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for p'p or for pp. (3) Although there are very large
uncertainties in the forward y"p experimental cross
sections, the calculated values seem to be too big by a
factor of about 2.5. The predicted cross sections fall
off very slowly with energy. There seems to be no way
out of the problem of the q cross section being too large
with the vector-dominance model as formulated here.
A modification of the mass dependence of the photon—
vector-meson coupling, or possibly the introduction
of an additional diagram, may be called for. (4) The
vector-meson production processes are dominated by
the SU(6) s I amplitude in varying degrees. The qp
cross section is the fattest and has relatively little
dependence on the other SU(6) s amplitudes. The cop

cross section falls most steeply with increasing energy,
displaying the importance of the SU(6)s 35~, 35s,
Rnd 405 terms. Tllc p p closs scctloll fR118 Rt Rll llltcl-
mediate rate.

There are scant data for the clsss PB*, the best being
that for yp ~ s S*++ (see Table III). Calculated
values of da/dt for 0*=0 using vector dominance and
the (m~/mv)4 factor are listed in Table III. They differ

by about 2%from values calculated with no factor. They

agree with experiment at low energies, but are too large

by a factor of 2 in the range 2.5—5,5 GeV.
In summary, we have demonstrated that SU(6) w

may be used to Inakc quantitative pIedlctlons fol'

photoproduction amplitudes at low and high energies.
The predicted ratios of E+Z'/E+A forward cross sec-
tions are in good agreement with experiment. This
accord demands the inclusion of a 405 amplitude, an
amplitude not allowed by a simple quark model.
Predicted forward vector-meson production cross sec-
tions are in good agreement for p and ~ production, but
are too big by a factor of 2.5, for q production. The
degree of breaking of the octet purity of the photon may
be determined, quantitatively, by a careful measure-
Dlent of the folward y and M cross sections.

We are indebted to Professor J. Coyne, Professor
B. Richter, Professor S. Ting, and Professor G. Vodh
for many helpful discussions and suggestions, and to
Professor R. Anderson, Professor M. Berger, Professor
K. Cahill, Professor W. Jones, Professor C. Levinson,
Professor H. Lipkin, Professor %. Parke, Professor
D. Ritson, Professor M. Ross, and Professor H. Williams
for useful conversations.
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An investigation of the dynamics of low-energy s-wave E+p scattering has been made by the semiphe-

nomenological application of dispersion relations. Contributions to the s-wave E+p dispersion relation from
the nearby singularities due to the following processes were explicitly calculated: (a) exchange of 4 and Z

in the I channel; (b) exchange of p, co, and p in the f channel, treated in the narrow-width approximation;
and (c) exchange of an s-wave 7=0 s-x pair, treated as a continuum state. Other exchanges, and short-

range forces, were treated phenomenologically. The amplitude in the physical region was taken from a
recent phase-shift analysis of E+p scattering data, and the necessary coupling constants for the exchange

processes were obtained from experiment, supplemented by the use of SU(3) symmetry when experimental
data were not available. The exchange of the s wave T=0 x~ pair is shown to be potentially a very im-

portant term, and the present difhculties in calculating its exact size are discussed in detail.

I. INTRODUCTION

"~ ARLY work on the low-energy EX system pro-
~ ceeded on the assumption that the dominant

forces arise from the exchange of a small number of
stable, or quasistable, states in the crossed channels.
Examples of such possible exchanged particles are
A, Z, p, o), Fo*, and Fg*, and various combinations have
been considered by several authors. ' ' Little dehnitivc
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Energy Commission.
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information can be dravrn from these calculations,
however because of 3 variety of reason For example
sometimes only a limited sct of particles was considered,
an{I sometimes the number of free parameters involved
exceeded the constraining capacity of the data as they
existed at the time. A more serious objection is, perhaps,

(1961);M. M. Islam, Nuovo Cimento 20, 546 (1961);A. Rama-
krishnan, A. P. Balachandran, and K. Raman, i'. 24, 369
(1962};V. A. Lyul'ka and A. A. Startzev, Phys. Letters 4, 74
(1963);T. Ebata and A. Takahashi, Progr. Theoret. Phys. (Kyoto)
27, 223 (1962); G. P. Singh, ue. SO, 327 (1963);T. Ino,

'
&~. 87,

398 (1967); K. S. Cho, Nuovo Cimento 47A, 707 (1967).' G. Costa, R.L. Gluckstern, and A. H. Zimerman, in Proceedings
of the International Conference on High-Energy I'byes at CERE,
196Z, edited by J. Prentki (CERN, Geneva, 1962); D. P. Roy,
Phys. Rev. 136, 8804 (1964).
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the neglect of other terms. In particular, it was pointed
out by several authors" that the exchange of a non-
resonant pair of pions produces a singularity in the
EE partial-wave amphtude which approaches very
close to the physical region and would a priori be
expected to be of some importance. Because of the
length and nearness of the cut in the complex energy
plane resulting from this process, it is dear that the
exchange of such a state must be considered rather
carefully. Finally, there is the persistent neglect of
short-range forces, which cannot be adequately repre-
sented by single-particle exchanges and, moreover,
would naturally be expected to be important for the
low partial waves,

Attempts to remedy some of the above defects have
been made in two recent calculations. Warnock and
Frye' have considered the exchange of a large number
of stable and quasistable states as well as background
terms represented by low-order polynomials in the
manner of Cini and Fubini. However, the partial-wave
amplitudes are obtained by projection from fixed-
variable dispersion relations, a procedure which is well
known to give rise to divergent expressions in the
physical region. Of the large number of parameters
needed in this calculation very few can be determined
from the presently available data. On the other hand,
Martin and Spearman' have concentrated on carefully
calculating the eRect of the exchange of a nonresonant
~-m. pair, i.e., the force of longest range. Unfortunately,
the method of producing a physical s-wave amplitude
was to use the X/D technique in the Balazs approxima-
tion, ' and apart from other difficulties in the /q/D
method (particularly in producing spurious zeroes of D
for s-wave scattering'), the BaNzs approximation is
now known to give misleading results often. ' Further-
more, as will be discussed later, the form of the s-wave
x-~ interaction used by these authors may no longer be
adequate.

It is evident from the above discussion that present
data are neither plentiful enough nor of suScient
accuracy to allow a determination of the parameters
governing the exchange processes. In this situation, a
more fruitful question to examine is the nature of the
dynamics, given reasonable estimates for the necessary
input parameters. This is the question that will be
examined in this paper. The method used is similar to
that which has mct with considerable success in under-
standing the dynamics of the low-energy 7IE interac-

4 Y. Yamaguchi, Progr. Yheoret. Phys. (Kyoto) Suppl. 11,
37 (1959); S. Barshay, Phys. Rev. 110, 743 (1958); F. Ferrari,
G. Frye, and M. Pusterla, ibid. 123, 308 (1961).

I' R. L. %'arnock and G. Frye, Phys. Rev. 138, 8947 (1965).
6 M. Cinl and S. Fublni Ann. Phys. (N, Y.) 10, 352 (1960).
~ A. D. Martin. and T. D. Spearman, Phys. Rev. 136, B1480

(1964).
8 L. A. P. Balazs, Phys. Rev. 125, 2179 (1962).'E. Golowieh, Phys. Rev. 139, B158 (1965); J. C. Pati and

V. Vasavada, ibid. 144, 1270 (1966); A. H. Bond, ibid. 147, 1058
(1966); M. R. %'illiamson and A, E, Everett, ibjd. 147, 1074
(1966).

tion. ' Basically, the idea is to calculate explicitly, as
far as possible, contributions due to the nearby singular-
ities produced by the exchange of states in crossed
channels. These can all be calculated by convergent
techniques and include the exchange of an s-wave 7=0
m-m pair, treated explicitly as a continuum state. The
rest of the interaction, representing more distant
singularities (i.e., forces of shorter range), are repre-
sented phenomenologically. This method requires that
the physical scattering amplitude be reasonably well

known and so we will apply it initially to s-wave T= 1.

