
G. PREPARAYA AND %. I. KEISBERGER

de6ne 6nite renormalized vertices and propagators by with respect to thc cutoK This yields

1"~"(P,P) =—f'~"(P',P)

1
o=f" b(Zr/Zs')~s '(P')I

Ep,i

Di"(P',P) = D"(P',P)
Zg)

ss(P') =zs'ss(P')

S.(P) =Zs ~.(P).

All the renormalized quantities denoted by the tilde are

6nite and cuto6-independent. The over-all renormali-

zation of thc weak current and its divergence are 6nite if

Zi/g(Zs'Zs ) and Zn/g(Zs'Zss) are respectively

finite, that is, independent of any cutoff.
To prove this is so, wc substitute for the renormalized

quantities in the Ward identity and take a variation

-h(Z, /Z:) ~; (P) +h(Z/Z )D"(P',P).

By evaluating this expression with b or u or both on the
mass shell, one 6nds

8(Zr/Zs') = b(Zr/Zs') = b(Zr/Zn) =0.
Thus, the ratios of these renormalization constants are

independent of any cutoR's and hence 6nite, and the
combinations Zr/g(Zs'Zs ) and Zn/4(Zs'Zs )
6nite.

It is well known that the four-point interaction for

p, decay can be rewritten by a Fierz transformation as
a V—A interaction between the charge-retaining

currents. By the preceding theorem, the electromagnetic
renormalization of such a p-e vertex is 6nite to all

orders. This is, of course, not a new result, '
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Let a, b, c, fg be spinless particles of equal mass, and consider the process a+9 —+ c+d. It was shown else-

where that the crossing symmetry of the scattering amplitude for such a process implies an in6nite number

of 6nite-dimensional "crossing relations" for the associated partial waves. In this paper, we derive explicit

expressions for complete orthogonal and biorthogonal sets of eigenvectors of the partial-wave crossing

matrices. The general form of a partial wave which is consistent with crossing symmetry is thus determined.

L INTRODUCTION

" 'N a previous paper, " we considered the process
~ - a+6 —+ c+d, where a, b, c, d were spinless particles

of equal mass. The scattering amplitude Ii of such a

process was expanded in terms of eigenfunctions which

displayed its dependence on all thc Mandelstam vari-

ables. It was shown that the crossing symmetry of Ii is

equivalent to a sequence of 6nite-dimensional "crossing

relations" for the partial waves.

Here we study the spectral properties of the partial-

wave crossing matrices arid construct their eigenvectors.

With the aid of these eigenvectors, it is easy to state the

~ Supported in part by the U. S. Atomic Energy Commission.

t Supported by NDEA Fellowship.
' (a) A. P. Balachandran and J. Nuyts, Phys. Rev. 172, 1821

(1968}; (b) A. P. Balachandran, W. I. Meggs, J. Nuyts, and P.

general form of the partial waves which is consistent

with the crossing symmetry of F. Section II sulnmarizes

the pertinent results from Ref. 1a. The eigenfunctions

are tabulated in Sec. III together with their orthogo-

nality and normalization properties, Section IV sketches

the requisite derivations.
In a forthcoming paper, ' the eigenfunctions asso-

ciated with the expansion of F (as well as the eigen-

vectors of the crossing matrices) will be identi6ed with

a subset of basis vectors of certain irreducible repre-

sentations of the group SU'(3). The partial-wave

crossing matrices that we discuss here are the matrix

elements of the Acyl reQections between these vectors,

Ramond, International Center for Theoretical Physics XCTP,
Report No. IC/68/46 (unpublished}; and Phys. Rev. (to be
published); (c) see also A. P. Balachandran and J, Nuyts (to be

published}.



