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Ultraviolet Divergences in Radiative Corrections to Weak Decays*
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The problem of second-order radiative corrections to general semileptonic weak decays is considered.
Previous results on ultraviolet divergences in the calculations for zero-momentum-transfer P decays can be
proven for the general process, provided that the models of the strong interactions are restricted to renormal-
izable theories of elementary fermion fields coupled to neutral massive vector bosons through a conserved
vector current. A possible method for calculating finite radiative corrections to actual processes is also
discussed.

I. INTRODUCTION

ITHIN the past few years, we have achieved a
compact expression of our knowledge of the basic

low-energy properties of weak leptonic and semileptonic
process through an effective current-current Lagrangian
of what may be called the Gell-Mann' —Cabibbo' form.
This theory embodies universal coupling of leptons and
hadrons through the use of the V—A currents con-
structed from the appropriate lepton 6eld operators and
the V—3 currents associated with the generators of
the chiral SU(3) )&SU(3) algebra of the strongly inter-
acting particles.

Both lepton and hadron weak currents transform
under equal-time conimutation as raising and lowering
operators of an appropriate angular-momentum algebra.
The direction in the space of SU(3) of the neutral
component of the weak hadronic SU(2) is determined
by the well-known Cabibbo angle, 0,.

Neglecting electromagnetic effects, the matrix ele-
ments of the conserved hadronic vector current are
largely determined by the SU(2) symmetry of the
strong interactions, and many matrix elements of the
nonconserved currents can be related to those of the
conserved currents through sum rules' that involve, in
principle, measurable forward scattering of high-energy
neutrinos.

If one wishes to check precisely the universality
postulate for this form of the Fermi interaction, it is
required to verify the cIos8, factor, which relates the
Fermi constant for p decay to the decay constant for
superallowed 0 —+ 0 hadronic P decays, e.g. , 0".To do
this, one must understand theoretical corrections to
these transitions to an accuracy of about 1'Po. Assuming
that the size of the nonrenormalizable higher-order
weak interactions are 6xed by the magnitude of the
weak coupling constant, the relevant corrections are
due to interactions of the charged particles participating
in these decays with the electromagnetic radiation field.
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It is the problem of developing a formalism which will
allow us to calculate finite corrections of 6rst order in
the 6ne structure constant n that concerns us in this
paper. We are, of course, aware that ultraviolet diver-
gences arise in calculations of the effects of virtual
electromagnetic interactions of charged particles for
many processes beyond the restricted class considered
here. However, we consider the calculation of finite
radiative corrections to universal weak interactions, in
the scheme just described, to be a sufBciently interesting
and well-de6ned problem in its own right that it is
worthwhile to ask what, if any, class of theories satisfy-
ing the Gell-Mann current algebra can give rise to
finite second-order radiative corrections. 4

A completely satisfactory theory would be one in
which the radiative corrections to all weak processes
were 6nite. A less satisfactory theory, but one in which
6nite corrections to all measurable effects were calcu-
lable, would be a theory in which the only divergence
was a universal cutoff-dependent number multiplying
the uncorrected matrix element for each transition.
Such an in6nite constant could be absorbed in a uni-
versal and unobservable renormalization of the Fermi
constant, and we would still have 6nite corrections to
the ratios of transition rates for various processes.

We consider that a theory with uncorrelated diver-
gences for different processes and divergences depending
on the values of kinematic variables of the problem to
be unsatisfactory. In this case, it would not be possible
to make a meaningful calculation of electromagnetic
corrections to the originally universal theory. At the
least, one would have to make separate and uncorrelated
infinite renormalizations for different processes.

The 6rst discussion of the implications of the current
algebra for divergences in calculations of radiative
corrections was due to Bjorken. ' Assuming the entire
quark-model algebra for the isospin current, he showed
that the order-n corrections to the Fermi, i.e., polar
vector, matrix element for leptonic P decay of members
of an isomu1tiplet evaluated at zero four-momentum

4 One should ask whether electromagnetic corrections are finite
to all orders in the fine structure constant. The restriction to
second-order effects in semileptonic processes is due to technical
complications in treating the strong and electromagnetic inter-
actions simultaneously. Corrections to y decay at all orders are
discussed in Appendix C.

