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Current Algebra and J +a Photoproduction

DEBABRATA BASU AND R. ¹ CHAUDHURI

Centre for Advanced Study in Physics, Unsversity of Delhi, Delhi, India
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The available angular-distribution data on E+h. photoproduction are analyzed using partial conservation
of axial-vector current (PCAC) and SU(3) XSU{3)algebra of currents. The oG-shell extrapolation implicit
in the use of PCAC is contained in the limit (kaon four-momentum)' —+ 0 which reproduces the dynamical
singularities of the amplitude in detail. The results of the calculation show reasonable agreement with
experiment at low energy. The behavior of the angular distribution at high energy is also discussed.

1. INTRODUCTION

ECKNTLY, there have been several attempts to
study the photoproduction processes using par-

tially conserved axial-vector currents (PCAC) and
SU(3)SU(3) algebra of currents. These calculations'
were mostly confined to the determination of the mag-
netic moments and to the discussion of low-energy
theorems. Some of these calculations involve the soft-
meson limit q„—+ 0 for the off-shell extrapolation that
is necessary in the use of PCAC. However, this limit
is known to yield conditions on the amplitude at the
threshold, ' and may not be justified for calculations in
the energy regions that are appreciably away from the
threshold. The purpose of this paper is to analyze the
angular-distribution data on E+A photoproduction in
the energy range E~= 1000—1200 MeV. We use PCAC
and current algebra, but for the off-shell extrapolation
we adopt the limit q' —+ 0 instead of the usual soft-kaon
limit. This is certainly a less stringent condition and
more reasonable for comparison of our results with the
available experimental data. '

Thus in the present case we are faced with the problem
of the computation of the unknown "weak amplitude"
term that corresponds to the process

V+p —+ A+A,

and, as discussed later, this involves the knowledge of
various form factors. In view of the experimental un-
certainties associated with the coupling constants that
appear in the calculation, the results of the present
analysis show reasonable agreement with experiment in
the energy region under consideration.

The main body of our calculation has been divided

' S. Fubini, G. Furlan, and C. Rossetti, Nuovo Cimento 40, 1171
(1965};Riazuddin and B.W. Lee, Phys. Rev. 146, B1202 (1966);
S. Adler and Y. Dothan, ibid. 151, 1267 (1966};S. Adler and
F. Gilman, ibid. 152, 1460 (1966);V. S. Mathur and L. K. Pandit,
ibid. 147, 965 (1966). Some accounts of earlier works on strange-
particle photoproduction may be found in M. Gourdin and J.
Dufour, Nuovo Cimento 27, 1410 (1963); S. Hatsukade and H.
Schnitzer, Phys. Rev. 132, 1301 (1963); S. Hatsukade, L. K.
Pandit, and A. H. Zimerman, Nuovo Cimento 34, 819 (1964).

This point is discussed in S. Adler and R. Dashen, Current
Algebras and Applicatiorls to Particle Physics (W. A. Benjamin,
Inc. , New York, 1968).' R. L. Anderson et a/. , Phys. Rev. Letters 9, 131 (1962); also
C. W. Peck, Phys. Rev. 135, B830 (1964). Experimental points
are, however, reproduced from a compilation of data given by
H. Thorn, i' 151, 1322 (196.6).

into four sections. The first part of Sec. 2 is devoted to
introducing the notation and the various definitions, and
the second part deals with separation of the current
commutator from the so-called "weak amplitude"
term. In Sec. 3, we discuss a basic problem encountered
in any such calculation, namely, that the amplitude
does not satisfy the usual gauge-invariance requirement
when the 6nal kaon is off the mass shell. 4 Section 4,
deals with the details of calculation of the weak ampli-
tude (in the limit q'-+ 0) and the subsequent compu-
tations for the angular distribution. Finally, we discuss
our results and compare them with available experi-
mental data.

q f'= Z Vs"s(Ps)O(vs)stv(p~), (3)

where
O(V,)= s~,(~') (~.k),
O(vs)=sos(ps+ps) s

O(V,)=s~s(q'),
O(V4)=ys(y e),
O(vs)=vsh k)( p+sp)s. ,e

O(Vs)=ps(y k)(q e).

