Atomic Bethe-Goldstone Equations. III. Correlation Energies of Ground States of Be, B, C, N, O, F, and Ne

R. K. Nesbet
IBM Research Laboratory, San Jose, California
(Received 16 May 1968)

Abstract

A variational formulation of Brueckner's theory has been used to solve Bethe-Goldstone equations and to compute electronic pair-correlation energies for the atoms listed in the title. One-electron effective correlation energies, needed for open-shell atomic states, are also computed. An approximate Hartree-Fock function is used for the reference state in each case. Individual pair-correlation energies are computed to an expected accuracy of 0.001 Hartree a. u. The total correlation energies range from 98.5 to 100.3% of the empirical correlation energy. For comparison with many-particle perturbation theory, definitions of the hierarchy of n th-order Bethe-Goldstone equations and of the concepts of gross and net mean-value increments used in this work are restated in terms of linked Goldstone diagrams.

I. INTRODUCTION

The many-particle theory of Brueckner ${ }^{1}$ is based on the idea that the two-particle problem can be solved exactly for each pair of particles in an N particle system, if the two-particle wave function is constrained to be orthogonal to the remaining $\mathrm{N}-2$ orbital functions describing particles in an assumed Fermi sea. The occupied orbitals of the Fermi sea are to be computed by a Hartree-Fock calculation using the modified two-body interaction that results from independent solution of all of the two-particle equations.
The two-particle equations were first derived by Brueckner as integral equations ${ }^{1}$ using multiplescattering theory. ${ }^{2}$ The equivalent differential equations were derived by Bethe and Goldstone, ${ }^{3}$ and the pair-correlation equations are usually referred to as Bethe-Goldstone equations. A third form of these equations, a sum to infinite order of so-called ladder diagrams in perturbation theory, has been derived by Goldstone. ${ }^{4}$

The extensive literature on Brueckner's theory has been reviewed by Thouless ${ }^{5}$ and by Kumar. ${ }^{6}$ Although the theory was originally developed to deal with the hard-core interaction between nucleons in nuclear matter, much of the formalism is directly applicable to finite systems with arbitrary two-body interactions. Papers that are relevant to the present calculations on electronic wave functions include work by Brenig, ${ }^{7}$ Rodberg, ${ }^{8}$ Nesbet, ${ }^{9}$ Gomes, Walecka, and Weisskopf, ${ }^{10}$ Brout, ${ }^{11}$ and Szasz. ${ }^{12}$ It was pointed out by Szasz that an earlier variational method proposed for calculations on divalent atoms by Fock, Veselov, and Petrashen ${ }^{13}$ involves a form of the BetheGoldstone equation. A critical review of this theory and of its applicability to electronic correlation in atoms and molecules has been given by the present author. ${ }^{14}$
The proposal by Sinanoglu ${ }^{15}$ for solution of "ex-act-pair" equations is closely related to the method of Brueckner, Bethe, and Goldstone. Except for a possibly unimportant difference in the treatment of the one-particle operator that must occur in the theory, the method of Sinanoglu is equivalent to the use of Bethe-Goldstone equations. ${ }^{14}$ The calculations by Geller, Taylor, and Levine ${ }^{16}$ on the Be atom, based on Sinanoglu's formalism,
are in fact a variational solution of the BetheGoldstone equations, using two-particle functions that depend explicitly on relative coordinates. An earlier variational calculation on Be , with somewhat different numerical results, was carried out by Tuan and Sinanoglu. ${ }^{17}$

An alternative variational formulation of Brueckner's theory can be developed by expressing the Bethe-Goldstone equations in terms of Slater determinants for an N-particle system. ${ }^{14}$ This approach has been used to define the concept of an n-particle (or n th-order) Bethe-Goldstone equation, for n any integer less than $N .{ }^{18-20}$ This hierarchy of n th-order Bethe-Goldstone equations can be used to compute successive net increments of the mean value of any many-particle operator, including the energy. By definition, the sum to N th order of all net increments is the exact mean value of the given operator.

Calculations by this method of the electronic correlation energy of the ground states of Be^{19} and $\mathrm{Ne},{ }^{20}$ and of the correlation energy and magnetic hyperfine-structure constant of $\mathrm{Li}\left({ }^{2} S\right)$ and of N $\left({ }^{4} S\right),{ }^{18}$ have been previously reported. In the present paper this work is extended to a survey of the one- and two-particle net increments of correlation energy for the ground states of atoms from Be to Ne .

The earlier calculations on Be, N, and Ne included three-particle net-correlation energies, which were found to be negligible within the accuracy of the calculations (0.001 Hartree a. u. for each pair-correlation energy). For this reason three-particle terms were not computed for the other atoms considered here.

Recent work by Kelly ${ }^{21,}{ }^{22}$ has been concerned with the application of the Brueckner-Goldstone perturbation expansion ${ }^{4}$ to the electronic structure of atoms. In order to compare results of the present work with those of Kelly, it is convenient to have an alternative definition of n th-order BetheGoldstone equations in terms of the linked-cluster perturbation diagrams introduced by Goldstone. ${ }^{4}$ In the two-particle case, the basic definition of a Bethe-Goldstone equation is that stated by Gomes et $a l .{ }^{10}$ and characterized by them as the "inde-pendent-pair model." The interaction between any pair of particles is to be considered as exactly as possible, but the interaction of all other
particles among themselves is neglected. The energy of the system is then approximated by adding the energy corrections obtained independently for each pair. When this definition is modified to take account of single-particle excitations, needed whenever Φ_{0} is not an exact unrestricted Hartree-Fock function, ${ }^{23}$ it leads to the one- and two-particle stages of the hierarchy of Bethe-Goldstone equations considered here. The equivalent definition of an n-particle BetheGoldstone equation in terms of Goldstone diagrams will be given in Sec. II following a formal description of the present method.
The third-order (or three-particle) BetheGoldstone equations considered in the present work are closely related to the summation of threeparticle diagrams considered by Bethe. ${ }^{24}$ Use of this idea in the theory of nuclear matter has recently been reviewed by Rajaraman and Bethe. ${ }^{25}$
Because of the success in recent years in carrying out Hartree-Fock calculations for small molecules, ${ }^{26}$ it has become of considerable interest to obtain quantitative estimates of correlation energy corrections to the Hartree-Fock approximation. While a Hartree-Fock calculation gives a total energy of high percentage accuracy, the energies of physical or chemical interest are usually expressed as small differences between total energies, in the form of dissociation or excitation energies. Net changes of correlation energy can make a substantial contribution to such energy differences. ${ }^{27,28}$ For example, roughly half of the dissociation energy of the very stable nitrogen molecule is due to the correlation energy difference between the molecule and the separated neutral atoms. ${ }^{29}$ Recent work on the correlation-energy contribution to the ionization energy of N_{2} is an example of the need for quantitative data on pair-correlation energies in light atoms. ${ }^{30}$ The present work is intended to provide this data to an accuracy useful for applications.

