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arid b~=0.054 p ', the quanties E~ and E2 are 1.52 and
1.57, respectively. 2' The reasonable agreement of the
branching ratios with the experiments in the linear ap-
proximation of the matrix element was shown by Beg"
and Wali. '~

III. CONCLUSIONS

Treating rl and E decays in a similar fashion (just
interchanging tl and E masses), we obtain good results

"Finally, we study the effects of low-energy S-wave I=2 m~
interactions using experimental values of the phase shift
(820~—15') given in Ref. 11.This raises the branching ratio by
about 5% and the slope by about 4%.

26 M. A. B.Beg, Phys. Rev. Letters 9, 67 (1962).
'r K. C. Wali, Phys. Rev. Letters 9, 120 (1962}.

for their branching ratios and their energy spectra. This
shows that the final-state interactions dominate the
decay structure. The interesting result obtained is that
the p effects dominate the 5 in the slope. The slight
deviation of the predicted spectrum from the experi-
mental values may be due to retaining only linear terms
in the matrix element.
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The differential cross section for the reaction p+d —+ He'++0 has been calculated taking Born diagrams
alone. The form factor for the pd He' vertex is obtained. The result is compared with the available experi-
mental result and found to be in fair agreement.

I. INTRODUCTION

ECENTLY, Melissinos and Dahanayake' have
reported a measurement of the differential cross

section for thc rcRctlon

p+d —+ Hes+s. s

at proton laboratory kinetic energy T~=i.515 BCV
and c.m. angle 8, =O'. They obtain

drr/dQ= (4.1 s+')&&10 "cm'.

Ear11crq HRrtlng 81 cl. Observed thc same rcRctlon at

T„=600MCV and 8, =52'. Their result is

do/dQ= (6.1&2)X10 "cm'.

Note that one result is a hundred times larger than
the other one. This is essentially attributed' to the
rapidly varying angular distribution that has been
observed in other similar reactions. ' To check this we
have computed the diBerentia1 cross section taking the
Born diagrams (see Fig. 1). Our results also indicate
rapid angular variation. Some time ago, Mathews and

'A. C. Melissinos and C. Dahanayake, Phys. Rev. 159, 1210
(1967).

'D. Harting, T. C. Kluyver, A. Kusumegi, R. Rigopoulos,
A. M. Sachs, G. Tibele, G. Vanderhaeghe, and G, Weber, Phys.
Rev. Letters 3, 52 (1959).

'O. E. Overseth, R. Heinz, L. Jones, M. Longo, D. Pellet,
N, Perl, g,nd F. jwg, r&in, Phys. Rqv. Lc:tters IB, $9 (I96g.

Deo,4 HC1nz et ul. ,' and Deo and Patna1k' computed
the differential cross section for the reaction. p+p ~
d+s.+ with nucleon exchange and obtained many
desirable results. We believe that a similar nucleon
exchange also plays a dominant role in the reaction (1).
However, there is another second-order diagram (Fig. 2)
involving the He pole that is also important, partic-
ularly at lower energy. Here we report the results of our
calculation with these two Feynman diagrams. We are
aware of the fact that the nucleon is far away from the
mass shell and that its contribution cannot be calculated

/
/

g(x )
/

FIG. 1. Feynman diagram for single-proton
exchange in p+d -+ He'+H.

4 J. Mathews and B.Deo. Phys. Rev. 143, 1340 (1960).'R. M. Heinz, O. E. Overseth, and M. H. Ross, Bull. Am.
Phys. Soc. 10, 19 (1965); R. M. Heinz, University of Michigan
Technical Report No. 18, 1964 (unpublished).

6 B.Deo and P. K. Patnaik, in Proceedings of Ninth Symposium
on Cosmic Rays, Elementary Particles and Astrophysics, Bombay,
1965, p. 557 (unpublished).
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/

t:

Fxe. 2. Feynman diagram for
p+d -+ HP+H in direct channel
with He' pole.

where g is the pion-nucleon coupling constant and g'/kr
= 15. G is the He's coupling constant (Fig. 4).

III. Hes pd VERTEX AND FORM FACTORS

The He' pd vertex is Xu(p) (y $)yql(t). To determine
X, we calculate the difFerential cross section for' the
process

reliably. All the same, some good results have already
been obtained in this model' ' and we hope that this
may also happen here. This optimism has motivated.
the present calculation.

In Sec. II we indicate the outline of our calculation.
In Sec.III the pd He' vertex is obtained. Section IV deals
with the discussion of the He'He'pro coupling constant,
and Sec. V deals with the numerical results. In the
Appendix explicit expressions for scattering amplitudes
are given with some details of calculation.

