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Equal-time commutation relations between selected components of the energy-momentum tensor and
selected components of a current, arising from internal transformations, are derived in a model-independent
fashion. These commutators are then used to establish the following three results: {1)It is shown that
current-current commutators do not have the standard form in the presence of electromagnetic and weak
interactions. Specifically, it is demonstrated that the space components of an isospin current do not trans-
form as isospin vectors. (2) Weinberg's second sum rule is shown to follow from further assumptions about
our commutators, and it is argued that kaon mass corrections must be expected in the SU{3))(SU{3)
generalization of this sum rule. {3)A relation between decay constants in broken SU{3)&&SU{3) is estab-
lished. It is F„pP+F~p~'= F y, '.

I. INTRODUCTION
'

q
QUAL-TIME commutation relations (ETCR) be-

~ tween time components of currents which arise
from continuous transformations play a fundamental
role in physical theory. Schwinger has emphasized the
connection between I orentz invariance and the ETCR'

[T'"(x,t) &"(y,t)]= —i[2'"(~)+T"(y)]
X Bbb(x y) . (1.1)—

(T&" is the energy momentum tensor, thus a generalized
current. ) Gell-Mann' has given the now famous current-
algebra relations

[K"(x,t),L '(y, t)]= 'f. .(K L) '(y)b(x —y) (12)

Here E, L are either vector or axial-vector currents

(V or A, respectively); E.L= V when K=L=A, V;
and E L= A when EEL=A, V. The f b, is an anti-
symmetric structure constant. The purpose of the pres-
ent paper is to publicize the ETCR [T",E '], as well

as several related ETCR's between selected components
of T&" and E &, and to exhibit some interesting applica-
tions of these results.

The ETCR $T",E '] has been derived previously

by Gross and the present author' from Schwinger's

action principle. Its value is"

[T"(x,t),K,'(y, t)]= ia„K,o(x)b(x—y—)
—iE."(x)Bbb(x—y) . (1.3)

*Junior Fellow, Society of Fellows.' J. Schwinger, Phys. Rev. 130, 406 (1963). It should be re-
membered that the ETCR (1.1) is valid as written only for sys-
tems with spins ~(1. For higher spins, further model-dependent
terms may be written. We shall not make use of this ETCR.

' M. Gell-Mann, Physics 1, 63 (1964).
~ D. J. Gross and R. Jackiw, Phys. Rev. 163, 1688 (1967).The

derivation introduces an external gravitational Geld, and makes
assumptions about the dependence of various quantities on this
Geld, in a fashion analogous to that of Ref. 1. These assumptions
are most likely not satisfied for arbitrary systems with spin&1,
and further model-dependent terms may then appear in the right-
hand side of {1.3). (These must vanish upon integration over x.)
In the present paper we ignore such complications. In the note

[E.'(x, t),L b'(y, t)]= if,b.(E L),'(x) 5 (x—y)

+i', b tr, s'(y) a,b(x y), (1.4a)—
~ab, XL ~ba, LX (1.41)

if and only if the ETCR [E,', B„Lb&] contains no

Schwinger terms (ST). In the latter eventuality (1.4a)
must be modified by an additional term, proportional
to a 5 function, so that even the once integrated KTCR
between the charge and a current space component is

no longer consistent with (1.4a). Recently Lee and

Zumino4 have shown, on the basis of gauge invariance

of electromagnetic interactions, that similar modifica-

tions of (1.4a) occur in the presence of electromagnetic

interactions, when the ST R b, ~L,'& is a c number. In
Sec. 3 we use the method of Ref. 3 to show the nature

of this modification for electromagnetic interactions

without reference to gauge principles or to the form of

the ST. Furthermore, it is demonstrated that weak

interactions similarly lead to a modification of (1.4a).
Thus the space components of currents do not transform

according to a definite representation of the group

algebra in the presence of weak and electromagnetic

eGects.
In Sec. 4, we use our commutators to derive the

second %einberg sum rule in a fashion which has not

been given before, and which follows closely steinberg's

added in proof we present a canonical derivation of (1.3) which
makes no reference to external gravitational Gelds.

3'In the noted added in proof a derivation of Eq. (1.3) is
presented which difters from the one given in Ref. 3.

4 T. D. Lee and S.Zumino, Phys. Rev. 163, 1667 (1967).

In Sec. 2, the ETCR's [T",E,'] and [T", ,K,*] are de-
rived in a model-independent fashion. Section 3 is de-
voted to a study of the [E,',Lb'] KTCR in the presence
of weak and electromagnetic interactions. In Ref. 3
this ETCR was derived in the absence of such inter-
actions and was found to be of the standard form
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original derivation of the erst sum rule. ' Section 5 con-
tains a derivation of a linear relation between the decay
constants of the pion, kaon, and ~.