II. OUTLINE OF THE COMPUTATIONAL METHOD

If a Fermi sea is defined by the occupied orbitals ϕ_{i} of a reference-state Slater determinant Φ_{0}, the Bethe-Goldstone equation for pair $i j$ is a two-particle Schrödinger equation, constrained by the orthogonality of the wave function to the $\mathrm{N}-2$ orbitals ϕ_{k} with $k \neq i, j .3,10,12$ This is equivalent to a variational calculation with an N-particle trial function, ${ }^{14,18}$

$$
\begin{equation*}
\Psi_{i j}=\Phi_{0}+\sum_{a} \Phi_{i}^{a} c_{i}^{a}+\sum_{b} \Phi_{j}^{b} c_{j}^{b}+\sum_{a b} \Phi_{i j}^{a b} \tag{1}
\end{equation*}
$$

In the notation used here, a Slater determinant obtained from Φ_{0} by replacing occupied orbitals $\phi_{i}, \phi_{j}, \phi_{k}, \ldots(i<j<k \cdots \leqslant N)$ by occupied orbitals $\phi_{a}, \phi_{b}, \phi_{c}, \ldots(N<a<b<c \cdots)$, taken from a postulated complete set of orbital functions, is denoted by $\Phi_{i j k \ldots} \ldots b c \ldots$. In Eq. (1), the summations extend over all values of the indices a and b, but indices i and j are fixed and denote specific occupied orbitals in Φ_{0}. The summation over $a b$ denotes a double sum with $a<b$.

A first-order or one-particle Bethe-Goldstone equation is equivalent to a calculation with trial function

$$
\begin{equation*}
\Psi_{i}=\Phi_{0}+\sum_{a} \Phi_{i}^{a} c_{i}^{a} \tag{2}
\end{equation*}
$$

where index i is specified, but a takes on all possible values.

If Slater determinants $\Phi_{i j} \ldots a b \ldots$ are denoted in general by Φ_{μ}, then the coefficients c_{μ} are obtained as components of an eigenvector of the con-figuration-interaction matrix $H_{\mu \nu}$, where H is the N-particle Hamiltonian. As indicated by Eq. (1) or (2), it is convenient to normalize the wave function by setting the coefficient of Φ_{0} equal to unity.

In practice, the set of unoccupied orbitals ϕ_{a} is finite. Orbital sets are used that can be extended to completeness, and this extension is carried out until computed quantities are observed to stabilize within a specified error. The present calculations were carried out to an accuracy of 0.001 Hartree a. u. (e^{2} / a_{X} for Atom X) for each computed pair-correlation energy.
The general definition of an n th-order BetheGoldstone equation, as used here, is the equivalent of a variational calculation with a trial function that is a linear combination of Φ_{0} and of all Slater determinants $\Phi_{i j k . \ldots a b c . . . ~ w h o s e ~ i n d i c e s ~}^{s}$ $i j k .$. are any subset of a specified list of n occupied orbital indices. If the mean value H_{00} of the energy of the reference state Φ_{0} is subtracted from each diagonal element of the con-figuration-interaction matrix (matrix of H), then the energy eigenvalue computed for the trial function $\Psi_{i j} \ldots$ will be an energy increment $\Delta E_{i j} \ldots$. with respect to H_{00}. These quantities will be referred to as gross energy increments. In order to make use of a hierarchy of Bethe-Goldstone equations of increasing order, it is convenient to define a net energy increment $e_{i j} \ldots$ as the difference between the corresponding gross increment and the sum of all net increments of lower order whose indices form a subset of the set $i j$... . For example, the net energy increment for pair 25 is defined by

$$
\begin{equation*}
e_{25}=\Delta E_{25}-e_{2}-e_{5} \tag{3}
\end{equation*}
$$

where ΔE_{25} is the directly computed lowest eigenvalue of the configuration-interaction matrix for Ψ_{25}, and e_{2} and e_{5} are net increments obtained from first-order Bethe-Goldstone equations for Ψ_{2} and Ψ_{5}, respectively. Thus e_{25} is that part of ΔE_{25} not contained in e_{2} and e_{5} separately. If carried to N th order, this method of bookkeeping gives the exact correlation energy (energy in addition to H_{00}) in the form

$$
\begin{equation*}
\Delta E=\sum_{i} e_{i}+\sum_{i j} e_{i j}+\sum_{i j k}^{\dot{e}} e_{i j k}+\cdots+e_{1 \ldots N} \tag{4}
\end{equation*}
$$

In terms of Goldstone diagrams, ${ }^{4}$ the wave function defined by Eq. (1) is represented by the sum, to all orders in the perturbation theory, of linked cluster diagrams in which the occupied orbital indices (labels on backward directed lines) are restricted to i and j only. Because diagrams that apparently
violate the exclusion principle must be included in the linked cluster expansion, ${ }^{4,21}$ the indices i and j may be repeated any number of times within a given diagram. The unoccupied orbital indices [labels on forward directed lines, represented by a, b, \ldots in Eq. (1)] take on all possible values.