~ J. D. Bjorken, Phys. Rev. 148, 1467 (1967).
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transfer from the leptons to the hadrons, diverged
logarithmically. The coefFicient of the divergent term
was a universal number independent of the details of
the strong interactions. This result answered certain
questions raised by earlier, more conventional perturba-
tive calculations. ' It is well known that, in the point-
coupling version of the weak interaction, the radiative
corrections to p, decay are 6nite while the corrections to
neutron P decay, calculated in the assumed absence of
strong interactions, diverge logarithmically. It had been
suggested that the strong interactions might supply the
required convergence factors for these corrections. ~ If
one truncated the sum over virtual intermediate states
inherent in the second-order interaction with the
radiation 6eld and assumed convergent form factors for
the hadron-photon vertices, it was possible to render
the corrections 6nite. Bjorken showed that the existence
of a local current algebra implies that completing the
sum over intermediate states must restore the diver-
gence of the original perturbation-theory calculation.

Abers, Norton, Dicus, and Quinns generalized
Bjorken's derivation, and showed that it followed from
only the local SU(2) algebra for the time components
of the isospin current. Motivated by a desire to ob-
tain finite radiative correction~ in semileptonic processes
analogous to those obtained for the four-point inter-
action in p decay, several authors' introduced specific
models of the hadron currents for which a further
divergence in the axial-vector transition induced by
second-order electromagnetic eR'ects cancelled the
in6nite terms previously mentioned, and yielded an
over-all 6nite result.

Sirlin'0 showed further that the introduction of
charged vector mesons to mediate the weak interaction
in a conventional way leads to a universal divergence in
the radiative corrections for the Fermi matrix element
at zero momentum transfer in p decay and semileptonic
processes. The result depends only on the model-
independent SU(2) algebra of the time components of
the current. This is, of course, an example where correc-
tions to relative rates can be taken as 6nite,

%'e emphasize that all the results summarized above
were derived in the restricted case of spin-averaged
matrix elements for decays between members of an
isomultiplet at zero momentum transfer. It is to the
problem of extending these results to general semi-

leptonic processes that we address ourselves in this

6 See S. M. Berman and A. Sirlin, Ann. Phys. (N. Y.) 20, 20
(1962), and references cited therein.

~ See, e.g., G. Kills, Nucl. Phys. $1, 225 (1967).This calcula-
tion, however, is not gauge-invariant. %e discuss a gauge-
invariant prescription for calculating model-dependent effects in
Sec. IV.
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paper. What new ingredients enter the problem when
one considers processes involving axial as well as polar
vector currents, strangeness-changing as well as strange-
ness-conserving currents, and when one considers
processes at arbitrary momentum transfers The limit
q„=o may be a good approximation if one considers
deca, ys among members of an isomultiplet, but not if he
considers decays with large Q values, such as E~ a

+p+v, or considers neutrino-hadron scattering in the
crossed channel.

In order to formulate precise criteria for answering
these questions, we find it advantageous to use the
conventional renormalization techniques of the Feyn-
man-Dyson formalism. In particular, to ensure that the
strong-interaction theory exists, at least to every 6nite
order of perturbation theory after renormalization, we
assume a renormalizable theory of hadronic matter.

It then appears that to generahze the Bjorken et al.
results on radiative corrections to P decay we must
impose quite stringent requirements on the theory. The
only renormalizable models of strong interactions f'or
which second-order radiative corrections to relative
rates of general semileptonic processes are finite are
theories in which the SU(3)XSU(3) currents are con-
structed from bilinear combinations of spin-~ 6elds and
the fermions interact via neutral vector mesons coupled
to a conserved vector current. "Chiral SU(3)XSU(3)
may be broken only by mass terms, so that the bosons,
in fact, must couple to the baryon number current.