+oi—II gi+

and the commutators (2.2), we ffnd

(2.3)

[T"( t) K (yt)]=-'~, ()F,"8'~.(*)8( -y)
+iII,(x)F;o'8.'[+o(x)b(x—y)]

= ill, (x)F,o'4'1, (x)8'8(x—y) . (2.4)

2. DERIVATION OF ETCR BETWEEN SELECTED
COMPONENTS OF X,~ AND SELECTED

COMPONENTS OF TI'"

In addition to the [T",K,o] KTCR, (1.3), we can
give in a model-independent fashion the [T",K '] and
[T K ] KTCR. We beglI1 wrth a der1vatlon of the
first of these two. To this end we make use of the follow-
Ing commutators which. hold for currents arlslng froGl
linear transformations of the form

4;~%,+A F;,'4', +0(A'), (2.1)

[K '(x t) + (y t)]= iF+—(x)8(x y) (—2.2a)

[K.'(x, t),II,(y, t)]= i11,(x)F;,'8(x—y) . (2.2b)

In (2.2b), II; is the momentum canonically conjugate
to O';. Using the formula'

Mo'= tF'- *~Too(x)dox (2.6)

(F' is the momentum operator), we have by virtue of
Lorentz invariance

LM ',K. (*)]='I 'K."(*)-t8'E."(*)]
+i[g'I,K.o(x) go&K—.'(x)], (2. Ia)

Mo' To~(x)]= rex'j"o(x) t8''Tol'(—z)]
+i[g' To (*)—T' (*)—g"T"(*)]. (2.&b)

(The dot indicates time differentiation. ) Next consider
the Jacobi identity

[M'*',[T"(x,t),K.'(y, t)]]
=[T"(xt)[M"K '(yt)]]

+[[M",T'o(x, t)],K,'(y, t)]. (2.8a)

Evaluation of the commutators proceeds with help of
(1.3), (2.5), and (2.7) to the result

Recognizing the coefficient of 8'8(x—y) to be K,o(x),
we obtain 6nally

T"(x t) K o(y t)]=iK o(x)8'b(x —y). (2.5)

From (1.3) and (2.5) it is possible to determine
[T'o,E '] by I.orentz invariance. Setting Mo' to be the
generator of Lorentz transformations

t8*8„K.~(x)+ ~;8o8„K„,(~)]8(x y) [t8;E a(~) ~' E, (o~))8„8(x y)+K.o(~)8'8(x y)
=[ t8'8„K:(x)—+x'8o8„K.o(x)]h(x y) [t8'K.'—(x)——x'E.'(x)]8&8(x—y)+K.'(x) b(x—y)

+2K,'(x)8'8{x—y)+i($' —y')[T"(x,t),Ko'(y, t)]—i[T"(x,t),E '(y, t)]. (2.8b)

%e use the continuity equation for Too,

(2.gc)

and (2.5) again to obtain, after some rearrangement,

[T"(x,t),K '(y, t)]= iK '(s—)8'8(x y)—
i(x* y') 8„'(K—,o(x)8—o8(x y))—

iE'(x)8(x——y) '(2 Sd)

The 6rst two terms on the right side can be combined,
and the 6nal result is

[T"(x,t),K.*(y,t)]= —iz.'(x)8(x—y}
+iK.o(y) 8'b(x —y) . (2.9)

This formula was assumed in Ref. 3, and formed the
' S. Weinberg, Phys. Rev. Letters 18, 507 (1967); S. Glashow,

H. J. Schnitzer, and S. Weinberg, ibid. 19, 139 (1967).
6 In oGering formula (2.3) for T0' we make use of the canotrical

energy-momentum tensor as given by Noether's theorem, Tt""
= (bS/58 4'tb)8"+I, —gt'"2 (2 is the Lagrange density). We are
able to derive model-independent KTCR only with this definition
for T'. However, for arbitrary spin, additional gradient terms
may be present which presumably contribute model-dependent
terms to the right-hand side of (2.5). (These must vanish upon
integration over x.) See also Ref. 3. In the present paper we ignore
these.

basis of a calculation of the ST in the [E ',Lo'] KTCR
The present derivation justi6es that assumption.

%e are not able to derive in a model-independent
fashion the [T"',K.I'] and the [T'",K.'] KTCR. ' These
involve a knowledge of the commutation properties of
(bZ)/(88'4') which are obviously model-dependent. (2
is the I.agrange density. ) In summary therefore, the
commutators that can be given in a model-independent
fashion are' '
[T"(x,t),K.'(y, t)]= i 8„K.&(x)8(x y—)—

—iK,"(x)8gb(x—y), (2.10a)

[T'o(x, t),K„'(y,t)]= iE '(x)b(x—y)—
+iK.'(y)8'b(x y), (2.10b)—

[T"(x,t),K,'(y, t)]=iK,'(x) 8'b(x —y) . (2.10c)

The KTCR of T" with K,",Kqs. (2.10a) and (2.10b),
is a local statement of the fact that E I" transforms as a
vector under Lorentz transformations. By this we mean
that if we form M'*' as in (2.6), use (2.10) to evaluate

7 By exploiting further Jacobi identities, for example, with T 0,
T0', E',& or Jtf", T~&', E 0, one can partially but not completely
determine the PT", E 'g and fT~",K 'j ETCR.
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commutators with T'a, then we arrive at (2. /a) by
explicit calculation. Sugawara's recently proposed
theorys presents a realization of the above commutators,
with T&" chosen to be a bilinear functional of the
moments.