The gross energy increment $\Delta E_{i j}$, corresponding to Eq. (1), is given by the sum of all connected linked diagrams with no external lines in which the labels on backward directed lines are restricted to i and j. The gross increment of some other operator F is represented by a similar sum of connected graphs, but with one additional vertex to represent a matrix element of F.
The generalization to an n th-order Bethe-Goldstone equation is obvious. The wave function $\Psi_{i j k . . .}$, for a specified set of indices ($i j k . .$.), is represented by the sum to infinite order in the perturbation theory of all linked diagrams in which the labels on backward directed lines are limited to indices from the specified set. Gross increments of energy or of any other mean value are represented by the corresponding sum of connected graphs with no external lines.
Net increments of mean values can be defined exactly as they are in the present configurationinteraction formalism; as the difference between a gross increment and the sum of all net increments of lower order that have indices which are a subset of those labelling the gross increment. This defines each net increment as a specific sum of connected linked diagrams. For a set of indices ($i j k . .$.), this sum consists of all connected linked diagrams with no external lines in which backward directed lines are labelled by just this set of indices, with the restriction that every index in ($i j k . .$.) must appear at least once. This is to be contrasted with the sum for a gross increment, which includes all diagrams with backward directed lines labelled by subsets of the given set of occupied orbital indices.
The atoms considered here have single determinant wave functions in their ground-state configurations, if M_{L} and M_{S} are taken equal to L and S, respectively. Because there is at most one openshell $2 p^{n}$, the traditional Hartree-Fock equations are identical with the truncated Hartree-Fock equations solved by matrix methods as a preliminary stage in the present work. ${ }^{14,31}$ The constraints inherent in the traditional Hartree-Fock method (symmetry and equivalence restrictions on the orbitals) introduce one-particle configuration-interaction matrix elements for states other than ${ }^{1} S .{ }^{23}$ These matrix elements, which cannot be eliminated without destroying the spherical symmetry properties of the Hartree-Fock orbitals, lead to nonzero one-particle net correlation-energy contributions. Except for this, the computational procedure followed here is identical with that used for the ${ }^{1} S$ states of Be and Ne. ${ }^{19,20}$ The configuration interaction matrix is constructed in a basis of Slater determinants, taking into account only the quantum numbers M_{L}, M_{S}, and parity, and the lowest eigenvalue and corresponding eigenvector are obtained by a rapidly converging iterative algorithm. ${ }^{32}$

Orbital basis sets capable of giving a reasonable approximation to an atomic Hartree-Fock calculation, using the matrix Hartree-Fock method, ${ }^{31,33}$
are extended by including additional orbitals in the form of exponential functions $e^{-\zeta \gamma}$ multiplied by powers of r and by spherical harmonics. Optimal values of the exponents ζ were determined by preliminary calculations on Be, N, and Ne . It was found that the best results obtained with exponents different for each value of angular quantum number l could be duplicated, to within the criterion of accuracy used in the present work, by basis sets with a common value of ζ for all values of l. Different values of ζ must still be used to represent perturbations of atomic orbitals with different principal quantum number n. Exponents ζ_{K} and ζ_{L} were obtained variationally for perturbations of the K and L shells, respectively, of Be, N, and Ne . These exponents for N were found to be very close to values found by linear interpolation between the exponents for Be and Ne, using nuclear charge Z as a parameter. Because of this result, exponents for the other atoms considered here, listed in Table I, were taken to be equal to values obtained from those for Be and N , or for N and Ne , by linear interpolation.

From earlier configuration-interaction calculations, it was predicted ${ }^{14}$ that an orbital basis set capable of representing perturbing orbitals with all combinations of up to three nodal surfaces superimposed on occupied Hartree-Fock orbitals should give energy values accurate to within 0.001 a. u. for individual Bethe-Goldstone equations. For K-shell perturbations, this requires basis orbitals with radial and angular factors indicated by quantum numbers $n l$ up to $4 s, 4 p, 4 d, 4 f$, multiplying $e^{-\zeta_{K} v}$, in addition to basis orbitals needed to represent the occupied Hartree-Fock orbitals. The computer programs were designed to allow the inclusion of arbitrary $n l$ values, and higher values were used when there was any question of convergence of an energy eigenvalue to 0.001 a . u. The specific basis sets used consisted of the "doublezeta" basis set of Clementi ${ }^{34}$ augmented by perturbing orbitals with exponents ζ_{K} and ζ_{L} as described above. All basis orbitals of s and p symmetry were included in the preliminary matrix HartreeFock calculations.

III. RESULTS OF COMPUTATIONS

The reference-state Slater determinants for the atomic ground states considered here are explicitly

$$
\begin{aligned}
& \Phi_{0}\left(\mathrm{Be},{ }^{1} S\right)=\operatorname{det}(1 s \beta 1 s \alpha 2 s \beta 2 s \alpha) \\
& \Phi_{0}\left(\mathrm{~B},{ }^{2} P\right)=\operatorname{det}\left(1 s \beta 1 s \alpha 2 s \beta 2 s \alpha 2 p_{1} \alpha\right)
\end{aligned}
$$

TABLE I. Exponents used for orbital basis sets.

\boldsymbol{Z}	Atom	ζ_{K}	ζ_{L}
4	Be	7.814	1.419
5	B	10.085	1.860
6	C	12.355	2.302
7	N	14.626	2.743
8	O	16.961	3.233
9	F	19.295	3.724
10	Ne	21.630	4.214

$$
\begin{align*}
& \Phi_{0}\left(\mathrm{C},{ }^{3} P\right)=\operatorname{det}\left(1 s \beta 1 s \alpha 2 s \beta 2 s \alpha 2 p_{0} \alpha 2 p_{1} \alpha\right), \\
& \Phi_{0}\left(\mathrm{~N},{ }^{4} S\right)=\operatorname{det}\left(1 s \beta 1 s \alpha 2 s \beta 2 s \alpha 2 p_{-1} \alpha 2 p_{0} \alpha 2 p_{1} \alpha\right), \tag{5}\\
& \Phi_{0}\left(\mathrm{O},{ }^{3} P\right)=\operatorname{det}\left(1 s \beta 1 s \alpha 2 s \beta 2 s \alpha 2 p_{1} \beta 2 p_{-1} \alpha 2 p_{0} \alpha 2 p_{1} \alpha\right), \\
& \Phi_{0}\left(\mathrm{~F},{ }^{2} P\right)=\operatorname{det}(1 s \beta 1 s \alpha 2 s \beta 2 s \alpha \\
&\left.\times 2 p_{0} \beta 2 p_{1} \beta 2 p_{-1} \alpha 2 p_{0} \alpha 2 p_{1} \alpha\right), \\
& \Phi_{0}\left(\mathrm{Ne},{ }^{1} S\right)=\operatorname{det}(1 s \beta 1 s \alpha 2 s \beta 2 s \alpha \\
&\left.\times 2 p_{-1} \beta 2 p_{0} \beta 2 p_{1} \beta 2 p_{-1} \alpha 2 p_{n} \alpha 2 p_{1} \alpha\right) .
\end{align*}
$$

