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A generalized partial-wave analysis is derived for #n-particle reactions.

I. INTRODUCTION

HE assumption of an S matrix invariant under

Poincaré transformations leads to a covariant
scattering theory and results in a partial-wave expan-
sion of the scattering amplitude characterized by a set
of unknown Poincaré-invariant reduced amplitudes.
The unknown amplitudes are specified by theoretical
models or experimental data, and since a large quantity
of data from multiparticle reactions is now available, it
is reasonable to ask how much can be learned about
multiparticle reactions through a model-independent
approach, that is, assuming only that the scattering
operator transforms as a scalar under the Poincaré
group.

The basic mathematical problem involved in deriving
the partial-wave analysis is the reduction of the tensor
product of # single-particle states, that is, the Clebsch-
Gordan problem. Macfarlane! has shown that it is
possible to carry out the tensor-product reduction in a
stepwise fashion. His scheme results in a partial-wave
analysis in which the Poincaré-invariant amplitudes are
labeled by the eigenvalues of diagonal operators of the
two-particle subsystems specified in the coupling
scheme. This analysis is useful because the eigenvalues
of the diagonal operators can often be associated with
the quantum numbers of intermediate resonances. On
the other hand, the partial-wave expansion is not sym-
metric under particle interchange; symmetrization of
the expansion results in unmanageable sums that are
usually cut off arbitrarily.?

It is therefore of some interest to couple particles to-
gether in as highly symmetric a fashion as possible in
order that the resulting partial-wave analysis treats all
particles as symmetrically as possible. Goldberg® and
Werle? have considered this problem, and Roffman® has
derived a symmetric coupling that can be implemented
provided that the two-particle coupling is known. In this
paper, we shall derive a partial-wave analysis for the

reaction
142 — 344+ -+n, (1)

symmetric in particles 3 through », using the results of
a previous work dealing with the reduction of #-fold

1A. J. Macfarlane, Rev. Mod. Phys. 34, 41 (1962).

2 H. Goldberg, J. Math. Phys. 7, 434 (1966).

3 H. Goldberg, Nuovo Cimento 47, 495 (1967).

4 J. Werle, Relativistic Theory of Reactions (John Wiley & Sons,
Inc., New York, 1966).

5 E. Roffman, J. Math. Phys. 9, 62 (1968).
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tensor-product representations of noncompact groups.®
In Sec. IT the salient features of the coupling scheme
discussed in Ref. 6 will be given and the partial-wave
analysis derived. It will be shown how the invariant pa-
rameters in the partial-wave expansion are determined
and one set of parameters will be given. The partial-
wave expansion will be carried out in the simplest frame
of reference, namely, the c.m. system, although it is
possible to derive the expansion in an arbitrary frame of
reference. In Sec. III the results of Sec. IT will be used
to describe the reaction

142 — 3+4+5,

assuming that particles 3-5 are spinless.

(2)

II. KINEMATICS AND A GENERALIZED
PARTIAL-WAVE ANALYSIS

In Ref. 6 we have shown how to decompose the n-fold
tensor products of positive-mass representations of the
Poincaré group in an arbitrary frame of reference. In
the most convenient frame of reference, namely, the
c.m. of particles 3 through #, it is possible to write the
following reduction formula:

I [M3;S3]p30'3> e L[Mn,sn]pnggrﬁ_l
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Here [M,5:], ps, and o are the mass, spin, momentum,
and z component of the spin of the ith particle. Denot-
ing the 4-momentum of the ith particle by p;, i=3, 4,
<o, m, gives M?2= (P3+P4+ .. +Pﬂ)2 and P+pst---
+p.=0 by energy-momentum conservation. u is a set
of continuous degeneracy parameters of the form p;- p;
and  eqgqysPn®Pr-1"pn2?pd; a convenient set will be
given in Eq. (14). R is a rigid-body rotation that rotates
all n—2 outgoing momenta p; through the same angle.
It contains the effect of coupling all of the particles to-
gether into one “over-all particle.” Dg,*(R) is a Wigner
function that compares the spin of the “over-all par-
ticle” [[Ms1p=0, o; K, a;, u) along the z axis of the
c.m. coordinate system with the spin along a coordinate
system rotated by R. The rotation R induces rotations

6 W. H. Klink and G. Smith, University of Iowa Report No.
68-8, 1968 (to be published in Commun. Math. Phys.).
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R; for all 7 outgoing particles, changing their spin com-
ponent from o; to a; in the Wigner function D, *(R.).
N is a normalization constant depending on how the
states |[M,s:]pio:) are normalized.