(K+p) scattering, since this amplitude is by far the
best known experimentally at present.

The kinematics of spin-0 —spin--, scattering are stan-
dard. Kc glvc lIl this scctlon just those folnlulas which.

we shall. need in later sections.
The three channels we shall consider are

where momentum conservation implies

s+t+m=2(M'+m'), (2 &)

and M and nz are the masses of the nucleon and kaon,
respectively.

The 5 matrix for these three processes may be
written

i (2z)43A'4& (p;+q;+ pf+qf)

(4P"q"Pr'qf')'"

f'= ~(pr) &r'I (P')

(2 2)

The problem of spin is treated by writing the T-matrix
element Ty; in terms of two scalar invariant amplitudes
Ag; and Bf;, which are assumed to satisfy the Mandcl-
stam representation. "Thus,

Tf*= ~f'+2' (q*+qi)&r'.
'0 J. Hamilton, in Irigh ENegy I'IIysics, edited by K. H. S.

Burhop (Academic Press Inc. , New York, 1967).
' G. F. Chew, M. L. Goldberger, F. E. Low, and V, Nambu,

Phys. Rev. 106, 1337 (1957)."C. Mufller, Ann. Physik 14, 531 (1932)."$, M@ndelstam, Phys. Rev. 119,467 (1958).

E+E~E+N, (s)

E+S +2+S-, (I)
K+X~%+X, (i)

with p, (q,) the initial-state four-momentum of the
nucleon (kaon), and pf (qf) the corresponding final-
state four-momentum. These three processes are de-
scribed by scattering amplitudes which are functions of
the usual invariants, ""

~= (q'+P.)'= (qi+Pr)',
&= (q'+qr)'= (P'+Pr)',
~= (q +Ps)'= (qf+P )'
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lsl = M'- ' =&&.6

s=(M+m)~ = l05.$

of total angular momentum J=l+-', . The magnitude
of the c.m. three-momentum is denoted by k(s), and

8('(s) is the complex E+p phase shift. The partial wave
amplitudes of Kq. (2.9) may be expressed as

s=[(M -pP) +(m-pP)' ]=)00.s

Fro. 1. Singularities of the E+p partial wave amplitudes fg'(s)
as a function of s, the square of the total c.m. energy.

8+M
f)+(~)= [A((s)+(W.—~)B)(s))

8mB",

E—3E
+ [—A('t(s)+(W+M)B('t(s)) (2.10)

SmW,

The amplitudes A(»t) and B(»i) may be further
decomposed into charge states A+(»') and. B+(»') by [A((s) ' B((s))= s

A(s, ') =A+(s,i)+A (s,t)(s-".sx),
B(s,i) =B+(s,t)+B (s,l)(~—N ex).

{2.3) XF)(x)[A,(s,i); B,(»t)). (2.11)

A. 8 Channel

In the c.m. of the s channel the differential cross sec-
tion may be written A' s(s, t) =A+(s, i) 3A (s,t)—,

-

A, '(s, t) =A+(s, r)+A (s,t), -
(2.12)

(2.13)

Finally, if we denote by Ar(s, t) the amplitude for
scattering in an isospin state T, then these are given in
terms of A+(s, t) by

where the matrix is tak.en between two-component
spinors, and the expression is summed over final spin
states and averaged over initial spin states. The
helicity amplitudes fr and fs are related to the invariant
amplitudes A and 8 by'4

and similarly for B,r(»t).

s= —p —
q

—2pq cos8(

'=4(p'+kP) =4(q'+m'),

(2.14)

(2.15)

B. t Channel

In the t channel the invariants s and I, are given by

(2.5)

where p (q) is the magnitude of the c.m. three-momen-

tum in the EE (EK) channel, and cos8( is the cosine

of the t-channel c.m. scattering angle. The differential

cross section may be written

where E is the total c.m. energy of the nucleon and

W.=ps. They may be expressed in terms of partial-
wave amplitudes by the expansions

do/dQ=Q )Fgg(',

where X,) are the helicities of the nucleon and anti-

OQ 00 nucleon, respectively. If we de6ne the amplitudes

f&(~ t) =2 f(+(~)F(+t'(*) Z f( F( t'(&) i (2 6) — T—)g'(t) for scattering in a state of total angular momen-

tum J by

f (»') =2 Lf(-(~)—f(+(s))F('(*) (2 &)
&a'(~) = —s~)S'(~),

~here g""~(~) is a submatrix of the 5 matrix of Eq.
(2.2), then the relations between F~g and T"" are

scattering angle, related to I, by

i= —2k'{s)[1—cos8,),
exp[29('(s) —1)

f(+(s) =
2sk(s)

F,.(.,t)=F (',t)=-Z {J+-.)~,.(t)F.(~), (2»)
q J

J+1
(2.9) F, (s,t) = F-,(s,t) = — P—

q ~ [J(J+1))'(s

is the partial-wave amplitude for scattering in a state XT' ~{()sin8, Fg'(y), (2.18)

"M. Jacob and G. C. %ick, Ann. Phys. (N. Y.) 7, 404 (1959). where y=—cos8». The helicity decompositions of the
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where Wg~t.
Finally, in the t channel, isospin amplitudes are

given by
(2 21)A g'(s, t) =22+(s, t),

invariant R,Inphtudes al'c tl1c11

4mWg ~+2
a, (s,t)= — Z . .„,p ~ tPv)"

g 2 z t ~, (2.19)&&I 2'++ (t)~~(y) + (
&Z(J+1)~l/gj

'

1 2'

pJ'(y), (2.20)
& ~ P(~+1)]" (P~)'"

t CHANNEL EXCHANGES

t"- 4ttt,
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Fxo. 2. Nearby singularities of the E+p partial-wave amplitudes
J ( ) function of s the square of the total c.m. energy. The
arrows indicate which processes contribute to each singu y.

0

larit .

2 gl(s, t) =2A—
(s,t),

and similarly for Bgr(s, t).

(2.22) eThe dispersion relation that we shall use 1s, for
s&so=—(M+ggg)',

Imf~(s')
Refgg. (s) = BID(s)+- ds'

sp ——L(M' —-', t)'I'+ (ggg' —xIt)II'j'.

IH. SINGULARITIES AND DISPERSION
RELATIONS

The singularities of the partial-wave amplitudes
f (s) of Eq. (2.9) as a function of s were first given
by MacDowelP~ and. are shown in Fig. i."Exchanging
a pal'tlclc of 111ass gwg=gt 111 'tile t cl1R1111cl produces
four branch points 1n the s plane~ Os co

&
and s+t where

(3.1)

Imf~(s') 1 Im fly(s')
ds' +— ds', (3.3)

s —s x' g) s —s

where Bgg. (s) denotes contributions from the h, and Z
pole terms, and. S and. D mean that the integrals are
to be evaluated over the nearby and distant cuts,
respectively.