One-particle net correlation-energy increments, computed as indicated in Sec. II, above, are listed in Table II. Two-particle net correlation energies, computed as in Eq. (3) by subtracting one-particle net correlation energies from the directly computed gross energy increments, are tabulated for electron pairs involving K-shell orbitals ($1 s \beta$ or $1 s \alpha$) in Table III. The remaining two-particle net correlation energies, representing pairs of L-shell orbitals, are given in Table IV. These results are summarized and compared with empirical nonrelativistic correlation energies ${ }^{35}$ in Table V. The sum of one- and two-particle net correlation-energy increments is uniformly within 1.5% of the empirical correlation energy. This result is consistent with the accuracy expected from orbital basis sets of the kind used here. ${ }^{14}$

It is important to note that this level of accuracy holds for all of the atoms considered. There is no evidence for any systematic error (due to neglect of three-particle correlations) as the number of electrons increases from four to ten.

In a previous paper on $\mathrm{Ne}\left({ }^{1} S\right)$, it was shown that the entire set of $2 p^{2}$ pair-correlation energy increments could be expressed as linear combinations of only three independent parameters, to within the accuracy of the present calculations. ${ }^{20}$ Because Slater determinants, rather than symmetry-adapted functions, are used in these calculations, this result is only approximate. In $\mathrm{Ne}\left({ }^{1} S\right)$ it depends on the numerical accuracy of the matrix diagonalization. The three independent $2 p^{2}$ energy parameters correspond to coupling a two-particle function to a pure ${ }^{3} P,{ }^{1} D$, or ${ }^{1} S$ eigenfunction. More precisely, the ($N-2$)-particle Slater determinant obtained by removing two specified $2 p$ orbitals from Φ_{0} is a function of mixed symmetry which can be combined with $2 p^{2}\left({ }^{3} P,{ }^{1} D,{ }^{1} S\right)$ to form a symmetryadapted N-particle function with quantum numbers
L, S appropriate to the atomic state in question. Except for ${ }^{1} S$ states, the pair cori elation energies given in Tables III and IV depend significantly on the quantum numbers M_{L} and M_{S} because the effective potential field of the open $2 p$ shell is not spherically symmetrical. In general, the number of independent parameters cannot be reduced by considering symmetry-adapted pair functions. However, the various $2 p^{2}$ energies could in all cases be represented by linear combinations of only three parameters, using coefficients given previously, ${ }^{20}$ to within the accuracy of the present work. The values used for these parameters are listed in Table VI.

IV. COMPARISON WITH PREVIOUS WORK

The correlation energy for the $2 s^{2}$ electron pair for several of the atoms considered here has been computed by McKoy and Sinanoglu ${ }^{36}$ using the formalism of Sinanoglu. ${ }^{15}$ Their results, obtained with a simple variational function containing the relative coordinate r_{12}, are listed in Table VII, and compared with the ($2 s \beta 2 s \alpha$) net correlation-energy increments from Table IV. Although the present results, obtained with much more elaborate variational trial functions, are more accurate, the main qualitative conclusion of McKoy and Sinanoglu is verified, in that the $2 s^{2}$ pair correlation decreases significantly as the $2 p$ shell is filled. This is due, in part, to suppression of the $2 s^{2}-2 p^{2}$ near degeneracy. ${ }^{36}$

The specific effect of this near degeneracy was computed by Clementi and Veillard, ${ }^{37}$ using twoconfiguration Hartree-Fock calculations. Optimal orbitals and configuration mixing coefficients were obtained for the configurations $1 s^{2} 2 s^{2} 2 p^{n}$ and $1 s^{2}$ $2 p^{n+2}$, for the atomic states in which both configurations occur. The computed correlation energies are given in Table VII. Because the multiconfiguration Hartree-Fock method allows for relaxation of the orbitals as well as for superposition of configurations, this method can include more of the correlation energy than is represented by the $2 s^{2}$ net correlation energy obtained from a Bethe-Goldstone equation. Thus the Clementi and Veillard result for $\mathrm{Be}\left({ }^{1} S\right)$ is somewhat larger in magnitude than the present result. For $B\left({ }^{2} P\right)$ and C $\left({ }^{3} P\right)$, the degeneracy effect apparently becomes a successively smaller fraction of the $2 s^{2}$ pair

TABLE II. One-particle net increments of correlation energy, e_{i}, in Hartree units (e^{2} / a_{X}) for Atom X .

i	$\operatorname{Be}\left({ }^{1} S\right)$	B $\left({ }^{2} P\right)$	C $\left({ }^{3} P\right)$	N (${ }^{4} S$)	O $\left({ }^{3} P\right)$	F $\left({ }^{2} P\right)$	$\mathrm{Ne}\left({ }^{1} \mathrm{~S}\right)$
$1 s \beta$	-0.0	-0.000 008	-0.000 032	-0.000076	-0.000043	-0.000018	-0.0
$1 s \alpha$	-0.0	-0.000 010	-0.000 035	-0.000076	-0.000 041	-0.000015	-0.0
$2 s \beta$	-0.0	-0.000455	-0.000982	-0.001759	-0.001126	-0.000629	-0.0
$2 s \alpha$	-0.0	-0.000594	-0.000995	-0.001283	-0.000848	-0.000448	-0.0
$2 p_{-1} \beta$							
$2 p_{0} \beta$						-0.000194	-0.0
$2 p_{1} \beta$					-0.001054	-0.000194	-0.0
$2 p_{-1} \alpha$				-0.0	-0.000129	-0.000229	-0.0
$2 p_{0} \alpha$			-0.0	-0.0	-0.000479	-0.000134	-0.0
$2 p_{1} \alpha$		-0.0	-0.0	-0.0	-0.000129	-0.000229	-0.0

TABLE III. Two-particle net increments of correlation energy, $e_{i j}$, in Hartree units, for $K K$ and $K L$ pairs.