I ARTIAL-WA VE ' CROSSING MA YR. I CF 8''

s,=1+2f/(s —1), s,=1+2n/(f —1),
z„=1+2s/(I —1). (2 1)

The scattering amplitude Ii is expanded in the form

F(s,f) = g 2(n+i+1)(2l+1)a 'S„'(s,]), (2,2)
n, lM

The common mass of the particles is taken to be —,'.
The Mandelstam variables s, t, I therefore fulfill the
identity s+t+n= 1.The cosines of the scattering angles
in the three channels are defined by the equations

I"ourier coefFicients and suppress their dependence on

the indices of the transpositions and on e.)
As a consequence of"

(S ',W sSirz)=0, n, P=s, f, I
(2.9)

n+lWX+L,

the following crossing relations for a„' )and hence for

fi through (2.6)$ are readily inferred from (2.2):

2(o+1)P (S, , ',W„ps. g')(2L+1)u, g' ea. i——',

(fg) = ds Ch f)(1 s f)f—*(s—,f)g (s,t) (2.4)
0 0

delne the scalar product for functions of s and t. Be-
cause of the orthogonality relation

Bgz,b„~(S'S ~=
2(n+i+1) (2l+1)

it follows that

u„'= (s„',F)

ds(1 s)Jf.„'(s)f—i(s),
0

~blare fi is the lth partial wave:

1

2 —1

(2.6)

(2.7)

The integration in (2.4) is over the Mandelstam
triangle which is enclosed by the boundaries s=0, t=0,
N=O. The corresponding measure is invariant under
s, f, I permutations. The series (2.2) converges to F in
the norm induced by the scalar product (2.4).

The Weyl re6cction 5,& is the transposition of s and
t ib.

W„F(s,f) =F(f,s)

G(s,f) . — (2.8)

The other two transpositions 8'&„and 8'„, are defined
similarly. As F+G and F Gare even and odd und—er
W, &, we regard F as having a definite parity e(=&1)
under 8', g, 8'&„, 8'„, hereafter. This entails no loss of
generality. (The combinations of the scattering ampli-
tudes which are eigcnfunctions of the diferent trans-
positions a,re, in general, diferent. They depend also on
the eigenvalue ~. But, for notational simplicity, we use
the same symbols F, c„' for these functions and their

S '(s, f) =R '(s)Fi(z, )
= (1—&)'F t"+'@(2s—1)Fi(s ) (2 3)

and F &si+' e& and Fi are Jacobi and Legendre polyno-
xnials. Let

(2.10)

This equation shows that Ii will have the right sym-

metry under 5'
p if u, g is a linear combination of the

eigenvectors of the matrix

2(rr+1)(S, ii,W~pS. rz)(2L+1) (2.11)

for a suitable eigenvalue e. Lu, i' must of course be real
if fi is real when s lies between 0 and 1.There are also

constraints on the form of this expansion from the
analyticity of F and the L' convergence of the series (2.2)
which we do not discuss in this paper. $ It may be
emphasized that the problem is fo find u comptefe,

lineariy indePendenf set of eigenuectors toifh s&nPle

orthogonality or biorthogonalify properties. If such were

not the case, any symmetric or antisymmetric poly-
nomial in n, P is an eigenfunction of W o and the
projections of these polynomials onto the space of
S. zz solves the problem (2.10) (cf. Sec. IV).

III. EIGENVECTORS

(a) We first take up W,„.From (2.3) and. (2.1), S„' is
seen to be either even or odd under 8'& according to
%'hcthcr / is cvcn 01 odd. Thc corresponding crossing
matrices in (2.11) are diagonal. Thus we need only re-
strict the sum in (2.2) to either even or odd L to ensure
the right parity of F under 8'&„. This'is a well-known

result.
(b) The construction of the eigenvectors for s4

crossing is a bit xnore involved. We state here three
distinct sets of eigenvectors for these matrices, the 6rst
two of which forxn a biorthogonal system and the last
'one an orthogonal system. The derivations are. post-
poned to the next section. '

' The crossing matrices are related to 4F3 functions (Ref. 1a).
It is amusing that the considerations which follow yield identities
involving +f1's which do not seem to be available in the mathe-
matical literature. Further identities of this sort can be derived
from the properties of the group SU(3). See in this connection,
K. J. Lesuo 'J'. Math. Phys. 8, 1163 (196'/) who a)so expresses
Weyi re8ections in terms of 4F3's. The Weyi group in SV(3) has
been discussed by A. J. Macfarlane, E. C. G. Sudarshan, and C.
Dullemond, Nuovo Cimento 30, 845 (1963); ¹ Mukunda and
L. K. Pandit, J. Math. Phys. 8, 746 (1963);K. J. Lesuo (quoted
above) and further references cited therein.



