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for p'p or for ¢p. (3) Although there are very large
uncertainties in the forward ¢’ experimental cross
sections, the calculated values seem to be too big by a
factor of about 2.5. The predicted cross sections fall
off very slowly with energy. There seems to be no way
out of the problem of the ¢ cross section being too large
with the vector-dominance model as formulated here.
A modification of the mass dependence of the photon—
vector-meson coupling, or possibly the introduction
of an additional diagram, may be called for. (4) The
vector-meson production processes are dominated by
the SU(6)w 1 amplitude in varying degrees. The ¢p
cross section is the flattest and has relatively little
dependence on the other SU(6)w amplitudes. The wp
cross section falls most steeply with increasing energy,
displaying the importance of the SU(6)w 35p, 35w,
and 405 terms. The p% cross section falls at an inter-
mediate rate.

There are scant data for the clsss PB*, the best being
that for yp— a~N**+ (see Table III). Calculated
values of do/dt for 6*=0 using vector dominance and
the (m,/mv)* factor are listed in Table 1II. They differ
by about 29, from values calculated with no factor. They
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agree with experiment at low energies, but are too large
by a factor of 2 in the range 2.5-5.5 GeV.

In summary, we have demonstrated that SU(6)w
may be used to make quantitative predictions for
photoproduction amplitudes at low and high energies.
The predicted ratios of K*2%/ K+A forward cross sec-
tions are in good agreement with experiment. This
accord demands the inclusion of a 405 amplitude, an
amplitude not allowed by a simple quark model.
Predicted forward vector-meson production cross sec-
tions are in good agreement for p and w production, but
are too big, by a factor of 2.5, for ¢ production. The
degree of breaking of the octet purity of the photon may
be determined, quantitatively, by a careful measure-
ment of the forward ¢ and w cross sections.

We are indebted to Professor J. Coyne, Professor
B. Richter, Professor S. Ting, and Professor G. Yodh
for many helpful discussions and suggestions, and to
Professor R. Anderson, Professor M. Berger, Professor
K. Cahill, Professor W. Jones, Professor C. Levinson,
Professor H. Lipkin, Professor W. Parke, Professor
D. Ritson, Professor M. Ross, and Professor H. Williams
for useful conversations.
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An investigation of the dynamics of low-energy s-wave K*p scattering has been made by the semiphe-
nomenological application of dispersion relations. Contributions to the s-wave K*p dispersion relation from
the nearby singularities due to the following processes were explicitly calculated: (a) exchange of A and 2
in the # channel; (b) exchange of p, w, and ¢ in the ¢ channel, treated in the narrow-width approximation;
and (c) exchange of an s-wave T'=0 7= pair, treated as a continuum state. Other exchanges, and short-
range forces, were treated phenomenologically. The amplitude in the physical region was taken from a
recent phase-shift analysis of K*p scattering data, and the necessary coupling constants for the exchange
processes were obtained from experiment, supplemented by the use of SU(3) symmetry when experimental
data were not available. The exchange of the s wave T=0 z-r pair is shown to be potentially a very im-
portant term, and the present difficulties in calculating its exact size are discussed in detail.

I. INTRODUCTION

ARLY work on the low-energy KN system pro-

ceeded on the assumption that the dominant
forces arise from the exchange of a small number of
stable, or quasistable, states in the crossed channels.
Examples of such possible exchanged particles are
A, Z, p, w, Y¢¥ and V¥, and various combinations have
been considered by several authors.!~® Little definitive

* Work performed under the auspices of the U. S. Atomic
Energy Commission.
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1 B.)W. Lee, thesis, University of Pennsylvania, 1960 (unpub-
lished).

2 F, Ferrari, G. Frye, and M. Pusterla, Phys. Rev. 123, 315

information can be drawn from these calculations,
however, because of a variety of reasons. For example,
sometimes only a limited set of particles was considered,
and sometimes the number of free parameters involved
exceeded the constraining capacity of the data as they
existed at the time. A more serious objection is, perhaps,
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the neglect of other terms. In particular, it was pointed
out by several authors'# that the exchange of a non-
resonant pair of pions produces a singularity in the
KN partial-wave amplitude which approaches very
close to the physical region and would @ priori be
expected to be of some importance. Because of the
length and nearness of the cut in the complex energy
plane resulting from this process, it is clear that the
exchange of such a state must be considered rather
carefully. Finally, there is the persistent neglect of
short-range forces, which cannot be adequately repre-
sented by single-particle exchanges and, moreover,
would naturally be expected to be important for the
low partial waves.

Attempts to remedy some of the above defects have
been made in two recent calculations. Warnock and
Frye® have considered the exchange of a large number
of stable and quasistable states as well as background
terms represented by low-order polynomials in the
manner of Cini and Fubini.® However, the partial-wave
amplitudes are obtained by projection from fixed-
variable dispersion relations, a procedure which is well
known to give rise to divergent expressions in the
physical region. Of the large number of parameters
needed in this calculation very few can be determined
from the presently available data. On the other hand,
Martin and Spearman’ have concentrated on carefully
calculating the effect of the exchange of a nonresonant
m-m pair, i.e., the force of longest range. Unfortunately,
the method of producing a physical s-wave amplitude
was to use the N/D technique in the Baldzs approxima-
tion,® and apart from other difficulties in the N/D
method (particularly in producing spurious zeroes of D
for s-wave scattering®), the Bal4zs approximation is
now known to give misleading results often.’ Further-
more, as will be discussed later, the form of the s-wave
m-m interaction used by these authors may no longer be
adequate.

It is evident from the above discussion that present
data are neither plentiful enough nor of sufficient
accuracy to allow a determination of the parameters
governing the exchange processes. In this situation, a
more fruitful question to examine is the nature of the
dynamics, given reasonable estimates for the necessary
input parameters. This is the question that will be
examined in this paper. The method used is similar to
that which has met with considerable success in under-
standing the dynamics of the low-energy =N interac-
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V. Vasavada, ibid. 144, 1270 (1966); A. H. Bond, ibid. 147, 1058
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tion.!® Basically, the idea is to calculate explicitly, as
far as possible, contributions due to the nearby singular-
ities produced by the exchange of states in crossed
channels. These can all be calculated by convergent
techniques and include the exchange of an s-wave T'=0
m-m pair, treated explicitly as a continuum state. The
rest of the interaction, representing more distant
singularities (i.e., forces of shorter range), are repre-
sented phenomenologically. This method requires that
the physical scattering amplitude be reasonably well
known and so we will apply it initially to s-wave T=1
(K+p) scattering, since this amplitude is by far the
best known experimentally at present.

II. KINEMATICS OF KN SCATTERING

The kinematics of spin-O-spin-§ scattering are stan-
dard.!! We give in this section just those formulas which
we shall need in later sections.

The three channels we shall consider are

K+N— K+N, (s)
E+N—EK+N, (u)
K+K—N4+N,
with p; (¢;) the initial-state four-momentum of the
nucleon (kaon), and p; (¢s) the corresponding final-
state four-momentum. These three processes are de-
scribed by scattering amplitudes which are functions of
the usual invariants,!2:13
s=(gitp)"= (gr+£5),
t=(git9,)*= (pi+ps)",
u=(gi+ps)*= (gr+p*,

where momentum conservation implies
sti+u=2(M*+m?),

and M and m are the masses of the nucleon and kaon,
respectively.
The S matrix for these three processes may be

written
i(2r)* M@ (pitqit ps+95)
(4p L p g0

rri=a(pr)Treu(pi).