Using the standard reduction technique and PCAC,
the T-matrix element for the process (1), as de6ned by

' M. Nauenberg, Phys. Letters 22, 201 (1966);also S. Ad)er and
Y. Dothan, cited in Ref. 1.
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2. PHOTOPRODUCTION AMPLITUDE

We define the S matrix for the process

7(k)+p(ps) ~&'(q)+~(ps)
as follows:

Sf; ie(2sr) sb&s&(Ps+ q
——Ps k)——
X(MPfs/4E Esqpkp) Tf' (2)

where e is the electric charge and the other symbols
have their usual meanings.

It must be emphasized that, when the final kaon is
o6 the mass shell, the photoproduction amplitude has a
nonvanishing divergence (a,s discussed in Sec. 3), and
consequently one must retain all six Lorentz-invariant
amplitudes in the equation
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Eq. (2), is given by

q'+es)r'( E+s )'»

e)r (M~s j

x -' d'*.-"*~(*o)«I[Ao(*),j.(0)jl»

3. GAUGE INVARIANCE AND OFF-SHELL
AMPLITUDE

We begin with a brief outline of the derivation of the
gauge condition satis6ed by the photoproduction
amplitude.

If we de6ne the total transition matrix element by

—q. d'* -"*9l&(A. (*)j.(0)ilp) ~

p .(c}+p .(w)

Tfs= TIs6Is j

then its divergence, which is obtained by the replace-
ment e„—& h„, is given by

where Tr;(') is the current-commutator term and Tr (") q'+t)rrr' E+s )'»
is the so-called weak amphtude; e)r is the PCAC con- ~„h,=

I

—i(rs&A. IA„(0) I p)h„
stant corresponding to the strangeness-changing axial-

vector current as de6ned by

()A s/8Xs =e)rgb,

Now, using the equal-time current commutation
relation

h(xp) [A p(x),j„(0))=n)rA„(x) 5'(x),

we obtain
(E+s

«&j I A. (o) I p)s. (g)
kcV„Ms err

-q d'* -".&~I~[A.(*)j.(0)jlp».

q'+twas( E~Es yr» — .&~IA„&0)lp»„
&m~,)

+iq, d'xe '"'*()(xp)&XI[A.(0),J,(—x)jlp)

«(q +pl)r ) EyEs
'(q.-h.)&~IA.&0) I p).

c~ 3f
where the oG-shell extrapolation q

—+0 is implicit.
The evaluation of the antisymmetric SU(3) coeff(cient

(re is facilitated. by recalling the SU(3) structure of the
electromagnetic current,

j =j (s)+y~fgj (s) Fr()m (12) o»eimposmg PCAC, one obtains after a
little calculation

whence, from the standard table of isoscalar factors, s

we get
'V3 (9) ~.hs= [«(q'+~~')I(1'+ttpx')]

Xg,(1')tsar(p )ysu, (p ), (13)

i 5$~~
r (')= —— — ~~(ps)

v3 e)c

ihgs(P)1„ys))
X gz ~ 7)75

3f„+Ms I

fSg
r(s(p.)

&3 c~

h&'(P)xg:~
&~+DID

~here 1=q
—h and gzs(1s) and h~s(P) are, respectively,

the g p-decay axial-vector and induced-pseudoscalar

orm factors evaluated at the momentum transfer t.

which reproduces the usual on-shell gauge condition
T„k„=0for q'= —m~'. However, the difBculty of this
nonvanishing divergence caused by the off-shell 6nal
kaon is inherent in any such current-algebra calculation.
It can be eliminated altogether if we envisage a smooth
extrapolation to the physical amplitude from the limit
vs~' —+ 0, corresponding to the production amplitude
of a zero-mass kaon. This conjecture is supported by the
calculations of Herman' and of Roy. ~

4. CALCULATION OF WEAK AMPLITUDE
. AND ANGULAR DISTRIBUTION

It is obvious that under a E--pole dominance the
photoproduction amplitude receives a vanishing con-

5 p. Mcwamee and Prank Chilton, Rev. Mod. Phys. 36, 1005
(1964}.