This seems necessary and sufhcient to ensure that
the divergence in semileptonic processes is a universal
number. If we want to render the corrections finite, so
that one can calculate corrections to hadron-lepton
un&versality, we are required further to impose special
relations for the equal-time commutators of the spatial
components of the hadronic currents as proposed in the
papers of Ref. 9.

One may ask whether the models thus described have
any claim to physical reality. Since we are unable to
calculate detailed dynamical eGects in this or any other
strong interaction theory, we can not answer this
question. It is interesting that there is at least one model
in which the results of Refs. 5, 8, and 9 can be
generalized, but it seems that the simplicity and model
independence of the results of the original papers are
restricted to the special transitions considered there.

The outline of the paper is as follows. In Sec. II, we
present a modi6ed version of the derivation of Abers
et a3. for the genera1 case. It is shown that a particular
relation LKq. (2.6)j is required in order to eliminate the
ultraviolet divergences. Assuming the required relation
to be valid, we comp1ete the derivation.

The crucial relation, a sort of sum rule for the electro-

"Radiative corrections to P decay in this model have also been
discussed by C. G. Callan, $r., Phys. Rev. 169, 1175 (1968).Our
conclusions agree with Callan's, We wish to acknowledge hearing
a helpful semina, r by Dr. Callan during the course of our investi-
gations. Our discussion difTers from his in the technical details of
our derivations.
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magnetic renormalization of the vertex of a general
hadron current, is discussed in Sec. III. We derive the
required result for the class of theories described above,
and give simple counter-examples in low orders of
perturbation theory for other models. Thus, we show
that the restrictions imposed are both necessary and
sufricient for the desired result. As a by-product, we
prove the Ademollo-Gatto theorem directly in rela-
tivistic perturbation theory. In conclusion, we discuss
our result and indicate how realistic calculations of
radiative corrections might be carried out if ultraviolet
divergences are presumed to be absent.

Some details of the derivations are elaborated in the
Appendices. In Appendix A, we show that the particular
kinematic limit that is useful for deriving Ward
identities in the text yields the entire radiative correc-
tion for a vertex function, automatically including the
correct contribution from the wave-function renormali-
zation of the external lines. Appendix 8 contains some
details associated with the results proved in Sec. III.
In Appendix C, we prove that if a four-vector current is
conserved except for mass terms in the Lagrangian, then
the renormalization of the vertex functions for both the
current and its divergence are 6nite. This result im-
mediately yields as a corollary the known result' that
radiative corrections to p, decay in the four-point Fermi
interaction are 6nite to all orders of the fine structure
constant.

II. OUTLINE OF THE CALCULATION

In this section, we essentially review the derivation
of Ref. 8 and point out the relation that must hold if

(a)

M~=-,'(Z,—1)M', (2.2a)

Gp —ie'
M'= d4k D p(k)

K2 (2)r)4

f 1
xl N(i)v. vi(1 —~~)l(v) l)l—k—m,

X Tpy'"(k, —
q
—k), (2.2b)

Gp —$8
M'=

l N(l)y), (1—y()N(v)) d'k D p(k)
v2 2 (2%.)4

X T pi-"(k, —k, —q), (2.2c)

where Z, is the second-order lepton wave-function
renormalization and D p(k) is the photon propagator.
The hadron amplitudes appearing in M' and M' are
de6ned by

)'x; (i, —g) = if dx e"'(—B(p')
~

X T*(Jp'(x)/), "(0))
l
A (p)), (2.3)

we are to achieve finite radiative corrections to general
semileptonic processes. We consider a weak scattering
v+A —l +8-, where A and 8 are the initial and final
hadron states, respectively, / is a negatively charged
lepton, and u is its associated neutrino. The choice of
charge label for the lepton is for convenience only and
to avoid having to write extra symbols describing the
charge degree of freedom in our equations.