IV. A. AND X EXCHANGE

s+=s
~IFor the exchange of either a p or &u meson m the t

channel, 4tg'(t(4gggg, and so s~ are both real. For gtI

meson exchange, however, s~ are complex, and hence
this process contributes only to the circle aod. real-axis
cuts to the left of the circle. Exchanging a particle of
mass gN„=QN in the I channel also produces four
branch points, 0, —, s1, and s2, where

(I1—M) (Z—M)
~(~,t) = —g"

A' —I Z' —I (4.1)

(M' —ggg')'/F'& s& 2M' —F'+2glgm,

(where F denotes the hyperon mass), produced by A.

and. Z exchange in thc m channel. The pole terms in
the invariant amplitudes 2 (s,t) and B(s,t) are

sg ——2 (Mg+gggm) —I
sI——(jP—ggg')'/I,

(3.2)

and sm) zI. For ggg„'&2(M'+gggg) the cut along the real
axis nearest the physical region may be takeo between
s1 and s~. In the spirit of the remarks made in Sec. I,
wc shaH cxpHcitly calculate only those contributions
coming from the nearby cuts due to the exchange o
h., Z, p, ~, and lt, and an s-wave 7=0 pion pair which
we shall denote by (gr-gr) g. The nearby singularities due

4to these processes are shown 1n F1g. 2.

+ S. %. MacDowell, Phys. Rev. 116, 7N (1959),
'6 All numerical work in this paper is in units such that h=g

~Sgg pc lo

I.=g~L(&~)+H c j+ZsL(&~ ~It)+H c.j (43).

The denominators in Eqs. (4.1) and (4.2) may be
written

(4 4)1/(F' I)=2s/(ggr+ br—cos—8,),
where

ar = s' —2s(Mg —F'+ggg') —(M' —gggg)',

br =g' —2s(M'+ggg')+ (M' —gggm)'.

whele the coupling constr', ots ale ck6ned v1a the
I agrangian density
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Using (4.4) in Eqs. (4.1) and (4.2), and projecting out
partial waves, gives

A. Kinematics of ~-X Scattering

The kinematics of 7r-E scattering are standard. '~

The 5 matrix is of the form
[~i(~); ~(I)l= Z d cosH,

i(2-)'~"'(P'+V'+PI+e)
TI;, (5.1)

(16P"V"PAI')'"[R„";R„'yjPi(cos8,)s
and the decomposition of the T matrix into s-channel

partial waves may be written

R y= —gy'(V —I),
'F g2

(4.6) T, (s,t) = —gm. W, Q (21+1)PI(cos8,)fi(s), (5.2)

where
The integral in (4.5) is singular for —1&cos8,&1 and.
it is a simple matter to show that we must pass below
the pole in the cos8, plane. Thus, from Eq. (4.5),

fi(~)=
exp [2ib~(s)]—1

2ip(s)
(5.3)

1
1m[A&(s); Bi(s)]=-s P —P,

F=hg 6y

Gy)
X —E l' E'~ 47

by

To specify isospin, the T matrix is written

T(s,t)=bp. T+(s,t)+ 12[yp, y jT(s,t), -(5.4)

wlicrc a alld p al'c tile ploI1 lsospl11 lildlccs, and ln thc
s channel the amplitudes for scattering in a pure isospin
state are given by

T.'12(s,t) =T+(s,t)+2T (s,t), - (5.5)

Using Eq. (4.7) and (4.6) in (2.10) gives the discon-

tinuity across the nearby hyperon cuts:

Imf+(I)= —lW, Z I

y=A, X(by

X[(K+M)(W,+72M)Pi( u' y—/by)—
+(~—M)(W.—7+2M)Pi~I( —ay/by)i. (4.8)

Finally, the contribution to Ref1+(s) in the physical
region from a given hyperon cut is given by

T (,~)=i (2~+1)(~)'g (~)P (&), (5.8)

T'"(s,t) =T+(s,t) T(s,t). — (5.6)

In the $ channel, mr —+ EK, we shall denote by q the
magnitude of the c.m. three-momentum of the kaon,
and by a the corresponding quantity for the pion. Then

(5.7)

where p,
—=m . The partial-wave decomposition is now

gi(~) =l(xV) ' 4T (I,~)Pi(y), (5.9)
1 " Imfi~(s')

Ref~~(s) =— ds'
s —s

si ——(M' —m')'/F',

s, =2M' —F'+2m'.

(4.V)

Ti' ——(+6)T+, T,'=2T . (5.10)

wherey—=cos8i. The factor (~q)'isintroduced, following

Frazer and Fulco,"to remove a kinematical threshold

zero. Fina, lly, isospin amplitudes in the i channel are

given by

V. s-WAVE T=o ~-~ EXCHANGE

As we have seen in Sec. III, the force of longest range
in Eg scattering, due to the exchange of a pion pair,
gives rise to a singularity in the s plane which ahnost
reaches the physica, lregion (see I'ig. 2). It is important,
therefore, to treat the exchange of such a state with
particular care. The framework for doing so has been

given by Martin and Spearman, ' and we will basically
follow their method here. Firstly, we give the necessary
notation for zr-K scattering that we shall need,

B. Unitarity for the Process KZ —+ NN

%e wish to calculate the discontinuity in the partial-
wave amplitudes f~~(s) across the nearby cuts due to
(~-~)0 exchange. If we recall the definition of the
physical amplitude,

Ai(s, t)=limdi(s, t+ic),

I~ See, e.g., M. Gourdin, Y. 5oirat, and Ph. Salin, Nuovo
Cimento 18, 651 I 1960).

» W, R. Frazer and J. R. Fulco, Phys. Rev. 117, j.609 (1960),
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then using the reality conditions

A,e(s,t+se) =A g(s, t I'—e),
BI*(s,t+ie) =Bg(s,t—ie),

in Eqs. (2.19) and (2.20), we have

4+W( fits
A ((s,t+i e) A, —(s,t i e)—=-

P & (Pq)'"

T++ l —T++ ] ~ Pg p

J+I
ImB, (s,t) = —--——Q—

pqWl & LJ(X+1)j'"

& (Pq*)'«""'f-'(t)gs" (t)Ps'(y) (5 lg)

To treat isospin we use Eqs. (2.21), (2.22), and (5.10).
Thus,

ImA, +(s,t) = Q (J+-',) (Pq*)s
p'W, s

2M yPs'(y)
LT+-'(t) —T+-'(t)'j (5.11)

P{J+1)j'"
ImB(+(s, t) =0. (5.20)

Sw J+-',
B((s,t+s e) B((s—,t i e) =-

q & P(~+1)]'"

{5.21)ImA, +(s,t) = f+'+(t)gs+(t) e.
2P'WgThe 2' contribution to the unltallty condition for

Tll (t) Is glVC11 by

Tl~s(t) —TIIs(t)t=iGl)s(t)Ts(t)t, (5.13)
In the elastic region, 4p, '&f416@,', the aInpHtudes

f+'+(t) and ge+(t) have the same phase, and this is also
equal to the phase of the D function" for ~-g scattering
ln a state having J=O and T=O. Thus we May %rite

where Ts(t)= iSs{t) is —a submatrix of the w ES-
matrix of Eq. (5.1), and Gll-, s(t) are helicity amplitudes
for the process mx~S¹ In terms of the helicity
amplitudes f+s(t) Introduced by Frazer and Fulco, "
the amplitudes Gals(t) are given by

Im f+'+(t)D(t)gs+(t)
f+ (t)gs'(t)*= — —,(5.22)

ImD(t)

alld 11SIIlg (5.22) 111 (5.21) glVCS
(5.14)

2
G++'(t) =

I

— (P«)'f+'(t),
W, & 3« Im f+'+(t)

ImA, +(s,t) = — D(t)gs+(t) . (5.23)
2P'Wg ImD(t)«)IP

G+-'(t) = —
I (P«)'f-'(t)

pi
(5 15)

Provided that the equality of phases used to derive
Eq. (5.23) is approximately valid outside the elastic
region, we may use Eq. (2.11) to project out partial
waves from (5.23) (noting that since s+se crosses to
t ie an ex—tra minus sign is thereby introduced).
Substltlltlng tllc rcslllt Illto Eq. (2.10) glvcs fol' tllc
dlscontlnulty ln tile T= 1 direct channel partial-vive
ampHtudes

The amplitudes Ts(t) are given in terms of the ampli-
tudes gs(t) of Eq. (5.9) by

(q«)'"
T'(t) = — (q«)'g~(t).