Let us integrate (2.10a) and (2.10c) with respect to
y. Introducing the charge

E."(y)= e'*'sKJ'(x, t)dsp, (3.2a)

BsKs"(P)= e'x' &B„Kv,"(x)t)dsP. (3.2b)

Equation (3.1) has been written in momentum space
where the Fourier transforms are by definition

E,(t)= E.s(x,t)dsx, (2.11) The commutators with the charges E,(t)=E,'(0) can
be taken to be, by definition,

P"(*,t),K.(t)]=—ia„K. (z), (2.12a)

LTea(x, t),E.(t)]=0. (2.12b)

Thus it is seen that the divergence of a current is given

by the commutator of the charge with the Hamiltonian
density. ' As we shall see below, this places restrictions
which can be fruitfully exploited. Equation {2.12a) is to
be compared to the more familiar formula for the di-

vergence of a current,

~„E. =~&l~&'I&=, .
In conclusion, we wish to record here one more com-

mutator which follows from (2.10), zi„K,& with T's. We
find

LT o(x,t),a„K. (y,t)]=—zoos„K. (*)b(x—y). (2.14)

We are unable to derive the ETCR $T'",&„E,"] in a
model-independent fashion.

3. MODIFICATION OF CURRENT COM-
MUTATORS DUE TO ELECTRO-

MAGNETIC AND VfEAK
INTERACTIONS

In the present section we demonstrate with the help
of Eq. (2.10a) that current commutators are modified

in the presence of weak and electromagnetic inter-
actions, which couple to the hadronic currents. The
Gell-Mann FTCR (1.2) of course does not change since
it is a consequence of the group structure of the trans-
formation (2.1). However, the LE,',La'] ETCR is not
directly related to this group algebra, and may be
modified. To exhibit this modi6cation, we consider as
in Ref. 3 the Jacobi identity" between T's(x, t), K,'(y, t),
Lbs(z, t). With the helP of (2.10a) it is found that'

f.a,8„(E L),&(y+q+r)+zf. b,(q+r)a
x(K L)..'(p+q+r)+zLE. '(q), ~.Lb"(y+r)]
—zLLa'(r), zl„E.(y+ q)]—raLE.'(q),Lb'(y+ r)]

+q LL '(r),K.'(y+q)] (3 1)
8 H. Sugamara, Phys. Rev. 170, 1659 I,'1968}.
9The statement occasionally found in the literature that

a„Eo&=zTF.„Z) is evidently not generally true.
10 Although the Jacobi identity can be discredited Lsee, e.g.,

K. Johnson and F. K. Low, Progr. Yheoret. Phys. ICKyoto}
Suppls. 37 and 38, 74 (j.966}j, no contradictions have ever been
found in commutators involving three time components. Further-
more, many of our present results can be obtained by use of the
Jacobi identity vnth integrated operators (see Ref. 3}
H = j'T004'x, E,o, Lgo, and Mo', X,o, I.t,o.

LK.'(0),~.Lb"(y)]=zC.b.«(p), (3.3a)

q6aa, xz'(q, p) = qBa, zx'(p+ q)—. (3.8)

Equation (3.8) shows that the ST in the ETCR between
the zero component of a current and the divergence of

LK '(o) L '(y)]= f. .(K L).'(y)
+iB.a, rrz'(p) . (3.3b)

The term B.a, ~z, '(p) which is inserted in (3.3b),
allows for a possible breaking of the usual current-
algebra assumption B,q ~I,'——0. Ke shall show that in
the presence of weak and electromagnetic interactions
8 y, ~l, '&0.

The local version of (3.3) will in general contain ST.
Without loss of generality, we have

LE (y), tl„Las(q)]=zC a,«(p+q)
+PA' b, rrz, '(y, q), (3 4a)

LE.'(p), Lb'(q)] = if'b. (E L).'(y+q)
+zBnb, zI, (y+q)+prefab, KL (y&q) ~ (3 4b)

Equations (3.4) serve to deftne 5~a, rzz and Zaa, rzzr ~

The ST are proportional to p; since (3.3) holds. Because
they depend on y and q, rather than just on p+q, we

have allowed for an arbitrary number of derivatives
of 8 functions in position space.

Inserting (3.4) in (3.1) results in

f-b.~.(E L)."(y+q+r) C.b,«(p+—q+r)
+Cb, zrz{y+q+ r)+zq 6.a, rr z'(q, y+ r)

zr&a. zrr'{r y,+q) —zraB. a,xza(p+q+ r)

+zqaBbe, xt (p+q+r) raqrÃb, rzI, (q, p+r)
+qarr&zx b"(r y+. q) =o (3 3)

Now set q and r to zero. This leads to the following

restriction on C,q,~r, .

