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and bx=0.054 u%, the quanties R, and R, are 1.52 and
1.57, respectively.?® The reasonable agreement of the
branching ratios with the experiments in the linear ap-
proximation of the matrix element was shown by Bég?®
and Wali.?’

III. CONCLUSIONS

Treating 7 and K decays in a similar fashion (just
interchanging #» and K masses), we obtain good results

% Finally, we study the effects of low-energy S-wave I=2 =r
interactions using experimental values of the phase shift
(820~—15°) given in Ref. 11. This raises the branching ratio by
about 5% and the slope by about 4%.

26 M. A. B. Bég, Phys. Rev. Letters 9, 67 (1962).

27 K. C. Wali, Phys. Rev. Letters 9, 120 (1962).
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for their branching ratios and their energy spectra. This
shows that the final-state interactions dominate the
decay structure. The interesting result obtained is that
the p effects dominate the S in the slope. The slight
deviation of the predicted spectrum from the experi-
mental values may be due to retaining only linear terms
in the matrix element.
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The differential cross section for the reaction p+d — He*-+9 has been calculated taking Born diagrams
alone. The form factor for the pd He? vertex is obtained. The result is compared with the available experi-

mental result and found to be in fair agreement.

I. INTRODUCTION

ECENTLY, Melissinos and Dahanayake!' have
reported a measurement of the differential cross
section for the reaction

p+d — Hed+x 1)

at proton laboratory kinetic energy T,=1.515 BeV
and c.m. angle 6, =0°. They obtain

do/dQ= (4.1_3t%) X103 cm?.
Earlier, Harting et al.? observed the same reaction at
T,=600 MeV and 6,.,,.=52°. Their result is

do/dQ= (6.14£2)X 1073 cm?.

Note that one result is a hundred times larger than
the other one. This is essentially attributed* to the
rapidly varying angular distribution that has been
observed in other similar reactions.? To check this we
have computed the differential cross section taking the
Born diagrams (see Fig. 1). Our results also indicate
rapid angular variation. Some time ago, Mathews and

( 1 é\7.) C. Melissinos and C. Dahanayake, Phys. Rev. 159, 1210
1967).

?D. Harting, T. C. Kluyver, A. Kusumegi, R. Rigopoulos,
A. M. Sachs, G. Tibele, G. Vanderhaeghe, and G. Weber, Phys.
Rev. Letters 3, 52 (1959).

30. E. Overseth, R. Heinz, L. Jones, M. Longo, D. Pellet,
M. Perl, and F. Martin, Phys. Rev. Letters 13, 59 (1964).

Deo,* Heinz et al.,° and Deo and Patnaik® computed
the differential cross section for the reaction p+p—
d+x* with nucleon exchange and obtained many
desirable results. We believe that a similar nucleon
exchange also plays a dominant role in the reaction (1).
However, there is another second-order diagram (Fig. 2)
involving the He? pole that is also important, partic-
ularly at lower energy. Here we report the results of our
calculation with these two Feynman diagrams. We are
aware of the fact that the nucleon is far away from the
mass shell and that its contribution cannot be calculated

4
t(He) J k()

F16. 1. Feynman diagram for single-proton
exchange in p-+d — He3 7%

4 J. Mathews and B. Deo. Phys. Rev. 143, 1340 (1960).

& R. M. Heinz, O. E. Overseth, and M. H. Ross, Bull. Am.
Phys. Soc. 10, 19 (1965); R. M. Heinz, University of Michigan
Technical Report No. 18, 1964 (unpublished).

¢ B. Deo and P. K. Patnaik, in Proceedings of Ninth Symposium
on Cosmic Rays, Elementary Particles and Astrophysics, Bombay,
1965, p. 557 (unpublished).
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L
/
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/ k
7/
’ s Fic. 2. Feynman diagram for
t(He) p+d — Hel+a% in direct channel

with He? pole.

reliably. All the same, some good results have already
been obtained in this model*=® and we hope that this
may also happen here. This optimism has motivated
the present calculation.

In Sec. IT we indicate the outline of our calculation.
In Sec.III the pd He? vertex isobtained. Section IV deals
with the discussion of the He’He3x® coupling constant,
and Sec. V deals with the numerical results. In the
Appendix explicit expressions for scattering amplitudes
are given with some details of calculation.

