdin and Ph.Salin [Nuovo Cimento 27, 309 (1963)]
show that out of the three gauge-invariant couplings, only one
makes the dominant contribution, and only this has been retained
in the calculation.
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For the relevant matrix elements of the axial-vector
current we take

(71 4e| p(2))=ta;{ga(s)vovs
+Li(pi—)o/ 2M p Jysha(f)} s, j=A, 2. (16)

Obviously the induced pseudoscalar form factor does
not contribute to the weak amplitude in the limit ¢>— 0.

Finally, following Schnitzer,'® we note that there are
four linearly independent form factors for the p-Vy*
axial-vector vertex:

(Yr*(pu) | 4o| p(p1))=15(pn)[ga(Y1*),0
+g2tv(7a€ap)\aplpt)\75)+g3€uaay€7prapla1>iptﬂtr
+g4tv(t2plv"tvﬁl't)]“p(ﬁl); 17

with {=p1—p,. If we note that p,=p1—gq, i.e., t=g, it
is clear from (17) that the coefficients of gy, g3, and g4
are transverse to ¢ and do not contribute to the weak
amplitude (14). Accordingly, we proceed by retaining
terms involving g4(¥1*) only.1t

Equations (15)—(17) take care of a proton pole in the
direct channel and A, 2, and V,* exchanges in the #
channel. )

However, if the weak amplitude is viewed, within
the framework of current algebra, as representing the
process '

V+p— A+A,

it may receive a contribution from a f-channel K*
exchange. This involves the unknown decay width
Q4— K*+v which so far has not been observed. In
any case, one may use SU(3) symmetry and try to
relateit to the 4; — p++ width, whichis also not known

" experimentally. Also, the unknown vertex (K*|A4,]7),

when dominated by the K pole, has the structure g,F,
where F is some suitable form factor that has a pole at
the kaon mass. Hence ¢,(K*|4,|y), which occurs in
(14), vanishes in the limit ¢>— 0. However, note that
the /-channel pole in the total amplitude is partly
taken care of by the current commutator.12 ‘

The contributions of the intermediate states p, A,

10 H. Schnitzer, Phys. Rev. 158, 1471 (1967).

11 See also C. Albright and L. Liu, Phys. Rev. Letters 13, 673
(1964). It is interesting to note that this analysis of the N*
production by neutrinos also seems to favor the retention of only
one form factor. For example, compare the curves ¢, f/, and g’ of
Fig. 2in Albright and Liu’s paper, which are obtained by retaining
only Fi# (corresponding to g4 in our notation) and give better
agreement with experiment. See also S. N. Biswas, Aditya Kumar,
and R. P. Saxena, ¢bid. 17, 268 (1966), where they discuss the
decuplet contribution to nonleptonic A decays, incorporating only
the ga-type term, and obtain good agreement with experiment.
A similar conclusion also follows from I. M. Zheleznykh, Phys.
Letters 11, 251 (1964). Here also, good agreement with experiment
is obtained by retaining only one axial-vector form factor.

2J. J. Sakurai, Phys. Rev. Letters 17, 552 (1966).
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2, and Y* are given, respectively, by

M,

mx? 2
Ty (p)= ';‘I;_'ﬁl\ (p2)iga (M) gy 5WP WP (P1) e,
Ty (4)= _zn—l‘(‘z’ﬁA (172)I‘nAh€n_MgA (D gysus(p1),
CK (P2_k)2+Mi2
I T )= szﬁA (P2>iC3Ay;*7VMﬂ§(P1* q)+iM. Prata(F s(p)es,
CK Mx (hr—@+Ms

where the superscripts (s) and (#) indicate the direct and the crossed channel, j=A, Z, and

P,,= 5v¢r—%’YV'Yv+ (1'/3M*)|:'y,,(j)1'— (Z)v""Yv(Pl— Q)v:]+(2/3M*2) (Pl"‘Q)v(Pl"'Q)v-

Now a straightforward calculation shows that the above expressions lead to
Tfi= Tﬁ(c)_i_ T/;(“’)
=T O+TuO )+ 2 Tr™())
. J=AZ,Y*