The problem of spin is treated by writing the T-matrix
element T'y; in terms of two scalar invariant amplitudes
Ay; and By;, which are assumed to satisfy the Mandel-
stam representation.’® Thus,

Tyi=—Aspt50v- (qitg7) By

10 . Hamilton, in High Energy Physics, edited by E. H. S.
Burhop (Academic Press Inc., New York, 1967).

11 G, F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1337 (1957).

12 C, Mgller, Ann. Physik 14, 531 (1932).

18 S, Mandelstam, Phys. Rev. 119, 467 (1958).

(2.1)

2.2)

Spi=0p— Tfis

where
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Is] = M2-m? =32.6

A
/

F16. 1. Singularities of the K*p partial wave amplitudes f1.(s)
as a function of s, the square of the total c.m. energy.

s=(M+m)? =105.3

2
s = [(M2=p?)""2 + (m?=p?)"2] = 100.8

The amplitudes A(s,f) and B(s,f) may be further
decomposed into charge states A=(s,f) and B*(s,f) by
A (S,t) = A+(S,t)+A—(S,t) ("N' '?K) )

B(s,t)=B*(s,))+B(s,f) (5 %x). 23)

A. s Channel

In the c.m. of the s channel the differential cross sec-
tion may be written
)

(), =l

where the matrix is taken between two-component
spinors, and the expression is summed over final spin
states and averaged over initial spin states. The
helicity amplitudes f; and f; are related to the invariant
amplitudes 4 and B by*

Ai;,t) _ (Z:Af ) i)~ (VZ: ]5 ) felst), (24)

Bil(:l) B <E—|iM>f1 (s0)+ (E—l M

2

fb (0-q:) (o qf)f2
q:qr

b

>fz(s,t), 2.5)

where E is the total c.m. energy of the nucleon and
Ws=+/s. They may be expressed in terms of partial-
wave amplitudes by the expansions

fl(s,l)=éofH(S)Pm’(x)—lZ::ofz—Pz—x’(x), (2.6)

fz(s,t>=g[fz_<s>—fz+(s>JPz'<x>, @.7)

where x=cosf, is the cosine of the s-channel c.m.
scattering angle, related to ¢ by
= —2k2(s)[1—cosb, ],
exp[2idy.(s)— 1]
21k (s)

(2.8)
and

fue(s)= (2.9)

is the partial-wave amplitude for scattering in a state

14 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
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of total angular momentum J=I4%. The magnitude
of the c.m. three-momentum is denoted by k(s), and
814 (s) is the complex K+p phase shift. The partial wave
amplitudes of Eq. (2.9) may be expressed as

_E+MA o
fzi(s)—&rws[ 1)+ (W—M)B,(s)]
e Au()+ (WMD) B ()], (210)
where e .
[44(s); Bi(s)]=4 f i
XPi(x)[As(s,0); Bs(s,t)].  (2.11)

Tinally, if we denote by A7(s,f) the amplitude for
scattering in an isospin state T, then these are given in
terms of A*(s,t) by

AL(s,H)=A%(s,0)—34~(s,8), (2.12)
and

A (s)=A*(s)+A47(s), (2.13)

and similarly for B,7(s,?).

B. f Channel

In the ¢ channel the invariants s and ¢ are given by

s=— p>—q>—2pq cosb; (2.14)

and

t=4(p*+ M) =4(P+m?), (2.15)
where p (¢) is the magnitude of the c.m. three-momen-
tum in the NN (KK) channel, and cosf, is the cosine
of the i-channel c.m. scattering angle. The differential
cross section may be written

do/d@=3 |Fxsl?, (2.16)
where \,\ are the helicities of the nucleon and anti-
nucleon, respectively. If we define the amplitudes
T’ (¢) for scattering in a state of total angular momen-
tum J by

Iy ()= —iSx (1),

where Sy’ (f) is a submatrix of the S matrix of Eq.
(2.2), then the relations between Fyx and Tz’ are

1
F++(S,’)=F—,—(3J)=”Z;. J+5)T 7 (OPs (), (2.17)
q
R e
_(s,)=—F_,(s;t)=\~- ——
' N T
X Ty () sind, P;'(y), (2.18)
where y=cosf;. The helicity decompositions of the
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invariant amplitudes are then

daW, _ J+3%
A(st)=———%
p 7 (pg'”
, M yP;'(y)
X (T++J(¢)P 7 @)__V;':T+_J(t)m> , (2.19)
&r J+3 T
Bi(s)=— Pr(y), (220
O DT O @20
where Wy=4/t.

Finally, in the ¢ channel, isospin amplitudes are
given by
AP (.Y,t)= 2A+(S)t) ’

A -51 (S3t) =24~ (S)t) ’

(2.21)
(2.22)

and similarly for B (s,f).

III. SINGULARITIES AND DISPERSION
RELATIONS

The singularities of the partial-wave amplitudes
fu(s) of Eq. (2.9) as a function of s were first given
by MacDowell’® and are shown in Fig. 1.1® Exchanging
a particle of mass m,=+/¢ in the ¢ channel produces
four branch points in the s plane, 0, — «, and s, where

B N D SR
For some range of values of /, sy are complex and obey
sp=s%,

For the exchange of either a p or w meson in the ¢
channel, 4u2<t<4m?, and so sy are both real. For ¢
meson exchange, however, s, are complex, and hence
this process contributes only to the circle and real-axis
cuts to the left of the circle. Exchanging a particle of
mass #my=+/% in the » channel also produces four
branch points, 0, — 0, sy, and s,, where

se=2(M*+m?)—u,

si= (M=, 2
and 52> s51. For m,2<2(M2+m?) the cut along the real
axis nearest the physical region may be taken between
s1 and sq. In the spirit of the remarks made in Sec. I,
we shall explicitly calculate only those contributions
coming from the nearby cuts due to the exchange of
A, Z, p, w, and ¢, and an s-wave T'=0 pion pair which
we shall denote by (-r)o. The nearby singularities due
to these processes are shown in Fig. 2.

1S, W. MacDowell, Phys. Rev. 116, 774 (1959).
16 All numerical work in this paper is in units such that Z=¢
=m,=p=1.
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ALL t-CHANNEL EXCHANGES

Y*(1385)

ALL u-CHANNEL
EXCHANGES

L 1 1 1 | 1
(o] 20 40 60 80 100

S

F1c. 2. Nearby singularities of the K* partial-wave amplitudes
f1.(s) as a function of s, the square of the total c.m. energy. The
arrows indicate which processes contribute to each singularity.

The dispersion relation that we shall use is, for
s2so=(M+m)?,

P~ I ,
Refuu(5)=Bua(s)+- / dyﬂ{ﬁi(f_)
T Jso S'—s
1 T N1 I )
+—f ds" mfr (s )TI / 2 mf;i(s)’ 6
T s'=s wJp s'—s

where Byy(s) denotes contributions from the A and =
pole terms, and NV and D mean that the integrals are
to be evaluated over the nearby and distant cuts,
respectively.

IV. A AND = EXCHANGE

We shall evaluate the contributions due to the nearby

cuts
(M2—m2)Y/ V< s<2M2— V2-2m2,

(where ¥ denotes the hyperon mass), produced by A
and T exchange in the # channel. The pole terms in
the invariant amplitudes 4 (s,#) and B(s,t) are

A= —ge D _ETI
A2—y 22—y
1
B(s,t)=— gAL:_;“ g2222_u , (4.2)

where the coupling constants are defined via the
Lagrangian density

L=g\[(NAK)+H.c.J+gs[ Ve -EK)+H.c]. (43).

