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A generalized partial-@rave analysis is derived for n-particle reactions.

I. INTRODUCTION

HE Rssumptlon of Rn 5 Illatrlx lnvRllant UndcI

Poincare transformations leads to a eovariant
scattering theory and results in a partial-wave expan-
sion of the scattering amplitude characterized by a set
of unknown Poincare-invariant reduced amplitudes.
The unknown amplitudes are spcci6ed by theoretical
models or experimental data, and since a large quantity
of data from multiparticle reactions is now available, it
is reasonable to ask how much can be learned about
multiparticle reactions through a model-independent

approach, that is, assuming only that the scattering
operator transforms as a scalar under the Poincare
gl oup.

The basic mathematical problem involved in deriving
the partial-wave analysis is the reduction of the tensor
product of e single-particle states, that is, the Clebsch-
Gordan problem. Macfarlane' has shown that it is
possible to carry out the tensor-product reduction in a
stepwise fashion. His scheme results in a partial-wave
analysis in which the Poincarc-invariant amplitudes are
labeled by the eigenvalues of diagonal operators of the
two-pRrtlclc subsystems spccl6cd ln thc couphng
scheme. This analysis is useful because the eigenvalues

of the diagonal operators can often be associated with
the quantum numbers of intermediate resonances. On
the other hand, the partial-wave expansion is not sym-
metric under particle interchange; symmetrization of
the expansion results in unmanageable sums that are
usually cut oR arbitrarily. ~

It ls thcI'cfoI'c of some lntcrcst to coUplc partlclcs to-
gether in as highly symmetric a fashion as possible in
order that the resulting partial-wave analysis treats all

particles as symmetrically as possible. Goldberg' and
Wcrlc4 have considered this problem, and Rohan' has
derived a symmetric coupling that can be implemented

provided that the two-particle couphng is known. In this

paper, we shall derive a partial-wave analysis for the
leaction

1+2-+3+4+ +n,

symmetric in particles 3 through n, using the results of
R previous work dealing with the reduction of n-fold

~ A. J. Macfarlane, Rev. Mod. Phys. 34, 4j. (1962).
~ H. Goldberg, J. Math. Phys. 7, 434 (1966).
3 H. Goldberg, Nuovo Cimento 47, 495 (1967).
J. Werle, Jtetatieistic 1'beery of Jteactions Qohn Wiley ttt Sons,

Inc. , ¹wYork, 1966).
5 E. Rohan, J. Math, Phys. 9, 62 (j.968).

tensor-product representations of noncompact groups. '
In Sec. II the salient features of the coupling scheme
discussed in Ref. 6 will be given and. the partial-wave
analysis derived. It will be shown how the invariant pa-
rameters in the partial-wave expansion are determined
and onc set of parameters will be given. The partial-
wave expansion will be carried out in the simplest frame
of reference, namely, the c.m. system, although it is
posslblc to derive thc cxpanslon 1n Rn arbltrRly fI'RIIlc of
reference. In Sec. III the results of Sec. II will be used
to describe the reaction

1+2~3+4+5,
assuming that particles 3—5 are spinless.

II. KINEMATICS AND A GENERALIZED
PARTIAL-WAVE ANALYSIS

In Ref. 6 we have shown how to decompose the e-fold
tensor products of positive-mass representations of the
Poincare group in an arbitrary frame of reference. In
the most convenient frame of reference, namely, the
c.m. of particles 3 through n, it is possible to write the
following reduction formula:

( LMe, ssjy, os) ( LM.,s gp.o.)
co +r +r /2s+ 1'1 ~ts

I
Dx-'*(~)

~ x="=. e" ~ & 4w &

XIID„„'(Z&)) 1 M. spy=0, ~; Z,n, , ,n„,t ) ~(3).

Here LM;,s,], p;, and o, are the mass, spin, momentum,
and s component of the spin of the ith particle. Denot-
ing the 4-momentum of the ith particle by p;, s,=3, 4,

n, gives M = (ps+ p4+ ' ' '+pe) and ps+pe+ ' ' '

+y =0 by energy-momentum conservation. tt is a set
of continuous degeneracy parameters of the form p; p;
and e e~ep p ~ p„srp,'; a convenient set will be
given ln Eq. (14).2 ls a rigid-body rotation that rotates
all e—2 outgoing rnomenta y; through the same angle.
It contains the eRect of coupling all of the particles to-
gether into one "over-all particle. "Dz~'(R) is a Wigner
function that compares the spin of the "over-all par-
ticle"