= gl Viiia(p2)O(V)un(p1),

where
mx® ga(A) . Mp } mg® ga(f)
= (M MY —2p0 g (M M) | —— ¥ ————
1 ‘K <p1 {[( ’ e QJZMP s & Cx =MI 2Py k+M\— M}
D21 g (U M) (U )t 8T
b1 q P A » 3 JMA+MjTCK[2p2'k+ (MAZ—MJ)]
X A3Mag-kt po K21+ q-+ Mo QM s+ M y— Mo 1= Moo (M- M) (MM ) QMo— M s+ M)}, (182)
2 A C AY1*~/g (Y *)
2=1”_I_<_(34( )(Mp"l'MA) Ky 3 a(Yy q-k) , (18b)
CK 2P1k ZMP 2P2'k+MA2—M*2
mg® A i Cah¥*1g,4 (V1) har(8)
“=_—K_(gA( )(M”+M“) T (P1+Pz)‘k+_f‘—")7 (18c)
cx \2p1-k C2Mp 2Py kM- M V3(M p+My)

mr? 1273 mg® 8a (.7) (Mi+Mp) KAj
I W @ gt M p— M) — (M o+ M )21 )+——2 >
Vs . ga( )(( por g+ M, A= (M y+M)2p: ) o b2 E2 2kt M~ MP Mo+ M

mg* mr?ga (¥ *)CsA1™

+ gAA(F)J[ {(MA+M*)3M*2qk
V3ck 3cx(2pe b+ Ma*— MM
+2P2 k[(MA-*-M*)Pl q—M*Zpg k+M*2(MA+Mp+2M*)

—5Mu(Ms— M) (Mat-2Ms+M )]}, (18d)

mx® ga(4) M) By MK MptMga(s)  my | mCM (V)
ox 2k T U NaM, ok iR 2pe kA M= M2 Mo+ My 3Mck(2py kt-Mi— M)
X[2Mxpo-k— (MA'*‘M*)Pl q+%M*(MA'—Mp) (ZMA—{—M*-FMP)—M*Z(MA-I-M,,-}-ZMt)], (18e)

13 The spin-§ propagator appearing in Ty (Y,*) is taken from M. Gourdin and Ph.Salin, Nuovo Cimento 27, 193 (1963).

5=
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mg?® ga(A) by MK ga(D)(Mp+M;)  paj mr?Cyd¥1*7g 4 (V1¥)
Vem— ——(M y+- M )—— ey
CK 2P1k 2Mp Ck i=A.Z sz'k-l-MAL—M,z MA+Mj 3M*2CK(2P2’k+MA2—Mt2)
X[(Mt'l-MA)[Jlq—ZM*?z'k—%Mt(MA—Mp) CMs+M-M )+ M2(Mp—2Mi—Ms)]. (18f)

All the masses occurring in the above equations are understood to be measured in units of the pion mass. Now the

differential cross section in the c.m. frame is given by

do MMy |q| 1

@ Wy |kl 4

(19)

where |q| and |k| are the outgoing and incoming c.m. momenta, W is the total c.m. energy, and

6
X=X ViV;Tr[vO (Vi)vaha ™ (p2)0u(Vi)A,H (p1)].

2,7=1

Evaluating the traces, one obtains

(20)

X=(1/4M \M ) {16V (k- p1) (k- p2) — 4V 2(p1+t p2) (pr- pot-M ;M s)
+4VsPmr(pr- pat-M oM z)—8V ¥(p1- pa—2M M ) +8Vs*(p1+ pa)*(k- p1) (k- p2) — 8V 6*mr*(p1- k) (pa- k)
—8V1Va[2(k*p1)(p2- p1)+M (k- po) — M a*(k- p1)+M M sk (p1+p2) ]
—8VVi[(q-k) (P p2)— (k- p2) (g p)+ (k- p1) (g p2)+M oM u(g- k) ]
F16V 1V (M k- pot-2M sk p1)+ 16V VM a(k+ pr)k- (p1+p2)+16V 1 VeM a(q- k) (k- p1)
—8VoVa(prtp2) - q(pr- pot-M M) — 8V V[ (M p— M) (P2 p1)+M M A(M ,— M) ]
—8VaVs(prtp2)2(M k- po— M sk p1) — 8V oVe(prt pa) - q(M pk po— M sk p1)—8V sV (M g+ pa— M aq- $1)
—8VsVis(patp1) - q(M ok po— Mk p0)+8VVemg*(M k- po—M sk “p1)
+ 8V V(M Myx—M 2Dk pot (M Ma—M Dk pr 148V Ve[ (- p2) (k- p1)—(g- k) (p1- p2)
+(q-pr) (k- p2)+M M aq-k1H16VsVe(prtp2) -q(k- p2) (k- p1)}, (21)

where the external kaon has been extrapolated back onto
the mass shell.

The explicit ¢ dependence of the axial-vector form
factor contained in Eq. (19) is taken to be

240) (W)
1+8/Mxt 1+ (g—k)Y/ Mz

g4t (#)= (22)

Because of the lack of reliable data, we use the Gold-
berger-Trieman relation to relate the axial-vector and
the induced pseudoscalar form factors in the following
manner:

har(#) =~ —gaMO)Ms+M )"/ (P+Mi?). (23)

Although the application of the Goldberger-Treiman
‘relation is questionable, it is not expected to affect the
result significantly, at least in the domain of low
momentum transfer where the contribution of ‘the
induced pseudoscalar term is known to be sufficiently
small.