Neglecting electromagnetic efFects, the matrix ele-
ment for this process is

M'= (Gv/v2)u(l)yg(1 —ys)N(v)

x(~(p') l~,-(0) IA(p)). (2.1)

Gp is the Fermi constant, the I's are lepton spinors, and
Jq" is the Cabibbo current.

For the four-point interaction theory, there are three
diagrams contributing to second-order electromagnetic
eilects (Fig. 1).In correspondence with Fig. 1, we write

FIG. 1. Second-order electromagnetic
corrections to a general weak semileptonic
process.

(b)

T.x (i —). —q) =fdxdy x'~ '-"

X(&(p') I T'(~-'(~)~p'(3)~i" (0)) I A(P')), (2 4)

where T* denotes the covariant ordered product. We
have suppressed the variables p and p' in our symbols
for these amplitudes since they do not enter explicitly
into the relations we will derive. It is straightforward
to verify that the sum of these corrections is gauge-
invariant. That is, if we write

(c)
then

()M=M'+M'+M'= dk D p(k)M„p(k),

k kpM p=0.
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We use this freedom to work in the Feynman gauge. If
D s(k) =g s/k', then the divergent contribution from
Fig. 1(b) is

6 —ie2 d4k
~S(div)— u(l) (ky —2k.)yg(1 —ys)N(v)

K2 (2s)4 k4

XT g'"(k —k —
q)

G —ie2 d4k

(2uyg(1 —yg)N(B~ Jg ~A)
K2. (2~)4 k4

+ukyg(1 y,)uT—„'"(k,—k —
q)

+kN&[v. ,v~7(1 —v~)N

X T,g'"(k, —k —q)) . (2.5)

Under restricted conditions to be discussed in the
following section, the di~ergeet contribution from M' is
given by a generalization of a result of Refs. 5 and 8.

The last line of this equation is derived from various
field-theoretic models of the currents. We have used
the abbreviated notation

J"(q) = (fl(P')
I J."(o)

I
A (p))

J)," refers to the corresponding matrix element of the
piece of the weak current constituted from the terms
bilinear in the fundamental Fermi fields only. &=&1
and denotes the chirality of the weak current; Jy"
= V+eA. (Q) denotes the average charge of the spin-2
particles forming the isospin current, which we suppose
to transform as members of SU(3) triplets. If there are
no fundamental charged mesons in the theory, then

To use the result (2.7) in our integrals, it is necessary
to assume further that the time-ordered product is, in
fact, the appropriate covariant matrix element. Then
the result above has the unique covariant form

lim T ),
' (k —k —

q)
( kp f~oa, f k( fixed

f
d4k

T y""(k —k —q)k'
1

=—k J),"(q)+k&J "—
k'

k k),
k J"(q)

k2

d4k 8
T '"(k, —k —q)+ (finite terms)

k' Bk),

d4k
=2 k&T '"(k, —k —q)+ (finite terms) . (2.6a)

k'

Then, we have

6 —ie2 d4k
~c(div)— [Nk(1 —yg)N7

v2 (2s)' k'

XT '"(k, k —q). (2.6b)

This cancels the corresponding term involving the
trace T '" in (2.5). The only remaining divergent term
depending on the details of strong-interaction dynamics
is the last term in (2.5) which involves the part of
T ),'" antisymmetric in the indices n and A, . To evaluate
the divergent contribution from this term, we resort to
the techniques suggested by 3jorken. '

The asymptotic behavior of the time-ordered product
of two currents in the limit (k0~~00 ~lr~ fixed is given
by an elementary application of the Riemann-Lesbesgue
lemma as

i dx e"—*(B~T(J~'(x)Jg"(0)) ~A)
/ Isp /~oo

1
d'x e-s' *(8

~
[J.~(x,0),J,"(0)7~A)

ko

1
=—(g.d ),"(q)+J."(q)g~o

—g.og~oJo-(q)
ko

+gaag~pPbe Jo (q)+e(Q)e;&7,Ja"(q)7) . (2.7)

(k kg
+l —g-. Ik &"(q)+ &Q) .'pk Jt "(q) (2 g)

k k'