C.b,«(y) —Cb. ,zrr(p) =f.b.zi~(E' L)."(p) (3 &)

This equation will be exploited in Sec. S. Equation (3.6)
simpliftes (3.5) into

zq8. ,, '(q, y+r) irP .~—'(r, y+q)
—iraB b, xr. (y+q+r) z+ qaB, ,azx(p+q+r)

raqr+sa, rzz' {r+y+—q)+qarPba. zz' (r& p+q) =0.
(3 7)

Next set r (or q) to zero. This gives
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~a b, XL —~bc, I,K ~ {3.11)

a current contains at most one derivative of the 8 func-
tion. Furthermore, it is seen that the presence of such
a ST necessarily breaks the usual algebra of current
commutators. Inserting (3.8) into (3.7) we have

r,q,R.~,zz,"(q, y+ r) = qar;R~. ,zzr" (r, y+q). (3.9)

Finally differentiating (3.9) by r; and setting r to
zero gives

qzR v, zrz" (zl, y) =qIRa, zzz'"(0, y+il)
q~Re—~.zzzP(y+ 0} (3.10)

Inserting this back into (3.11) shows that the following
symmetry is satisfied:

and Bb,L,E'. The formula for C„b,~r. is a complicated
expression which we do not present here. We remark
only that the condition (3.12c) can be shown to hold
when use is made of (3.12d). The form of B,q, zrz' is

Ba~.zzzz= efu—sea;Ks, zzz" +0{e'). (3 15)

This cannot vanish identically. It is to be emphasized
that these corrections persist even in the integrated
KTCR.

Therefore in the presence of electromagnetic inter-
actions, we 6nd the model-dependent result

LE. {,~),~ '(;~n='f. .(E ~).'(*)8( -y)
—ief, g,a, (x)R,g,zzz&'(x) 8(x y)—

+iR, g, zrz&* (y) a,8'(x y)+—0(e'). (3.16)

It is seen therefore that the ST in LE',L,'g ETCR
contains at most one derivative of the 8 function and
fulfills the symmetry (3.11).

In summary, the form of the commutators as deter-
mined by local Lorentz invariance, Eq. (2.10a), is

If the ST is of the minimal form

~cb,KL C~KL~cb~&j y

CWO

then the current commutator is

(3.17)

Roy, zzz~"(x) =Ry, zzz'~ (x) . '
(3.12d)

To evaluate the modihcation B,b, ~l,' in the presence
of weak and electromagnetic interactions we must
specify the nature of these interactions, i.e., we must
determine B„E&. We shall assume that, in the absence
of weak and electromagnetic current, all divergences
vanish. The consequences of partially conserved axial-
vector and strangeness-changing vector currents have
been studied in Ref. 3. These e8ects are irrelevant for
our present purposes and may be suppressed for sim-
plicity. We treat separately two cases: electromagnetic
interactions and weak in.teractions with local current-
current coupling. It is clear that a theory of weak inter-
actions mediated by an intermediate boson is analogous
to the electromagnetic interaction and we do not discuss
this. In both instances we shall work to lowest order in
these interactions. The divergence of the current (to
lowest order) is easily evaluated from (2.12a), (1.2),
and (3.12b).

For electromagnetic interactions we 6nd

8„K:=ea„f.»K&~+0{e'),

where a„ is the electromagnetic 6eld and the interaction
is of the form

(3.14)

Inserting (3.13) in. (3.12a) and using (1.2) and (3.12b)
to evaluate (3.12a), we obtain an expression for C,q, zzz

LK.'(x,~),a„r,;(y,z)j=ic.., .(x)8(x—y)
—iBg zzr'(y)8 5(x—y) (3.12a)

LE.'(x, t),1-~'(y, &)j=if.~.(K I).'(*)8(»—y)
+iB.g, zz z'(x) 8(x y)—

+iR~ g, zzz
~"(y) 8~8(x—y), (3.12b)

C.t, ,zzz(x) Cq~, zzz(x—) =f.q, 8„(K I.),1"(x), (3.12c)

Z"=F (V, +a )+J.
(3.19a)

(3.19b)

Here j& is the lepton current and Ii, is an eight-vector

F,= (cos8,i sin8, 0, cos8,i sin8, 0,0,0) . (3.19c)

Kith this interaction the divergence is

8„K,&= 'v2Gf, b,Ft,(—V,-&+A,&)J„t
+H.c.+0(G') . (3.20)

Upon insertion of (3.20) into (3.12a), BI .zx' may be
determined. For notational simplicity, we assume the
ST to be of the minimal form (3.1'I). We then find that

B.~,zr z,
'= g~&CGF.(Vd'+ ~e')—(f.s.Fd*+f.e.F~*)

,'&2CGf gj '+H—.c-.+0(G'). (3.21)

This too does not vanish,

4. DERIVATION OF WEDTBERG'8
SECOND SUM RULE

In the present section, "we make use of the commuta-
tors derived in Sec. 2, as well as additional assumptions,
to derive Weinberg's second sum rule. ' We restrict our-
selves to SU(2) &SU(2), and shall argue that the exten-
sion to SU{3)&(SU{3),may in general have corrections

"A brief summary of this derivation has been presented in
R. Jackiw, Phys. Letters 278, 96 C'1968).

