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A variational formulation of Brueckner's theory has been used to solve Bethe-Goldstone
equations and to compute electronic pair-correlation energies for the atoms listed in the title.
One-electron effective correlation energies, needed for open-shell atomic states, are also
computed. An approximate Hartree-Fock function is used for the reference state in each
case. Individual pair-correlation energies are computed to an expected accuracy of 0.001
Hartree a.u. The total correlation energies range from 98,5 to 100.3% of the empirical
correlation energy. For comparison with many-particle perturbation theory, definitions of
the hierarchy of nth-order Bethe-Goldstone equations and of the concepts of gross and net
mean-value increments used in this work are restated in terms of linked Goldstone diagrams.

I. INTRODUCTION

The many-particle theory of Brueckner! is based
on the idea that the two-particle problem can be
solved exactly for each pair of particles in an N-
particle system, if the two-particle wave function
is constrained to be orthogonal to the remaining
N-2 orbital functions describing particles in an
assumed Fermi sea. The occupied orbitals of the
Fermi sea are to be computed by a Hartree-Fock
calculation using the modified two-body interac-
tion that results from independent solution of all
of the two-particle equations.

The two-particle equations were first derived
by Brueckner as integral equations! using multiple-
scattering theory.? The equivalent differential
equations were derived by Bethe and Goldstone, 3
and the pair-correlation equations are usually re-
ferred to as Bethe-Goldstone equations. A third
form of these equations, a sum to infinite order
of so-called ladder diagrams in perturbation
theory, has been derived by Goldstone. *

The extensive literature on Brueckner’s theory
has been reviewed by Thouless’ and by Kumar, $
Although the theory was originally developed to
deal with the hard-core interaction between nu-
cleons in nuclear matter, much of the formalism
is directly applicable to finite systems with ar-
bitrary two-body interactions. Papers that are
relevant to the present calculations on electronic
wave functions include work by Brenig,” Rodberg, 8
Nesbet, ® Gomes, Walecka, and Weisskopf, 1°
Brout, !* and Szasz.!? It was pointed out by Szasz
that an earlier variational method proposed for
calculations on divalent atoms by Fock, Veselov,
and Petrashen!® involves a form of the Bethe-
Goldstone equation. A critical review of this
theory and of its applicability to electronic cor-
relation in atoms and molecules has been given
by the present author. 14

The proposal by Sinanoglu!s for solution of “ex-
act-pair” equations is closely related to the method
of Brueckner, Bethe, and Goldstone. Except for
a possibly unimportant difference in the treatment
of the one-particle operator that must occur in
the theory, the method of Sinanoglu is equivalent
to the use of Bethe-Goldstone equations. ¢ The
calculations by Geller, Taylor, and Levine' on
the Be atom, based on Sinanoglu’s formalism,

are in fact a variational solution of the Bethe-
Goldstone equations, using two-particle functions
that depend explicitly on relative coordinates.

An earlier variational calculation on Be, with
somewhat different numerical results, was car-
ried out by Tuan and Sinanoglu.

An alternative variational formulation of Brueck-
ner’s theory can be developed by expressing the
Bethe-Goldstone equations in terms of Slater de-
terminants for an N-particle system, This
approach has been used to define the concept of-
an n-particle (or nth-order) Bethe-Goldstone
equation, for z any integer less than N, !#-20 This
hierarchy of nth-order Bethe-Goldstone equations
can be used to compute successive net increments
of the mean value of any many-particle operator,
including the energy. By definition, the sum to
Nth order of all net increments is the exact mean
value of the given operator. )

Calculations by this method of the electronic
correlation energy of the ground states of Be!® and
Ne, 2° and of the correlation energy and magnetic
hyperfine-structure constant of Li (2S) and of N
(4S), 18 have been previously reported. In the pres-
ent paper this work is extended to a survey of
the one- and two-particle net increments of cor-
relation energy for the ground states of atoms
from Be to Ne.

The earlier calculations on Be, N, and Ne in-
cluded three-particle net-correlation energies,
which were found to be negligible within the ac-
curacy of the calculations (0. 001 Hartreea.u.
for each pair-correlation energy). For this rea-
son three-particle terms were not computed for
the other atoms considered here.