Under suitable smoothness assumptions, ' the matrix
element in the Sjorken limit gives the correct divergent
terms in our photon integrations. With this result we
can evaluate the remaining divergent term. Combining
all the contributions, one has

—ie2 d4k

$Jfdiv—
(2m.)4

X-,'(M'+2&(Q)M') . (2.9)
k'

"Examination shows that the integration region for the virtual
photon loop does not coincide with the kinematic region included
in the Bjorken limit. To show that the asymptotic form (2.8) gives
the leading contribution in the region of interest, it is sufBcient
that the amplitude T„p as an analytic function in the energy plane
(a) satisfy a dispersion relation with a Qnite number of subtrac-
tions, and that (b) be polynomially bounded in k2 on the cuts.
S. B.Treiman and G. Tiktopoulos (private communication).

M' is defined in (2.1) and M is the corresponding
matrix element with the weak current J),", replaced by
its fermion part J),". There are at this point various
choices to get a more or less satisfactory result.

In Sec. III, we show that the simple formula for
M'& ' & is valid if, and only if, there are no fundamental
charged bosons in the theory. Therefore we will have
Jq"=Jq". The divergence for radiative corrections to
semileptonic processes is a universal factor multiplying
the uncorrected matrix element which can be absorbed
in a universal infinite-charge renormalization of the
Fermi constant for semileptonic processes. Finite rela-
tive corrections to such transitions can be calculated,
but one cannot, in this approach, compare the correc-
tions to p decay with those to hadronic P decays.
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By inspection of (2.9), finite radiative corrections in

models with currents composed of fermions are achieved
if their charges are chosen so that

«(0)= —o.

If the weak interaction is taken to be mediated by an
intermediate vector meson, then the result (2.6)
generalizes Sirlin's result to an arbitrary current at
q =0. There is a universal multiplicative divergent
factor which depends only on local extension of the
equal-time commutation rules for the time components
of the weak and electric currents. For nonzero mo-
mentum transfer, however, new model-dependent cut-
oR'-dependent contributions arise for the boson-medi-
ated interaction. These are related to the singular inter-
actions of the intermediate bosons with photon@.

III. ELECTROMAGNETIC RENORMALIZATION
OF A WEAK HADRONIC CURRENT

We have now to deal with the relation (2.6) which is
equivalent to discussing the electromagnetic renormali-
zation of the hadronic weak-current vertex.

8J«"= &f4k D p(k)T p«-"(k —k —q). (3.1)
2(24r)4

Ke will de6ne the amplitude T pq in the expression
above by the limiting procedure

T p),-"(k, —k, —q)

=hm T p«""(k+», —k, —
q
—»). (3.2)

The reason for this artifice is that the amplitude thus
defined includes the proper contribution to the vertex
correction from the wave-function renormalization of
the external lines and no extra contributions or cancella-
tions need be put in by hand. It is clear that the limiting
process can a8ect only those terms whose value is
ambiguous at If.=0. This includes only electromagnetic
self-energy insertions on the external lines. The virtues
claimed for this procedure are proved in Appendix A.

Kith this definition we can derive the following
Kard identity":

(q+»)"T p«" (k+» —k q «)——
=M p"~(k+», —k, —

q
—«)

+T p'~(k+» —k —
q
—»)+T p (k+q —k) (3 3)

where 3f p" is defined in analogy with T p"" except
that the weak current Jg" is replaced by its divergence

» A related approach is described in the last paper of Ref. 8.

A form which will prove useful is obtained by
differentiating with respect to a'.

8
T p«""———(q+«)' T po- (k+» —k —

q
—»)i

8Kg

8
+ ~ p""(k+», —k, —

q
—»)~.=o

OKER

8
+ T p'"(k, —k-q). (3.3')

Bky

In order to derive the generalized renormalization
formula, it is required to show that the entire divergent
contribution, which arises when this amplitude is
contracted with the photon propagator and integrated
with respect to the photon loop momentum, comes from
the last term in Eq. (3.3').