$E '(x t) 1.&'(y f) j= if &,(E I.),'(x)8(x—y)

+iCbzrzfb. g8' ef.gga'(x—))b(x y)+0(e—') . (3.18)

This is the form given by Lee and Zumino4 on the basis
of gauge invariance.

Next we consider weak interactions with the current-
current interaction
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p v( o)«'= p~(o')«' (4.1b)

The spectral functions are de6ned by

(Q
~
V.~(x) V,"(0}

~
Q}

k~k"~
=8., i'.e((,")(g"- ~p, (k*)d'k, (428)

k J

(Q~A. (x)cb(0)~Q)=s. , &'~*a(ko)

k&k"~

X ~ g
"— ~pg(k') —k k"p~'(k') d'k. (4.2b)k)

The second sum rule, (4.1b), has been frequently con-

sidered to be on less firm footing than the first sum rule

(4.1a) because the latter has been proved only from
assumptions about asymptotic behavior, '" or within

specific Lagrangian models. '3 The 6rst sum rule, on the
other hand, can be established by methods, additional
to the ones used in deriving (4.1b), which make the
assumption that the I= I components in the ST in the
current commutators of space components with time

components are absent. Speci6cally, in the notation

(3.1b),

[E.'(x, t),Lj(y, t)j=ie.i„(X L).'(y)()(x—y)

&&.iz—z,"(r)~, t')(x y) (—4 3)
one assumes that

&calla b»I, , (4.4)

[The e,(„are the SU(2) structure constants. 7 It then
follows that

~aa, AA ~aa, VV (4.5a)

which imphes (4.1). Alternatively, one may assume that
the ST is a c number. ' It then follows that it is a scalar

in group space

~ah, KL ~ab~XL~ijc p (4.5b)

This latter derivation is attractive in that the assump-
tions concern themselves with the isotopic spin prop-

"T.Das. V. S. Mathur, and S. Okubo, Phys. Rev. Letters 18,
761 (1967).

'g T. D, Lee, S. VVeinberg, and B. Zurnino, Phys. Rev. Letters
18, i029 (j.967),

of the order of the kaon mass. (Naturally we ignore weak
and electromagnetic effects. )

steinberg's two sum rules are'

dQ dQ
p~(o') = p~(o') + p~'(o')«', (4 la)

8 6

erties of certain commutators, and no reference need
be made to questionable Lagrangian models or to un-
testable asymptotic behavior. We now show that the
KTCR, derived in Sec. I, can be used to give a proof
of the second sum rule (4.1b), from assumptions very
analogous to those given above in the derivation of
(4.1a). Thus we tie the validity of the second sum rule
to the algebraic structure of commutators, and not
directly to 6eld-theoretic models or to asymptotic
behavior.

It is easy to verify from (4.2) that (4.1b) is equivalent

(Q) [V. (x,O) —a'V.o(x O), V, (0)] ) Q)
= (Q

~
[A.'(»,0)—a'A.o{»,0),A, (0)]

~
Q). (4.6)

Thus it is sufhcient to derive (4.6). The following three
model-dependent assumptions are made. (1) The as-
sumptions made in the original derivation of Wein-
berg's first sum rule are made: The Jacobi identity is
utilized, and is therefore assumed to be vali'. The
ETCR of the time component of a current with a cur-
rent four vector is of the standard form and all ST are
(: numbers. (We operate in a theory without electro-
magnetic or weak interactions. ) All the currents are
conserved. It will be seen that the latter assumption
can be relaxed somewhat to take into account partial
conservation of axial-vector current (PCAC). (2) Equal-
time commutators of space components of currents are
c numbers. From the above two assumptions we can
prove that

[&.'(,t) —~'&.'(,t),L '(y, t)j= C . "( )~( —y)

+te. i, (E L).'8'b(x —y) (4.7a)

C.b,KL"=Cb. ,r,x".
The third assumption which we formulate in the last
restrictive fashion is (3) the commutator of the I=1
part of C r, v~'& with J,

'A', 'd'x has no vacuum expecta-
tion. This implies that

(QiC...rr' iQ}=(QiC...g~' jQ),

which then leads to (4.6) and is the desired result.
To prove (4.7) we begin with Jacobi identity for

T"(z), E '(x), L),'(y}.