II. MATRIX ELEMENTS
The invariant matrix element M can be written as
M=M+M,, @

where My and M, represent diagrams 1 and 2, respec-
tively. The differential cross section is

do 1 p 1

= - Z 1 M l 2)

dQ 64w W2 p; (2S51+1)(2S+ 1)
where p; and p; are initial and final three-momenta in
the c.m. frame. S; and S; are spins of the initial particles
and W is the c.m. energy. In calculating the scattering
amplitude, the first thing that we must do is evaluate
the He? dp vertex. This vertex is similar to the ndt
vertex, which has been discussed by Blankenbekler
et al.” Their result for the vertex is given as (Fig. 3)

Na(p) (v-E)vsu(l), )

where #(p) and %(f) are the spinors for proton and
He3. We shall use this vertex, but will calculate X by
Landau’s® method with necessary modifications to
include spin. Then we have

Mi=xga(t) (v E)ys(y- p'+m)yvsu(p)/ (p"*—m?), (4)
Mo=2\Ga(t)ys(v-¥'+M)ys(v-u(p)/(*—M2), (5)

7R. Blankenbekler, M. L. Goldberger, and F. R. Halpern,
Nucl. Phys. 12, 629 (1959).

8L. D. Landau, Zh. Eksperim. i Teor. Fiz. 39, 1856 (1960)

English transl.: Soviet Phys.—JETP 12, 1294 (1961)]. See also
M. Nauenberg, Phys. Rev. 124, 2011 (1961) ; G. Barton, Disper-
sion Techwiques in I'ield Theory (W. A. Benjamin, Inc., New York,
1965), p. 196,
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where g is the pion-nucleon coupling constant and g2/4x
=15. G is the He3r coupling constant (Fig. 4).

III. He?® pd VERTEX AND FORM FACTORS

The He® pd vertex is Mi(p) (v- £)ysu(f). To determine
N\, we calculate the differential cross section for? the

process
ptd— p+d. (6)

Since the binding energy of He? is very small, we write
the resonance scattering formula®

do/dQ=12/2u(E+ B) NG,

for the pd system. Here B is the binding energy of
He? (Ms;+m—M,). M, is the mass of He? u is the
reduced mass of the pd system and

E=W~M,i——m.

Now, calculating the contribution of Fig. 5 and compar-
ing with Eq. (7) at the pole, we obtain

Ne=da (M o/m*) (5 (m+Ma)B)">. ®

Next we calculate the form factor for the same vertex.
This form factor is due to the compositeness of the He3
and is proportional to the Fourier transform of the He?
wave function. The form factors approach unity when
the particles are on the mass shell. Here we are con-
cerned with He? going to p-4d. So the wave function
should be the bound-state wave function of p and d.
So far this wave function has not been obtained. For
simplicity we take a Hulthén-type wave function

u(r) = (N/?') (e——a(r-rc)..e—ﬁ(r-—rc)) , for r>r,
=0, for r<r, (9)

where a= (2uB)'?, B=Ms+M—M, and r. is the
hard-core radius. This wave function for large distances
behaves exactly as a bound-state wave function of
$ and d.

To obtain N in Eq. (9) we imagine that M > M ¢+m,
so that He? is unstable and decays into p-+d. The
matrix element describing this process is given by Eq.
(3). If we represent the matrix element by 7', the decay

F16. 3. He® pd vertex.

t(He)

9L. D. Landau and R. M. Lifshitz, Quantum M echanics
(Addison-Wesley Publishing Co., Inc.,, Reading, Mass., 1958),
p- 408,
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rate is given by

(10)

1 1
r= ~———/Z]T|2d&2.
32mM 2 25+1

Now we consider the He® mass moving into its correct
value below m-+ M, Then the He® wave function
changes from

Y~N'eie/y (11)
to
Yy~Ne=o/r, (12)
with
NI___ ar 4 1/2 N,
Lo/ (4] )

¢*=L[p"— (M AMap 1 p"— (M.~ Ma))/AM 2.