Ke note, incidentally, that the original result of
Abers et al. follows inilnediately from the expression
given above. Recall that we are referring to the case
when q=0 and BqJq=0. Then the second term on the
right is absent. The 6rst term has an explicit factor
of ~~. In the limit If: —+ 0 the only nonvanishing contribu-
tion comes from electromagnetic self-energy insertions
on the external legs. A simple calculation shows that
one obtains from this term precisely the second-order
electromagnetic mass-shift insertions on the external
lines.

In the general case, some care is needed in de6ning
what we mean by the radiative correction to the vertex.
The expression (3.1) includes such effects as electro-
magnetic corrections to the masses of internal and
external hadron lines and to coupling constants for the
strongly interacting particles. In limiting our attention
to ultraviolet divergences for purely weak processes, we
wish to exclude possible divergent contributions from
internal mass and coupling-constant shifts. In order to
do this, we must renormalize these electromagnetic-
mass and strong-coupling-constant corrections. Since we
work only to second order in the interaction with the
radiation 6eld, both the self-masses and the coupling
constants can be renormalized by additive counter-terms
which are local polynomials in the 6eld operators of the
fundamental hadrons. Ke denote these local counter-
terms by the collective symbol bg(oo). Then the correc-
tion to the vertex function from the counter terms (CT)
can be written as

gg, &or&&, g „)= &f4+~-'&.+)'

X(&~ T(J«"(*)&t(o))l~) (3 4)

If we assume that

V.-(*,0),~~(.,0)j=~ ( —y)«,0),
where 8(x) is some local operator, then we can derive
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from (3.4) an expression analogous to (3.3):

8
bJ«"& T&(q,0)= —(q+»)' 6J«"I: T&(» —

q
—») ( g=e

BKg

a
+ M"&oT&(», —

q
—») j. e. (3.5)

BKg

M"&cT~ is the counter-term correction to the vertex
function of the divergence of the weak current. The
radiative correction to the weak vertex itself is de6ned as

with

XD.p(k) T.p'"(k, —k—q), (3.6)
Bkg

M
Ay= llIIl d4k

s-+0 2(2~)4

8
XD s(k) —(q+«)'- T pg-"(k+» —k —

q
—»)

BK)t

8—(q+«)' — -Jp& &(», —
q
—»), (3.7a)

BKg

—ze2

8),= lim de' 2(2s)'

8
XD p(k)- N p- (k+», —k, q «)——

BKy

8
-M"'oT'(«, —

q
—»). (3.7b)

BKy

K

l

Yv

xSg

Fxo. 2. (a) General form of the two-photon contribution to A«.
(b) Type of diagram u'IJsent in the kernel E. (c) Counter-term
contributions to A),.

lcsult. This ls most caslly scen from simple 6cld-theory
examples. Consider the decay s+ —+s'+e++v in a
world of non-strongly-interacting pions. The relevant
decay matrix element including radiative corrections
has the form

G
M= —e(l)y«(1 —y«)N(~)

K2

It is our task to 6nd the conditions under which Aq and
Bg arc Gnite.

We first note the contribution of the counter-term
corrections to the zero-momentum-transfer vertex for a
current conserved by the strong interactions. The
second term on the right of (3.5) is absent. At q«=0,
the only surviving contribution comes from possible
insertions of the interaction vertex Bg on external legs.
These are just mass shifts on external lines and cancel
the corresponding terms found in (3.3) in the same
limit.

Note that this is a direct proof in relativistic pertur-
bation theory that the first-order contribution of a local
symmetry-breaking interaction bg(z) does not con-
tribute to the charge renormalization of an otherwise
conserved current. This ls thc w'cll-knowll theoleTIi of
Ademollo and Gatto."