$i j$	$\mathrm{Be}\left({ }^{1} S\right)$	$\mathrm{B}\left({ }^{2} P\right)$	$\mathrm{C}\left({ }^{3} P\right)$	$\mathrm{N}\left({ }^{4} S\right)$	$\mathrm{O}\left({ }^{3} P\right)$	$\mathrm{F}\left({ }^{2} P\right)$	$\mathrm{Ne}\left({ }^{1} S\right)$
$1 s \beta 1 s \alpha$	-0.041827	-0.041108	-0.040867	-0.040362	-0.040178	-0.039784	-0.039932
$1 s \beta 2 s \beta$	-0.000813	-0.000882	-0.000920	-0.000927	-0.000810	-0.000649	-0.000469
$2 s \alpha$	-0.002119	-0.002283	-0.002234	-0.001800	-0.002120	-0.002122	-0.002099
$2 p_{-1} \beta$						-0.001443	-0.001481
$2 p_{0} \beta$				-0.001406	-0.001469	-0.001481	
$2 p_{1} \beta$			-0.001609	-0.001846	-0.001865	-0.001834	
$2 p_{-1} \alpha$		-0.001708	-0.001609	-0.001944	-0.001847	-0.001834	
$2 p_{0} \alpha$		-0.001720	-0.001609	-0.001919	-0.001945	-0.001834	
$2 p_{1} \alpha$		-0.001458	-0.002194	-0.002352	-0.002246	-0.002099	
$1 s \alpha 2 s \beta$	-0.002119	-0.002375	-0.002422	-0.000416	-0.000467	-0.000471	-0.000469
$2 s \alpha$	-0.000813	-0.000751	-0.000622				-0.001834
$2 p_{-1} \beta$					-0.001675	-0.001784	-0.001834
$2 p_{0} \beta$				-0.001284	-0.001410	-0.001465	-0.001834
$2 p_{1} \beta$			-0.001270	-0.001284	-0.001436	-0.001440	-0.001481
$2 p_{-1} \alpha$		-0.001289	-0.001284	-0.001410	-0.001465	-0.001481	
$2 p_{0} \alpha$							
$2 p_{1} \alpha$							

correlation energy. A similar calculation on boron was carried out by Glembotskii et al. ${ }^{38}$
Multiconfiguration Hartree-Fock calculations have been carried out on the three states, ${ }^{3} P,{ }^{1} D$, and ${ }^{1} S$ of the carbon atom ground-state configuration, $1 s^{2} 2 s^{2} 2 p^{2}$, by Hinze and Roothaan ${ }^{39}$ and by Bagus and Moser. ${ }^{40}$ For configurations affecting only the $2 p^{2}$ electron pair, their results are essentially identical, giving $2 p^{2}$ pair correlation ener-
gies $-0.009,-0.013$, and $-0.036 \mathrm{a} . \mathrm{u}$. for the states ${ }^{3} P,{ }^{1} D$, and ${ }^{1} S$, respectively. These results are in good qualitative agreement with the $2 p^{2}$ paircorrelation parameters shown in Table VI, which appear to be roughly constant throughout the series of atoms considered here.
A detailed study of the ${ }^{2} P$ ground state of boron has recently been published by Schaefer and Harris. ${ }^{41}$ Their best variational calculation, us-

TABLE IV. Two-particle net increments of correlation energy, $e_{i j}$, for $L L$ pairs.

${ }^{i j}$	$\mathrm{Be}\left({ }^{1} \mathrm{~S}\right.$)	B ${ }^{2} P$)	C (${ }^{3} P$)	N (${ }^{4} \mathrm{~S}$)	$\mathrm{O}\left({ }^{3} \mathrm{P}\right.$)	F ${ }^{2} P$)	$\mathrm{Ne}\left({ }^{1} \mathrm{~S}\right.$)
$2 s \beta 2 s \alpha$	-0.045 351	-0.039 923	-0.028 450	-0.013633	-0.012 928	-0.011919	-0.010834
$2 p_{-1} \beta$							-0.003 294
$2 p_{0} \beta$						-0.004 633	-0.003 302
$2 p_{1} \beta$					-0.007 374	-0.006 013	-0.003 294
$2 p_{-1} \alpha$				-0.024 944	-0.016560	-0.012 208	-0.100283
$2 p_{0} \alpha$			-0.024 624	-0.024 944	-0.020729	-0.014 681	-0.010317
$2 p_{1} \alpha$		-0.024528	-0.025 680	-0.024 944	-0.022856	-0.018548	-0.010 283
$2 s \alpha 2 p_{-1} \beta$							-0.010 283
$2 p_{0} \beta$						-0.010892	-0.010 317
$2 p_{1} \beta$					-0.012 285	-0.011860	-0.010 283
$2 p_{-1} \alpha$				-0.002 869	-0.003 065	-0.003 162	-0.003 294
$2 p_{0} \alpha$			-0.004 156	-0.002869	-0.002 984	-0.003 252	-0.003 302
$2 p_{1} \alpha$		-0.006886	-0.005 538	-0.002869	-0.003 065	-0.003162	-0.003 294
$2 p_{-1} \beta 2 p_{0} \beta$							-0.010 906
${ }^{2} p_{1} \beta$							-0.010927
$2 p_{-1} \alpha$							-0.016 498
$2 p_{0} \alpha$							-0.013 732
${ }^{2} p_{1} \alpha$							-0.022 837
$2 p_{0} \beta 2 p_{1} \beta$						-0.010831	-0.010 906
$2 p_{-1} \alpha$						-0.013 803	-0.013732
$2 p_{0} \alpha$						-0.025 813	-0.025 813
$2 p_{1} \alpha$						-0.013 877	-0.013 732
$2 p_{1} \beta 2 p_{-1} \alpha$					-0.022878	-0.023 240	-0.022 837
$2 p_{0} \alpha$					-0.014 204	-0.014 011	-0.013 732
$2 p_{1} \alpha$					-0.017408	-0.017438	-0.016 498
$2 p_{-1} \alpha 2 p_{0} \alpha$				-0.009 948	-0.010 295	-0.010675	-0.010906
$2 p_{1} \alpha$				-0.009 973	-0.010381	-0.010 623	-0.010 927
$2 p_{0} \alpha 2 p_{1} \alpha$			-0.009685	-0.009 948	-0.010295	-0.010675	-0.010 906

TABLE V. Summary of one- and two-particle correlation energies, in Hartree units.