If we put the intermediate nucleon on the mass shell
(p"?=m?), then ¢® becomes —a? Now Eq. (12) implies
a decay rate

I'= (4wqgM /E,Es)|N'|%. (14)
Comparison of Egs. (10) and (14) gives
N2= (N2m/3m)e 2, (15)

where we have put M,=3m and M ;= 2m. On the other
hand, we have

NZf (e=alr=—rd) — g=BU—ra)2dy=1, (16)
so that we obtain a relation between 8 and 7,
N2=2af(a+B)/ (B—a)*= (N*m/3m)e2ere.  (17)
Finally, our form factor is given by
F(g*) = (¢*+a)e(g?),
N (82— a2 B— g2 18
¢(q2)=______(ﬁ__a_)___<cosqr + i sinqrc> , 8
(¢*+a?) (¢*+8%) q(a+8)
and matrix elements
v-p'tm
My=NgF (¢¥)a(t)(v- 5)7515/2——{75“(?) , (19
—m
yU+M,
M2=)\GF(¢'*) (t)%ms (v Oulp), (20)
¢ =[t""— Matm)?][t*— (Ma—m)*]/4M 2. (21)
1(HE)
-
// k()

F1G. 4. He3He3#® vertex.

tne)
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d P
Frc. 5. Feynman diagram 3
for p+d— p+d in direct t(He)
channel with He? pole.
d

v

IV. HeHe’=" COUPLING CONSTANT

To determine the value of G, we note that the triton
and He? form an isospin doublet. By analogy with the
pion-nucleon interaction we can write down a He’r
interaction of the form

G¥ryse-¢¥n. (22)

The pion is coupled to He? through its coupling with
the individual nucleons with the usual ;5 interaction

g\LN'YEﬂ : ¢¢N ) (23)

He? P
e (2) o)
H3 n

Our next job is to correlate G with g. To do this we
assume that the fictitious processes He? — He’+#% and
He?— H34-n+ are allowed. We calculate the decay
widths from (22) and (23) and compare. However, there
are some difficulties. Inside He? there are two protons
and one neutron. These two protons must obey the
Pauli principle. When a neutron emits a #?% its spin
may or may not flip. But the proton spin cannot flip
when a #° is emitted. As a result, there will be a larger
contribution to the non-spin-flip amplitude than to the
spin-flip amplitude, and we shall not get the angular
distribution expected from (22). So there must be some
other constraints on the reaction so that we obtain the
correct angular distribution. Here we discuss two
possibilities of evaluating G without this difficulty.

(a) We assume that there exists some sort of correla-
tion between the nucleons inside He? such that when
one proton spin flips, the other proton also does. Then
the Pauli principle is not violated and there will not be
any restriction on spin-flip or non-spin-flip amplitudes.
Then we obtain

where

Gr=g. (24)

(b) As an alternative method of evaluation of G,
we use the impulse approximation. Here we do not
bother about spin-flip complications. Consider He?r®
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HS Fic. 6. Effect of varying 7. on calculated differential cross section
e TTF with G=1%g. (a) T»=0.6 BeV; (b) and (c) Tp=1.515 BeV.
5
e
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o L L L
10 r-] 6 4 2
Cos 6 —»
(c)
elastic scattering. At infinitely high energy we can At the limit of infinite energy the pole terms are
write most predominant and we get contributions to the
ot o ol o . . total cross section only from two points: cosf==1,
o (He*+n" — Hel+7°) =20 (p+-7°— p+°) corresponding to #- and #-channel poles. Here we make

+o(n+m— n+a). (25) an assumption that ¢~ and u-channel contributions do
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(a)
F16. 7. Effect of varying G on calculated differential cross section with r.=0.23 F. (a) 7,=0.6 BeV; (b) T,=1.515 BeV.

not mix together. This means that f- and #-channel
contributions can be equated separately. Then we get
G*=3g%. (26)
Now we have obtained two values for G: g and
1.3g. The first result is obtained with an assumption
that is plausible but cannot be verified experimentally.
The second result is a rough estimate based on a valid
approximation. However, one thing that we conclude is
that G and g are of the same order of magnitude. In
actual calculations we shall use G as a parameter and
vary it in the neighborhood of g.

V. NUMERICAL RESULTS

In this section we report the numerical calculations,
using formulas of Secs. IT and IIT and the Appendix.
The numerical calculations were done by an IBM 7044
computer at the Indian Institute of Technology,
Kanpur.