[[&'(x,t),E.'(x, t}j,L(,'(y, t)]
y [[X:(x,t),Lj(y, t)j,T»(x, t)j
+[[L '(y, t),T»(x, t)j,K '(x,t)]=0. (4.9}

The second term is zero according to the assumption (2).
The remaining internal commutators are evaluated with

the help of (2.10b), (4.3), and (4.5b). We 6nd

[~ '(» t)—g'~ (x t) j~i(y t) jt)(x—x) i~g~ (+'L) (z)

X t)(x—y) &*t)(x—x) = [L~'(y, t)—~*L~'(y, t),&.'(», t)j
XS(x—y) —i....(K L).'(s)t)(x—x)a S(x—y). (4.1O)



Upoll llltcgl'Rtloll ovcl' x, (4.10) becomes

LE'(z, t)- a'E.b(z, t), L, (y, t)j
= Lbe(y, t)—a'Lbb{y, t), E.'(x, t)d'z B(z—y)

+be, b,(E L) (s)a&'b{z y).—(4.11)

Tllls pl'ovcs (4.7R) wllcll tllc followlllg dcfinl tioll ls made:

Cab, xl,"(y)

=— Lb'(y, t) —a'I.b'(y, t), E.'(x, t)d'z . (4.12)

Note that the conservation of the currents plays no role
at this stage.

To pl'ovc (4.7b), wc lllscI't (4.7R) 1Ilto {4.10) RIld

obtain immediately (4.7b).
Formula (4.7) is rather remarkable in that it pre-

dicts that the ST in the KTCR is model-independent,
as long as assumptions (1) and (2) hold. Only the term
proportional to the 8 function is model-dependent. %e
note that in the algebra of fields" in which assumptions
(1) and (2) are satisaed, the ETCR (4.7) can be evalu-
ated cxpllcl'tly Rnd docs indeed sRtslfy (4.7). Fultllcl-
morc SugawR1 a s model Rlso satls6cs these RssuIQp-

tlons.
Next we proceed to derive (4.8). We consider the

Jacobi identity between Eo'(x) —a'E, '(z), Lbe(y), and
~,'(z).

Li E:(x,t)—a'E'(x, t),Lb'(y t)j~ '(z t)j
+IILb (y, t),iV.'(z, t)j E '(x t)—a'E '(x, t)g

+LLM '(z t) E *(x t)—a*E '(x t)j Lb&'(y t))=0
(4.13)

The commutators that we have given before are suf6-
cient to evaluate thc 6rst two internal commutators, To
evaluate the third internal commutator we use

Lbf.'(,t) E'(x, t)3= a'L~. '(*,t),E- (;t)j
—LM, '(z, t),E.*'(x,t)1. (4.14a)

The 6rst KTCR on the right side is readily evaluated.
The second can be rewritten as

I M, '(z, t),E.'(x,t))= La~, (z, t),E.*(x,t)j
—a;*LA,&'(z,t),E.'{x,t)j. (4.14b)

The second term on the right side is zero according to
assumption (2). The first term is zero since by assump-
tion the currents are conserved. Ke shall prove below
that it may be zero also when a special form PCAC
obtains. Hence (4.14b) is zero. We find therefore from
(4.13) the result that

L~e (Z,t),Cab, xz'e'(X, t)1= &&eadCd b,br I, x"(&)&(Z—X)

+$&ebdCad, M I Z b(Z X) &ebd&dae(E'L'+)e (&)a

Xb(x—z)—id„dddb. (E L N).&'{z)a'b(x —z) . (4.15)

Contracting f with c yields 6nally

(fl I
C...«"

I
fl) = (Dl C...»"

I fl), (4.16c)

which is the desired result.
%C have derived %einbcrg's second sum rule for

conserved axial-vector currents. %hen the axial-vector
current is not conserved, then the 6rst equation on the
1'lgll't side of (4.14b) ls 1I1 oui' Rppllcatloll (M= A, E= V)

La„A,s(z, t),v.'(x,t)]. (4.17)

This becomes a model-dependent quantity, proportional
to the pion mass, since the axial-vector current is pre-
sumably conserved for massless pions. However, we
can still show that (4.17) is zero if a special form of
PCAC holds. The form of PCAC that we require is
~p~c~ Pm ~+Key where P+ ls tlM PloD mBssy Fg ls thc
pion decay constant, and q, is the canonical pion 6eld,
canonically conjugate to j,. To prove the desired result
we consider the Jacobi identity between P", V ', and
8+3 g

LL&"(x,t),v.'(y, t)j,a.A."(*,t)j
+LLV.'(y, t),aA."(z,t)j,7'"(x,t)j

+Lj a~. (,t),~-(,t», v. (;t»=0. {4.1g)

The first internal commutator is evaluated from (2.10a),
the third from (2.14). The second commutator is

$V.'(y, t),a„A,s(z, t)j= I'd. ,da„Ada(y, t)b(y —z) . (4.19)

This has been derived in Ref. 3, and can be shown to
follow from {3.16). Therefore, we have