	$\mathrm{Be}\left({ }^{1} s\right)$	B ($\left.{ }^{2} P\right)$	C (${ }^{3} P$)	N (${ }^{4} S$)	O $\left({ }^{3} P\right)$	$F\left({ }^{2} P\right)$	$\mathrm{Ne}\left({ }^{1} \mathrm{~S}\right.$)
$\sum e_{i}$	-0.0	-0.001 067	-0.002 043	-0.003 194	-0.003849	-0.002 090	-0.0
$\sum e_{i j}$	-0.041827	-0.041 108	-0.040 867	-0.040362	-0.040 178	-0.039784	-0.039 932
(KK)							
$\sum e_{i j}$	-0.005 864	-0.008874	-0.012 185	-0.014 015	-0.018795	-0.021970	-0.025 026
$(K L)$							
$\sum e_{i j}$	-0.045351	-0.071337	-0.098133	-0.126940	-0.187306	-0.251316	-0.317269
(LL)							
E_{C}	-0.093 042	-0.122385	-0.153228	-0.184 512	-0.250127	-0.315 160	-0.382 227
$E_{C}(\mathrm{obs})^{\text {a }}$	-0.0940	-0.1240	-0.1551	-0.1861	-0.2539	-0.316	-0.381
\%	99.0	98.7	98.8	99.1	98.5	99.7	100.3

${ }^{\text {a }}$ A. Veillard and E. Clementi, to be published, IBM Technical Report No. RJ 447, 1967 (unpublished). This work revises and supersedes earlier data by E. Clementi, J. Chem. Phys. 38, 2248 (1963). The empirical correlation energies are not corrected for the Lamb shift (radiative corrections).
ing a configuration-interaction function with up to four-particle excitations from a Hartree- Fock reference state, yielded 88.3% of the correlation energy. One- and two-particle net-energy increments were obtained by solving Bethe-Goldstone equations. The sum of these terms, listed in Table VIII, gave 88.1% percent of the correlation energy, indicating that the net three- and four-particle energy effects are very small. Schaefer and Harris used symmetry-adapted functions (${ }^{2} P$ eigenfunctions) throughout, instead of simple Slater determinants as used here. For this reason, their definition of the hierarchy of Bethe-Goldstone equations is based on configurations (given by $n l$ values only) rather than on the structure of single determinants, and this changes the definition of the net energy increments. For example, in terms of configurational excitations, the $2 s$ Bethe-Goldstone equation includes the effects of determinants obtained by single excitation of either $2 s \beta$ or $2 s \alpha$ as well as by double excitations such as $2 s \beta, 2 p_{1} \alpha$ to $2 p_{-1} \beta, 3 d_{2} \alpha$. Except for these differences in definition, the results shown in Table VIII are in good quantitative agreement. The present results are more accurate because more terms are included in the individual variational calculations. For example, 171 slater determinants were included in the trial wave function for the $1 s \beta, 1 s \alpha$ Bethe-Goldstone equation in the present work, and 139 Slater determinants for $2 s \beta, 2 s \alpha$. The unoccupied orbital sets used torepresent excitations of these two different orbital pairs are completely different, and except for Φ_{0}, there are no Slater determinants common to the two wave functions.
When all triply and quadruply excited configurations were removed from the full configuration-
interaction calculation of Schaefer and Harris, the correlation energy was reduced to 86.3% of its full value. Contrary to the discussion given by these authors, this loss of 2.0% of the correlation energy, compared with the full configuration-interaction function, should not be identified with the net three- or four-particle correlation energy, as defined in the present work. As shown in discussions of the structure of a many-particle wave function by Brenig, ${ }^{7}$ Iutsis, ${ }^{42}$ and Sinanoglu, ${ }^{15}$ this error must be attributed to a constraint imposed on the wave function by failure to include threeand four-particle excited Slater determinants whose coefficients are approximated as functions of the coefficients of the dominant two-particle excitations. Because such product terms are not included, the coefficients of two-particle excitations are unnecessarily constrained from taking on values appropriate to noninteracting pair excitations. This result is one of the first quantitative indications of a clear advantage of the Brueckner-Bethe-Goldstone theory, which leads to a relative error of only 0.2% in this example, over the use of of a variational trial function expressed as a sum of all possible pair excitations, a form proposed as an extension of first-order perturbation theory for the wave function. ${ }^{43}$

Earlier configuration-interaction calculations by Boys on boron and carbon ${ }^{44}$ gave roughly half of the correlation energy in each case. Boys' calculations, done before the introduction of electronic computers, have stuod for a number of years as the most accurate calculations reported for these atoms.

The Brueckner-Goldstone perturbation theory has been used by Kelly to compute the correlation energy of the ${ }^{3} P$ ground state of oxygen. ${ }^{22}$ Results

TABLE VI. Parameters for $2 p^{2}$ pair-correlation energies, in Hartree units.

	$\mathrm{C}\left({ }^{3} P\right)$	$\mathrm{N}\left({ }^{4} S\right)$	$\mathrm{O}\left({ }^{3} P\right)$	$\mathrm{F}\left({ }^{2} P\right)$	$\mathrm{Ne}\left({ }^{1} S\right)$
$2 p^{2}\left({ }^{3} P\right)$	-0.009685	-0.009961	-0.010323	-0.010744	-0.010913
$2 p^{2}\left({ }^{1} D\right)$		-0.017408	-0.017438	-0.016498	
$2 p^{2}\left({ }^{1} S\right)$		-0.044445	-0.042562	-0.044076	

TABLE VII. Comparison of $2 s^{2}$ pair correlation energies (Hartree atomic units).