In Fig. 6(a) we have plotted the differential cross
section with T,=0.6 BeV, G=1g, and giving 7, three
different values. g is the pion-nucleon coupling constant.
In Figs. 6(b) and 6(c) we repeat this with T'p,=1.515
BeV. We obtain the experimental result of Ref. 1 for
the two different values of 7., while that of Ref. 2 is
slightly more than the calculated value. For T',=1.515

-0.6 -0.4 - 0.2 o

(b)

BeV the change in angular distribution is very rapid.
For Tp,=0.6 BeV the variation is much slower. At
1.515 BeV the scattering is mostly in the backward
direction (fc.m.=180°) and the scattering at forward
angles decreases very rapidly.

In Figs. 7(a) and 7(b) we keep 7. fixed at 0.23 F and
see the effect of varying G on the differential cross
section. For T',=0.6 BeV the variation is significant,

TasLE I. Differential cross section for proton kinetic energies 0.6
and 1.515 BeV at angles 52° and 0°, respectively.

do/dQ
(,,1 O 6 BeV  T,=1.515BeV

7e 07 cm?) (107 cm?)

G ¥ Oo.m. =52° 0o.m.=0°
0.11 3.53 10
0.177 4.72 15
g 0.23 5.95 21
0.27 7.2 28
0.3 8.40 37
0.11 19 4
0.177 2.5 6
i 0.23 3.2 8
0.27 3.7 11
0.3 4.5 15

Experimental result: 6.1£2 4.0+
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whereas for T',=1.515 BeV the variation is very small
but not negligible. From the graph it looks as though
the effect is negligible. This is because the cross section
in the forward direction (f.....=0°) is itself negligible
compared to that in the backward direction, so that the
variation is also negligible. However, compared to the
values of the differential cross section at 0°, the varia-
tion is quite significant. This can be very easily observed
from Table I, where we have tabulated two sets of
values—one for T,=0.6 BeV and 6,.,,.=52° and the
other for 7',=1.515 BeV and §.....=0°. We have taken
two values of G, i.e., g and %g, and 7. is given several
values. Although we find that our results are of the same
order of magnitude as those of Refs. 1 and 2, we feel
that the experimental value for T,=1.515 BeV should
have been slightly more, or that for T,=0.6 BeV
should have been slightly less, to give perfect agreement
with our theory.
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APPENDIX

We have the invariant matrix element
M=M+M,,
TIM =T M| 2| Mo+ (M Mo+ MATM ),
2| M| 2= (A4 B+C)F*(¢%)/ (p*—m?)*,
with

A=120g°[2(p-p'—m*) (p"-14-mM,)
= (p-tHmM ) (p*—m?) ],

B=4aNg2(d-t/MA[2(d-p") (p-p'—m?)
= (p-d)(p*—m?)],

C=—ngL2(p"-1) (p-p'— 1) = (p- ) (=93
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ZIle2=4)\2G2,:—3y2(p-t+mM,)
(d-P)(d-k))

+4<k-z>(—p-k+

(d-p)(d-1)

d2

(= pe )+o00-]

S (MMM My) XF(q?)/(t"*—M2)?,
=2\gGF(¢))F(¢'") (X+Y+2)/(p"*—m*)(1"*—M ),
with
X=—12[(p-p'—m*)(t-t'—=M )~ (p-t-+mM,)
X' t'+mM )+ (p-t'+mM ) (p’ - t+mM,)],
d-p)(d-p’
+( P)( P))
Mg
d-p)(d- b’
,+( p)( P))

M2

+ (p-z'+th>(~p'~z+3l—'—j2(;ﬂ)] ,

d

Y=—8[(t-t'—M,2)<—p-p'

—‘(P'H'MMt)(—P'P

d-p)(d-p’
+( p)( P))

M2

Z= 8I:(t-t’—M.2)<—j)-p'
+(d-1>)(d’1>')>

M2

d

-(z»'-t+mM»)(—p'z>'

All these quantities were calculated by the usual
techniques of trace and projection operators. For the
deuteron polarizations we had

Zl£[2=_3)
2(8-A4)(¢-B)=—(4-B)+(d-4)(d -B)/M &,
d-£=0.