Recent work by Kelly?!,22 has been concerned
with the application of the Brueckner-Goldstone
perturbation expansion? to the electronic structure
of atoms. In order to compare results of the
present work with those of Kelly, it is convenient

. to have an alternative definition of nth-order Bethe-

Goldstone equations in terms of the linked-cluster
perturbation diagrams introduced by Goldstone, ¢
In the two-particle case, the basic definition of a
Bethe-Goldstone equation is that stated by Gomes
et al.° and characterized by them as the “inde-
pendent-pair model.” The interaction between
any pair of particles is to be considered as ex-
actly as possible, but the interaction of all other
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particles among themselves is neglected. The
energy of the system is then approximated by
adding the energy corrections obtained indepen-
dently for each pair. When this definition is
.modified to take account of single-particle éxci-
tations, needed whenever @, is not an exact un-
restricted Hartree-Fock function, # it leads to
the one- and two-particle stages of the hierarchy
of Bethe-Goldstone equations considered here.
The equivalent definition of an z-particle Bethe-
Goldstone equation in terms of Goldstone diagrams
will be given in Sec. II following aformal descrip-
tion of the present method.

The third-order (or three-particle) Bethe-
Goldstone equations considered in the present
work are closely related to the summation of three-
particle diagrams considered by Bethe.?* Use of
this idea in the theory of nuclear matter has re-
cently been reviewed by Rajaraman and Bethe. 25

Because of the success in recent years in carry-
ing out Hartree-Fock calculations for small mol-
ecules, 2% it has become of considerable interest
to obtain quantitative estimates of correlation energy
corrections to the Hartree- Fock approximation. While
a Hartree-Fock calculation gives a total energy
of high percentage accuracy, the energies of
physical or chemical interest are usually expressed
as small differences between total energies, in
the form of dissociation or excitation energies.
Net changes of correlation energy can make a sub-
stantial contribution to such energy differences, 27,28
For example, roughly half of the dissociation
energy of the very stable nitrogen molecule is
due to the correlation energy difference between
the molecule and the separated neutral atoms, 2°
Recent work on the correlation-energy contribu-
tion to the ionization energy of N, is an example
of the need for quantitative data on pair-correlation
energies in light atoms,3° ‘The present work is
intended to provide this data to an accuracy useful
for applications.

II. OUTLINE OF THE COMPUTATIONAL
METHOD

If a Fermi sea is defined by the occupied orbitals
¢; of a reference-state Slater determinant &, the
Bethe-Goldstone equation for pair Zj is a two-par-
ticle Schrodinger equation, constrained by the
orthogonality of the wave function to the N-2 or-
bitals ¢p with 2 #7,j.3,10,12 This is equivalent to
a variational calculation with an N-particle trial
function,4,®

E@bcb 8. ()

_ a,
\I’ij =% +an)i ab ij

In the notation used here, a Slater determinant
obtained from &, by replacing occupied orbitals

i, ¢], ¢k> .(i<j<k-.-<N) by occupied orbitals

&, b.,...(N<a<b<c---), taken from a postu-
lated complete set of orbital functions, is denoted
by Hjp. . InEq. (1), the summations ex-

tend over all values of the indices ¢ and b, but
indices 7 and j are fixed and denote spec1f1c occu-
pied orbitals in ®,. The summation over ab de-
‘notes a double sum with a<b.

A first-order or one-particle Bethe-Goldstone
equation is equivalent to a calculation with trial
function

a_a
'I'i =g, +Ea¢z‘ S > (2)
where index i is specified, but a takes on all possi-
ble values.

If Slater determinants &; ab... are denoted
in general by ®,, then the coefficients ¢, are ob-
tained as components of an eigenvector of the con-
figuration-interaction matrix Hy,,, where H is
the N-particle Hamiltonian. As indicated by Eq.
(1) or (2), it is convenient to normalize the wave
function by setting the coefficient of &, equal to
unity.

In practice, the set of unoccupied orbitals ¢a
is finite. Orbital sets are used that can be ex-
tended to completeness, and this extension is
carried out until computed quantities are ob-
served to stabilize within a specified error. The
present calculations were carried out to an accu-
racy of 0.001 Hartree a.u. (e2/ay for Atom X)
for each computed pair-correlation energy.