5. NUMERICAL RESULTS AND DISCUSSIONS

‘For fx=ck/mx?, where cx is defined by Eq. (6),
we use the value given by Ref. 6:

fr=1.14+0.03,

as estimated from the information available from K3
and K — uy decays.

The A B-decay axial-vector form factor is taken to be
g4(A)=0.68+0.07,

an estimate given by Willis ef al.,' which is known to be
relatively free of model uncertainties. From the above
value of g4(A) the form factor g4(Z) is calculated using
the estimate due to Brene et al.1®* We get

g4(2)=0.23-£0.08.

In the absence of reliable experimental data, ga(¥,*)
is computed in the limit of exact SU(3).16 Thus

gA(Y1*) =0.454-0.04.

We now focus our attention on the electromagnetic
form factors.

The p and A magnetic moments are quite well
known!718;

wp=1.79, us=—0.69

14W. Willis ef al., Phys. Rev. Letters 13, 291 (1964).

15 N. Brene, L. Veje, M. Roos, and C. Cronstrom, Phys. Rev.
149, 1288 (1966).

16 The numbers quoted here for g4(A) and g4(Z) are actually
taken from Ref. 7.

17 A. H. Rosenfeld ef al., Rev. Mod. Phys. 37, 633 (1965).

18 The number quoted here for ua is due to H. R. Rubinstein,
F. Scheck, and R. H. Socolow, Phys. Rev. 154, 1608 (1967). The

A magnetic moment is in fact an average of several experiments
given in Ref. 17. ‘
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(in units of the nuclear magneton). But for the transi-
tion moment we again appeal to SU(3),'® whence

pas=—3V3un.
For the Vi*Ay vertex we use the relation?®
(A em] Y1*)=—3V3(n| fom| Ns5/2*).

This follows from the U-spin invariance of the electro-
magnetic - interactions in the absence of medium
strong interactions.

( 19 S.) Coleman and S. L. Glashow, Phys. Rev. Letters 6, 423
1961).

% M. Gourdin, Unitary Symmetries and Their Application to
H ig;z) Energy Physics (North-Holland Publishing Co., Amsterdam,
1967), p. 91.
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F16. 1. Angular distribution at E,=1003, 1018, 1054,.1160, and
1200 MeV. The solid curves show our results and the dashed
curves are the results of the soft-kaon calculation. The experi-
mental points are reproduced from Ref. 2.

We also use
(1] fom| N3/*0)=(p| jom| Naj2*),

which is derivable from the first-order breaking of the

isospin symmetry and the isovector character of the
photon.
From these we obtain

Cypr*r=0.31,

where we have used the well-known Gourdin-Salin
estimate® based on the isobaric model for pion
photoproduction.

The numerical computations have been performed in
the IBM 1620 computer and the parameter Mx is
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Fr1c. 2. Excitation spectrum at angles 6,.m, =90°, 60°, and 30°.
The solid curves show our results, and the dashed curves are the
results of the soft-kaon calculation.

varied from 800 to 1500 MeV. The best fit?! was ob-
tained at M x=3850 MeV.

In Fig. 1 we show the angular distributions, where
the experimental points are taken from Ref. 3; the
dashed curves are the result of the soft-kaon calcula-
tion, where the only contribution comes from the axial-
vector form factor. Figure 2 shows the dependence of
the c.m. differential cross section on the incident photon
energy. Not many reliable data are available on the
total kaon-production cross section.

The low-energy angular-distribution data fit reason-
ably well with experiment, but at high energy thereisa
significant discrepancy. We note that the soft-kaon
limit (g=0) gives results whose variation with angle is
minimal and deviates from the experimental data at
all energies. Such behavior may be expected on quali-
tative grounds.

2 S, Adler, in Proceedings of the Argonne International Con-
ference on Weak Interactions, 1965 [Argonne National Laboratory
Report No. ANL-7130 (unpublished)], pp. 257-270. Adler has
mentioned the model dependence of the parameter Mx; e.g., he
obtained the best fit with M x =600 MeV, whereas Ph.Salin (to be
published) got the best fit with M x=1400 MeV.
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The observed discrepancy at high energy may be
attributed to the following factors. The weak amplitude
has been saturated by a few low-lying states, and, in
particular, the contributions of N* resonances in the
s channel and ¥¢* in the % channel have been excluded
for lack of experimental data. Further, the calculation
has been performed within the framework of the off-shell
¢?>— 0 limit, and the higher-order contributions in the
kaon four-momentum, which may be important at
high energies, have been neglected. The off-shell cor-
rections also need further investigation before the use
of PCAC and current algebra for the kaon may be justi-
fied. This investigation is in progress in connection with
KN scattering.
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