~
$Msjy=0, o", E, n;, tt) along the s axis of the

c.rn. coordinate system with the spin along a coordinate
system rotated by R. The rotation E. induces rotations
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E.; for aB i outgoing particles, changing their spin com-
ponent from o, to a; in the Wigner function D ...'*'(R~).
Ã is a normalization constant depending on how the
states

I LM;,s;]p,o,) are normalized.
Implicit in the construction of a single-partide state

I PE;,s;]p,,o;) is an operation that boosts or orbits the
ith particle from its rest frame to the c.m. frame. A
Lorentz transformation is involved in carrying the par-
ticle from its rest frame to the c.m. frame, and since
I.orentz transformations can a1ways be decomposed into
right cosets with respect to the rotation subgroup, it is
a1ways possible to orbit the particle with right-coset
representatives; the rotation has no eRect on the rest-
frame four-vector P= (O,M). Thus, a boost operation
can always be thought of as a right-coset decomposition
of the homogeneous Lorentz group; equivalently, the
covering group SL(2,C) of the Lorentz transformations
can bc decomposed into right coscts with lcspcct to thc
little group SU(2). That is,

SL(2,C)= U SU(2)A„

so that to boost a particle at rest to an arbitrary mo-
mentum one simply writes'

a{p)=A —a(p)A-
=MA 'A~ '

where A, is a right coset representative, the inverse of
which boosts the particle to a momentum p and

(E+p, p, ip„—
&(p)—= I

kp,+ip„z p, —

M is the mass of the particle. The notation A. '(p) will

thus mean a boost from P to p.
There are many choices of A., possible. One choice,

the choice we shall make in this article, is the set of
rotationless I orentz transformations, which in covering
group form are Hermitian matrices and can conveni-
iently be written

A (P)=R(Qp)L*(lx l)R '(Qft),

where R(Qp) is a rotation dependent on the polar angles
Qy of p and I.,(lyl) is a Lorentz transformation along
thc s axis.

Another possible choice of A, (p), called the helicity

7 It is customary to say that an element of the Lorentz group
carries the four-momentum p to p', which in the covering-group
form is written H(p') =AH(p) Jt +. However, in following the nota-
tion of Mackey /Theory of Grolp Representation (Dept. of Mathe-
matics, Univ. of Chicago, Chicago, Illinois, 1955}g, it turns out
that the inverse element is used, so that H(p') =A. 'H(p)4-'t.
This has as a consequence, when SL(2,C) is decomposed into right
cosets with respect to SU(2), that H(„}=A, 'H(p)A, » and thus
a boost is the inverse of the usual definition. In order to agree with
the conventional choices of boosts, all coset representatives are
specified in terms of inverse elements. For a further discussion of
this point, see W. Klink, in Proceedings of the Summer Institute of
Theoretical Physics, Un& ersity oj Colorado, Boulder, Colorado,
XN8 (to be published).

choice, is

A '(P)=R(Qu)L. (l pl)-

(P,A) =A, (AP)AA.-t(p). (10)

An unusual coset choice has been given by Rideau'
in which the representatives A..are

Oy

1/lt)

with ~&0, s comp1ex. These coset labels have the ad-
vantage of forming a group so that the Vhgner rotation
(P,A,) is always the identity and thus no signer D func
tion appears when A, acts on a general state

I y, o).e
In order t:o derive the decomposition {3),it is neces-

sary to choose a boost I e.g. , {7),(8), or (11,)j. In par-
ticular it is necessary to specifv the boost g~ -& whjch
carries the ith particle to the eth partic1c rest frame in
order to calculate the rotation E and the g,—2 rotations
E.;. In Ref. 6, we have shown that the parameters in
Az,. not only specify the rotations, ' but also serve to
dlstlngulsh cqulvalent representatjons of thc pojncarc
group which resu1t from the n-fold tensor product de-
composition. If we choose AD,. to have the same form as
h.„Eq. (8),

—V,y

4—V;* IU;I (0 1/D, & V,' IU, I)
(IU*I'D'+ I V'I'/D*

I U'I V'{I/D' —D;) )
(

I U; I V,*(1/D,—D;) I
U

I
'/D+

I
V

I
'D I '

then the parameters ( I U, I, V;,D,) can all be written in

s G. Rideau, Ann. Inst. Henri. Poincard 3, 339 ($965).
o %e have not been able to give R a physical interpretation and,

in fact, it is not clear that a physical interpretation exists, even for
only three outgoing particles. R is defined mathematically in
terms of the boosts A.D; and the boost A, (PD},where PD=—ZAD,.—Ip;,in the followin way: Ep; =A.,(P'D}A~; '~;. Then g; =A~;
&&a -'(R&lRs -'

l

This choice is particularly convenient since it leads to
rotationally invariant states so that