' S. M. Herman, Phys. Rev. Letters 18, 1081 (1()6'/).
& P. Roy, Phys. Rev. 162, 1644 (1967); 172, 1849(E) (l968).
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tribution from the weak-amplitude term,

in the soft-kaon limit q
—+0, and consequently sup-

presses the dynamical details of the process to R con-
siderable extent. However, an extrapolation from the
limit q'=0 reproduces all the dynamical singularities
of the amplitude, and hence is certainly a better repre-
sentation of the facts.

In ord6 to calculate the weak amplitude we saturate
the complete set of intermediate states with p, A, Z,
and. I'~* single-particle states. The 2 resonance Fo ls
excluded because of the lack of experimental data on its
electromagnetic form factor. The reasons for including
only these low-lying states are discussed below:

(a) gf fe4-(123g) (in the direct channel) does not
contribute, because of isospin conservation at the
strong vertex E*EA.

(b) The E*+(1400;ls+) and E*(15'IO;s ) can, in
principle, contribute to our weak amplitude. Their
contributions, however, involve the unknown vertices
E*(s)+Ey and Ee( ',)+Eh, s In v-iew of the uncertainties
in these couplings we have not attempted to estimate
these contributions.

(c) The possible higher-spin resonances have also
have also been neglected on similar grounds.

We now write the matrix elements of the vector and
the axial-vector currents, where F~* is treated as a
stable spin-~3 Rarita-Schwinger particle:

&p Ij:-Ip)=s~.I'.""N.
(AI j ' Ij&=st4qI' s'rg j=A Z

(A I
j„'"

I
I'l*)= (scs/4N. )'"4'vt4sv„„F444„,

(15)

where CI~~I'& is the dominant one of the three gauge-
lnvRllRnt coupllngs obtRlned by Gourdln RQd Salln
Rnd

I'„=Fty„+sFso„„k„, V„„=k8„.—y„14,.

m~s Z~, ) I

gf. (t )— g, de e-'4 *
err 3IPSs)

&&&AI&(~.(*)j.(o)) I p&e„(14)

For the relevant matrix elements of the axial-vector
current we take

&jI~.Ip(p))=s~ {g~(j)v.vs

+L(P —P)-l2~ 3v A' (j)) „j=A,&. {16)

Obviously. the induced pseudoscalar form factor does
not contribute to the weak amplitude in the limit q' ~ 0.

Finally, following Schnitzer, "we note that there are
four linearly independent form factors for the P-Fl*
axial-vector vertex:

&I'*(p.) I~.lp(P )&= .(p-)I g (I" ')3,.
+grfv (gaea pl vP lpfQ'4)+ gS eva pV eV p vvPtaP rpfpf v

+IL'4f (f pl f Pl'f)3+ (pl) p (1~)

with f= pl —p„. If we note that p„=pl —q, i.e., ]=g, lt
is clear from (1/) that the coeKcients of g,, g, , and g»
are transverse to q and do Qot contribute to the weak
amplitude (14). Accordingly, we proceed by retaining
terms involving gz(Ft*) only. "

Equatlolls (15)—(17) take cate of a proton pole ill 'tile

direct channel and A, Z, and I"~* exchanges in the I
channel.

However, if the weak amplitude is viewed, within
the framework of current algebra, as representing the
process

it may receive a contribution from a t-channel E*
exch Rngc. This lnvolvcs thc unkQowQ decRy width
Q~~E*+y which so far has not been observed. In
any case, one may use SU(3) symmetry and try to
relate it to the A l~p+y width, which is also not known
experimentally. Also, the unknown vertex (E*I2

I y&,
when dominated by the E pole, has the structure g,F,
where Ii is some suitable form factor that has a pole at
the kaon mass. Hence g,(E*IA,Iy&, which occurs in
(14), vanishes in the limit ps ~ 0. However, note that
the t-channel pole in the total amplitude is partly
taken care of by the current commutator. "

The contributions of the intermediate states P, A,

I The Ã*($) EA, coupling may be obtained under the following
assumptions: (a) The Ea(~s) belongs to an SU(3) octet, and
(b) thc d/f ratio for this coupling is the same as for the SEx
coupling. Under these assumptions g~g (~~~)-~q'/4n 0.02. The
X~($) Ey coupling involves in the simplest approximation the
knowledge of 'the E—+¹($)transition dipole moment. In view
of the uncertainties in these couplings, we have not attempted to
estimate this contribution. This problem needs further investi-
gation. The ¹ (~~)+My vertex is also not known, and, furthermore,
one 6nds that the Ã*(~2)+XX. coupling is dificult to estimate at
present.' M. Gourdin and Ph. Sajin LNuovo Cimento 27, 309 (1963)j
show that out of the three gauge-invariant couplings, only one
makes the dominant contribution, and only this has been retained
in the calculation.