4mWg

If we now use Eqs. (5.13)—(5.16) in Eqs. (5.11) and
(5.12), we can derive the following expressions for the
(llscolltlllllltlcs 111 tile lnvallant RIIlplltudcs A({s,t) Rnd

BI(s,t):
Imfl~(s) =

6' 8",k' 4„~

The superscript now refers to the (+}charge combma-
tion, and the sum in (5.19) is taken over even J values
only because of the restriction implied by 6 parity.
Since rve are interested only in the exchange of the

Pz'(y) J=O state, Eq. (5.19) becomes
&&IT+-'(t)-T.-'(t}t3 (5.»)

(Pq)'" 3K

ImA ((s,t) = Q (J+-,') (Pq*)s«'s+I
p'W, ~

Im f+'+ (t)
X — D(t)ge+(t) HI~(s, t), (5.24)

p'Wl ImD(t}

I Ig p L~(I+1)]'"

&x&'(~)i '(t)Ig:(t)(&»)-,
H(p(s, t) = (8+M)PI(1+ t/2k')

—(E—M)PILI(1+t/2ks) . (5.25)
'e G. F. Chew and S. Mandelstaln, Phys. Rev. 119,467 (1960).
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l20—

C

by using Eq. (5.9). Noting, again, the s, t crossing
relation, this procedure leads to the following expres-
sion:

~ 2l+1
Imgo+(t) =4r g

90

& 60
X
0

50

where
I.(/) =m'+Ii'+2g ~ —-', t,

q = (m'-i~t)'I',

(@2 i ])i IR

(530)

ds 5",Pi(x} Imfi+(s), (5.29)

I

0.5
I I

0.5 0.7 0.9
TOTAL cm, ENERGY IN BeV

We shall evaluate Eq. (5.29) keeping only the p-wave
E~(890) and the d-wave E~(1400), representing these
resonances by the following forms:

y, (s) =apz2i/[(~, —~)—zp~mi+i)

Fro. 3. Three forms for the J=O, 7=0, g-m phase shift below
8;=1BeV.

Finally, the contribution to Ref~(s) in the physical
region from the real-axis cut due to (ir-s)o exchange is
given by

1 '+ Imfi~(s')
Repi~(s) =— ds' (5.26)

where Imf~(s') is given by (5.24) and.

[(~2 ~2)112~ (~2 ~2)if2$2 (5.2/)

Equation (5.24) could also be used to derive an expres-
sion for the contribution to Ref i~(s) from the circular
cut, but this would involve values of t&4m' for which
the approximations we have used are not expected to
be valid. Furthermore, as we shall see later, our knowl-

edge of Imf+'+(t) is restricted to small values of t.
Ke shall consider the possible error introduced by the
neglect of the circle contribution when we discuss
vector meson exchange in Sec. VI.

C. me ~ XK Amylitudes

To evaluate Eq. (5.24) we need. to know the value

of D(t)go+(t) for 4p'&/& —4k'(s) and s in the range
s &s&s+, where s~ are given by (5.27). We shall

6rstly write a dispersion relation for D(t)go+(/) sub-

tracted once at I,=0. Thus,

D (t)go+(t) =D (0)go+(0)

1 ' D(t') Img +(t')
dt' . (5.28}

~'(~'-~)

To calculate Imgo+(t') for t'&0, which is needed in
(5.28), we write a once-subtracted fixed4 dispersion
relation for T+(s,t) and then project out partial waves

where ra= (~'+p, ')'l2 and 8 is the branching ratio into
mE states. The parameters y and aug are 6xed by the
widths and positions of the E* resonances. ' It should
be noted in passing that evaluating (5.29) in the narrow-
width approximation can give misleading results be-
cause of the form of the upper limit in the integral. It
is easy to show that Imga+(/) can be calculated by a
convergent-partial-wave expansion only for —32''&t
&0. Thus the lower limit in the integral of Eq. (5.28)
is replaced by t'= —32''.

The only term left to calculate in (5.28) is go+(0).
This may be found by using Eq. (5.9) at 5=0, giving

(m+Is}2

go'(0) = ds T+(s,0),
4fÃP

(5.32)

and T"(s,0) may be found from a once-subtracted
forward dispersion relation,

CCI

T+(s 0)= T+[(m+p)' Oi+— ds' ImT+(s', 0)

1 1
x( +

&s'—s s'+s —2(nP+p')

(5.33)
s'—(m+y)' s' —(m —p)'

again using (531) to represent the E* resonances. The
subtraction constant in (5.33) is given by

T+[(m+p)', 0j=—(87r/3) (m+p) (oo''2+2oo'~'), (5.34)

where co~ are the s-wave ~-X scattering lengths.

'0%e use the follovang values taken from the tables of A. H.
Rosenfeld et al. , Rev. Mod. Phys. 40, '?'? {1968}:X*{890):m =893
MeV, I'=49MeV, 8=1;X~{1400}:m=1419 MeV, I'=89 MeV,
8=0.53.



D. J=O, T=O e-m D Function

In order to calculate the amplitudes for 1r1r~ EE
of Sec. V C, we need to know the D function for x-x
scattering in a state with J=O and T=O. If we norm-
aHze the D function to unity at 1=0, then a suitable
representation is"

s(~')
D(~) = expl — d&' I, (5 35)

t'(V t 1—e)J—

Using Eqs. (6.1), (6.2), (2.21), and (2.22) in Eqs.
(2.19) and (2.20) for J=1 then gives

(6.4)

H we now form the linear combinations

where 8(/) is the 1r-1r phase shift for s-wave T=0 scatter
ing. Equation (5.35) enables both D(t) for —32pP&t(0
Lwhich is needed in Eq. (5.28)j, and ImD(/) for
4p&t( —4k'(s) I which is needed in Eq. (5.24)j to be
calculated, provided that we know b(t).

At the present time there is much conQicting evidence,
both experimental and theoretical, on the form of 5(t),
and consequently we cannot make a dednitive choice.
Three of the major forms for b(t) that have been
suggested, are shown in Fig. 3. Solution A exhibits no
significant structure, and the phase shift is &,40' for
all W1=+E. Solution B has a negative phase shift for
H/ &&450 MeV, thereafter becoming positive. Finally,
solution C has b(t) &40' for W, &600 MeV and above
this energy exhibits a resonance at 8 &=750 MeV of
width 150 MeV. The evidence for each of these three
solution types is briefly discussed in the Appendix. %e
will use each of them to calculate the (m-m) 0 contribution
to E+p scattering, although, for reasons that will
become apparent later, most of our remarks wiD be
restricted to the use of solution A. For all solutions
h(t) for W,& 1.1 BeV is set equal to its value at 1.1 BeV.