We further note that theories with fundamental
charged spin-zero bosons will not yieM the desired

~ M. Ademollo and R. Gatto, Phys. Rev. Letters 13, 264 (1965).

where we have used the names of the pions for their
momenta and f+, f are invariant form factors. A simple
perturbation calculation shows that the second-order
radiative corrections to f+(0) give just the result of
Bjorken et a/. However, it is also found that f (0),
which is induced only when we introduce electro-
magnetic CGects, is also logarithmically divergent. This
term is not seen in previous calculations where the
kinematic factor (a+—e')« is taken as zero. It therefore
appears that theories with fundamental charged spin-
less particles will not permit a simple generalization of
the q),

——0 result to general momentum transfer.
Thus, we are restricted at this point to theories of

charged spin--, particles interacting with neutral bosons.
In this case the weak current is bilinear in the Fermi
fields. This leads to the conclusion that Aq is 6nite.

Consider the first term on the right-hand side of
(3.7a). The factor (q+»)&, may be neglected here. In
T sq(k+», —k, —

q
—») the momentum « is brought in

by the weak current J~" and carried out by the electric
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current J '. For every diagram, some route for the
momentum to Qow along lines from the weak vertex to
the charge vertex can be found which will satisfy the
following properties: The derivative 8/Bai, acting on
T p& electively inserts a zero-momentum-transfer
vector vertex on lines along this path. The resulting dia-
grams sum to give a contribution which is indicated
symbolically in Fig. 2(a). Here Fq is the proper weak
vertex to all orders in the strong interaction; the full
propagators on the fundamental fermion lines with loop
momenta p+/, p'+I+~ are included in the kernel.
The crucial fact about the scattering kernel E is that
it can not be divided as shown in Fig. 2(b) with the
two photons to the left and the new vector vertex to
the right of a two-particle intermediate state. There-
fore, by standard power-counting arguments, all loop
integrals over / enclosing the weak vertex are super-
ficially convergent.

Any divergences that arise when we integrate over
the virtual photon momenta must be electromagnetic
shifts to masses or strong-coupling constants in the
kernel E. The strong and electromagnetic corrections
to the new zero-momentum vector vertex insertions are
shown in Appendix B to give rise to no new infinities.

By the same argument the counter-term contribu-
tions to Az are symbolized by the diagram of Fig. 2(c).
The kernel E' has no two-particle intermediate state to
the left of the zero-momentum vector vertex. The self-
mass and coupling-constant corrections of Fig. 2(a) are
in one-to-one correspondence with the counter-term
insertions of Fig. 2(c). Therefore, all ultraviolet diver-
gences associated with the photon loop integration are
cancelled by the counter terms. There might remain
divergent fine-structure-dependent contributions to A),
if the strong renormalization of the weak vertex was
formally divergent in our theory. We show shortly,
however, that the elimination of unwanted divergences
in photon loop contributions to the terms we call Bq
further restricts the theory to exclude such a possibility.

The singularities of Bz may be analyzed in the same
way as those of A~ if the divergence operator B,J," is
bilinear in the Fermi fields. This happens if the only
terms in the Lagrangian which break the chiral SU(3)
)&SU(3) invariance of the theory are mass terms. Non-
invariant interaction terms yield contributions to 8 J,"
which are trilinear in the field operators, The corre-
sponding vertex corrections are superficially linearly
divergent, and the single di6'erentiation with respect to
~ is not su%cient to remove divergences in photon loop
integrals encircling the weak vertex. A simple example
is given in Fig. 3 for a theory with a yPP& interaction.
P is a spin- —', field; g is a scalar field. The requirement of
a chiral, SU(3) )&SU(3)-invariant, renormalizable inter-
action restricts us to the case of neutral vector bosons
coupled to the baryon number current. For such a
theory, the strong renormalizations of the vertices for
the weak currents and their divergences alp finite, as

FIG. 3. Divergent contribution to B7, in theory vvith scalar bosons.

shown in Appendix C. Thus, we 6nd ourselves able to
prove the validity of the formula

gj ur(div)
—Ze

2 (2ir)4

for all currents only in the restricted class of models
described above.