I0 H. Schnitzer, Phys. Rev; 158, 1471 (1967).» See also C. Albright and L. Liu, Phys. Rev. Letters 13, 64P3
(1964). It is interesting to note that this analysis of the Na
production by neutrinos also seems to favor the retention of only
one form factor. For example, compare the curves e', f', and g' of
Fig. 2 in Albright and Liu s paper, which are obtained by retaining
only Fz (corresponding to gz in our notation) and give better
agreement with experiment. See also S.N. Biswas, Aditya Kumar,
and R. P. Saxena, ibid. 1?, 268 (1966), where they discuss the
decuplet contribution to nonleptonic A. decays, incorporating only
the gg-type term, and obtain good agreement with experiment.
A similar conclusion also follows from I. M. Zheleznykh, Phys.
Litters 11,251 (1964).Here also, good agreement with experiment
is obtained by retaining only one axial-vector form factor.

Ia J.I. 3akurai Phys. Rev. Letters 17, 552 (1966).
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Z, and I j* are given, respectively, by"

mph' p2+iM„
Tf"'(P)= &'(Pm)ig" (~)qv' iF„""u (p)e„,

&z (pg+k)'+™

Tr"")(j)=—m~' (Pg+iM;)
&~(P2)F."'"— g~(j)e N. (P ),

c~ (p,—k)'+M 2

m~2 jQ A Yg+y

Tf"")(Y~*)= ~~(P2)
(p&—q)+iMe

~juv75 ~vaqag A(Y1 )Ny(pl) 6p q

(P q)'+—M"

where the superscripts (s) and (I) indicate the direct and the crossed channel, j=A, Z, and

E„.=3„, ',y„y—.+-(i/3M. )[y„(p q). —y.(p—, q)„]+—(2/3M. ')(p, —q)„(p,—q). .

Now a straightforward calculation shows that the above expressions lead to

',—T',(e)+T'.(w)

—:Tf'(')+Tf (')(p)+ Q Tf'") (j)j A, X, Y1+

where

= 2 Y"'(P2)o(Y)N.(p'),
1

nsyP gg(A) p, m" g"(j)
Vg= [(M„™)'—2pm q]——(M,™)—

c~ 2pg k 2M, c~ ~-~,z 2p, k+M.2 M)2—
m"Cg' &'&gg(Yg*)

X[2pg q+(M„+Ma)(M „+M;)] +
Mp+M; c~[2P2 k+(Mg' Me')]—

X&3M"q k+Pa k[2Pz q+M. (2Mx+M„M*)] M. (M—.+M,—)(M,+M,)(2M. M,+M„)), —(18a)

~z'ig(3) u C3""*'g~(Y~*)
Y,=

l
(M„+M,)

' — qkl,
cg &2pg k 2M, 2pm. k+M" M"—

ygyP g~(A) p~ C3 "' 'g~(Y~*) k~ (P)
~a= (M.+M.) +-, , (P.+P2) k+

2p, k 1 2M„2pm k+Mg' —M" v3'(M, +Mg)

m~2g„(Y,*)C,'»*'5$+
+ g L(p)+ ((Mx+M.)3M''q k

v3c~ 3c~(2pm k+Mg' —Me')Me'

+2p2 k[(Mx+M. )pg q M+2P2 k+M~'(M—~+M„+2M,)

mg ( m~' g"(i)(%+M.) w;
«= g. (~) I

(2p'q+M ' M") (M.+M-.)2p~ -k +
c~ 2M' cz '=". 2p2 k+Mg' Mp M'+M;—

(18b)

(18c)