As we discussed in Sec. III, the vector mesons that
we shall consider are p(MS), cu('N3), and p(1019). The
p meson is a two-pion state and so couM, in principle,
be treated in the same way that the (s -1r)0 contribution
was treated in Sec. V. However, the current state of the
art hardly warrants such a detailed treatment, and we
wiH therefore treat the p contribution, , along with those
of the co and |f, in a narrow-width resonance approxima-
tion.

Sy analogy with the Frazer and Fulco" amplitudes
f~~(t) for ~m ~EE we shall define amplitudes k~~(t)
for the process EE-+E¹In terms of the amplitudes
2'qg~(t) of Eqs. (2.17) and (2.18) these are given by

(6.1)

3f
I'2(&) = k+'-(t)—h '-(&),

2p ' v2
(6.6)

3s (81M)
{»"I.(W.—~)'+ 2~rj8$',k'

31r(8—M)
»r(W, —3f))E1(xr—) 8$',k'

{»"L(W.+~)'+2~r j
+»'LW+~j)&1+1(~~), (6.12)

wh«e &v=1+A/2k'. The contribution of a single
vector meson to Ref~(s) is then

1 '+" Imf1gr(s')
Ref~"(s)=— 1fs'

where p '=3P—xt, then Eqs. (6.3) and (6.4) may be
written

A;(g, t) =121'(S+-',t—ilP —eP)1'u(t), (6.'Q

g;(,&) = —12 Ll', (t)+2M', (t)g. (6.8)

In the narrow-width approximation we may represent
I';(/) by a sum of terms I';"(/) (where V represents
p, s&, and p), given by

I' r(t) =y;v/(tr —t—ie) (6 9)
where ty=nsy~, try is the vector meson mass, and y;"
are constants. Using (6.9) in (6.'/) and (6.8), and taking
the absorptive part, gives, for a particular vector-nMson
contribution,

ImA gv-(s, t) = 12m'»v(s+-,'S—3P—m')b(tp —t), (6.10)

ImB," (s,f)= —12ss—(yp+2M»v)B(rr t). (6.1—1)
The discontjnu&ty Ln the partial-wave amplitudes

f1~ across the real axis may be simply found following
the method used in Sec, V. This gives

~1 R. Omnes, Nuovo Cimcnto 8, 316 (1958).

(6.2) s~v= L(M' —',sr)'~'w(m2 —x4gr)»~)2. (6.14)

The vector mesons, like the (1r-1r)0 state, also con
tribute to the front of the circular cut. In the case of
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(tv-tv)e excllallge tl11s colltllblltloll WRs Ilo't calculated
but for the resonances we shall do so in order to have
some feehng for the relative importance of contributions
from the circle and the nearby real axis.

The contribution of a vector-meson exchange from
the circle is given by

1 ~fi~ (s')
Refi~v(s) = ds'

2%i $ —$
(6.15)

Now, from the kinematics of Sec. II,

Im f1~v(s) =
32&$

dh[HIv (s,t)I'I (x)

+Hsv(s, t)I'I~I(x) j, (6.17)

HIv(s, t) = [(W,+M)' —msf[ImA tv (s,t)

+(W.—M) ImB, v (s,t)],
Hsv(s, t) = [(W,—M)' —m'j[ —ImA tv (s,t)

+{W,+M) ImB,v-(s, t)$. (6.18)

tt f&~v (s') =2t Im f 1+ v(s'), Ims') 0
2s—Im f1~v(s'), Ims'&0

so that if we set
s'= (M' —m')e*'&,

we have, for real s,

2 s Illlfty (s )
Ref1~v(s) = —— did Im . (6.16)

(6.10) and (6.11) may be used in (6.19) to give the
contribution to Reft+(s) from the front of the circle
due to a single vector meson.

VII. COUPLING CONSTANTS

In Secs. IV and VI we have introduced a number of
coupling constants. It is the purpose of this section to
give numerical estimates for these couplings, relying
as much as possible on experiment but supplementing
inadequate empirical information by theory when
necessary. Some of the estimates which wc will make
are undoubtedly rather crude and will probably change
when more reliable methods of estimation become
available. For this reason we will attexnpt to estimate
errors on the coupling constants, although these errors
will not actually be used in the calculation.

A. Hyyerons

Early attempts to evaluate the EI E couphngs from
forward-dispersion relations" found values which were
far smaller than the md% coupling constant. Typical
results were gs'/4tr 5, gs'/4tv 1, and small values of
this order were also found in the analysis of kaon-
photoproduction reactions. " However, recently a re-
evaluation'4 of the EE forward dispersion relations
using a new parametrization for the KÃ unphysical
region gives gss/4tr = 13.5&2.1 and gs'/4tr =0.2+0.4.
%e shall use these latter values in the calculations
below.

B. Vector Mesons

t = —2k'(1- x),

and then substitute (6.17) and (6.18) into (6.16), we v ( s)
fvt I fvztti I

have 4'
( 1 fvr zfvIvmi"'

V v=1 (7.1)
Ats ttvrn ax

Ref&~v{s)= ——
8m' 4„' ~min

The vector-meson couplings y;v{t=1,2) may be
If we transform the integral in (6.17) by use of the

expressed in terms of conventional Geld-theoretical~ 1

coupling constants fvpp, fv~g, and fvttIv& by"

t =4(M'sin'Isp+m'cos'Isq), (6.20)

—
—,'t —m'~'" (6.21)

=2 sin '
~ &

tv)4m'

and y is a value of q chosen so that the partial-
wave expansion into t-channel helicity amplitudes is

still within its radius of convergence. Since no real-axis

contributions will be explicitly calculated for s&10, we

will take p =60' for which Res' i5. Finally, Eqs.

H, (,t)P, (1—2t/t )+H;( ',t)P& (1—2t/t„)
QIm

(6.19)
where

From dispersion-relation analyses of low-energy s-

wave mS scattering, "we know that

f„.f, g&Iv/v4 Itr1.43+0.15. (7.2)

"See, e.g., G. H. Davies et at. , NucL Phys. $3, 616 (1967),
and references therein.

"See, e.g., N. F. Nelipa, Nucl. Phys. 82, 680 (1966), an&
references therein.

'4 J. K. Kim, Phys. Rev. Letters 19, 1079 (1967).
~5 The corresponding Lagrangian densities are:

L -(~&=f, —{I&y (Sy„CS)+f„-&~& (Ey„X)
+fpxN&~&e(&v~&),

Ivtt &vt = (fparrr&vt/4M) (Ett„,sÃ) (8"y—8"tv').
+ (f„~@&&&/4M)(g~„„Ã)(Bt'a)"—8"W)

+ (f~~x'~&/4&) (&~&.&) (~"4"—~"&)
and

L&PP= fptrtrp"' (~Xts~)+$fat~gN~(&tsar E—X BtsE)

+jfptr trpb(spgtE. Qts~Q)+ jfptcgttt (sylt'sQ Qtg&j~lt').
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yl& = —0.53+0.11. (73)

From work on the nucleon isovector form factors at
lorn and moderate momentum transfers'~ we also know
that f,sIgtr&= 3.7—f,~sT&~&. Thus f,xgf„~g&r&/47r=
—2.96&0.62, and hence

Now SU(3) syI11111ctry with f-type collpllllg leads to thc
relation f„=2f,xg, and this equality is verified to
within 12% from Regge-pole phenomenology which
gives f,xg= (0.56+0.06)f, ."Using this latter value
in (7.2) gives f,xgf, Irxf&v&/4tr=0. 80&0 17,. and hence

et u/. ,"who work in terms of the electric and magnetic
scalar form factors GEs(f) and GMs(f) Chan ef al.st

give
Gms" (0)= 1.214, Gss&(0) = —0.714,
GMs" (0) = 1.093, GMs&(0) = —0.653. (7.6)