Implicit in the construction of a single-particle state
|[M i,s5:]ps,0;) is an operation that boosts or orbits the
ith particle from its rest frame to the c.m. frame. A
Lorentz transformation is involved in carrying the par-
ticle from its rest frame to the c.m. frame, and since
Lorentz transformations can always be decomposed into
right cosets with respect to the rotation subgroup, it is
always possible to orbit the particle with right-coset
representatives; the rotation has no effect on the rest-
frame four-vector p=(0,M). Thus, a boost operation
can always be thought of as a right-coset decomposition
of the homogeneous Lorentz group; equivalently, the
covering group SL(2,C) of the Lorentz transformations
can be decomposed into right cosets with respect to the
little group SU(2). That is,

SL(2,0)=U SU(2)A., 4)
c

so that to boost a particle at rest to an arbitrary mo-

mentum one simply writes’

H(P) = Ac—lH(ﬁ)AcT’—l

=MAC—‘1AC1'_1 , (5)

where A, is a right coset representative, the inverse of
which boosts the particle to a momentum p and

E+Pz Pz_iPy)
patipy E—p. /)

M is the mass of the particle. The notation A, ~(p) will
thus mean a boost from $ to p.

There are many choices of A, possible. One choice,
the choice we shall make in this article, is the set of
rotationless Lorentz transformations, which in covering
group form are Hermitian matrices and can conveni-
iently be written

AT (p)=R(@p)L.(|p )R~ (Qp), (M

where R(Qp) is a rotation dependent on the polar angles
Qp of p and L.(|p|) is a Lorentz transformation along
the z axis.

Another possible choice of A.(p), called the helicity

bz (p)E( (6)

71t is customary to say that an element of the Lorentz group
carries the four-momentum p to p’, which in the covering-group
form is written H (p') =AH (p)A*. However, in following the nota-
tion of Mackey [ Theory of Group Represeniation (Dept. of Mathe-
matics, Univ. of Chicago, Chicago, Illinois, 1955)], it turns out
that the inverse element is used, so that H(p')=A"H(p)A "',
This has as a consequence, when SL(2,C) is decomposed into right
cosets with respect to SU(2), that H(p) =A.H(p)A, M and thus
a boost is the inverse of the usual definition. In order to agree with
the conventional choices of boosts, all coset representatives are
specified in terms of inverse elements. For a further discussion of
this point, see W. Klink, in Proceedings of the Summer Institute of
Theoretical Physics, University of Colorado, Boulder, Colorado,
1968 (to be published).
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choice, is
A (p)=R(@p)L.(]p])- ®

This choice is particularly convenient since it leads to
rotationally invariant states so that

U(R)|[msIpNy=U(R)U(R(Qp)L(|p|)) | [msJON)
= U(RR(2p)L(|p|))|[ms]ON)
= |[msIp'\), O

with U(R) an arbitrary rotation operator and p’
=RR(Qp)L.(|p|)0.

Lorentz transformations carrying a particle from one
frame to another also lead to Wigner rotations. In the
coset notation, the Wigner rotation can be written

(2,A)=A(Ap)AAT(p).

An unusual coset choice has been given by Rideaus
in which the representatives A, are

N0
(0 )
z 1/

with A>0, z complex. These coset labels have the ad-
vantage of forming a group so that the Wigner rotation
(p,A.) is always the identity and thus no Wigner D func-
tion appears when A, acts on a general state |p,o).?