2M'(Mz M„)(M—++2M'+M—~)]), (18d)

m~'g~(~) ~, ~~' (M.™;)g, (j) ~„~~2C,'r'* g.(Y,*)

c~ 2P~ k 2M. c~ '=",&2pq k+M" MpM~+M; 3M"—cz(2P, k+M"—M")

X[2Mep, k —(My+Me) p( q+ 'Me(Mp M~)(2M'+-M++M—~) M*'(Mg+M„+2M—e)], (18e)

» @he spin-$ propagator appearing in 1'f; " (I'&*}is taken from M. Gourdin and Ph. Salin, Nuovo Cimento 27, 193 (f963).
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tlute Csa "&'&gg (Yte)mxs gg (4), p~ rex' gg (j ) (Ms+ M;) ps,
Vs= (Ms+Ms) + Q +

cx 2pt'k 2M@ cx ~'-&.& 2ps k+Mp' —Mp Mz+M 3M+'cz(2ps k+Ms.'—Mes)

&&[(Me+Ma)Pt q
—2MePs k—AM+(Ma —M )(2Ma+Me+M )+Mes(M —2Ma —Me)] .(18f)

All the masses occurring in the above equations are understood to be measured in units of the pion mass. Now the
dMerential cross section in the c.m. frame is given by

-- --X
da (4sW)' (k) 4

where ( q (
and [ k( are the outgoing and incoming c.m. momenta, W is the total c.m. energy„and

X= r, V;V; T [v o.'(V;)v~."'(P )&.(V;)~."'(P )].

Evaluating the traces, one obtains

X= (1/4M+My){ 16Vt (k 'pl)(k'p2) 4V2 (pl+ps) (p1'p2+MsMA)
+4Vs mx (p, p,+M~,) Sv,s(—p, p, 2M~—s)+SVs'(pt+ p,)'(k p,)(k p,) SVss—mxs(p, k)(p, k)
—SVtVs[2(k pt)(ps pt)+Ms'(k ps) —Mg'(k pt)+Mpfsk (pt+ps)]
—8VtVs[(q k)(pt ps) —(k ps)(q pr)+(k pr)(q ps)+Mpfz(q k)]
+16VtV4(M, k.ps+2Mgk pt)+16VtVsMg(k pt)k (pt+ps)+16VtVsMs(q k)(k pt)
—SVsVs(pt+ps) q(pg ps+M~g) —SVsV4[(Ms —Ma)(ps pt)+Mpfs(M„Mg)]-

8V Vs(ps—g+p )'s(Mp ps Msk pg)—SVsVs(p—t+ps) q(M„k ps Mzk pr) ——SVsV4(M, q ps Msq p,)—
—SVsVs(ps+pt) q(M, k ps Msk pt)+—SVsVsnzx'(Msk ps —Mgk pt)

+SV4Vs[(M~a —Ms')k Ps+(M~Ms —Ms')k Pt]+SVsVs[(q Ps)(k Px) —(q k)(Pt Ps)

+(q pt)(k ps)+MR'sq k]+16VsVs(pt+Ps) q(k ps)(k Px)} (21)

where the external kaon has been extrapolated back onto
the mass shell.

The explicit t dependence of the axial-vector form
factor contained in Eq. (lqI) is taken to be

g~"(o) g~(~)
gg'(t') =

1+8/Mx' 1+(q—k)'/Mx'

Because of the lack of reliable data, we use the Gold-
berger-Trieman relation to relate the axial-vector and
the induced pseudoscalar form factors in the following
manner:

k~'(P) = ggs(0)(M—a+M )'/(P+Mxs) (23)

Although the application of the Goldberger-Treiman
'-relation is questionable, it 4-not expected to a6ect the
'result signidcantly, at least in the domain of low
momentum transfer where the contribution of the
induced pseudoscalar term is known to be su%.ciently
small.

5. HUMERICAL. RESULTS AND DISCUSSIONS

For fx=cx/slxs, where cx is def'ned by Eq. (6),
we use the value given by Ref. 6:

fx=1.14+0.03,

as estimated from the information available from Egs
and E~ p,v decays.