Using these values, and our previous estimates for
y„and ye, gives f Ng&y'= —15.94+1.09, f„sIp'r'
=—1.88+0.13, fssrg&y'= —7.r62+0.53, and fssrg&r'
= —0.89+0.06. The coupling constant f„xg is given
in SU(3) symmetry by

y&& = —0.15+0.03. (7 4) f„xg= —sine f„,xg+cos& f„,xg, (7.7)

To obtain estimates for the ce and t( coupling con-
stants we shall use a combination of SU(3) invariance
and lnformatlon about the nucleon lsoscalar form
factors. In the vector-dominance model of the electro-
magnetic interactions of hadrons, the hadronic electro-
magnetic current is viewed as a superposition of
phenomenological vector-meson fields

ygp' m„'
-~,"(*)= p.'(*)+ ~.(~)+ 4.(*) (7 5)

2+p 2+4' ' 2p$

Fl om p-meson photoproduction on heavy nuclei'

y, '/4+=0. 42+0.07, which agrees well with the value
obtained" from the decay p' ~ e+e, i.e., y, '/4tr=0. 47
&0.12. Ke shall use the mean of these numbers, i.e.,
y, '/4tr=0. 43+0.06. It is interesting to compare the
prediction of the hypothesis of a p meson universally
coupled to the isospin current with our estimates.
Universality predicts y, =f,~g&yI = stf, The cou.pling

f,. may be found by using second-order perturbation
theory to derive an expression for the decay width
po~ x+x . Using the p parameters of Rosenfeld et cl.~
gives f„,/4str2.43+0.27, and using this value in
P.2) then gives

—,'f,,=2.76~0.17, f, g«1=3.25~0.54,

which agree quite well with our estimate for y, of
2.32&0.16.

If the photon is a member of an SU(3) octet then

y = (—V3/sine)y„ps= (v3/cosf))y„

where f) is the &e-P mixing angle. Using f) =38' and our
previous estimate for y, gives y„=—6.43+0.44 and
y~=5, 15+0.36. To relate to experiment we may use
(7.5) and our previous Lagrangians to derive expres-
sions for the absorptive parts of the nucleon isoscalar
form factors ImF Is(f) and ImFss(f). The most extensive
form-factor fits to date have been performed by Chan

~6 V. Barger and M, Olsson, Phys. Rev. Letters 18, 294 (1967).
~7 J. S. Ball and D. Y. %'ong, Phys. Rev. 1N, 2112 (1963);

Y. D. Spearman, ibid. 129, 1847 (1963).
J. 0, Asbury et ul. , Phys. Rev. Letters 20, 227 (1968).' H. Joos, DESY Report No. 67/43 (unpublished)."A. H. Rosenfeld et a/. , Rev. Mod. Phys. 40, 77 (1968).

where ~~ and es denote the singlet and octet members
of the cs-p complex. In the symmetry limit f„,Kg=0
and hence

fcuKg= —SIIlft f~sxg= —SVS Sm8 f~~s.

Using f, =5 52+0. 34 giv. es f„xg= 3 00—&0. 18 T.he.
coupling constant fexg can be found in a similar way
and yields feKg= 3 73+0 23. . Ho.wever, the decay
Q~EE is physically allowed and so we may also
calculate fzKg from the decay parameters. This proced-
ure gives feKg=4 37&0. 51, w.hich is compatible with
the previous estimate. We will use fexg=4 37 in .the
actual calculations. Finally, combining all the above
results gives

yt"= —2.54+0.33, ys"=0.022+0.003, (7.8)

yt&= 1.77+0.33, ps&= —0.015+0.003. P.9)

%e will conclude this section with a remark on the
p-meson coupling constants. It is dear that the proce-
dure for determining the oi and it couplings could, in
principle, also be used to obtain the p couplings to the
nucleon by considering the isovector form factors.
Using the results of Chan et a/. st we find f, psi&

'r= .56
~0.9 and f,Ng&r&= —32.7&2.2, compared with our
earlier estimates of f,sImt"'=3.3+05 and f&mfa' '=
—12.0&2.0. The situation regarding the former esti-
mates is, unfortunately, very unclear. It is well known
that in order to achieve a "dipole" type of fit to the
form factors a second pole, in addition to the p, is
required with a mass m, ~1 BeV, and although
theoretical arguments have been given in its favor" it
is di%cult to see why it has not been seen experiment-
ally, "since there seems no reason why it should not be
as strongly produced (e.g., in photoproduction reac-
tions) as the p meson. In the numerical work which
follows we shall use the estimates given in Kqs. (7.3)
and (7.4).

ex L. H. Chan et a/. , Phys. Rev. 141, 1298 (1966).
"See, e.g., J. Moffat, Phys. Rev. Letters 20, 620 (1968).

J. G. Asbury et a/. , Phys. Rev. Letters 19, 869 (1967);
A. Wehman st ul. , st 18, 929 (1967); 3. . D. Hyams e5 al. , Phys.
Letters 248, 634 (1967).
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The contributions to Refs+(s) in t'he physical region

due to the nearby singn, larities were calculated by the
methods of Secs. IV—VI. We shall discuss 61stly the
coDtllbutloDs due to hypel'OD RDd vector-meson ex-

chRDges.
The contrlbutlons from the neRx'by cuts due to A, and

Z exchRnges were calculated using the mcthOd of Sec.
IV with the coupling constants of Sec. VII. These
terms are small Rnd had we used, instead of the coupling
constants of Sec. VII, the smaller values of Ref. 22

TmLE I. Values of the nearby left-hand-cut contributions. due
to A, p, and oo exchange, together with values of the rescattering
integral and Refo+(s). Contributions due to E and y are negligible.
All contributions are to be multiplied by 10 8.

105.3
115
125
135
145

kL,
(MeV jc)

0
335
500
635
765

p co Reseat tering Ref0+

—8.2 20.8 37.0—5.8 14.6 23.8—4.3 10.8 15;8—3.2 8.3 10.8
-2.4 6.5 'l.3

183.2
179.4
164,5
142.2
115.3

—198.00—200.6—193.6'
—,179.9—163.0

84 S. Goldhaber et gl. , Phys. Rev. Letters 9, 135 (1962).
35 A. T. Lea, B. R. Martin, and G. C. Oades, Phys. Rev. 165,

1770 (1968).

VIII. PHYSICAL REGION

Early experimental work~ on E+p scattering deduced
the very interesting fact that the interaction was a pure
s-wave repulsion for kaon laboratory momenta in the
range kr, &650 MCV/c. Recently, a fairly extensive
phase-shift analysis" of all existing E+p elastic data in
the momentum range kz&1.5 BCV/c has conhrmed
the dominance of the s waves below 800 MCV/c.
Above 800 McV/c several solutions were found which
6tted the data equally well, but an interesting feature
of all these solutions is the fact that the s-@rave phase
shifts are rather similar. In particular, this means that
we have a fair idea of Imfs+(s) in the region 800
MCV/c&kz, & 1500 MCV/c. It was found" that for all
'thc acccptablc sollltlolls 1mfs+($) passes thlollgll R

broad maximum around kr, 1 BCV/c, then falls off
slovrlv. If we de6ne

Ce=k(N) Imf@.(I),
where 8 is the square of the total c.m. energy at a
laboratory momentum of 1.5 BeV/c, and fit a high-

energy "taiV' to 1mfe+(s) of the form

Imfs+(s) =Cs/k(s),

then. we should be able to make a' reasonable estimate of
the rescattering integral in the dispersion relation (3.3).
Since we only know Refs+(s) uniquely below 800
MCV/c we shall confine the evaluation of the dispersion
relation to this region.

the result, as far as the over-all dynamical picture is
concerned, would remain unchanged. . This fortunate
sltuatloD fox' $-wave scRttex'1Dg ls due to R stx'ong

cancellation in the discontinuity across the nearby cut,
and. has been observed previously for zE scattering"'6
and mA. Scattering. s~ Values for the A. contribution at
various points in the physical region are given in Table
I. The Z contribution is negligible.