The denominators in Egs. (4.1) and (4.2) may be
written
1/(YV?—u)=2s/(ay+by cost,), (4.4)
where
ay=s2—2s(M?— V?+m?) — (M2—m?2)?,

by = 52— 2s(M24-m?)+ (M2—m?)2.
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Using (4.4) in Egs. (4.1) and (4.2), and projecting out
partial waves, gives

1

d cosf,
-1

L44(s); B’(S)]=Y=ZA ;

y [R.Y; R,/Y]P;(costs)s

ay-+by cosf,

» (45)

where
RJY=—gr2(Y—u),
; gr¥( ) (4.6)
Ru Y —gyz.
The integral in (4.5) is singular for —1<cos,<1 and

it is a simple matter to show that we must pass below
the pole in the cosf, plane. Thus, from Eq. (4.5),

Im[A:(s); Bu(s) J=ms 2.

1
G
Y=A4,Z\by

x(—flf)[RuY; RJ/Y]. (&)

by

Using Eq. (4.7) and (4.6) in (2.10) gives the discon-
tinuity across the nearby hyperon cuts:

Imfiy (s)=—3W. 2

¢
Y=A,2 by )

X[(E+M)(W+Y—2M)Pi(—av/by)

+(E—M)(W,—V+2M)Pry1(—ay/by)]. (4.8)
Finally, the contribution to Refi:(s) in the physical
region from a given hyperon cut is given by

82 I ’
ds’—mgfiz , 4.9)

X §'—s

1
Refu(s)=— f

™
where
si= (2=t 1,
So=2M2—YV242m?.

V. s-WAVE T=0 =-x EXCHANGE

As we have seen in Sec. II1, the force of longest range
in KN scattering, due to the exchange of a pion pair,
gives rise to a singularity in the s plane which almost
reaches the physical region (see Fig. 2). It is important,
therefore, to treat the exchange of such a state with
particular care. The framework for doing so has been
given by Martin and Spearman,” and we will basically
follow their method here. Firstly, we give the necessary
notation for =-K scattering that we shall need.
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A. Kinematics of =-K Scattering

The kinematics of w-K scattering are standard.'”
The S matrix is of the form

s 1(2m)8® (pitqitprtqs)
Ji fi (16P¢'0950Pf09f0)”2 i

and the decomposition of the T matrix into s-channel
partial waves may be written

(5.1)

T, (s,) =8, 3. (U+1)Pilcosh)fuls), (5.2)

where 2is .
1A%) =ﬂ)—[———2:_;((-:))—]—. (5.3)
To specify isospin, the 7' matrix is written
T (s,)=86aT*(5,8)+3[r8,7a]T(5,0) (5.4)

where « and 8 are the pion isospin indices, and in the
s channel the amplitudes for scattering in a pure isospin
state are given by

T2 (st)=T*(s,)+2T(s,0) (5.5)
T32(s,)=T+(s,6)—T-(s,t). (5.6)

In the ¢ channel, 7= — KK, we shall denote by ¢ the
magnitude of the c.m. three-momentum of the kaon,
and by « the corresponding quantity for the pion. Then

t=4(g+m’)=4(¥+u7), (5.7)

where uy=m,. The partial-wave decomposition is now

T,<s,t>=lz°§_0 QD) )G OP), (5.9
with its inverse .
aO=1q! / BTGHPG),  (59)

where y=cosf;. The factor (xg)! is introduced, following
Frazer and Fulco,!® to remove a kinematical threshold
zero. Finally, isospin amplitudes in the ¢ channel are
given by

Tt = ('\/6) T+7

Tr=2T-. (5.10)

B. Unitarity for the Process KK — NN

We wish to calculate the discontinuity in the partial-
wave amplitudes fi.(s) across the nearby cuts due to
(w-m)o exchange. If we recall the definition of the
physical amplitude,

A, (s,0)=lim 4,(s,t-+1€),
>0+
17 See, e.g.,, M. Gourdin, Y. Noirat, and Ph. Salin, Nuovo

Cimento 18, 651 (1960).
18 W, R. Frazer and J. R. Fulco, Phys. Rev. 117, 1609 (1960).
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then using the reality conditions
AF(s,t+ie)=A(s,t—ie),
Bg*(s,t+1i€)=B;(s,t—1e),
in Egs. (2.19) and (2.20), we have

4 W, J+3
At(syt'l'_ié)—At(S,t—ie):—___.__
T (P
X <ET++J O =T 7 (TIPS (y)
2M i yP,'(3)
T O (WEJ(JM)]I/) G4
and
B i — Bu(sj—io =y — 1
(s,t+ie)— By(sf—ie)=— 3 ———
q J [](]+1)]1/2

Py (y)
(b

The 27 contribution to the unitarity condition for
Tx7(§) is given by

T)\X"(l)—' T)\X"(I)T'—"L‘G)\XJ(I)T'IG)T s (5.13)

where T7(f)=—14S’(f) is a submatrix of the =-K .S
matrix of Eq. (5.1), and G\x/(¢) are helicity amplitudes
for the process mm— NN. In terms of the helicity
amplitudes f./(f) introduced by Frazer and Fulco,!®
the amplitudes Gax” (f) are given by

G+,+J<t>=(—;—)(;)lmwxwfw(o, (5.14)

X7 (=T (1]

(5.12)

t

K\112
G+_J<t)=(;) #971-7(0). (5.15)

The amplitudes T (¢) are given in terms of the ampli-
tudes gs(#) of Eq. (5.9) by

12

(g
TJ = KJJ .
® 4W(q)g(t)

TW e

(5.16)

If we now use Egs. (5.13)-(5.16) in Egs. (5.11) and
(5.12), we can derive the following expressions for the
discontinuities in the invariant amplitudes 4,(s,f) and
B,(s ,t) .

1
Ind () =—— £ (J+1) (pg") 7
PW,

J —_—_—
X(1e 0P

><yPJ'<y)f_J<t>)gJ*(z>, (5.17)
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T+
I B; W)=
= S U
X (P77 LI (g (OP(5). (5.18)

To treat isospin we use Egs. (2.21), (2.22), and (5.10).
Thus,

3
o Z_;’ (J+3)(pg*)

t

Imd (s,f)=
b4

X (TR IH(D)grt (O Pr(y)  (5.19)
(5.20)

and
ImB+(s,0)=0.

The superscript now refers to the (4) charge combina-
tion, and the sum in (5.19) is taken over even J values
only because of the restriction implied by G parity.
Since we are interested only in the exchange of the
J=0 state, Eq. (5.19) becomes

Imd *(s,t)= > fOget@*. (5.21)

20°W

In the elastic region, 4u?<¢<16p?, the amplitudes
f+%+(t) and gt (f) have the same phase, and this is also
equal to the phase of the D function® for r-r scattering
in a state having J=0 and T=0. Thus we may write

Imf,**()D(D)go* (1)

gt (O)*=— — , (5.22)
and using (5.22) in (5.21) gives
o+
TmA +(s,) = — wD(t)g#(t). (5.23)

20°W, ImD(})

Provided that the equality of phases used to derive
Eq. (5.23) is approximately valid outside the elastic
region, we may use Eq. (2.11) to project out partial
waves from (5.23) (noting that since s+ie crosses to
t—ie an extra minus sign is thereby introduced).
Substituting the result into Eq. (2.10) gives for the
discontinuity in the T=1 direct channel partial-wave
amplitudes

-3 —4k2 (s)
Imf, (s)= / dt
6An W 2 o0
«  Imfio* ()
— = DOgot(t) |Huu(st), (5.24
[Pzwt o D0 0auen, G2
where

Hyy (s,0)= (E+M)P:(1+1/2k2)
—(E—M)Py (1+12/2F%). (5.25)

1 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).
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Finally, the contribution to Refi.(s) in the physical
region from the real-axis cut due to (r-7)o exchange is

given by
Refus) = / P LA
S s'—s
where Imfy, (s") is given by (5.24) and
sa=[(M>— )Pk (m2— p?) 2. (5.27)

Equation (5.24) could also be used to derive an expres-
sion for the contribution to Ref.(s) from the circular
cut, but this would involve values of ¢>4m? for which
the approximations we have used are not expected to
be valid. Furthermore, as we shall see later, our knowl-
edge of Imf % (f) is restricted to small values of &
We shall consider the possible error introduced by the
neglect of the circle contribution when we discuss
vector meson exchange in Sec. VI.