U(R) I L tel )= U(R) U(R(Qp)L. (l pl)) I L

= U(RR(Qy)L, (l y I)) I Lms]OP, )
= II msjp'X),

with U(R) an arbitrary rotation operator and y'
=—RR(Qy)L. (l yl)O.

Lorentz transformations carrying a particle from one
frame to another also lead to Vhgner rotations. In the
coset notation, the signer rotation can be written
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terms of scalar products of the momenta:

p; p;=detH(p, +p;) m—42 m- '
=detp -r(~&;-ra(P,)~~,-rt

+An; 'H(p, )hn, rt)A] —mr2 —m

*~'~ (~'I &
I

—
I &;I &;"I'(, ,+&%'

I

(D.1 D.4
+ II"I';*+I ~, l I ~;I I i,+, ;

rr = pn '
pry

=P 1'P'-
P~—2 Pit

~ ~ 4 e~ $ ~

j
4 ~ ~ e~ 2 ~

~ ~ 0 e~B4

p~pvrp~ P~1 P~-2~pr &
4=3, , n —3. (14)

with D,&0, 6;, V; complex, i =3, 4, ., e, and D = U
=U y=1, V = V 1.=0, V 2&0. In order to specify
uniquely the continuous invariants rr in Eq. (3), it is
necessary to solve for ( I U;I, V;,D,) in terms of an in-
dependent set of scalars taken from Eq. (13). A con-
venient independent set is

4 „ppr„~p„rPP„,&p = ,'M„M-„M12M

xl~ -4II~ 11 I~'l(~ml" —«I'*)

To obtain a generalized partial-wave analysis, it is
necessary to couple the two incoming particles to-
gether. '0 Assuming that the two incoming particles
dehne the s axis of our coordinate system and that the
5 matrix commutes with the generators of the Poincarc

(13) group, we get, using (3),

([M ]p I ([M ]p .I
5'I [M ]I ) I [M 71

)2$+Iq'" 2s'+1 '"
D~. (Z) g D...,."*(Z,)([M$]p.; Z,~„NISI[M $]p, ~,+~,)... ,~,...;E 4~) 4 i=3

rI(M' —M) 8'(p' —p) 8„.8...,.+.,
ce +s 2$+ 1 n

D,.. .;(E)g D...,"*(Z;)A&..,........„, „,(M,s),
S=~ 1+ 2~ X—.u3. "~ a=3

(15)

...„rrpr (Ms) 1s tire 1'edllccd amPhtudc and

contains the dynamics

Ar„.. .... rr„)(Ms)—= ([Ms]p=0, o, or;Ji.rr IS
X I [Ms]p=o, or+op). (16)

Rohrlich" has pointed, out that n vectors p; in a four-

dimensional space are 6xed by 3n 10 inv—ariants p; p;
when three of the vectors (noncoplanar) are chosen as

a basis and the relation P;=1"p;=0 exists. He also

points out that each vector p, is only specified up to a
sign by pi p, , P2 p;, and pr p, , with pi, P1, and pr the

basis vectors. The sign is 6xed by the invariant sgnE ppg

Xpppmpppp, '. There are only n 4such sign ambigui-—

ties because the basis vcctoI's are consideled. known and

one vector is uniquely 6xed by the four-momentum con-

servation relation.
In our analysis there are Be—12 invariants of the

form p;.p;, Eq. (14). However, the nth particle is

choscIl to dc6nc the s-s plane, and the invariant IQass ls

6xed by M'= (Pi+P~) 2, for a total of 3n—10 parameters

in a,greement with Rohrlich. %e also 6nd it necessary

to fix n 5slglls usIIlg —'tllc n 5 rnvarlants P p&&rP

([M,o]p, ; [M,o]p4, [M40]pr I sl ['Misi]pro 1, [M2$1]p,o,)

Xpe—1 pm —2~pi ', in addition~ olle sig11 11111st bc 6xcd 111

order to specify the handedness of the coordinate sys-
tem. It is easy to see that this sign can be 6xcd by
pap~rp P1PP~~Pr'= M prr'r Pr'P~'Pr~, where pr is any vector
not in the x-s plane. Thus, having speci6ed 3n —10 p; p;
lnvarlants and e—4 sign aInblgultlcs thc scat tel lng
amplitude is uniquely determined.