The general definition of an nth-order Bethe-
Goldstone equation, as used here, is the equiva-
lent of a variational calculation with a trial func-
tion that is a linear combination of &, and of all
Slater determinants %;jp. . . abe... whose indices
ijk... are any subset of a specified list of n-
occupied orbital indices. If the mean value H,,
of the energy of the reference state &) is sub-
tracted from each diagonal element of the con-
figuration-interaction matrix (matrix of H), thenthe
energy eigenvalue computed for the trial function
\Ili]- -will be an energy increment AE;; = with
respect to H,,. These quantities will be referredtoas
gross energy increments. In order to make use of
a hierarchy of Bethe-Goldstone equations of in-
creasing order, it is convenient to define a net
energy increment e;j as the difference between
the corresponding gross increment and the sum
of all net increments of lower order whose indices
form a subset of the set ¢j... . For example, the
net energy increment for pair 25 is defined by

€y5=AE,;—e,-e;, (3)

where AE,; is the directly computed lowest eigen-
value of the configuration-interaction matrix for
¥,s, and e, and e, are net increments obtained from
first-order Bethe-Goldstone equations for ¥, and
¥, respectively. Thus e,; is that part of AF,; not
contained in e, and e, separately. If carried to

Nth order, this method of bookkeeping gives the
exact correlation energy (energy in addition to H,,)
in the form

AEEe+Z>e +2

Z ij ij N )

ijk z]k+ ey, ..

In terms of Goldstone diagrams *the wave function
defined by Eq. (1) is represented by the sum, to all
orders in the perturbation theory, of linked cluster
diagrams in which the occupied orbital indices
(labels on backward directed lines) are restricted
to ¢ and j only. Because diagrams that apparently
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violate the exclusion principle must be included in
the linked cluster expansion,*,?! the indices ¢ and
j may be repeated any number of times within a
given diagram. The unoccupied orbital indices
[labels on forward directed lines, represented by
a,b,... in Eq. (1)] take on all possible values.

The gross energy increment AE;;, corresponding
to Eq. (1), is given by the sum of all connected
linked diagrams with no external lines in which the
labels on backward directed lines are restricted to
i and j. The gross increment of some other opera-
tor F is represented by a similar sum of connected
graphs, but with one additional vertex to represent
a matrix element of F.

The generalization to an nth-order Bethe-Gold-
stone equation is obvious. The wave function
¥ijk. . ., for a specified set of indices @Gjk. . .), is
represented by the sum to infinite order in the per-
turbation theory of all linked diagrams in which
the labels on backward directed lines are limited
to indices from the specified set. Gross incre-
ments of energy or of any other mean value are
represented by the corresponding sum of connect-
ed graphs with no external lines.

Net increments of mean values can be defined
exactly as they are in the present configuration-
interaction formalism; as the difference between
a gross increment and the sum of all net incre-
ments of lower order that have indices which are
a subset of those labelling the gross increment.
‘This defines each net increment as a specific sum
of connected linked diagrams. For a set of indices
(ijk...), this sum consists of all connected linked
diagrams with no external lines in which backward
directed lines are labelled by just this set of indices,
with the restriction that every indexin (j&. . . ) must
appear at least once. This is to be contrasted with
the sum for a g7oss increment, which includes all
diagrams with backward directed lines labelled by
subsets of the given set of occupied orbital indices.

The atoms considered here have single determi-
nant wave functions in their ground-state configura-
tions, if My, and Mg are taken equal to L and S, re-
spectively. Because there is at most one open-
shell 2p”, the traditional Hartree-Fock equations
are identical with the truncated Hartree-Fock equa-
tions solved by matrix methods as a preliminary
stage in the present work.'¢,3! The constraints in-
herent in the traditional Hartree-Fock method
(symmetry and equivalence restrictions on the or-
bitals) introduce one-particle configuration-inter-
action matrix elements for states other than S.2
These matrix elements, which cannot be eliminated
without destroying the spherical symmetry proper-
ties of the Hartree-Fock orbitals, lead to nonzero
one-particle net correlation-energy contributions.
Except for this, the computational procedure fol-
lowed here is identical with that used for the 1S
states of Be and Ne.!'®2° The configuration inter-
action matrix is constructed in a basis of Slater
determinants, taking into account only the quan-
tum numbers My, Mg, and parity, and the lowest
eigenvalue and corresponding eigenvector are ob-
tained by a rapidly converging iterative algorithm,32

Orbital basis sets capable of giving a reasonable
approximation to an atomic Hartree-Fock calcula-
tion, using the matrix Hartree-Fock method, 31,33
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are extended by including additional orbitals in the
form of exponential functions e~£? multiplied by
powers of » and by spherical harmonics. Optimal
values of the exponents ¢ were determined by pre-
liminary calculations on Be, N, and Ne. It was
found that the best results obtained with exponents
different for each value of angular quantum number
! could be duplicated, to within the criterion of
accuracy used in the present work, by basis sets
with a common value of ¢ for all values of I. Dif-
ferent values of ¢ must still be used to represent
perturbations of atomic orbitals with different prin-
cipal quantum number . Exponents {g and &7
were obtained variationally for perturbations of
the K and L shells, respectively, of Be, N, and Ne.
These exponents for N were found to be very close
to values found by linear interpolation between the
exponents for Be and Ne, using nuclear charge Z
as a parameter. Because of this result, exponents
for the other atoms considered here, listed in
Table I, were taken to be equal to values obtained
from those for Be and N, or for Nand Ne, by linear
interpolation.