	Clementi and Veillard ${ }^{\text {a }}$	McKoy and Sinanoğlu ${ }^{\text {b }}$	Present work
$\mathrm{Be}\left({ }^{1} \mathrm{~S}\right.$)	-0.047 542	-0.032 78	-0.045 351
B (${ }^{2} P$)	-0.031113	-0.025 80	-0.039 923
C. ${ }^{3} P$)	-0.017330	-0.014 99	-028_8450
N (${ }^{4}$ S)		-0.00610	-0.013 633
O (${ }^{3} P$)			-0.012928
$\mathrm{F}\left({ }^{2} P\right)$			-0.011 919
$\mathrm{Ne}\left({ }^{1} \mathrm{~S}\right.$)		-0.010 00	-0.0 354

${ }^{\text {a }}$ E. Clementi and A. Veillard, J. Chem. Phys. 44, 3050 (1966). Hartree-Fock calculation with two-configuration wave function, $1 s^{2} 2 s^{2} 2 p^{n}$ and $1 s^{2} 2 p^{n+2}$.
b. McKoy and O. Sinanoğlu, J. Chem. Phys. 41, 2689 (1964).
are compared with the present work in Table IX. Because the formalism used by Kelly is equivalent to the use of single Slater determinants, represented by excitations of individual orbitals, rather than of symmetry-adapted functions, the individual correlation terms computed by Kelly should be identical with the particular sums of net correlation energies from the present calculations listed in Table IX. As can be seen from the Table, there is a nearly constant ratio of 1.1 between the two sets of results. In the case of the largest terms, $e\left(1 s^{2}\right), e(2 s 2 p)$, and $e\left(2 p^{2}\right)$, this discrepancy is greater than the expected error of the present results, where variational calculations have been carried out to within $0.001 \mathrm{a} . \mathrm{u}$. for each net energy increment. Since the present calculations represent a sum to infinite order of perturbation series, it can be concluded that terms of higher order in these series should be included in Kelly's work in order to reach the level of accuracy of the present results. It should be noted that Kelly computed 107. 9% of the correlation energy, compared with 98.5\% obtained here.

v. DISCUSSION AND CONCLUSIONS

The results of the present calculations show a
TABLE VIII. Comparison of results for $\mathrm{B}\left({ }^{2} P\right)$. Energy parameters in Hartree a.u.

	Schaefer and Harris ${ }^{\text {a }}$	Present work ${ }^{\text {b }}$
$e(1 s)$	-0.000 184	-0.000 018
$e(2 s)$	-0.021 819	-0.001 049
$e(2 p)$	-0.000 000	-0.000 000
$e\left(2 s^{2}\right)$	-0.039 277	-0.039 923
$e(1 s 2 s)$	-0.003 480	-0.006 291
$e(1 s 2 p)$	-0.001 247	-0.002583
$e(2 s 2 p)$	-0.005 064	-0.031414
Total	-0.109 855	-0.122385
${ }^{\text {a H. F. Schaefer, III, and F. E. Harris, Phys. Rev. }}$ 167, 67 (1968). Net energy increments listed in Tables II-IV are summed over m_{l} and m_{s} quantum numbers to give total increments indexed only by quantum numbers n and l.		

very satisfactory internal consistency, as indicated by the summary given in Table V, especially when it is considered that each entry in Tables II, III, and IV represents an independent variational calculation. For this reason, it should be satisfactory for semiempirical use of the net correlation parameters to scale up each computed net correlation energy by dividing by the percentage error given for the total correlation energies in Table V. The ability of the present method to give quantitative results has been demonstrated.

The exact correspondence between the present formulation, in terms of Slater determinants and individual orbital excitations, and the BruecknerGoldstone perturbation theory has been shown here in Sec. II, where net increments of any mean-value quantity have been defined in terms of linked diagrams.

The comparison with Kelly's calculation on $\mathrm{O}\left({ }^{3} \mathrm{P}\right)$, discussed in Sec. IV, suggests the conclusion that the Brueckner-Goldstone perturbation theory must be carried to somewhat higher order to give results of the present accuracy. The residual error in Kelly's calculation appears to be roughly twice as great as it is in the present work.

In extending the present method to excited states,

TABLE IX. Comparison of results for $O\left({ }^{3} P\right)$. Energy parameters in Hartree a.u.

	Kelly $^{\mathrm{a}}$	Present work $^{\mathrm{b}}$
$e(1 s)$	-0.00009	-0.000084
$e(2 s)$	-0.00161	-0.001974
$e(2 p)$	-0.00113	-0.001791
$e\left(1 s^{2}\right)$	-0.04383	-0.040178
$e\left(2 s^{2}\right)$	-0.01500	-0.012928
$e(1 s 2 s)$	-0.00629	-0.005749
$e(1 s 2 p)$	-0.01500	-0.013046
$e(2 s 2 p)$	-0.10044	-0.088918
$e\left(2 p^{2}\right)$	-0.09058	-0.085461
Total	-0.27397	-0.250127

[^0]some provision must be made for wave functions which cannot be approximated by a single Slater determinant in the Hartree-Fock approximation. A simple example of this is the ${ }^{1} S$ state in the $2 s^{2} 2 p^{2}$ ground-state configuration of carbon. The simplest approach, retaining the present organization of computer programs in terms of Slater determinants, is to choose, arbitrarily, one determinant from thezeroth-order symmetry-adapted function as reference state, and then always to include all determinants from this configuration in each variational trial function. Coefficients appropriate to the desired symmetry-adapted function would be used to initiate the iterative matrixdiagonalization algorithm.