C. mx — KK Amplitudes

To evaluate Eq. (5.24) we need to know the value
of D(f)get(t) for 4u2<t<—4k%(s) and s in the range
s_<s<s,, where s, are given by (5.27). We shall
firstly write a dispersion relation for D(#)get(f) sub-
tracted once at {=0. Thus,

D(t)go*(t)=D(0)gs*(0)

[

To calculate Imggt(#) for #<0, which is needed in
(5.28), we write a once-subtracted fixed-¢ dispersion
relation for T+(s,f) and then project out partial waves

D) Imga* ()

5.
t’(t’—t) (5:28)
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by using Eq. (5.9). Noting, again, the s, crossing
relation, this procedure leads to the following expres-
sion:

o 2041
Img0+ (t) =4r Z

1=0 kg
L(t)
Jl
(m+p)?
L) =m*+u2+2q-

o= (m—3in,

k= (W—1H)'".

ds WPi(x) Imfit(s), (5.29)

where

(5.30)

We shall evaluate Eq. (5.29) keeping only the p-wave
K*(890) and the d-wave K*(1400), representing these
resonances by the following forms:

fils)=Byx?!/[(wr—w)—iyH],

where w= (x+pu2)!/2, and B is the branching ratio into
wK states. The parameters v and wr are fixed by the
widths and positions of the K* resonances.?’ It should
be noted in passing that evaluating (5.29) in the narrow-
width approximation can give misleading results be-
cause of the form of the upper limit in the integral. It
is easy to show that Imget(f) can be calculated by a
convergent-partial-wave expansion only for —32u* St
<0. Thus the lower limit in the integral of Eq. (5.28)
is replaced by /= —3242

The only term left to calculate in (5.28) is g¢*(0).
This may be found by using Eq. (5.9) at ¢=0, giving

(5.31)

1 (m+u)2
gt (0)=— “ds T*(s5,0),
M J (m—p)?

(5.32)

and T+(s,0) may be found from a once-subtracted
forward dispersion relation,

1 00
T+(5,0)= T+ (m+up)%,01+- ds’ TmT+(s",0)

(m+u)?

1 1
e
s'—s  s'+s—2(m*+u?)
1 1
- ) , (5.33)

S=(ntw? /= (m—p?

again using (5.31) to represent the K* resonances. The
subtraction constant in (5.33) is given by

TH (m~+u)2,0]= — (87/3) (m+u) (ad'?+2as)

where a,T are the s-wave m-K scattering lengths.

(5.34)

2 We use the following values taken from the tables of A. H.
Rosenfeld et al., Rev. Mod. Phys. 40, 77 (1968) : K*(890) : 7 =893
MeV, ;‘ 49 MeV B=1; K*(1400): m=1419 MeV, T'=89 MeV,
B=0.53.
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D. J=0, T=0 m-= D Function

In order to calculate the amplitudes for == — KK
of Sec. V C, we need to know the D function for =
scattering in a state with /=0 and T'=0. If we norm-
alize the D function to unity at =0, then a suitable
representation is?

D(t)=exp(—-;t; /: dz';-(;%z_—;;), (5.35)

where §(?) is the -r phase shift for s-wave 7=0 scatter-
ing. Equation (5.35) enables both D(¢) for —32u2<¢<0
[which is needed in Eq. (5.28)], and ImD(#) for
4p<t< —4k%(s) [which is needed in Eq. (5.24)] to be
calculated, provided that we know &(f).

At the present time there is much conflicting evidence,
both experimental and theoretical, on the form of 8(¢),
and consequently we cannot make a definitive choice.
Three of the major forms for 8(f) that have been
suggested are shown in Fig. 3. Solution A exhibits no
significant structure, and the phase shift is <40° for
all Wy=4/1. Solution B has a negative phase shift for
WS 450 MeV, thereafter becoming positive. Finally,
solution C has §() <40° for W,< 600 MeV and above
this energy exhibits a resonance at W,=750 MeV of
width 150 MeV. The evidence for each of these three
solution types is briefly discussed in the Appendix. We
will use each of them to calculate the (7-7) contribution
to K*p scattering, although, for reasons that will
become apparent later, most of our remarks will be
restricted to the use of solution A. For all solutions
6(7) for W,>1.1 BeV is set equal to its value at 1.1 BeV.

VI. VECTOR-MESON EXCHANGE

As we discussed in Sec. III, the vector mesons that
we shall consider are p(765), w(783), and ¢(1019). The
p meson is a two-pion state and so could, in principle,
be treated in the same way that the (7-7), contribution
was treated in Sec. V. However, the current state of the
art hardly warrants such a detailed treatment, and we
will therefore treat the p contribution, along with those
of the w and ¢, in a narrow-width resonance approxima-
tion.

By analogy with the Frazer and Fulco'® amplitudes
fe7(t) for 7w — NN we shall define amplitudes 4,7 (£)
for the process KK — NN. In terms of the amplitudes
T’ (¢) of Egs. (2.17) and (2.18) these are given by

Tma)=(—;—)(§)m@q)wa>, (6.1)

t

1/2 R
T+J<z)=(§) (0077 (). 6.2)

A R. Omnés, Nuovo Cimento 8, 316 (1958)._
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Using Egs. (6.1), (6.2), (2.21), and (2.22) in Egs.
(2.19) and (2.20) for J=1 then gives

127 )
Ar(s,t)=——é(%)[@h#‘(t)-Mk—“(t)], 6.3)

127
B (st)= —\/—Q_—h.l‘ @®. (6.4)

If we now form the linear combinations

M M2__ __2
r1<t>=——2[£7§—ﬂ—[——) .*—<z>—h+1—<t)], (6.5)

()= ! [h =) Mh -(4
0= WO 0), 6o

where p_2=M?>—}t, then Egs. (6.3) and (6.4) may be
written

A (s,8) =12 (s+3t— M2—m)T5(2) , 6.7

Bi(s,0)=—12a[T1(2)+2MTy(2)]. (6.8)

In the narrow-width approximation we may represent

Ti() by a sum of terms I';V(f) (where V represents
p, w, and @), given by

TV () ="/ (tv—t—ie), (6.9)

where fy=my?, my is the vector meson mass, and v,"
are constants. Using (6.9) in (6.7) and (6.8), and taking
the absorptive part, gives, for a particular vector-meson
contribution,

Imd "= (s,) = 12n%2" (s+-1— M2—m?)5(ty—1), (6.10)
IBY~(s)=— 120 (" +2M " )o(ty—1).  (6.11)

The discontinuity in the partial-wave amplitudes
Ju across the real axis may be simply found following
the method used in Sec. V. This gives

3r(E+M)
e =y

=" (W= M)} Pi(av)—

{v2" LW — M) +5tv ]
3r(E—M)
W k2
(V" L(Wet-M)* 431 ]
1 W e+M T} Prsa(ar), (6.12)

where xy=1-¢y/2k% The contribution of a single
vector meson to Refy.(s) is then

Y A(C)
RefisV(s)=— / st T (613)
)y s'—s
where
sV =LYk (=Rt F. (6.14)

The vector mesons, like the (r-r), state, also con-
tribute to the front of the circular cut. In the case of
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()0 exchange this contribution was not calculated,
but for the resonances we shall do so in order to have
some feeling for the relative importance of contributions
from the circle and the nearby real axis.