Biorthogonal System

(—L).—,(~+L—p) 'p.'
(1) L ~'(p s)=(—1)~'

(o'—p)!(o+L'+1)!(o'—L)!L!
(—L).(L+p)!(o—p) '

+s( 1)L+r+p

p!(a+L+1)!(o —L)!L!
P=0, 1, 2, ",Ls~j (3 1)

Much of the notation is explained by the equation

The p's satisfy the orthogonality relations

4-~'(p s) = (—1)'&.-i'(p s)

n.-i'(p, s) = (—1)'~.-~'(p s),
f'.-i'(p) = (-1)'f.-~'(p).

(3.6)

Zf="(p)f.-"()(2L+1)= . (3.5)
I (2t+1)

(c) It remains to discuss W„,. The three sets of
eigenvectors pertinent to these matrices are

2(r+1)Q(S, i',W, (S, r,~) Their orthogonality properties are trivially inferred
from (3.3) and (3.5).

&& (2L+1)5~ r(p~-e) = ef. i'(P~—s) ~ It may sometimes be necessary to know the trans-
formation coeScients between the diRercnt sets of

p is a degeneracy index and j~fTj is the largest integer eigenvectors. The requisite formulas are implicit in the
whlCh GOCS not CXCCCG 2o. ALSO, results of the next section and those of Ref. 1R.

(a) —=a(a+1) (a+r 1), —(e)s=—1.

(~+L+1)!(~—p)!
(2) ~.-~'(p, s) = (L—~),

p!(~+L+1 p)!—
(a+L+1)!p!

+e(L o).—,
(~—p)!(p+L+1)!

rV. DZRIVATroms

(a) The derivation of the biorthogonal system (3.1),
(3.2) will be outlined first. It is known that the Appell
polynomials4

S, . „(2,1,1.,s,t) =F,„,(s,t)

p=0, 1, 2, ",Ls~]. (3.2)

The biorthogonality of the g's with the rt's is expressed

by

(~)'(~)' 'Ls't '(1—s—t)'j
p!(o—p)!

p=o, 1, 2, ~, o,

g 0 1 2 ~ ~ ~ (4 1)
~'(p, s)v. i'(r, s')(2L+1)=2&- L4.+~,.+ j

p, r=0, 1, 2, , L.,"oj.

Note that the last term never contributes if o is odd.

Orthogonal System

f.-"(p)=(-1)'"'X(2 +2)X(S.-",W S.—,)
! 2

—( 1)I
(~—p)!(~+p+1)!

(S, I,~,Iis, , p) =0 if o&o'.

Next wc note thRt

(4.2)

W. ~IF.,..(»t)+sF.—s..(s t)j-
=sCF...—.(s,t)+s~.—.,(»t)j (43)

p=0, 1, 2, .", t
-',~].

Rs %'cll as Sg I, Rre clgcnfunctlons of R pRrtlal dl6er-
ential operator 8 for the same eigenvalue o(o+2).' '
Further, 8 is self-adjoint in the scalar product (2.4)."
So

—o —o 1 1) p=o 1 2 ~ ~ o..
X4Ps(—p, p+1, L o, —o —L—1;— Tak.e the scalar product of this equation with 8, ~' and

use the resolution of the identity
(3 4)

The indices o,L have the usual meanings and p denotes ~(s—s')&(t—t') = 2 Z Z (o'+1)(2L+1)
the eigenfunction with the eigenvalue (—1)&. The defini-
tion of sPs is standard': )&S, s,i(s,t)S, r i(s', t') (4.4)

4ps(—p, p+1, L o, o L, 1;—o, —o—, 1;1—)——

- (—p).(p+1).(L—~).(—~—L—1).

(—~).(—~).(1)"!
=min(p, o—I).