In order to derive the decomposition (3), it is neces-
sary to choose a boost [e.g., (7) ,(8), or (11)7]. In par-
ticular, it is necessary to specify the boost Ap,~! which
carries the 7th particle to the nth particle rest frame in
order to calculate the rotation R and the #»— 2 rotations
R; In Ref. 6, we have shown that the parameters in
Ap; not only specify the rotations,® but also serve to
distinguish equivalent representations of the Poincaré
group which result from the #-fold tensor product de-
composition. If we choose Ap; to have the same form as
A, Eq. (8),

(10)

(11)

Ap,=RL,R™!

g S GO (S
_([Ui!zDi+IVil2/Di {U,-[V,-(I/D;——D,-)
\|U|V*(1/Di~D)) lUfIZ/Di+1v,-120,->’ a2

then the parameters {|U;|,V;,D;} can all be written in

8 G. Rideau, Ann. Inst. Henri Poincaré 3, 339 (1965).
. ® We have not been able to give R a physical interpretation and
in fact, it is not clear that a physical interpretation exists, even for
only three outgoing particles. R is defined mathematically in
'termi of tfhc;lboqsts Ap;and t]lele boost A.(Pp), where Ppr=3Ap, s,
in the following way: i=A:(Pp)Ap; 1p;. ;= A py
A PRRA Gy, (TP Then KA
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terms of scalar products of the momenta:
pi pi=detH (pitp;)—mid—m;*
= det[A“(A pilH (ﬁi)A Di 1t
+ApH(P)Ap; A T—mi—m,

+D,-20,-2)

7
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with D;>0, U, V; complex, i=3,4, - -, n,and D,= U,
=Upa=1, Va=V»1=0, V,_2>0. In order to specify
uniquely the continuous invariants u in Eq. (3), it is
necessary to solve for {|U;|,V;,D;} in terms of an in-
dependent set of scalars taken from Eq. (13). A con-
venient independent set is

U= Pt Piy =3, -+, n—1;
S i=3, e, n=2;
= Pn—2* s 1=3, .-+, n—3;
= eaﬂ'yapnapn—lﬂpn—f'?ia, 1= 3, Tty n—3. (14)

To obtain a generalized partial-wave analysis, it is
necessary to couple the two incoming particles to-
gether.® Assuming that the two incoming particles
define the z axis of our coordinate system and that the
S matrix commutes with the generators of the Poincaré
group, we get, using (3),

o [ 1\ 12025+ 1\ 12 »
v 3 (Z5) (55) D) I DRI Ko SIS0, ot

4

s,8" ,K,0,a; =3

© +s 28+1

=N X X X

s=|ortos] K=—s a3z---an T i=3

where A [o10305+ ankul(Ms) is the reduced amplitude and
contains the dynamics

A [mzas---anKu](Ms)E<[M5:|p= 0, o; a;KulS
X |[MsIp=0, ort+as). (16)

Rohrlich!! has pointed out that » vectors p; in a four-
dimensional space are fixed by 3#— 10 invariants p;- p;
when three of the vectors (noncoplanar) are chosen as
a basis and the relation > ;1" p;=0 exists. He also
points out that each vector p; is only specified up to a
sign by p1- pj, pa- pi, and ps- pj, With p1, ps, and ps the
basis vectors. The sign is fixed by the invariant sgneqgys
X p12psPps7p;®. There are only #—4 such sign ambigui-
ties because the basis vectors are considered known and
one vector is uniquely fixed by the four-momentum con-
servation relation.

In our analysis there are 3n—12 invariants of the
form pi ps, Eq. (14). However, the nth particle is
chosen to define the x-z plane, and the invariant mass is
fixed by M?= (p1+p2)? for a total of 3n— 10 parameters
in agreement with Rohrlich. We also find it necessary
to fix #—5 signs using the #—35 invariants €apyyspn®

(CM 501ps; [M £0]ps; [M400ps| S| [M 151]p101; [M 2 1p202)

=N 3

DK,«1+028(R)H Daivis"*(Ri)A [o1,02,a3,+,an; K,u] (M;S) )

5(MI—M)53(D"— p)ass’aw, oitog
(15)

X pn1Ppn_s?p®; in addition, one sign must be fixed in
order to specify the handedness of the coordinate sys-
tem. It is easy to see that this sign can be fixed by
eaﬁy‘;P“‘Pfgj)n'ypl‘s:Meijkﬁlipnjpzk, where 3 is any vector
not in the x-z plane. Thus, having specified 3z— 10 p;- p;
invariants and #—4 sign ambiguities, the scattering
amplitude is uniquely determined.