The contribution of a vector-meson exchange from
the circle is given by

Ref&V(S)——f Af& S —,  (6.15)

AfziV(s') =2¢ Imf.V (s'), Ims’>0
=—2iImf;,"(s'), Ims'<0

where

so that if we set
s'= (M2—m?)e,

we have, for real s,
2 s"Imfi .V (s’)
Refi’ (s)=—- / de Im(———i—). (6.16)
mJo s'—s

Now, from the kinematics of Sec. II,

1
Imf,V(s)=
e 0=

s

/ Y () Pi()

+H2V(s7t)Plﬂ:1(x)]’ (617)

where
Hy (s,0)=[(We+M)*—m*[Imd, " (s,)

+(W.—M) ImB,"(s,5)],
HyY (s,0)=[(Ws—M)?—m*][—ImA "~ (s,)

+(We+M) ImB,"~(s,1)].  (6.18)

If we transform the integral in (6.17) by use of the

relation
t=—2k(1—x),

and then substitute (6.17) and (6.18) into (6.16), we

have ( )

$max
Ref,g(s)=-—-—/ dt/
¢min

HyV (8" ) Pi(1—2¢/tm)+Hs" (' 1) Prp1(1—2t/tm)
XIm( ),

s'—s
(6.19)
where
=4 (M? sin% o+ m? cos’3 @), (6.20)
‘Pmin=0, tVS_4m2
Lt —m2\1? (6.21)
=2 sin‘{(é ) :l, ty > 4m?
Mz_m2

and ¢max is a value of ¢ chosen so that the partial-
wave expansion into #-channel helicity amplitudes is
still within its radius of convergence. Since no real-axis
contributions will be explicitly calculated for s< 10, we
will take @max=60° for which Res’~15. Finally, Eqs.
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(6.10) and (6.11) may be used in (6.19) to give the
contribution to Ref, (s) from the front of the circle
due to a single vector meson.

VII. COUPLING CONSTANTS

In Secs. IV and VI we have introduced a number of
coupling constants. It is the purpose of this section to
give numerical estimates for these couplings, relying
as much as possible on experiment but supplementing
inadequate empirical information by theory when
necessary. Some of the estimates which we will make
are undoubtedly rather crude and will probably change
when more reliable methods of estimation become
available. For this reason we will attempt to estimate
errors on the coupling constants, although these errors
will not actually be used in the calculation.

A. Hyperons

Early attempts to evaluate the KY'V couplings from
forward-dispersion relations? found values which were
far smaller than the #VN coupling constant. Typical
results were gx2/4r~35, gx*/4r~1, and small values of
this order were also found in the analysis of kaon-
photoproduction reactions.?® However, recently a re-
evaluation?® of the KN forward dispersion relations
using a new parametrization for the KN unphysical
region gives gi2/4r=13.5+2.1 and gs?/4r=0.2+04.
We shall use these latter values in the calculations
below.

B. Vector Mesons

The vector-meson couplings v;¥(:=1,2) may be
expressed in terms of conventional field-theoretical
coupling constants fypp, frax®, and fryx™ by®

frepfrag®
e (T

” ( 1 )fVPPfVNN(T)
v =(—)——.

(7.1)
4

From dispersion-relation analyses of low-energy s-
wave 7N scattering,!® we know that

fprwprﬁ(V)/47r= 1.43:‘:0.15. (7-2)

2 See, e.g., G. H. Davies e al., Nucl. Phys. B3, 616 (1967),
and references therein.
2 See, e.g., N. F. Nelipa, Nucl. Phys. 82, 680 (1966), and
references therein.
% J. K. Kim, Phys. Rev. Letters 19, 1079 (1967).
2% The correspondmg Lagrangian densities are:
Lywy ™ = fxw gt (NyueN)+ funw Vet (NyuV)
+ fonn ¢ (W),
Lvw=® = (funw®/4M) (Nowa) - (77— 7g¥)
+ (meﬁ(T)/‘lM) (No'nvm (6“&’— a"‘b‘“)
q + (fonn D /4M) (Nay, V) (98¢ — %¢¥),
an
Lypp= forn0* (%X 8,) +i fux geo* (9. K 1K — K19,K)
+ifsxge* (0,1 K — K19,K) +ifox k0" (0,K"%K—K'%d,K).
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Now SU(3) symmetry with f-type coupling leads to the
relation f,r»=2f,kz, and this equality is verified to
within 129, from Regge-pole phenomenology which
gives f,xx=(0.56220.06) f,~r.26 Using this latter value
in (7.2) gives f,xrf,n¥"’/4r=0.8020.17, and hence

yrP=—0.530.11. (7.3)

From work on the nucleon isovector form factors at
low and moderate momentum transfers?” we also know
that fngP=—=3.7f,nx". Thus f,xrf,ng®@/dr=
—2.960.62, and hence

y2P=—0.150.03. (7.4)

To obtain estimates for the w and ¢ coupling con-
stants we shall use a combination of SU(3) invariance
and information about the nucleon isoscalar form
factors. In the vector-dominance model of the electro-
magnetic interactions of hadrons, the hadronic electro-
magnetic current is viewed as a superposition of
phenomenological vector-meson fields

mpZ mwz m¢2
- Juﬂ (x) = "_'Plto (x)+"_"*’u(x)+—¢u (x) . (75)
Yo 2y, 2y,

From p-meson photoproduction on heavy nuclei®®
v,2/4r=0.4240.07, which agrees well with the value
obtained® from the decay p°— ete™, ie., v,2/4r=0.47
#+0.12. We shall use the mean of these numbers, i.e.,
¥,2/4r=0.434-0.06. It is interesting to compare the
prediction of the hypothesis of a p meson universally
coupled to the isospin current with our estimates.
Universality predicts v,= f,n¥"’ =% fyrr. The coupling
forr may be found by using second-order perturbation
theory to derive an expression for the decay width
p?— mtn~. Using the p parameters of Rosenfeld et al.%
gives for?/4wr=2.4340.27, and using this value in
(7.2) then gives

%fpmr= 2-76:b0177 prN(V) =3.2540.54 ,

which agree quite well with our estimate for v, of
2.3240.16.
If the photon is a member of an SU(3) octet then

Yo= (—V3/sinb)y,, vs=(V3/cost)y,,

where 0 is the w-¢ mixing angle. Using 6= 38° and our
previous estimate for vy, gives vy,=—6.434+0.44 and
¥4=15.154-0.36. To relate to experiment we may use
(7.5) and our previous Lagrangians to derive expres-
sions for the absorptive parts of the nucleon isoscalar
form factors ImF,5(¢) and ImF.5(f). The most extensive
form-factor fits to date have been performed by Chan

26V, Barger and M. Olsson, Phys. Rev. Letters 18, 294 (1967).

#77. S. Ball and D. Y. Wong, Phys. Rev. 130, 2112 (1963);
T. D. Spearman, sbid. 129, 1847 (1963).

287, (g Asbury et al., Phys. Rev. Letters 20, 227 (1968).

2% H. Joos, DESY Report No. 67/43 (unpublished).