From earlier configuration-interaction calcula-
tions, it was predicted! that an orbital basis set
capable of representing perturbing orbitals with
all combinations of up to three nodal surfaces
superimposed on occupied Hartree-Fock orbitals
should give energy values accurate to within 0. 001
a.u. for individual Bethe-Goldstone equations. For
K-shell perturbations, this requires basis orbitals
with radial and angular factors indicated by quan-
tum numbers %! up to 4s,4p,4d,4f, multiplying

~%K7  in addition to basis orbitals needed to rep-
resent the occupied Hartree-Fock orbitals. The
computer programs were designed to allow the in-
clusion of arbitrary »! values, and higher values
were used when there was any question of conver-
gence of an energy eigenvalue to 0.001 a.u. The
specific basis sets used consisted of the “double-
zeta” basis set of Clementi’* augmented by perturb-
ing orbitals with exponents ¢y and ¢ as described
above. All basis orbitals of s and p symmetry
were included in the preliminary matrix Hartree-
Fock calculations.

1. RESULTS OF COMPUTATIONS

The reference-state Slater determinants for the
atomic ground states considered here are explicitly

&,(Be,1S) =det(1sBlsa2sB2sa) ,
®,(B, 2P) =det(1splsa2sB2sa2p,a),

TABLE I. Exponents used for orbital basis sets.

z Atom {x &y

4 Be 7.814 1.419

5 B 10.085 1.860

6 C 12.355 2.302

7 N 14.626 2.743

8 O 16.961 3.233

9 F 19:295 3.724
10 Ne 21.630 4.214
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®,(C,3P) =det(1sBlsa2sp2sa2p,02p,a) ,

&(N,4S) =det(1sBlsa2sp2sa2p_,a2p,a2p,a) , (5)
©,(0,3P) =det(1splsa2sp2sa2p p2p_,a2p,a2p 0),

& (F,2P) =det(1sBlsa2sp2sa

X 2p,B2p,B2p.,02p 2D, cx) ,
& (Ne, 1S) =det(1splsa2sp2sa

X 2p-182p B2 ,B2p - @ 2P0 2D 0) .

One-particle net correlation-energy increments,
computed as indicated in Sec. II, above, are listed
in Table II. Two-particle net correlation energies,
computed as in Eq. (3) by subtracting one-particle
net correlation energies from the directly computed
gross energy increments, are tabulated for elec-
tron pairs involving K-shell orbitals (1s8 or lsa)
in Table III. The remaining two-particle net corre-
lation energies, representing pairs of L-shell or-
bitals, are given in Table IV. These results are
summarized and compared with empirical non-
relativistic correlation energies®> in Table V. The
sum of one- and two-particle net correlation-ener-
gy increments is uniformly within 1.5% of the em-
pirical correlation energy. This result is consis-
tent with the accuracy expected from orbital basis
sets of the kind used here.*

It is important to note that this level of accuracy
holds for all of the atoms considered. There is
no evidence for any systematic error (due to ne-
glect of three-particle correlations) as the number
of electrons increases from four to ten.

In a previous paper on Ne (1S), it was shown that
the entire setof 2p2 pair-correlation energy incre-
ments could be expressed as linear combinations of
only three independent parameters, to within the .
accuracy of the present calculations.?° Because
Slater determinants, rather than symmetry-adapted
functions, are used in these calculations, this re-
sult is only approximate. In Ne (1S) it depends on
the numerical accuracy of the matrix diagonaliza-
tion. The three independent 2p? energy parame-
ters correspond to coupling a two-particle func-
tion to a pure 2P, !D, or 1S eigenfunction. More
precisely, the (N - 2)-particle Slater determinant
obtained by removing two specified 2p orbitals from
& is a function of mixed symmetry which can be
combined with 2p2(3P,1D,'S) to form a symmetry-
adapted N-particle function with quantum numbers