Lps. (z, t),v '(x, t)ja;b(x—y) —ie..d lsd(x) b(x—y) b(y —z)

+I.V. (y, t), '.(,t)»( -y) =o. {4.20)

Since it is true that

Lv.'(y, t), q.(x,t)j= ie..dq d(x, t)b(x—y) (4.21a)

and by assumption j,(x,t) is canonically conjugate to
q „it must also be true that

Lv.'(y, t), bs.(x,t)]= i~..de. (x,t)b(x—y). (4.21b)

This equation shows that C,~,~I,'&'cannot be a c number,
for if it were the left side would vanish, while the right
side would contain the q-number operators (E LM. ),'.
From (4.15) our result now follows. Set M=L=A,
E= V and contract with ej ~ to give

I A e'(Zet), dt abC'sb, vd "(X&t)g =&dta bd«dCd b.»"(&)b(Z—X)

+lb'. bd. bZ.d.vv "(*)~(z *)—bet—.b"b«".V' (&)'

)& aeb(x z—) i—df.be, dad b.V.'(z) a'b(x z—) . (4 16R)

Upon taking VRcuuIQ cxpcctRtlon VRhlcs the left side
VRlllsliCS RCColdlllg to RSSu111Ptloll (3). (dtabCab, dTr' lS

just the I= 1 part of C b dv*''. ) On the right side Ve' has
no vacuum expectation value, and wc are left with

&feb&«d(f1j Cdb, «(&) I fl) &fsb'4db

&&(Qj C d, »'~'(z) IQ). (4.16b)
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Therefore the last two terms in (4.20) cancel, leaving

[„,(z, i), V.*(x,~)]=0, (4.22)

which is the ldesired result.
We now discuss the assumptions that we have made

in this derivation. The assumption about the validity of
the Jacobi identity is technically necessary in view of
our repeated use of that identity. Since it involves two

space components and one time component, it may in
fact be unreliable. '4 However, it can easily be verified
that {4.4) may be integrated. over x and (4.13) may be
integrated over x and y, without losing any other in-
formation necessary to derive (4.16c). The Jacobi
identity, when applied to such nonlocal operators as
space integrals over local operators, should be reliable.
The statement that ST are c numbers assures that the
first sum rule (4.1a) is valid. It is clear that if g number
ST's are present then many of our relations would have
additional terms about which we could not say any-
thing. It is also evident from arguments based on
asymptotic chiral symmetry that the second sum rule
cannot be valid if the first sum rule is invalid (at least
for zero-mass pions). Therefore, the 6rst assumption
seems necessary.

The second assumption, if violated, wouM also pro-
duce terms about which we could not say anything,
e.g. , in (4.9). Thus it too seems necessary. This assump-
tion is somewhat related to the first assumption. It has
been sho~' that in general the space-space ETCR
can contain only teI'ms proportional to a 5 function
and to its 6rst derivative. Furthermore if the ST in the
space-time ETCR are c numbers, then the gradient
terms in the space-space ETCR necessarily vanish.

(The derivation of Ref. 3 depends on certain assump-

tions, which are explicitly stated there and which are
brieQy summarized in Refs. 1, 3, and 6 of the present

paper. ) Therefore, the effective content of the second

assumption is that the term proportional to the 8 func-
tion is a c number. If a speci6c form for the space-space
ETCR is known, our results may of course still be valid.
For example, it can be verified that if the space-space
ETCR is given by the quark-model formulas, then the
second Weinberg sum rule still holds when assumptions

(1) and (3) are made.

The third assumption is necessary and suITicient

within our argument, as is seen from (4.16a). It cannot
be replaced by the stronger statement that the com-

mutator of A,o with the I= 1 part of C,q, ~~'& vanishes

identically. For if this happened, then'the terms on the
right side of (4.16a) proportional to the 8 function and

to the gradient of the 8 function would have to vanish

separately. However, it is manifestly true that the
gradient terms cannot vanish identically.

Finally, we take up the matter of the commutator

(4.17) which may not vanish when B„A,"WO. The

"K. Johnson and F. E. Low, Progr. Thcoret. Phys„(Kyoto)
Suppls. 37 and 38, 74 (1966).

special form of PCAC, which allowed us to conclude
that the KTCR [q „Vi,*']=0, is rather restrictive. How-

ever, we note that the only model which incorporates
PCAC and current algebra, viz. , the f7 model, does
satisfy the assumption. Nevertheless, in general we

must admit O(p„') corrections to (4.1b). Such correc-
tions are not serious in SU(2) XSU(2). But if the present
argument is extended to SU(3)XSU(3), the corrections
become of the order of the kaon mass squared, which

would make (4.1b) unreliable. This may be the expla-
nation why the second Weinberg sum rule is not well

satisfied for SU(3)XSU(3).