3 A. H. Rosenfeld et al., Rev. Mod. Phys. 40, 77 (1968).
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et al.,*' who work in terms of the electric and magnetic
scalar form factors Grs(f) and Gus(f). Chan ef al®
give

GEs“’(O)= 1.214, Ggs? (0) =—0.714,

GMs“(0)=1.093, GMs¢(0)=—0.653. (7.())
Using these values, and our previous estimates for
Yo and vy, gives foyn=-—15944+1.09, f,xxD
=—1.8840.13, fong"'=—7.62+0.53, and fyx5D
=—0.8940.06. The coupling constant f,xx is given
in SU(3) symmetry by

foxg=—sinb foxkg+cosl fo,xx, (1.7)

where w; and ws denote the singlet and octet members
of the w-¢ complex. In the symmetry limit f,,xzx=0
and hence

fwKE= —sinf fwsKK‘_" —%\/3 sing fpl’ﬂ"

Using forr=5.5240.34 gives foxg= —3.00=-0.18. The
coupling constant fyxz can be found in a similar way
and yields fysxg=3.73+0.23. However, the decay
¢— KK is physically allowed and so we may also
calculate fyxx from the decay parameters. This proced-
ure gives fyxg=4.3740.51, which is compatible with
the previous estimate. We will use fsxg=4.37 in the
actual calculations. Finally, combining all the above
results gives

y19=—2.54£0.33, v,*=0.0224-0.003, (7.8)
and

v19=1.7730.33, v:¢=—0.0154-0.003.  (7.9)

We will conclude this section with a remark on the
p-meson coupling constants. It is clear that the proce-
dure for determining the » and ¢ couplings could, in
principle, also be used to obtain the p couplings to the
nucleon by considering the isovector form factors.
Using the results of Chan ef al.* we find f,yx("=5.6
+0.9 and fyx"'=—32.7£2.2, compared with our
earlier estimates of f,wx("’=3.3+£0.5 and f,yy"=
—12.04=2.0. The situation regarding the former esti-
mates is, unfortunately, very unclear. It is well known
that in order to achieve a “dipole” type of fit to the
form factors a second pole, in addition to the p, is
required with a mass m,~1 BeV, and although
theoretical arguments have been given in its favor® it
is difficult to see why it has not been seen experiment-
ally,® since there seems no reason why it should not be
as strongly produced (e.g., in photoproduction reac-
tions) as the p meson. In the numerical work which

follows we shall use the estimates given in Eqs. (7.3)
and (7.4).

$11L. H. Chan e al., Phys. Rev. 141, 1298 (1966).

32 See, e.g., J. Moffat, Phys. Rev. Letters 20, 620 (1968).

%]. G. Asbury ef al., Phys. Rev. Letters 19, 869 (1967);
A. Wehman et al., ibid. 18, 929 (1967); B. D. Hyams et ol., Phys.
Letters 24B, 634 (1967).
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VIII. PHYSICAL REGION

Early experimental work® on K+ scattering deduced
the very interesting fact that the interaction was a pure
s-wave repulsion for kaon laboratory momenta in the
range k<650 MeV/c. Recently, a fairly extensive
phase-shift analysis® of all existing K*p elastic data in
the momentum range k1<1.5 BeV/c has confirmed
the dominance of the s waves below ~800 MeV/c.
Above 800 MeV/c several solutions were found which
fitted the data equally well, but an interesting feature
of all these solutions is the fact that the s-wave phase
shifts are rather similar. In particular, this means that
we have a fair idea of Imfo,(s) in the region 800
MeV/c<kr<1500 MeV/c. It was found® that for all
the acceptable solutions Imfo.(s) passes through a
broad maximum around kr~1 BeV/c, then falls off
slowly. If we define

Co=k(s) Imfo,(8),

where § is the square of the total c.m. energy at a
laboratory momentum of 1.5 BeV/c, and fit a high-
energy ‘“tail” to Imfo; (s) of the form

| Imfu(9)=Co/k(s),

then we should be able to make a reasonable estimate of
the rescattering integral in the dispersion relation (3.3).
Since we only know Refo.(s) uniquely below 800
MeV/c we shall confine the evaluation of the dispersion
relation to this region.

IX. CALCULATIONAL PROCEDURE
AND RESULTS

The contributions to Refo;(s) in- the physical region
due to the nearby singularities were calculated by the
methods of Secs. IV-VI. We shall discuss firstly the
contributions due to hyperon. and vector-meson ex-
changes. ;

The contributions from the nearby cuts due to A and
= exchanges were calculated using the method of Sec.
IV with the coupling constants of Sec. VII. These
terms are small and had we used, instead of the coupling
constants of Sec. VII, the smaller values of Ref. 22

TasiE I. Values of the nearby left-hand-cut contributions due
to A, p, and w exchange, together with values of the rescattering
integral and Refo,(s). Contributions due to = and ¢ are negligible.
All contributions are to be multiplied by 1073,

kL,
s (MeV/e) A p

. Rescattering  Refo;
105.3 0 —8.2 208 37.0 183.2 —198.00
115 335 —5.8 146 23.8 179.4 —200.6
125 500 —4.3 10.8° 15.8 164.5 —193.6
135 635 -3.2 83 108 142.2 =179.9
145 765 —-24 65 173 115.3 —163.0

% S, Goldhaber ef al., Phys. Rev. Letters 9, 135 (1962).
3% A, T. Lea, B. R. Martin, and. G. C. Oades, Phys. Rev. 165,
1770 (1968).
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the result, as far as the over-all dynamical picture is
concerned, would remain unchanged. This fortunate
situation for s-wave scattering is due to a strong
cancellation in the discontinuity across the nearby cut,
and has been observed previously for 7V scattering'®36
and 7A scattering.’” Values for the A contribution at
various points in the physical region are given in Table
I. The = contribution is negligible.

The contributions from the real-axis cuts and the

front of the circular cut due to vector-meson exchanges
were calculated using the methods of Sec. VI and the
coupling constants of Sec. VII. The p and w contribu-
tions are both positive and of the same order of magni-
tude, whereas the ¢ contribution is extremely small.
This smallness is a direct reflection of the fact that
my>2m, and hence this vector meson does not give
rise to a cut along the nearby real axis, unlike both the
w and p (see Fig. 2). For the latter exchanges most of
their contributions come from the real-axis cuts and
only a small part is due to the front of the circle. This
result is encouraging because it means that neglecting
the front of the circle, as is done when calculating the
contribution due to (w-m)o exchange, should produce
only a small error. Values for the p and w contributions
at various points in the physical region are shown
in Table I. The contribution due to ¢ exchange is
negligible.
" The only other process to be discussed is (r-m)o
exchange, and this requires special care. We shall start
by discussing the results obtained by using the non-
resonant -7 phase shift labeled A in Fig. 3. Using
these phase shifts a D function was constructed from
Eq. (5.35) and used in Eq. (5.24). The amplitudes
Imf,%*(#) for #w — NN were taken from the work of
Hamilton and co-workers® on the low-energy =-N
interaction. Since the w-w phases of set A are very
similar to those actually found by Hamilton et al. it is
clear that this is a self-consistent procedure. The other
amplitude needed in Eq. (5.24) is g¢"(f) describing
xr — KK. The method of calculation of this amplitude
has been given in Sec. V C but here there is a difficulty,
because to evaluate Eq. (5.33) we need to know the
value of the s-wave 7-K scattering lengths in the
combination a¢t=1(a.2+2a"?).