II. MATRIX ELEMENTS

The invariant matrix element M can be written as

where M~ and M2 represent diagrams 1 and 2, respec-
tively. The diGerential cross section is

80ipr 'i
P/Mf',

dQ 647r'W' p (251+1)(252+1)

where pg aIld pf ale 1111t1al and f1nal three-momenta ill

the c.m. frame. 5i and 52 are spins of the initial particles
and H/' is the c.m. energy. In calculating the scattering
amplitude, the 6rst thing that we must do is evaluate
the He' dp vertex. This vertex is similar to the ddt
vertex, which has been discussed by Blankenbekler
et al.7 Their result for the vertex is given as (Fig. 3)

Since the binding energy of He' is very small, we write
the resonance scattering formula'

da/dQ= P/2p, (E+B) (7)

for the pd system. Here B is the binding energy of
He' (M~+m —M,). M, is the mass of He', p is the
reduced mass of the pd system and

Now, calculating the contribution of Fig. 5 and compar-
ing with Kq. (7) at the pole, we obtain

PP = 4m. (M,/m') (-; (m+Mg) B)'".

Next we calculate the form factor for the same vertex.
This form factor is due to the compositeness of the He'
and is proportional to the Fourier transform of the He'
wave function. The form factors approach unity when

the particles are on the mass shell. Here we are con-
cerned with He' going to p+d. So the wave function
should be the bound-state wave function of p and d.
So far this wave function has not been obtained. For
simplicity we take a Hulthen-type wave function

N(f)= (E/r)(8 1' '1—8 s1" "'1) foI' f)f
=0, for r&r. (9)

where a=(211B)"', B=Mq+M M„and r, —is the
hard-core radius. This wave function for large distances
behaves exactly as a bound-state wave function of

p and d.
To obtain S in Eq. (9) we imagine that M&) M~+ m,

so that He' is unstable and decays into p+d. The
matrix element describmg this process is given by Eq.
(3). If we represent the matrix element by T, the decay

~~(p)(v k)v~~(&), (3)

where N(p) and N(t) are the spinors for proton and
He'. We shall use this vertex, but wiH calculate X by
Landau'ss method with necessary modifications to
include spin. Then we have

M1 Xgu(t)(y &)y,——(y p'+m)you(p)/(p" eP) (4)—
M.=&G (~)v. (v ~'+M )v.(v l)N(p)/(~" —M'), (5)

~R. Blankenbekler, M. L. Goldberger, and F. R. Halpern,
Nucl. Phys. 12, 629 {1959).

SL. D. Landau, Zh. Eksperim. i Teor. I'iz, 39, 1856 (1960)~
~

~

~

~

English transl. : Soviet Phys. —JETP 12, 1294 (1961)j. See also
. Nauenberg, Phys. Rev. 124, 2011 (1961);G. Barton, Djspef-

jion TecIIniqeesin Pield Tfseorj (%.A. benjamin, Inc. , New York,
1965), p. $9$,

I"io, 3. He' Pd vertex.

9 L. D. Landau and R. M. Lifshitz, Qmuntnnz Mechanics
(Addison-Wesley Publishing Co., Inc. , Reading, Mass. , 1958),
p. 408,
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rate is given by

r= — — gf 2'/2zs&.
32a'MP 2S+1

to

with

N'e*&"/r

$~1Pe ar/r, (12)

[ear/ (4&)i/25llr
(13)q'= [p"—(M +Me)'5[p"—(M —Me)'5/4M '

Now we consider the He' mass moving into its correct
value below m+Me. Then the He' wave function
changes from

Fio. 5. Feynman diagram
for P+d ~ p+d in direct
channel with He' pole.

If we put the intermediate nucleon on the mass shell
(p"=m'), then q' becomes —n' Now Eq. (12) implies
a decay rate IV. He'He3~0 COUPLING CONSTANTr= (4 qM, /Z, F..) (X'(

Comparison of Eqs. (10) and (14) gives

AT& —(/2m/3&) e—2 are

where we have put M& ——3m and M~ ——2'.
hand, we have (22)G4'NVs& ' 04'N ~

The pion is coupled to He' through its coupling with
(16) the individual nucleons with the usual yq interaction

To determine the value of G, we note that the triton
and He' form an isospin doublet. By analogy with the

(15) pion-nucleon interaction we can write down a He'a.
interaction of the form

On the other

rc

so that we obtain a relation between p and r,
E'= 2nP(n+P)/(P —n)2= (X'm/3rr)e a"' (17).