III. SIMPLE EXAMPLE

If we consider for a moment the stepwise coupling
scheme for a three-body Gnal state, there are three pos-
sible couplings usually denoted (34)5, (35)4, and (45)3,
with 3, 4, and 5 labeling the anal-state particles. The
coupling schemes are related by recoupling coeKcients,
the relativistic analog of Racah coeKcicnts. In order to
symmetrize the coupling, a sum over all possiMe cou-
plings is taken and then all couplings are rewritten in
terms of one coupling using the rccoupling codEcients.
This process results in a very complicated partial-wave
analysis even if all Anal-state particles are spinless.

On the other hand, if all Gnal-state particles are spin-
less, Eq. (16) reduces to a single Wigner function:

eo +* 2$+1
Z D .,+.,'(E)Ar...,.. . ,.„,,„,.„a„.,,r. (17)

S=&1+&2 ~~S 4X'

10 M Jgqob @DE Q. C. %1ck& ~&.Phgs. (N jt.} 7& 4 ~~9~9}
'1 F. Rohrlich, Nuovo Cimento 38, 673 (1965}.
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But, as one might guess, the complications that manifest themselves in the recoupling coefhcients in the stepwise
coupling scheme are contained in the rotation R For the most general three-particle final state, R is a complex
function of the p,"p; invariants. However, if we consider only those reactions in which the lnal particles lie in the
x-s plane, then R involves only a rotation about the y axis (since yz defines the x-s plane):

cos20=

p~ (4p~ p~p4. p5 4(p-4 p~)'
g 4

—M4M5
)

—
Pp .p 2 —1/2

(P~*'+P~') I

with

M33f4'3l 5'

(2P4 pg)
2

(p~'+p~*') I

M4M'g

cos8 sin8)

E—sin8 cos83

2pg~ 4(p3 P6)~—~p~p —
p2P4. p, 2 -

(4P~ .p,p4 .p5—Jf mp .p )2

M jf8MS (Ming

Thus the D function appearing in Eq. (17) is specified
explicitly by the angle given in Eq. (18).

IV. CONCLUSION

Several conclusions can be drawn on the basis of Eq.
(15). First, the number of multiparticle reactions being
investigated is increasing; thus it is important to
understand n-particle kinematics so that meaningful
multiparticle experiments can be de6ned and so that
multiparticle reactions can be systematically analyzed.
As other authors" have pointed out, it is not at all
clear which variables should be used to specify multi-
particle reactions, and as our analysis shows, any set of
invariants that uniquely specifies the 3e—6 parameters
in Eq. (13) is satisfactory.

Second, it is obviously necessary to have a symmetric
analysis if there are several identical particles in the
6nal state. Even if all 6nal-state particles are different,
the analysis becomes obscured by kinematical effects
unless each final-state particle is given an equivalent
role. Our analysis avoids this situation because it de-
pends orily upon scalar products of 6nal-sta, te momenta

"N. F.Bali, G. F. Chew, and Alber'to Pignotti, Phys. Rev. 163,
i572 (1967).

and the spin variables (n3,n4, ,u„) in a symmetric
fashion. We believe that our analysis makes a clear
distinction between kinematics and dynamics; the dy-
namics will be completely contained in the reduced
amplitude (16) and in any assumption that allows the
summation over s to be terminated.

Finally, even though the kinematic diNculties arising
in multiparticle reactions are contained in the rotations
E. and R;, so that explicit expressions for R and R; as
functions of p; p; are quite complicated, nevertheless
the relationships between R and R; and the invarjants
p,"p; are straightforward and unambiguous. Thus, us-
ing the de6nitions given in Ref. 6, it would be possible
to write a computer program that would read out the
angles involved in the rotations for the various values of
p; p; occurring in a given experiment. Given such a
computer program, we had hoped to find a systematic
manner of handling multiparticle reactions by pa-
rametrizing experimental data in some convenjent. man-
ner, the hope being that a special parametrization
might lead to a multiparticle phase-shift analysis in
which resonances would be predicted from experi-
mental data. However, we have not been able to carry
out such a phase-shift analysis and it is not even clear
that it is possible to do so in a model-independent way.