It might be thought that as a first approximation
one could neglect this term, and such a view would be
borne out by the predictions of current-algebra calcula-
tions which give a¢t=0.% However, explicit numerical
calculation shows that even a quite small value of a¢™
can change the value of the (), contribution appreci-
ably, and, in particular, if ¢¢t <0 then cancellation with
the integral in Eq. (5.33) can considerably reduce the
(w-m)o term. This is an important point and we will

3 B, R. Martin, Phys. Rev. 162, 1448 (1967).

37 B. R. Martin, Phys. Rev. 138, B1136 (1965).

38 See, e.g., A. P. Balachandran, M. G. Gundzik, and F. Nico-
demi, in Bowlder Lectures in Theoretical Physics (Gordon and
Breach, Science Publishers, Inc., New York, 1967), Vol. 9B.
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return to it later. The actual value of a¢t is, unfortu-
nately, not known. For example, Martin and Vick® from
a dynamical calculation of 7K scattering found a¢t in
the range 0.024-0.011; Martin and Spearman’ found
a¢t=—0.132£0.03; and Conforto et al.®* in a phenome-
nological analysis of 7K final states in pp annihilations
found agt~—0.07. The evidence seems to suggest that
a¢t<0, but clearly more work is needed before this
conclusion can be considered certain. We shall consider
the effect of varying a¢* in the range —0.05<a¢t<0.05.

Values for the (m-7), contribution at threshold using
the nonresonant =-r phases (set A) and taking a¢t
= —0.05, 0, and 0.05 are shown in Table II. The impor-
tance of the term involving a¢t is clearly evident. To see
the effect of changing the form of the input = phase
shifts, we have repeated the above calculation with
sets B and C in Fig. 3. Set B still bears some resem-
blance to the second =7 solution found by Hamilton ez
al.® and thus we might hope that using their values of
Imf,%*(¢) is still reasonably self-consistent. The same
cannot be said for the use of set C, however, and the
values of the (m-m)o contribution obtained with this set
are almost certainly underestimated. Results of the
above calculations are shown in Table II. It is clear
from Table II that (7)o exchange can give rise to a
large term in the low-energy physical region, even if
the s-wave T'=0 7-r phase shift is nonresonant.

The question to which we must now turn is whether
the forces calculated above can give rise to a consistent
dynamical picture and, in particular, is a large (7)o
term compatible with the known energy dependence of
the s-wave K+p amplitude?

From the discussion of Sec. VIII we can use the re-
sults of the K*p phase-shift analysis of Lea, Martin,
and Oades® to find Refo,.(s) and the rescattering
integral below ~800 MeV/c. In practice we shall use
solution S11P11D13 of group IT of Ref. 35. Values of
Refo,(s) and the rescattering integral are given in
Table I. Using the exchange forces calculated as
described above, we form the quantity

P o Imfo.(s
A(s)=Refor(s)—— f ds’—m—{—i(iz

s §—3s

—é‘, Refor"(s), (9.1)

where E stands for the nearby exchange forces, i.e.,
0, w, ¢, (m-m)o, A, and Z. We shall fit A(s) with a form
chosen to represent the unknown, neglected, parts of
the interaction. Firstly, to represent the distant singu-
larities (i.e., very short-range forces) we shall use a
single pole of the form I'/(5;—s). Since this pole is to
represent contributions from the rear of the circle and
the real axis to the left of the origin, we shall set

(13961;). D. Martin and L. L. J. Vick, Nuovo Cimento 39, 905
965).
4 B. Conforto et al., Nucl. Phys. B3, 469 (1967).
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F16. 4. Fit to A(s) for the =-r phase-shift set 4 and g¢t=0:
dash, pole term; dash-dot, (a4-bs)/(s2—s)?; solid line, sum.

(arbitrarily) §=—M2 The other major term which
has been neglected is that due to the exchange of
hyperon resonances in the % channel. The nearby
singularities due to these processes consist of a series
of short cuts on the real axis between the points

51=2(M>+-m?) —m*2
and
sa= (M2—m2)2/m*

where m* is the mass of the resonance. The rightmost
of such cuts is due to the ¥*(1385) and is shown in
Fig. 2. Although these cuts are somewhat further to the
left than the other nearby singularities, they could still
give terms with a strong net-energy dependence.
Nevertheless we have not attempted to calculate their
contributions explicitly because, at present, there exists
a rather large number of hyperon resonances the param-
eters of which are by no means all well established.
We shall represent these neglected parts of the interac-
tion by a form (a+bs)/(5.—s)? which allows more
freedom than a single pole. The parameter § is set
equal to 10, which is roughly centered in the midst of
the nearby cuts due to the hyperon resonances.

Using the 7-m phase shifts 4 and setting agt=0, we
have attempted to find parameters @, b, and T which
give a reasonable fit to A(s). No detailed seraching has
been made, but Fig. 4 shows the results obtained with
a=10, b=—9, and I'=60. The error bars on A(s)
represent the errors due to Re fo, (s) and the rescattering
integrals only, and do #mot take account of possible
errors in the exchange forces. The fit is quite reasonable.

TaBLE II. Values of the (r-m)y contribution at threshold for
the three sets of s-wave I'=0 7-r phase shifts shown in Fig. 3
and for ag*=—0.05, 0, and 0.05. All contributions are to be
multiplied by 1073,

s-wave I'=0 x-r phase-shift solution

Value of ao* A B C
—0.05 69.4 125.3 366.4
0 124.1 167.6 473.9
0.05 178.7 209.9 581.5
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F16. 5. Fit to A(s) for the =-r phase shifts set C and a¢t=0:
dash, pole term; dash-dot, (a+bs)/(82—s5)?; solid line, sum.

The same thing can be done when a¢™==-0.05. In each
case it was found that the short-range pole gives a
large negative contribution and the nearby term a
smaller negative contribution. The correct energy
dependence is obtained by a cancellation between this
latter contribution and the positive (m-m)o term. We
have also tried the same procedure using the =-w
phases B and C. Because the (w-m)o contribution is
now far larger (see Table 1I) it is clear that A(s) is also
larger and correspondingly the role of the parameters
a and b becomes more important in cancelling this term.
For example, we show in Fig. 5 the results for m-m
phases C with a¢*=0. The other parameters are ¢=10,
b= —20, and I'=90. Although the fit is worse than the
solution of Fig. 4, nevertheless it cannot be entirely
ruled out.

X. CONCLUSIONS AND OUTLOOK

We have presented an exploratory investigation of
the dynamics of the s-wave K*p system using the
techniques of dispersion relations. In this final section
we will try to summarize the results obtained and
discuss future possible work.

Firstly, it is clear that the exchange of an s-wave
T=0 7-r pair is potentially the largest force of long
range, even if the s-wave 7'=0 7-= phase shift is non-
resonant, and thus calculations which neglect this
process could be seriously in error. Unfortunately, the
precise size of the (r-m)o contribution cannot be deter-
mined at present due to (a) our lack of knowledge about
the m-r phase shifts, and (b) the unknown parameter
a*. In particular, it may even be compatible to have a
resonant 7-r phase shift if a¢t is sufficiently negative.
Compared with the (7-m)o term the long-range parts
of the p, w, ¢, A, and = exchanges are all fairly small, the
most important being the p and w. In addition, it is
necessary to have a fairly large net repulsion from the
singularities due to hyperon resonance exchanges in the
« channel, and a very large, slowly varying, short-range
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repulsion. The latter effect is not unexpected, and short-
range repulsions of similar sizes have been found in
other meson-baryon s-wave reactions.’®3” Confirmation
of whether the size of the force attributed to the hyperon
resonances is a real phenomenon will have to await
experimental clarification of the hyperon resonance
parameters.