L, S appropriate to the atomic state in question,
Except for 'S states, the pair coriclation energies
given in Tables III and IV depend significantly on
the quantum numbers My and Mg because the effec-
tive potential field of the open 2p shell is not spher-
ically symmetrical. In general, the number of in-
dependent parameters cannot be reduced by con-
sidering symmetry-adapted pair functions. How-
ever, the various 2p2 energies could in all cases
be represented by linear combinations of only three
parameters, using coefficients given previously,2°
to within the accuracy of the present work. The
values used for these parameters are listed in
Table VI,

IV. COMPARISON WITH PREVIOUS WORK

The correlation energy for the 2s? electron pair
for several of the atoms considered here has been
computed by McKoy and Sinanoglu®® using the for-
malism of Sinanoglu.!® Their results, obtained with
a simple variational function containing the relative
coordinate 7,,, are listed in Table VII, and com-
pared with the (2sB82sa) net correlation-energy in-
crements from Table IV. Although the present
results, obtained with much more elaborate varia-
tional trial functions, are more accurate, the
main qualitative conclusion of McKoy and Sinano'g'lu
is verified, in that the 2s2 pair correlation de-
creases significantly as the 2p shell is filled. This
is due, in part, to suppression of the 2s2-2p? near
degeneracy .36 )

The specific effect of this near degeneracy was
computed by Clementi and Veillard,?? using two-
configuration Hartree- Fock calculations. .Optimal
orbitals and configuration mixing coefficients were
obtained for the configurations 1s22s22p” and 1s2
2p"+2 for the atomic states in which both con-
figurations occur. The computed correlation ener-
gies are given in Table VII. Because the multi-
configuration Hartree-Fock method allows for re-
laxation of the orbitals as well as for superposi-
tion of configurations, this method can include
more of the correlation energy than is represented
by the 2s? net correlation energy obtained from a
Bethe-Goldstone equation. Thus the Clementi and
Veillard result for Be (15) is somewhat larger in
magnitude than the present result. For B (2P) and
C (3P), the degeneracy effect apparently becomes
a successively smaller fraction of the 2s? pair

TABLE II. One-particle net increments of correlation energy, ¢;, in Hartree units (¢?/ ay) for Atom X.

i Be (Is) B (p) c ép) N () 0 ¢p) F ¢p) Ne (1s)
1sB -0.0 —0.000008 —0.000032 —-0.000076 —-0.000043 —-0.000018 -0.0
1sa —-0.0 —0.000010 —-0.000035 —0.000076 -0.000041 —0.000015 -0.0
2sB -0.0 —-0.000455" —0.000982 —-0.001759 —0.001126 —0.000629 -0.0
2sa -0.0 —0.000594 —0.00099 - 0.001283 —0.000848 —0.000448 -0.0
2p_1B
2pB —-0.00019%4 -0,0
2048 —0.001054 —0.00019%4 -0.0°
2p_q0 -0.0 —-0.000129 —0.000229 -0.0
2poe -0.0 -0.0 —0.000479 —-0.000134 -0.0
2p -0.0 -0.0 -0,0 —0.000129 —0.000229 -0.0
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TABLE III. Two-particle net increments of correlation energy, €3 in Hartree units, for KK and KL pairs.

ij Be (1) B P c ¢ép) N (4s) 0 ¢p) F (P) Ne (1s)
1sBlsa —-0,041827 —0.041108 —0.040867 —-0.040362 —-0.040178 —-0.039784 -0.039932
1sB2sB —0.000813 - 0.000882 -0.000920 —0.000927 -0.000810 —0.000649 —-0.000469
2sa¢  -0.002119 -0.002 283 —0.002234 —0.001800 —-0.002120 -0.002122 -0.002099
2p_i8 ~0.001481
2pB —-0.001443 —-0.001481
2p4B —0.001406 —0.001469 -0.001481
2p_1a —-0.001609 —0.001846 —0.001865 -0.001834
2P0 —-0.001708 —-0.001609 —0.001944 —0.001847 -0.001834
2p —0.001458 —0.001720 —-0.001609 - 0.001919 —0.001945 —-0.001834
1sa2sB —-0.002119 —0.002375 - 0,002422 -0.00219%4 —-0,002352 —0.002246 —-0.002099
2sa  —=0.000813 —-0.000751 —-0.000622 —0.000416 —0.000467 -0.000471 —-0.000469
2p_48 —0.001834
2poB -0.001764 —-0.001834
2p4B -0.001675 -0.001781 —-0.001834
2p_1@ —0.001 284 -0.001410 —0.001465 —0.001481
2pe —-0.001270 -0.001284 -0.001436 —0.001440 -0.001481
Zpia -0.001125 —0.001289 —0.001284 —-0.001410 —0.001465 - 0.001481