The contributions from the real-axis cuts and the
front of the circular cut due to vector-meson exchanges
were calculated using the methods of Sec. VI and the
coupling constants of Sec. VII. The p and. co contribu-
tions are both positive and of the same order of magni-
tud, e, whereas the @ contribution is extremely small.
This smallness is a direct reQection of the fact that
ms~&2', and hence this vector meson does Dot give
rise to a cut along the neaxby real axis, unlike both the
cc and p (see Fig. 2). For the latter exchanges most of
their contrlbutlons come from the I'eRl-axis cuts RDd

only a small part is due to the front of the circle. This
result is encouraging because it means that neglecting
the front of the circle, as is done when calculating the
contribution due to (Ir-Ir)e exchange, should produce
only a small error. VRlucs fox' the p and au contllbutloDs
at various points in the physical region are shown
in Table I. The contribution due to @ exchange is
negligible.

The only other process to be discussed is (s-Ir)s
exchange, and, this requires special care. %e shall start
by discussing the results obtained. by using the non-
resonant m-x phase shift labeled A in Fig. 3, Using
these phase shifts R D function was coDstlucted from
Eq. (5.35) and. used in Eq. (5.24). The amplitudes
Imf++(t) for err ~EE were taken from the work of
Hamilton and co-workersM on the low-energy g-g
interaction. Since the m-7r phases of set A are very
similar to those actuROy found by Hamilton eI, aL. it is
clear that this is a self-consistent procedure. The other
amplitude needed in Eq. (5.24) is go+(/) describing
Irs' ~EE.Tile method of calculation of 'tllls RIIlpll'tlld. c
has been given in Sec. V C but hexe there is a difliculty,
because to evaluate Eq. (5.33) we need to know the
value of the s-wave x-IC scattering lengths in the
combination os+=-', (IIIIls+2ae'Is).

It might be thought that as a 6rst approximation
one couM. neglect this term, and such a view would be
borne out by the prediction's of current-algebra calcula-
tions which give co+=0.'8 However, explicit numerical
calculation shows that even a quite small value of uo+

cari chan'ge the value of the (s -Ir) e contribution appreci-
ably, and, in particular, if eo &0 then canceHation with
the integral in Eq. (533) can considerably 'reduce the
(Ir-Ir)e term. This is an important point and we will

36 S.R. Martin, Phys. Rev. 162, 1448 (1967).
3~ S.R. Martin, Phys. Rev. 138.,' 81136 (1965).
8' See, e.g., A. P. Balachandran, M. G. Gundzik, and F. ¹ico-

demi, in Boulder' Lectures Ag Theoretic/ I'hys~u (Gordon and
Breach, Science Publishers, Inc. , New York, t967), Vol. 93.
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FIG. 4. Fit to h(s) for the m-vr phase-shift set A a +=~ and +0+=0:
— o, a s' (82—s)', solid line, sum.

s2= (N' m')'—/m*'

A(s) =Refo+(s) —— ds'
y " Imf0~(s')

g ~o s —s

where E stands for the nearby exchange forces, i.e.,
p, cv, P, (s-ir) o, h., and. Z. We shall fit h(s) with a form
chosen to represent the unknown, neglected, parts of
the interaction. Firstly, to represent the distant singu-
arities (i.e., very short-range forces) we shall use a

sing e pole of the form I'/(Bi —s). Since this pole is to
represent contributions from the rear of the circle and

e real axis to the left of the origin, we shall set

Tmxz II. Values of the (~~)0 contributi
the three sets of s-wave T=0 m-m phase shifts se = m-m phase shifts shown in Fig. 3,

T=O x-m phase-shift solution
3 C

125.3 366.4
1N'.6 4'l3.9
209.9 581.5

s-wave

—0.05
0
0.05

69.4
124.1
178.7

39 '
ao(1 L. L. J. Vick, Nuovo Cimcnto 39, 90~»A. D. Martin and

4' B.Conforto et al., Nucl. Phys. M, 469 (1967).

return to it later. The actual value of up+ is unfort
nately, not known. For example, Martin and Vick" from

l l l

u R ion o x' scRttcllng found cp in
the range 0.024—0.011; Martin and Spearman' found
up+= —0.13&0.03; and Conforto et u3.~ in a phenome-
nological analysis of mEfin. al states in pp annihilations
found cp+~-

ann i ations
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p &0, but clearly more work is needed before this
conclusion can be considered certain. %C shall consider
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tance of the term involving up+ is clearly evident. To see
the CGect of changing the form of the input ~-m phase
s i ts, we have repeated the above calculation with
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Fzo. 5. Fit to A(s) for the x-x phase shifts set C and go+=0:
dash, pole term; dash-dot, (u+bs) /{8~—s)'; solid line, sum.

The same thing can be done when co+= +0.05. In each
case it was found that the short-range pole gives a
large negative contribution and the nearby term a
smaller negative contribution. The correct energy
dependence is obtained by a cancellation between this
latter contribution and. the positive (ir-ir)0 term. We
have also tried the same procedure using the m-m.

phases B and C. Because the (n.-ir)0 contribution is

now far larger (see Table II) it is clear that D(s) is also

larger and correspondingly the role of the parameters
a and b becomes more important in cancelling this term.
For example, we show in Fig. 5 the results for ~-x

phases C with a~+=0. The other parameters are a=10,
5= —20, and I'=90. Although the fit is worse than the

solution of Fig. 4, nevertheless it cannot be entirely

ruled out.

We have presented an exploratory investigation of
the dynamics of the s-wave K+p system using the

techniques of dispersion relations. In this final section

we will try to summarize the results obtained and

discuss future possible work.

Firstly, it is clear that the exchange of an s-wave

T=O ~-ir pair is potentially the largest force of long

range, even if the s-wave T=O ~-m phase shift is non-

resonant, and thus calculations which neglect this

process coN/d be seriously in error. Unfortunately, the
precise size of the (ir-ir) o contribution cannot be deter-

rnined at present due to (a) our lack of knowledge about

the ~-ir phase shifts, and (b) the unknown parameter
go+. In particular, it may even be compatible to have a
resonant m-~ phase shift if uo+ is sufficiently negative.

Compared with the (7r-m. )o term the long-range parts

of the p, ~, @,A, and Z exchanges are all fairly small, the

most important being the p and co. In addition, it is

necessary to have a fairly large net repulsion from the

singularities due to hyperon resonance exchanges in the

u channel, and a very large, . slowly varying, short-range

repulsion. The latter effect is not unexpected, and short-
range repulsions of similar sizes have been found in
other meson-baryon s-wave reactions. ""Confirmation
of whether the size of the force attributed to the hyperon
resonances is a real phenomenon will have to await
experimental clarihcation of the hyperon resonance
parameters.