' Batemuri, 3furINscript Project, edited by A. Erderlyi (Mcoraw-
Hill Book Co., New York, 1953), Vol. I, p. 183.

4 Reference 3, Vol. II, p. 2N. See also P. Appell and J. Kampe
de Fdriet, Forictzons Hy pergeometriqees et BypersPheriqles,
I'olylomes dVIermite (Gauthier-Villars, Paris, 1926).

'The operator 6 is de6ned in Ref. la. After e is set equal to
j—s—t and the 8 terms are dropped, it reduces to the differential
operator in Eq. (15), p. 272 of Ref. 4. See, in this connection,
footnote 4 of Ref. 1a.

6 The expansion of scattering amplitudes in a series of Appell
polynomials has been investigated by J. Charap and B. M.
Minton !Queen Mary College Report, 1968 (unpublishedl; and
(to be pubhshed) g.



PARTIAL —WAVE ''CROSSING MATRICES''

and (2.9) or (4.2) to learn that

(20+2)
z'-(p, ~) = (S. z'-Fn.. .+—~F..,.—) (4 3)

Ot

are the requisite eigenvectors. The normalization has
been arranged conveniently. The integrations in (4.S)
can be performed by expanding 5, I,~ in a power series
in s and t ~ and doing the partial integrations indicated
by (4.1).This leads to

(S z'P'-. . -~)

(—L), ,(2~+ 1)!(~+I—p)!
( 1)z+p

L(~—p) 'j'(~+1+1) t(~—I)!I-!

ds dt B(1 s t)s~—t~~—(1 s t)'.—(—4.6)
0 0

f
1

ds Ch8 1—s—t sI'I, ~ i—s—f

It remains to discuss (3.3). But this is a simple
consequence of'0

(Fn.. nE-. ...) =—&..!2(~+1)' (4.10)

and (4.2) and (4.4).
(b) To obtain the orthogonal system (3.4), we start

froIQ

&. ,'(s,t) = R. ,&(N) P,(s), p=0, 1, 2, , 0,
4.110'~0$2000

t'see (2.3) and (2.1) for dehnitionsj which are eigen-
functions of 5"„for eigenvalues (—1)& and eigenfunc-
tlons of 6 for elgenvalues 0'(0'+ 2) . (6 ls invariant under
all permutations of s, t, N.")As before, we see that

f.— '(p) = (—1)"(2 +2) (S.-z', ~.—,') (412)

are eigenvectors of the s-t crossing matrices. Since

(S, ,U, , )=(—1) (S, ,W, Q, , )
= ( 1)z+~(S.—zz, T. ,~), (4.13)

0!p t (0 —p)!
(4 7)

(20+2)!
T, ,~(s,t) =R, ,~(t)P, (s,) (4.14)

to obtain (3.1). and the last scalar product was evaluated m Append&x
The eigenvectors it, z,z(p, z) are associated with the A, Ref. 1a, the result (3.4) follows. Finally, (3.5) can be

second class of Appell polynomials9 derived from"

Ep„,(1,1,s,t)=Ep,, I, (s,t)—
-~ (~+2)-+-(—p)-(p —~).

smtn,

(m!)'(e!)'
p= 0, 1, 2, , 0, (4.8)

which are also eigenfunctions of 6 for the eigenvalue
0 (v+2). The vectors g, zz(p, e) are defined by

'-"(, )= (2.+2)(.+1)!
X (S. z,z, E.,..+eE, „,). (4.9)

The integral can be evaluated by the methods of
Appendix A, Ref. 1a, after 6rst setting

t"=[(1-)"i2"](1-')"
in (4.8).

~ Cf. Appendix A of Rd. 1a.' Cf. Ref. 4, p. 2't0, Eq. P).
9 Reference 4, p. 271.

(U.—.',U.—.') =~,.l(2~+2)(2p+1) (413)

(c) The diagonalization of the st-s crossing matrices
is now easy. To obtain j, zz(p, e), for example, we start
from F,„,(s,N) which is also an eigenfunction of 6 for
the eigenvalue 0 (a+2). A simple change of variables
and the symmetry property Ez(—s,)=(—1)zE&(s,)
yields the answer.
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