correlation energy. A similar calculation on boron gies — 0,009, ~0.013, and - 0.036 a.u. for the

was carried out by Glembotskii et al.38 states 3P, D, and S, respectively. These results
Multiconfiguration Hartree-Fock calculations are in good qualitative agreement with the 2p2pair-

have been carried out on the three states, 3P,'D, correlation parameters shown in Table VI, which

and 'S of the carbon atom ground-state configura- appear to be roughly constant throughout the

tion, 1s22s22p2, by Hinze and Roothaan3® and by series of atoms considered here,

Bagus and Moser.%® For configurations affecting A detailed study of the 2P ground state of boron

only the 2p? electron pair, their results are essen- has recently been published by Schaefer and

tially identical, giving 2p? pair correlation ener- . Harris.*! Their best variational calculation, us-

TABLE IV. Two-particle net increments of correlation energy, ij, for LL pairs.

ij Be (Is) B P c ¢ép N (4s) o¢p) ¥ ¢p) Ne (!s)
2sB 2sa —0.045 351 —-0.039923 —0.028 450 —-0.013633 —-0.012928 -0.011919 -0.010834
2018 —0.003 294
2p0B —0.004 633 —0.003 302
2p48 - 0.007 374 —0.006 013 —-0.003 294
2p_1a —0.024 944 —0.016 560 -0.012208 - 0.110283
2Dy —0.024 624 —0.024 944 —-0.020729 —-0.014 681 —-0.010317
2p1a —0.024 528 —0.025680 —0.024 944 —0.022856 —0.018 548 —-0.010 283
2sa2p_4B , —0.010283
2p0B -0.010892 -0.010317
2p48 —0.012285 -0.011860 —0.010 283
2p_1a —0.002 869 —0.003 065 -0.003162 —0.003 294
2poa —0.004 156 - 0.002869 —-0.002 984 - 0.003 252 -0.003302
2pja —~0.005886 —-0.005538 —0.002869 -0.003 065 - 0.003162 - 0.003 294
2p_1B 2pB —0.010 906
2p4B —0.010 927
2p_i@ —0.016 498
2pgo —-0.013732
2p10 —~0.022837
20,8 2p4B8 ~0.010831  —0.010906
2p_0 -0.013803 —0.013732
2po -0.025813 -0.025813
2pa -0.013877 -0.013732
Zplﬁ 2p_q0 —-0.022878 —0.023 240 - 0.022837
2poa —-0.014 204 -0.014 011 -0.013732
2pia —0.017408 —-0.017438 - 0.016498
2p_1a2p001 —0.009 948 —-0.010295 -0.010675 - 0.010 906
2pa -0.009 973 -0.010381 -0.010623 -0.010 927

2pea2pi0 —0.009685 —0.009 948 —0.010295 —-0.010675 - 0.010 906
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TABLE V. Summary of one- and two-particle correlation energies, in Hartree units.

Be (ls) B p) c ép N (4s) o ép) F (P) Ne (18)
Eei -0.0 - 0.001067 —-0.002 043 - 0.003 194 - 0.003 849 ~0.002090 -0.0
Zeij - 0.041827 —-0.041108 —0.040867 —0.040362 -0.040178 -0.039784 —-0.039932
(KK)
Zeij —0.005 864 - 0.008874 -0.012185 -0.014 015 -0.018795 —-0.021 970 - 0,025 026
(KL)
Zeij -0.045351 -0.071337 —-0.098 133 -0.126 940 —-0.187306 -0.251316 —-0.317 269
(LL)
Ec —-0.093 042 —0.122385 -0.153 228 —-0.184512 -0.250127 -0.315160 -0.382227
Ec(obs)a - 0.0940 —-0.1240 —-0.1551 -0.1861 —-0.2539 -0.316 -0.381
% 99.0 98.7 98.8 99.1 98.5 99.7 100.3

aA. Veillard and E. Clementi, to be published, IBM Technical Report No. RJ 447, 1967 (unpublished). This work
revises and supersedes earlier data by E. Clementi, J. Chem. Phys. 38, 2248 (1963). The empirical correlation en-
ergies are not corrected for the Lamb shift (radiative corrections).