S. RELATION BETWEEN DECAY CONSTANTS

In this section we obtain a relation between the pion,
kaon, and ii decay constants, by using (3.8) and partial
conservation of currents. According to (3.2a) and (3.2b),
we have

[E (t),B„Li,i'(x)]= iC i, ,xr, (x), (5.1a)

& i,irr, {x) Ci, rz(—x)=f s/i(E'I) " (5 1b)

E.(t)= d'y E.'—(y, i) . (5.1c)

The consequences of (5.1) for SU(2) XSU(2) have been

explored in Ref. 3. We now consider the implication for
SU(3)XSU(3). Of particular interest is the case E=I
=A, a= j., b =4. We have therefore

[A i(t), Bp 4~(x,t)]—[A 4(i), B„A&~(x,i)]
=ifi4.8„V."(x)= ',iB„V7& —(5.2).

We impose the PCAC condition on 8+4&, Bgm&, and
B„t/'7I', i.e., we identify these divergences with the kaon,

pion, and ~ fields.

[A.(t),a i,(x)]=id. i„S,(x) .

Inserting (4.5) in (4.4), we obtain

(5.5)

(FKIJK Few )~14cSe(x) (Firpx Fgiim ) g(S)/x2
Fdl, „2S„{x)/2. (5.6)—

Here a4 {ai) is the kaon (pion) pseudoscalar 6eld, while

5„ is the a scalar Geld. The F's are the decay constants
and the p's are the masses of these mesons. The minus

sign has been inserted for convention. Combining (5.2)
with (5.3) yields

Fxpx2[A i(i),a4{x,t)]—F ii '[A 4(i),ai(x, t)]
= —~2iF„p„'S„{x). {5.4)

Next we assume that the pseudoscalar mesons transform

like members of a (3,3)+(3,3) representation of SU(3)
XSU(3). This means that
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It therefore follows that the above as

S„(x)=S,(x) (5.'t) bZ(x) b4(x) b'Z(x)
= II(x)— + B,b(x—y)+ II(x)b(x—y)

hC (y) b'8;0

b'Z(x)i bZ(x) be(x)
+ 8, ~b(x—y) = II(x) . (N2)

b'a, e i bii(y) N'(y)

The commutator in question is

C(x,y, t)=L2 (x,t),j'(y, t)j (N3)

(We suppress internal degrees of freedom. ) Using the
canonical formulas

and
(5.8) ~+ (y)Fret z'+I'.V'=&' V '.

This is our desired result. "
0. CONCLUSION

M= II% —2, j'= II%, (N
we have

h@(x,t) b4 (x,t)
C(x,y, t) = iII (x,t) 4'(y, t) —iII (x,t) II (y, t)

N (y, t) N (y, t)

bZ(x, t)—iII(x,t)%'(x, t) b(x—y) —i %(y,t)
b+(y, t)

bZ(x, t)
+ill(y, t)

bli(y, t)
(N5)

Equations (N2) simplify the above to

C (x,y, t) = —iII (x,t)4(x,t) b(x—y) —iII(x,t)% (x,t)b(x—y)

b'Z(x, t)—i 4(y, t) B,b(x—y)
5'8;4

b'Z(x, t)—i 8, @(x,t)b(x—y)
6'8;0'

-b'Z(x, t)iB„+(x,t)—b(x—y)
8'8„%'

b'Z(x, t)
i —@(x,t) B,b(x—y)

8'8;0'

i8j "(x—)b(x y) ij '—(x)B,—b(x y) . —

bZ(x) b'Z(x) b4 (x) b'Z(x)
+ Bb(x—y)

b'4 N (y) b'8,%8% (y)

b'Z(x)
+ b(x—y), (Ni)

bZ(x) b'Z(x) be(x)

bii(y) b'4' &k(y)

When 2 is the Lagrange density, the equations of
motion and the definition of II can be used to rewrite

(N6)

This is the desired result.

We have shown that the ETCR between selected
components of the stress energy tensor and selected
components of a current can be given in a model-inde-

pendent fashion (for low spin systems), when the cur-
rent arises from an internal transformation of the Lag-
rangian. Starting with the ETCR of time components
of these components, we showed how weak and electro-
magnetic interactions afI'ect the ETCR of space com-
ponents with time components. A derivation of Wein-
berg's second sum rule was given from further assump-
tions about the isospin structure of certain commutators
Finally, a linear relation between the decay constants
of broken SU(3)XSU(3) has been found.

Note added in proof We p.resent a canonical proof of
(1.3). Use is made of functional derivatives b/M'(x),
with canonical momentum II(x) kept fixed, and

b/b%(x), with the canonical field kept fixed. In addition,
variational derivatives are used: b'/b'4', b'/b'8;4, and
b'/b'%. For any functional 2, depending only on 4 and

8„%, we have

"A similar relation has been obtained b S. Glashow and S.
Weinberg, Phys. Rev. Letters 20, 224 (1968, who made use of a
Lagrangian model for symmetry breaking and smoothness assump-
tions about various functions. I am indebted to Professor S.
Glashow for pointing out the relevance of the methods developed
in this paper to this problem.
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