The A P-decay axial-vector form factor is taken to be

g, (A.)=0.68+0.07,
an estimate given by Willis et ul. ,I4 which is known to be
relatively free of model uncertainties. From the above
value of g~(A.) the form factor g~(Z) is calculated using
the estimate due to Brene e$ al."%e get

g (Z) =0.23+0.08.
In the absence of reliable experimental data, g~(Ft*)
is computed in the limit of exact SU(3).'s Thus

gz(Fte) =0.45+0.04.
%e now focus our attention on the electromagnetic

form factors.
The p and A magnetic moments are quite well

known" '8

pp= I.79' pg= —0.69
'4 W. Willis @ u/. , Phys. Rev. Letters 1B, 291 (i4).» N. Srene, L. Veje, M. Roos, and C. Cronstrom, Phys. Rev.

149, 1288 (1966).
'8 The numbers quoted here for gg(A) and gz(Z) are actually

taken from Rd. 'l.
1v P H Rosenfeld gg Q s Rev Mod Phys Sfs $33 ($9/5)
»The number quoted here for pq is due to H. R. Rubinstein,

F. Scheclr, and R. H. Socolow, Phys. Rev. 154, 1608 (1967).The
4 magnetic moment is in fact an average of several experiments
given in Ref. 17.
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Fzo. 1.Angular distribution at E~= 1003, 1018, 1054; 1160, and
1200 MeV. The solid curves show our results and the dashed
curves are the results of the soft-kaon calculation. The experi-
mental points are reproduced from Ref. 2.
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(in units of the nuclear magneton). But for the transi-
tion moment we again appeal to SU(3), ts whence

&~ /2PAs= q ~~Pe.

For the I'q*Ay vertex we use the relation"

&A I J-I I'r*&= —V~&I I i-I &s/s '&.

This follows from the U-spin invariance of the electro-
magnetic interactions in the absence of medium

strong interactions.

"S.Coleman and S. L. Glashow, Phys. Rev. Letters 6, 423
(1961~

'
'0 M. Gourdin, Unitary Symmetries and Their Applicutioz to

High Energy Physees (North-Holland Publishing Co., Amsterdam,
1967), p. 91.

%e also use

&I I ie-I &vs*'&=
&P I i- I &sos

which is derivable from the first-order breaking of the
isospin symmetry and the isovector character of the
photon.

From these we obtain

C "&=0.31)

where we have used the we11-known Gourdin-Salin
estimate' based on the isobaric model for pion
photopro duction.

The numerical computations have been performed in
the IBM 1620 computer and the parameter Mx is
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varied from 800 to j.500 MeV. The best 6t" was ob-
tained at Mx ——850 MeV.

In Fig. 1 we show the angular distributions, where
the experimental points are taken from Ref. 3; the
dashed curves are the result of the soft-kaon calcula-
tion, where the only contribution comes from the axial-
vector form factor. Figure 2 shows the dependence of
the c.m. differential cross section on the incident photon
energy. Not many reliable data are available on the
total kaon-production cross section.

The low-energy angular-distribution data 6t reason-
ably-well with experiment, but at high energy there is a
signi6cant discrepancy. %e note that the soft-kaon
llln1t (g= 0) glvcs rcslllts w110sc var1at10n wl'tll angle 18

minimal and deviates from the experimental data at
aH energies. Such behavior may be expected on quali-
tative grounds.

"S.Adler, in Proceedings of the Argonne International Con-
ference on Weak Interactions, 1965 PAr onne National Laboratory
Report No. ANI-7130 {unpublished), pp. 257—270. Adler has
mentioned the model dependence of the parameter Jf~, e.g., he
obtained the best 6t ~ith Mz ——600 MeV, ~hernias Ph. Salin (to be
published} got the best 6t mth M~ ——1400 MeV.

The observed discrepancy at high energy may be
attributed to the following factors. The weak amplitude
has been saturated by a few low-lying states, and, in
particular, the contributions of E resonances in the
s channel and. I'0* in the I channel have been excluded,
for lack of-experimental data. Further, the calculation
has been performed within the framework of the off-shell
q2~ 0 limit, and the higher-order contributions in the
kaon four-momentum, which may be important at
high energies, have been neglected. . The off-shell cor-
rections also need further investigation before the use
of PCAC and current algebra for the kaon may be justi-
6ed. This investigation is in progress in connection with
EE scattering.
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