ing a configuration-interaction function with up to
four-particle excitations from a Hartree-Fock
reference state, yielded 88.3% of the correlation
energy. One- and two-particle net-energy in-
crements were obtained by solving Bethe-Gold-
stone equations., The sum of these terms, listed
in Table VIII, gave 88. 1% percent of the correla-
tion energy, indicating that the net three- and
four-particle energy effects are very small.
Schaefer and Harris used symmetry-adapted func-
tions (2P eigenfunctions) throughout, instead of
simple Slater determinants as used here. For
this reason, their definition of the hierarchy of
Bethe-Goldstone equations is based on configura-
tions (given by #l values only) rather than on the
structure of single determinants, and this changes
the definition of the net energy increments. For
example, in terms of configurational excitations,
the 2s Bethe-Goldstone equation includes the ef-
fects of determinants obtained by single excitation
of either 2sBor 2sa as well as by double excita-
tions such as 2sB, 2p,a to 2p_,B8, 3d,a. Except
for these differences in definition, the results
shown in Table VIII are in good quantitative agree-
ment. The present results are more accurate be-
cause more terms are included in the individual
variational calculations. For example, 171 Slater
determinants were included in the trial wave func-
tion for the 1sB, lsa Bethe-Goldstone equation in
the present work, and 139 Slater determinants for
2sB, 2sa. The unoccupied orbital sets used torep-
resent excitations of these two different orbital
pairs are completely different, and except for &,
there are no Slater determinants common to the
two wave functions.

When all triply and quadruply excited configura-
tions were removed from the full configuration-

interaction calculation of Schaefer and Harris,
the correlation energy was reduced to 86.3% of its
full value. Contrary to the discussion given by
these authors, this loss of 2. 0% of the correlation
energy, compared with the full configuration-in-
teraction function, should not be identified with the
net three- or four-particle correlation energy, as
defined in the present work. As shown in discus-
sions of the structure of a many-particle wave
function by Brenig,” Iutsis, 2 and Sinanoglu, !5 this
error must be attributed to a constraint imposed
on the wave function by failure to include three-
and four-particle excited Slater determinants
whose coefficients are approximated as functions
of the coefficients of the dominant two-particle ex-
citations. Because such product terms are not in-
cluded, the coefficients of two-particle excitations
are unnecessarily constrained from taking on
values appropriate to noninteracting pair excita-
tions. This result is one of the first quantitative
indications of a clear advantage of the Brueckner-
Bethe-Goldstone theory, which leads to a relative
error of only 0.2% in this example, over the use o!
of a variational trial function expressed as a sum
of all possible pair excitations, a form proposed
as an extension of first-order perturbation theory
for the wave function, 8

Earlier configuration-interaction calculations
by Boys on boron and carbon*® gave roughly half
of the correlation energy in each case. Boys’
calculations, done before the introduction of elec-
tronic computers, have stvod for a number of
years as the most accurate calculations reported
for these atoms.

The Brueckner-Goldstone perturbation theory
has been used by Kelly to compute the correlation
energy of the 3P ground state of oxygen.?? Results

TABLE VI. Parameters for 2p® pair-correlation energies, in Hartree units.

c ép) N (%9 o ép F ¢p) Ne (1s)
2p*CP) —0.009685 —0.009961 —0.010323 —0.010744 —0.010913
2p*('D) —0.017408 —0.017438 —0.016 498
2p%(1s) —0.044 445 —0.042562 —0.044 076
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TABLE VIL. Comparison of 2s? pair correlation energies (Hartree atomic units).

Clementi and Veillarda

McKoy and Sina.no‘,élub Present work

Be (15) —0.047542
B (P) —-0.031113
C (p) -0.017330
N (48)

o ¢p)

F (P)

Ne (1)

-0.03278 —0.045351
-0.02580 -0.039923
-0.014 99 - 048.8450
-0.00610 -0.013633

—-0.012928

-0.011919
-0.01000 -0.0 564

aE. Clementi and A. Veillard, J. Chem. Phys. 44, 3050 (1966). Hartree-Fock calculation with two-configuration

wave function, 1s°2s22p™ and 1s%2p"*2,

b
V. McKoy and O. Sinanoglu, J. Chem. Phys. 41, 2689 (1964).

are compared with the present work in Table IX.
Because the formalism used by Kelly is equivalent
to the use of single Slater determinants, repre-
sented by excitations of individual orbitals, rather
than of symmetry-adapted functions, the individual
correlation terms computed by Kelly should be
identical with the particular sums of net correla-
tion energies from the present calculations listed
in Table IX. As can be seen from the Table, there
is a nearly constant ratio of 1.1 between the two
sets of results. In the case of the largest terms,
e(1s?), e(2s2p), and e(2p?), this discrepancy is
greater than the expected error of the present
results, where variational calculations have been
carriedout towithin0. 001 a.u. for each net energy
increment. Since the present calculations repre-
sent a sum to infinite order of perturbation series,
it can be concluded that terms of higher order in
these series should be included in Kelly’s work in
order to reach the level of accuracy of the present
results. It should be noted that Kelly computed
107. 9% of the correlation energy, compared with

" 98. 5% obtained here.