Before further work of this type can be attempted on
the dynamics of the K*p system, it is clear that many
improvements must be made in the experimental situa-
tion. Firstly, and most important, it will be necessary
to know both the s-wave T'=0 7-r phase shift and the
s-wave m-K scattering length combination a¢* before a
reliable calculation can be made of the (7-7)o contribu-
tion. If it should turn out that this term is indeed small,
then the relative importance of vector-meson exchange
isincreased and it will then be important to have reliable
estimates of the vector-meson coupling constants. This
remark is also true for the A and Z coupling constants,
since, although these Born terms are very small in
s-wave scattering, they will be important for higher
waves. However, it will not be possible to extend
calculations of this sort to higher waves until phase-shift
analyses of the type in Ref. 35 can produce unique
solutions. This i1 turn means a greater experimental
effort is required in the field of K*p scattering. A discus-
sion of the types of experiment needed to help resolve
the present ambiguities has been given by Lea, Martin,
and Oades.?

APPENDIX: s-WAVE T'=0 =-= SCATTERING
BELOW 1 BEV

Attempts to deduce the behavior of the s-wave T'=0
m-m scattering amplitude in the region below 1 BeV total
cm. energy have occupied the attention of many
workers, and the resulting number of suggested be-
haviors is very large, although none of them can be
said to be wholly convincing at this time. We shall
not attempt to give a critical assessment of these
papers, but merely reproduce below some of the argu-
ments that have been given in favor of the three major
types of behavior which have been suggested and which
we have considered in Sec. IX. The references in this
Appendix are intended to be representative rather than
exhaustive.

A. Nonresonant Behavior

A large number of authors have suggested forms for
the s-wave T'=0 m-r amplitude which are nonresonant
below 1 BeV. Such a form was suggested by Chew and
Mandelstam from their early work on the dynamics of
the m-r system,* and a form essentially equivalent was
shown by Hamilton et al.2 to be compatible with the

41 G, F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).
4 J. Hamilton, P. Menotti, G. C. Oades, and L. L. J. Vick,
Phys. Rev. 128, 1881 (1962).
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dynamics of low-energy =V scattering. The phenomeno-
logical 7V dispersion relation analysis of Hamilton et
al®? gave an s-wave T=0 7-r scattering length go~1,
and a value of this magnitude has subsequently been
found by many other authors from several sources, e.g.,
K., decay,® 7w forward dispersion relations,* and
single-pion production experiments.* All these results
depend, to some extent, on the parametrization chosen.
However, recently, Fulco and Wong* have shown,
without specifically parametrizing the amplitude, that
a nonresonant form (8, 50° for E,< 900 MeV) with
ao~0.8 is the best solution compatible with a large
range of experimental data as well as with forward 7w
dispersion relations.

Nevertheless, claims have been made from current-
algebra calculations®” for a much smaller scattering
length a¢~0.2. However, these calculations use, in
addition to current algebra and PCAC, dynamical
assumptions concerning the extrapolation of the w7
amplitude from the unphysical point given by the
calculation to the physical region. These assumptions
are independent of the current-algebra formulation
and several authors?® have shown that other, quite
reasonable, assumptions about the extrapolation can
produce a very large variety of different scattering
lengths (both positive and negative) and phase-shift
behaviors. It has also been shown® that the small
scattering lengths of Weinberg?’ can still be compatible
with quite large phases in the low-energy region, and
since the work of Sec. IX depends not so much on the
value of the amplitude at threshold (i.e., the scattering
length) but on the form of the phase shift in the whole
energy range below 1 BeV, this latter result is all that
we really need.

B. Resonant Behavior

Many analyses of single-pion production in 7N
interactions have been made, some of which® claim
evidence for an s-wave T'=0 resonance variously re-

4 R. W. Birge e al., Phys. Rev. 139, B1600 (1965); F. A.

1(3ere;1)ds, A. Donnachie, and G. C. Oades, Nucl. Phys. B3, 569
1967).

4 See, e.g., N. G. Antoniou, Nucl. Phys. B3, 277 (1967).

( 4 ?ee, e.g., W. D. Walker ef al., Phys. Rev. Letters 18, 630
1967).

4% J. R. Fulco and D. Y. Wong, Phys. Rev. Letters 19, 1399
(1967) ; see also Y. Fujii, Phys. Letters 24B, 190 (1967).

47 S, Weinberg, Phys. Rev. Letters 17, 336 (1966).

48 See, e.g., J. Iliopoulos, Nuovo Cimento 52A, 192 (1967);
53A, 552 (1968); 54A, 536 (1968); A. Donnachie, jbid. 53A, 931
(1968) ; K. Kang and T. Akiba, Phys. Rev. 164, 1836 (1967).

9 E. P. Tryon, Phys. Rev. Letters 20, 769 (1968); Y. Fujii and
K. Hayashi, Progr. Theoret. Phys. (Kyoto) 39, 126 (1968).

% See, e.g., M. Feldman et al., Phys. Rev. Letters 14, 869
(1965) ; V. Hagopian et al., ibid. 14, 1077 (1965).
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ported in the mass region 750-900 MeV and with a
width in the range 50-150 MeV. However, there seems
to be little direct evidence for such a resonance.5! Other
experiments®® have, at various times, claimed evidence
for the existence of a resonance at a much lower mass
Mrr~400 MeV, and further evidence for such a state
has been presented from a phenomenological study of
backward =+p dispersion relations.®® However, unless
this low-energy resonance is extremely broad, it is
difficult to see why it has not been observed in the K4
decay spectrum.®

C. Solution with a Zero in the Physical Region

A third type of behavior which has been suggested is
a phase shift which is initially negative but soon turns
over, passes through zero, and becomes positive,
possibly resonating at higher energies. A phase shift of
this form was actually found by Hamilton ef al.% from
their work on =V dispersion relations but was rejected
in favor of the somewhat better fit obtained by a solu-
tion of type A above. The scattering length found by
Hamilton et al.2 was ao~—0.6, and a value close to
this has been found in a forward-dispersion-relation
calculation by Antoniou.* Two other pieces of evidence
for a phase shift of this type come from the backward
w¥p work of Lovelace ef al.% and, more recently, a new
analysis of low-energy single-pion production by
Humble and Spearman.* Both Hamilton ef al.#2 and
Humble and Separman® find that on becoming positive
the phase shift rises to a maximum nonresonant value,
whereas Lovelace ef al.% find a very broad resonance at
W~700 MeV. The scattering length of Humble and
Spearman is ao~—1.7, and this value has also been
found in a forward-dispersion-relation calculation by
Rothe.’® Finally, a very recent analysis of single-pion
production below 750 MeV? also finds evidence for a
negative value of & in this region.

The threc sets of - phase shifts that were used in
Sec. IX are shown in Fig. 3. Sets A, B, and C correspond
to scattering lengths @¢=0.6, —0.6, and 0.6, respec-
tively, but again we emphasize that these values are
unimportant for our purposes and are only used to
define the phase shift for the first few MeV above
threshold.

51 The evidence is discussed in Ref. 30.

% See, e.g., R. Del Fabbro ef al., Phys. Rev. 139, B701 (1965);
A. Abashian ef al., ibid. 132, 2296 (1964).

% C. Lovelace, R. H. Heinz, and A. Donnachie, Phys. Letters
22, 332 (1966).

8 S. Humble and T. D. Spearman, Phys. Rev. 171, 1724 (1968).

% H. J. Rothe, Phys. Rev. 140, B1421 (1965).

% N. N. Biswas et al., University of Notre Dame Report, 1968
(unpublished).