Finally, our form factor is given by

where
gPN75'e ' P4'N c

tHe' t pq

(23)

FrG. 4. He'He3m vertex.

~& g(~)
{„'Y

F(q') = (q'+n')4 (q'),

X(p'—n') np —q' (lg)
4 (q') = cosqr, + sinqr,

(q'+n')(q'+p') q( +p)

and matrix elements
7 p'+m

Mi ——XgF(q')u(t) (y &)ya jgu(p), (19)p"- '

y t'+M(
Mg= XGF(q")u(t)ys ys(y $)u(p), (20)t"—M]2

q"= [t"—(M&+m)'5[t" (M& m)'—5/4M, '— (21).

Our next job is to correlate G with g. To do this we
assume that the fictitious processes He' —+ He'+a' and
He'~ H'+a-+ are allowed. We calculate the decay
widths from (22) and (23) and compare. However, there
are some difhculties. Inside He' there are two protons
and one neutron. These two protons must obey the
Pauli principle. %hen a neutron emits a m. , its spin
may or may not Qip. But the proton spin cannot Qip
when a m' is emitted. As a result, there will be a larger
contribution to the non-spin-Qip amplitude than to the
spin-Qip amplitude, and we shall not get the angular
distribution expected from (22). So there must be some
other constraints on the reaction so that we obtain the
correct angular distribution. Here we discuss two
possibilities of evaluating G without this difhculty.

(a) We assume that there exists some sort of correla-
tion between the nucleons inside He' such that when
one proton spin Qips, the other proton also does. Then
the Pauli principle is not violated and there will not be
any restriction on spin-Qip or non-spin-fIip amplitudes.
Then we obtain

G2 g2 (24)

(b) As an alternative method of evaluation of G,
we use the impulse approximation. Here we do not
bother about spin-Qip complications. Consider He'm'
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whereas for T„=1.515 BeV the variation is very small
but not negligible. From the graph it looks as though
the effect is negligible. This is because the cross section
in the forward direction (0, =0') is itself negligible
compared to that in the backward direction, so that the
variation is also negligible. However, compared to the
values of the differential cross section at 0', the varia-
tion is quite significant. This can be very easily observed
from Table I, where we have tabulated two sets of
values —one for T„=0.6 BeV and e, =52' and the
other for T„=1.515 BeV and 8,.„,.=0'. We have taken
two values of G, i.e., g and ~g, and r, is given several
values. Although we find that our results are of the same
order of magnitude as those of Refs. 1 and 2, we feel
that the experimental value for T~=1.515 BeV should
have been slightly more, or that for T„=0.6 BeV
should have been slightly less, to give perfect agreement
with our theory.
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APPENDIX

We have the invariant matrix element

M =Mr+M2,

2 IM I

'= 2 IM I
'+2 IM2I '+Z(Mi'M2+M2'Mi),

Q IMMI
'= (A+8+C) F'((g')/(p" m')'—

JIM, I'=4l). 'G' 3—p'(p t+mM, )

tp («p)(«k)
+4(k t)l —p k+

Mg'

(«p)(«. t)&—2~'I p t—+ I+6(& t)(p &)
Mg'

P(M~tM, +M,tM, )
XF(q")/(tP2 —M ')'

(«p)(«. p')—(p t+m)p, )(—p p'y
Mg'

(«p')(« t))
+ip t'+mpp, )(—p' t+

)(, («p)(«p')z=s (~ ~ —M,2)I —
p p+

Mg'

, («p)(«p'))—(p i+ M, )l
—p p+ j

—2$2gGF(q2)F(/&2) (X+$p'+g)/(pp2 »2)(tp2 M 2)

with

X= 12[—(p p' m'—)(i i' M—)—(p t+mM, )

X (p' t'+mM )+(p l'+mM, )(p' t+mM, )j,
, («p)(«p')iY= —8 (t ),

'—M, ')I pp'+-
i

with f («p)(«t)~-
+(p t+mM, )l

—p. i+

8=4~'a'(« ~/M")[ («p')(p p' ')-
A =12K'g'[2(p p' m')(p' —t+»M, )

Mg'

(p .~+»M ) (p
p2 »2)j All these quantities were calculated by the usual

techniques of trace and projection operators. For the
deuteron polarizations we had

—(p «)(p" »')j-
C= -4~'g'[2(P' ~)(P P'-m')- (P t)(P"—m')j;

Zl~l'=-3,
P ($ A) ($ 8)= —(A 8)+ («A) («8)/M~'

«)=0.