V. DISCUSSION AND CONCLUSIONS

The results of the present calculations show a

TABLE VIII. Comparison of results for B ¢P). En-
ergy parameters in Hartree a.u.

Schaefer and Harrisa Present workP

e(ls) -0.000 184 -0.000018
e(2s) -0.021819 -0.001 049
e(2p) -0.000 000 -0.000 000
e(2s?) -0.039 277 -0.039923
e(1s2s) -0.003 480 -0.006 291
e(1s2p) -0.001 247 -0.002583
e(252p) -0.005 064 -0.031414

Total -0.109 855 -0.122385

aH. F. Schaefer, III, and F. E. Harris, Phys. Rev.
167, 67 (1968).

b .
Net energy increments listed in Tables II-IV are
summed over m; and m g quantum numbers to give total
increments indexed only by quantum numbers » and I.

very satisfactory internal consistency, as indicat-
ed by the summary given in Table V, especially
when it is considered that each entry in Tables

II, III, and IV represents an independent variation-
al calculation. For this reason, it should be sat-
isfactory for semiempirical use of the net correla-
tion parameters to scale up each computed net
correlation energy by dividing by the percentage
error given for the total correlation energies in
Table V. The ability of the present method to give
quantitative results has been demonstrated.

The exact correspondence between the present
formulation, in terms of Slater determinants and
individual orbital excitations, and the Brueckner-
Goldstone perturbation theory has been shown here
in Sec. II, where net increments of any mean-value
quantity have been defined in terms of linked dia-
grams.

The comparison with Kelly’s calculation on O(3P),
discussed in Sec. IV, suggests the conclusion that
the Brueckner-Goldstone perturbation theory must
be carried to somewhat higher order to give results
of the present accuracy. The residual error in
Kelly’s caleulation appears to be roughly twice as
great as it is in the present work.

In extending the present method to excited states,

TABLE IX. Comparison of results for O (P). Energy
parameters in Hartree a.u.

Kellyal Present workb
e(ls) -0.000 09 -0.000 084
e(2s) -0.00161 -0.001 974
e(2p) -0.00113 -0.001791
e(1s) -0.04383 -0.040178
e(2s%) -0.01500 -0.012928
e(1s2s) -0.006 29 -0.005 749
e(1s2p) -0.015 00 -0.013 046
e(2s2p) -0.10044 -0.088 918
e(2p%) -0.09058 -0.085461
Total -0.273 97 -0.250127

®H. P. Kelly, Phys. Rev. 144, 39 (1966).

b
Net energy increments summed as in Table VIII.
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some provision must be made for wave functions
which cannot be approximated by a single Slater
determinant in the Hartree-Fock approximation,
A simple example of this is the 1S state in the
2s522p2 ground-state configuration of carbon. The
simplest approach, retaining the present organi-
zation of computer programs in terms of Slater
determinants, is to choose, arbitrarily, one de-
terminant from thezeroth-order symmetry-adapted
.function as reference state, and then always to in-
clude all determinants from this configuration in
each variational trial function. Coefficients ap-
propriate to the desired symmetry-adapted func-
tion would be used to initiate the iterative matrix-
diagonalization algorithm.

Another approach, already used by Schaefer and
Harris *! is to reformulate the method in terms of

configurations rather than single Slater determi-
nants, so that net increments, etc., are defined in
terms of excitations of configurations rather than
of individual orbitals. Then symmetry-adapted
functions can be used at each stage of the compu-
tations. This approach is no longer in exact cor-
respondence with the linked diagram expansion of
the Brueckner-Goldstone perturbation theory. It
would be an interesting theoretical exercise to
reformulate the perturbation theory in terms of
configurational excitations and symmetry-adapted
functions. That this exercise may not be trivial
is indicated by the fact that even the antisymme-
try of the wave function must be ignored in deriv-
ing the linked diagram expansion, resulting in
the so-called EPV (exclusion principle violating)
diagrams.2!
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