Another approach, already used by Schaefer and Harris, ${ }^{41}$ is to reformulate the method in terms of
configurations rather than single Slater determinants, so that net increments, etc., are defined in terms of excitations of configurations rather than of individual orbitals. Then symmetry-adapted functions can be used at each stage of the computations. This approach is no longer in exact correspondence with the linked diagram expansion of the Brueckner-Goldstone perturbation theory. It would be an interesting theoretical exercise to reformulate the perturbation theory in terms of configurational excitations and symmetry-adapted functions. That this exercise may not be trivial is indicated by the fact that even the antisymmetry of the wave function must be ignored in deriving the linked diagram expansion, resulting in the so-called EPV (exclusion principle violating) diagrams. ${ }^{21}$
${ }^{1}$ K. A. Brueckner, Phys. Rev. 96, 508 (1954), 97,1353 (1955); and 100, 36 (1955); The Many-Body Problem, edited by B. deWitt (John Wiley \& Sons, Inc., New York, 1959), pp. 47-241.
${ }^{2}$ K. M. Watson, Phys. Rev. 89, 575 (1953).
${ }^{3}$ H. A. Bethe and J. Goldstone, Proc. Roy. Soc. (London) A238, 551 (1957).
${ }^{4}$ J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957).
${ }^{5}$ D. J. Thouless, The Quantum Mechanics of ManyBody Systems (Academic Press Inc., New York, 1961).
${ }^{6}$ K. Kumar, Perturbation Theory and the Nuclear Many Body Problem (Interscience Publishers, Inc., New York, 1962).
${ }^{7}$ W. Brenig, Nuc. Phys. 4, 363 (1957).
${ }^{8}$ L. S. Rodberg, Ann. Phys. (N. Y.) 2, 199 (1957).
${ }^{9}$ R. K. Nesbet, Phys. Rev. 109, 1632 (1958).
${ }^{10}$ L. C. Gomes, J. D. Walecka, and V. F. Weisskopf, Ann. Phys. (N. Y.) 3, 241 (1958).
${ }^{11}$ R. Brout, Phys. Rev. 111, 1324 (1958).
${ }^{12}$ L. Szasz, Z. Naturforsch. 14a, 1014 (1959).
${ }^{13}$ V. A. Fock, M. H. Veselov, and M. E. Petrashen, Zh. Eksperim. i Teor. Fiz. 10, 723 (1940).
${ }^{14}$ R. K. Nesbet, Advan. Chem. Phys. 9, 321 (1965).
${ }_{.}^{15}$ O. Sinanoǧlu, J. Chem. Phys. 36, 706, 3198 (1962); Advan. Chem. Phys. 6, 315 (1964).
${ }^{16}$ M. Geller, H. S. Taylor, and H. B. Levine, J. Chem. Phys. 43, 1727 (1965).
${ }^{17}$ D. F. Tuan and O. Sinanoğlu, J. Chem. Phys. 41, 2677 (1964).
${ }^{18}$ R. K. Nesbet, in Quantum Theory of Atoms, Molecules, and the Solid State, edited by P.-O. Löwdin (Academic Press Inc., New York, 1966), pp. 157-165; Colloq. Intern. Centre Nat. Rech. Sci., Paris 164, 87-94 (1967); and to be published.
${ }^{19}$ R. K. Nesbet, Phys. Rev. 155, 51 (1967).
${ }^{20}$ R. K. Nesbet, Phys. Rev. 155, 56 (1967).
${ }^{21}$ H. P. Kelly, Phys. Rev. 131, 684 (1963); 136, B896 (1964); Perturbation Theory and its Applications in Quantum Mechanics, edited by C. H. Wilcox (John Wiley \& Sons, Inc., New York, 1966), pp. 215-141; Universit of California Radiation Laboratory Technical Report No. UCRL-10971, 1962 (unpublished).
${ }^{22}$ H. P. Kelly, Phys. Rev. 144, 39 (1966).
${ }^{23}$ R. K. Nesbet, Proc. Roy. Soc. (London) A230,

312 (1955); Rev. Mod. Phys. 33, 28 (1961).
${ }^{24}$ H. A. Bethe, Phys. Rev. 138, B804 (1965).
${ }^{25}$ R. Rajaraman and H. A. Bethe, Rev. Mod. Phys. 39, 745 (1967).
${ }^{26}$ Reviewed by R. K. Nesbet, in Advances in Quantum Chemistry, edited by P. -O. Löwdin (Academic Press Inc., New York, 1967), pp. 1-24; M. Krauss, National Bureau of Standards Technical Note No. 438 (1967).
${ }^{27}$ E. Clementi, J. Chem. Phys. 38, 2780 (1963), and 39, 487 (1963).
${ }^{28}$ R. K. Nesbet, J. Chem. Phys. 36, 1518 (1962); A., D. McLean, ibid. 39, 2653 (1963); K. D. Carlson and P. N. Skancke, ibid. 40, 613 (1964); R. K. Nesbet, ibid. 43, S30 (1965).
${ }^{29}$ R. K. Nesbet, J. Chem. Phys. 40, 3619 (1964).
${ }^{30} \mathrm{G}$. Verhaegen, W. G. Richards, and C. M. Moser, J. Chem. Phys. 47, 2595 (1967).
${ }^{31}$ R. K. Nesbet, Rev. Mod. Phys. 35, 552 (1963).
${ }^{32}$ R. K. Nesbet, J. Chem. Phys. 43, 311 (1965).
${ }^{33}$ C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).
${ }^{34}$ E. Clementi, J. Chem. Phys. 40, 1944 (1964).
${ }^{35} \mathrm{~A}$. Veillard and E. Clementi, IBM Technical Report No. RJ447, 1967 (unpublished). This work supersedes E. Clementi, J. Chem. Phys. 38, 2248 (1963).
${ }^{36} \mathrm{~V}$. McKoy and O. Sinanoǧlu, J. Chem. Phys. 41, 2689 (1964).
${ }^{37}$ E. Clementi and A. Veillard, J. Chem. Phys. 44, 3050 (1966).
${ }^{38}$ I. I. Glembotskii, V. V. Kibartas, and A. P. Iutsis, Zh. Eksperim. i Teor. Fiz. 29, 617 (1955) [English trans1. : Soviet Phys. -JETP 2, 476 1956)].
${ }^{39}$ J. Hinze and C. C. J. Roothaan, Progr. Theoret. Phys. (Kyoto) 40, 37 (1967).
${ }^{40}$ P. S. Bagus and C. M. Moser, Phys. Rev. 167, 13 (1968).
${ }^{41}$ H. F. Schaefer, III, and F. E. Harris, Phys. Rev. 167, 67 (1968).
${ }^{42}$ A. P. Iutsis, Ya. I. Vizbaraite, T. D. Strotskite, and A. A. Bandzaitis, Opt. i Spektroskopiya 12, 157 (1962) [English transl.: Opt. Spectry. (USSR) 12, 83 (1962)].
${ }^{43}$ R. K. Nesbet, Phys. Rev. 100, 228 (1955), and 109, 1632 (1958); L. Szasz, ibid. 132 , 936 (1963).
${ }^{44}$ S. F. Boys, Proc. Roy. Soc. (London) A217, 235 (1953).

[^0]: ${ }^{\mathrm{a}}$ H. P. Kelly, Phys. Rev. 144, 39 (1966).
 ${ }^{\mathrm{b}}$ Net energy increments summed as in Table VIII.