Before further work of this type can be attempted on
the dynamics of the IC+p system, it is clear that many
improvements must be made in the experimental situa-
tion. Firstly, and most important, it will be necessary
to know both the s-wave T=O x-m phase shift and the
s-wave 7r-E scattering length combination uo+ before a
reliable calculation can be made of the (ir-m) 0 contribu-
tion. If it should turn out that this term is indeed small,
then the relative importance of vector-meson exchange
is increased and it will then be important to have reliable
estimates of the vector-meson coupling constants. This
remark is also true for the A. and Z coupling constants,
since, although these Born terms are very small in
s-wave scattering, they will be important for higher
waves. However, it will not be possible to extend
calculations of this sort to higher waves until phase-shift
analyses of the type in Ref. 35 can produce unique
solutions. This ii turn means a greater experimental
effort is required in the field of X+p scattering. A discus-
sion of the types of experiment needed to help resolve
the present ambiguities has been given by I.ea, Martin,
and Oades.

APPENDIX: s-WAVE T=O ~-~ SCATTERING
BELOW 1 BEV

Attempts to deduce the behavior of the s-wave T= 0
7r-x scattering amplitude in the region below 1 BeV total
c.m. energy have occupied the attention of many
workers, and the resulting number of suggested be-
haviors is very large, although none of them can be
said to be wholly convincing at this time. We shall
not attempt to give a critical assessment of these
papers, but merely reproduce below some of the argu-
ments that have been given in favor of the three major
types of behavior which have been suggested and which
we have considered in Sec. IX. The references in this
Appendix are intended to be representative rather than
exhaustive.

A. Nonresonant Behavior

A large number of authors have suggested forms for
the s-wave T=O ~-7r amplitude which are nonresonant
below 1 SeV. Such a form was suggested by Chew and
Mandelstam from their early work on the dynamics of
the x-m system, "and a form essentially equivalent was
shown by Hamilton et al.42 to be compatible with the

"G.F. Chew and S. Mandelstam, Phys. Rev. 119, 46'' (1960).
4~ J. Hamilton, P. Menotti, G. C. Oades, and L. L. J. Qck,

Phys. Rev. 128, 1881 (1962).
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dynamics of low-energy m S scattering. The phenomeno-
logical mS dispersion relation analysis of Hamilton et
al.~ gave an s-wave T=O m-m scattering length ao 1,
and a value of this magnitude has subsequently been
found by many other authors from several sources, e.g.,
E,4 decay, " x-x forward dispersion relations, ~ and
single-pion production experiments. "All these results
depend, to some extent, on the parametrization chosen.
However, recently, Fulco and Wong" have shown,
without specifically parametrizing the amplitude, that
a nonresonant form (50&50' for E &900 MeV) with
ao 0.8 is the best solution compatible with a large
range of experimental data as well as with forward m-x

dispersion relations.
Nevertheless, claims have been made from current-

algebra calculations47 for a much smaller scattering
length ao 0.2. However, these calculations use, in
addition to current algebra and PCAC, dynamical
assumptions concerning the extrapolation of the m-x

amplitude from the unphysical point given by the
calculation to the physical region. These assumptions
are independent of the current-algebra formulation
and several authors' have shown that other, quite
reasonable, assumptions about the extrapolation can
produce a very large variety of different scattering
lengths (both positive and negative) and phase-shift
behaviors. It has also been shown4' that the small
scattering lengths of Weinberg" can still be compatible
with quite large phases in the low-energy region, and
since the work of Sec. IX depends not so much on the
value of the amplitude at threshold (i.e., the scattering
length) but on the form of the phase shift in the whole
energy range below 1 BeV, this latter result is all that
we really need.

B. Resonant Behavior

Many analyses of single-pion production in vrS
interactions have been made, some of which' claim
evidence for an s-wave T=O resonance variously re-

4'R. W. Birge et al. , Phys. Rev. 139, B1600 (1965); F. A.
Berends, A. Donnachie, and G. C. Oades, Nucl. Phys. $3, 569
(1967).

44 See, e.g., N. G. Antoniou, Nucl. Phys. B3, 2/7 (1967).
4' See, e.g., W. D. Walker et al. , Phys. Rev. Letters 18, 630

(1967).
46 J. R. Fulco and D. Y. Wong, Phys. Rev. Letters 19, 1399

(196/); see also Y. Fujii, Phys. Letters 24B, 190 (1967)."S.Weinberg, Phys. Rev. Letters 1?, 336 (1966).
"See, e.g., J. Iliopoulos, Nuovo Cimento 52A, 192 (1967);

53A, 552 (1968); 54A, 536 (1968); A. Donnachie, ibid. 53A, 931
(1968); K. Kang and T. Akiba, Phys. Rev. 164, 1836 (1967).

9 E. P. Tryon, Phys. Rev. Letters 20, 769 (1968);Y. Fujii and
K. Hayashi, Progr. Theoret. Phys. (Kyoto) 39, 126 (1968).» See, e.g. , M. Feldman et al. , Phys. Rev. Letters 14, 869
(1965);V. Hagopian et al. , ibid. 14, 1077 (1965).

ported in the mass region 750—900 MeV and with a
width in the range 50—150 MeV. However, there seems
to be little direct evidence for such a resonance. "Other
experiments" have, at various times, claimed evidence
for the existence of a resonance at a much lower mass
M 400 MeV, and further evidence for such a state
has been presented from a phenomenological study of
backward ~+p dispersion relations. " However, unless
this low-energy resonance is extremely broad, it is
difficult to see why it has not been observed in the E,4

decay spectrum. 4'

C. Solution with a Zero in the Physi|:al Region

A third type of behavior which has been suggested is
a phase shift which is initially negative but soon turns
over, passes through zero, and becomes positive,
possibly resonating at higher energies. A phase shift of
this form was actually found by Hamilton et al.~ from
their work on xE dispersion relations but was rejected
in favor of the somewhat better fit obtained by a solu-
tion of type A above. The scattering length found by
Hamilton et al."was ao —0.6, and a value close to
this has been found in a forward-dispersion-relation
calculation by Antoniou. ~ Two other pieces of evidence
for a phase shift of this type come from the backward
m+p work of Lovelace et al. '3 and, more recently, a new
analysis of low-energy single-pion production by
Humble and Spearman. '4 Both Hamilton et ul.4' and
Humble and Separman'4 find that on becoming positive
the phase shift rises to a maximum nonresonant value,
whereas I ovelace et a/. "find a very broad resonance at
S' 700 MeV. The scattering length of Humble and
Spearman is eo —1.7, and this value has also been
found in a forward-dispersion-relation calculation by
Rothe. "Finally, a very recent analysis of single-pion
production below 750 MeV" also finds evidence for a
negative value of 5 in this region.

The three sets of x-m phase shifts that were used in
Sec. IX are shown in Fig. 3.Sets A, B, and C correspond
to scattering lengths u0=0.6, —0.6, and 0.6, respec-
tively, but again we emphasize that these values are
unimportant for our purposes and are only used to
de6ne the phase shift for the first few MeV above
threshold.

"The evidence is discussed in Ref. 30.
5' See, e.g., R. Del Fabbro et al. , Phys. Rev. 139, B701 (1965);

A. Abashian et al. , ibid. 132, 2296 (1964)."C.Lovelace, R. H. Heinz, and A. Donnachie, Phys. Letters
22, 332 (1966).

'4 S. Humble and T. D. Spearman, Phys. Rev. 171, 1724 (1968}."H. J. Rothe, Phys. Rev. 140, B1421 (1965).
~6 N. N. Biswas et al. , University of Notre Dame Report, 1968

(unpublished).