III. SIMPLE EXAMPLE

If we consider for a moment the stepwise coupling
scheme for a three-body final state, there are three pos-
sible couplings usually denoted (34)3, (35)4, and (45)3,
with 3, 4, and 5 labeling the final-state particles. The
coupling schemes are related by recoupling coefficients,
the relativistic analog of Racah coefficients. In order to
symmetrize the coupling, a sum over all possible cou-
plings is taken and then all couplings are rewritten in
terms of one coupling using the recoupling coefficients.
This process results in a very complicated partial-wave
analysis even if all final-state particles are spinless.

On the other hand, if all final-state particles are spin-
less, Eq. (16) reduces to a single Wigner function:

+s 2541
2

(17

DK.UPFVZ‘,(R)A[O'IU% K, p3-p4, 03 5, p4- 5] *

s=o1toy K=—s T

10 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).

11 F, Rohrlich, Nuovo Cimento 38, 673 (1965).
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But, as one might guess, the complications that manifest themselves in the recoupling coefficients in the stepwise
coupling scheme are contained in the rotation R. For the most general three-particle final state, R is a complex

function of the p.- p; invariants.” However, if we consider only those reactions in which the final particles lie in the

x-z plane, then R involves only a rotation about the y axis (since ps defines the x-z plane):

(4ps- P5P4 Ps—M?ps- by 2}1/2
MM 3M 53

P5z(4‘P3 pspa- ps—4(pa- ps)? Msp P4—M4M5>
M MM M,
cos20= e "
Y
o ()]
s 5 M
2p50 {4(173 '?5)2“M32M5
M MM,
(P5z2+P522)|:<
with

,» (18)

(Gese) 1)
var) 7]

cosf sinf
w0 )
—sind  cosf

Thus the D function appearing in Eq. (17) is specified
explicitly by the angle given in Eq. (18).

IV. CONCLUSION

Several conclusions can be drawn on the basis of Eq.
(15). First, the number of multiparticle reactions being
investigated is increasing; thus it is important to
understand #-particle kinematics so that meaningful
multiparticle experiments can be defined and so that
multiparticle reactions can be systematically analyzed.
As other authors!? have pointed out, it is not at all
clear which variables should be used to specify multi-
particle reactions, and as our analysis shows, any set of
invariants that uniquely specifies the 3z—6 parameters
in Eq. (13) is satisfactory.

Second, it is obviously necessary to have a symmetric
analysis if there are several identical particles in the
final state. Even if all final-state particles are different,
the analysis becomes obscured by kinematical effects
unless each final-state particle is given an equivalent
role. Our analysis avoids this situation because it de-
pends only upon scalar products of final-state momenta,

12 N. F. Bali, G. F. Chew, and Alberto Pignotti, Phys. Rev. 163,
1572 (1967).

and the spin variables (o304, - +,a,) in a symmetric
fashion. We believe that our analysis makes a clear
distinction between kinematics and dynamics; the dy-
namics will be completely contained in the reduced
amplitude (16) and in any assumption that allows the
summation over s to be terminated.

Finally, even though the kinematic difficulties arising
in multiparticle reactions are contained in the rotations
R and R, so that explicit expressions for R and R; as
functions of p;-p; are quite complicated, nevertheless

 the relationships between R and R; and the invariants

pi- p; are straightforward and unambiguous. Thus, us-
ing the definitions given in Ref. 6, it would be possible
to write a computer program that would read out the
angles involved in the rotations for the various values of
pi pj occurring in a given experiment. Given such a
computer program, we had hoped to find a systematic
manner of handling multiparticle reactions by pa-
rametrizing experimental data in some convenient man-
ner, the hope being that a special para.metnzatlon
might lead to a multiparticle phase-shift analysis in
which resonances would be predicted from experi-
mental data. However, we have not been able to carry
out such a phase-shift analys1s and it is not even clear
that it is possible to do so in-a model-independent way.