IV. CONCLUSIONS

We have achieved an extension of previous results on
general behavior of ultraviolet divergences in radiative
corrections to weak processes, but only at the cost of a
severe restriction on the field-theory models for the
strong interactions we may consider. The original
result of Abers et a/. imposed no such restrictions, not
even that of renormalizability, which we found neces-
sary in order to have a well-defined framework in which
to discuss the problem. The generality of the original
result must appear as rather an accident.

The question arises as to what lessons for the actual
calculation of physically meaningful quantities can be
extracted from the preceding theoretical discussion. We
would suggest that a tenable optimistic point of view is
the following.

We have shown that even in the context of the four-
point Fermi interaction it is possible to achieve finite
second-order radiative corrections to P decay. If we have
a theory without ultraviolet divergences, we might then
assume that contributions from photons of large virtual
momenta are unimportant.

Sirlin has shown how to define and isolate the
infrared-divergent terms in a gauge-invariant and
model-independent manner. These terms are collec-
tively ultraviolet-convergent and include wave-function
renormalization on the external lepton line. One could
add model-dependent corrections to this calculation by
keeping a finite number of virtual states in the hadronic
contribution to the decay amplitude. The photons are
coupled to these states in a gauge-invariant manner and
the electromagnetic vertices of the hadrons are supplied
with form factors to render these contributions 6nite.
Since these corrections will be dominated by virtual
photons of fairly low mass (the form factors give an



19/2 G. PREPARATA AND W. I. WEISBERGER 175

effective cutoff of a few Gev), it is reasonable to treat
the four-point Fermi interaction as exact even though
it is known that it must acquire intrinsic structure at
momentum transfers of a few hundred GeV. Some
applications of this approach are presently under
investigation.
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The last step follows from the standard Feynman-
Dyson de6nition of the proper self-energy part. A
similar result obviously holds for the self-energy
insertion on the other external line.

Thus we see that our limiting procedure gives the full
self-mass insertion on the external line, but only 2 of the
wave-function renormalization correction, which is the
desired contribution to the vertex correction.

APPENDIX A

We wish to justify the definition of the vertex re-
normalization given by the z-limiting process in Sec. III.
It is clear that the definition

T.pp-"(0, —0, —q)=lim T p),-"(0+«, —0, q «)——
a~o

can affect only terms whose definition is ambiguous
when ~=0. These are precisely the electromagnetic
insertions on external legs.

The first term is, for example, defined by

T p),
n&"")=Z ))'(p', —p' —K;k+K, —k)

XS„(p+K)I'),"(p'+K, —p),

where Sp is the renormalized Feynman propagator.
The two photon lines are to be contracted with the

propagator D p and integrated over the loop momen-

tum, That is, the contribution to the weak vertex is

bJ), (q)=lim d4k D,))(k)T~pP(k+«, k) —
q
—«). —

z~o

The answer requires an expansion of Z up to terms of
first order in ~. By TP invariance, it follows that

Z.p(P', —P' —K; 0+K, —k)
=Zp. (P'+K, —P'; k, —k —«).

Since the photon propagator is symmetric in the
indices n and P, and since we need only 6rst-order terms

in a, we can write, inside the k integral,

Z p(P', —P' —K; k+K, —k)

=-', pZS (p', —p' —K;0+K, —k)

+& p(P'+K, —P';k, —k —«)]

=2t~-t(p' p' » —&)—
+Et)))(P +K) —P K) I+K) k —K)].

Using the translation invariance and the spherical

FIG. 4. Vector-vertex insertion
on g, boson line.

APPENDIX B

We show that the zero-momentum vector vertex
insertions introduced by the derivation with respect to
~ suffer only finite renormalization from both the
strong and electromagnetic interactions, and, hence,
introduce no additional divergences into the calculation.
The only primitively divergent diagrams with the
vector insertion are those with either two external boson
lines or two external fermion lines.

Consider first the insertion on a meson propagator
as shown in Fig. 4. The strong renormalization of this
diagram is finite. In fact, the contribution of such a
diagram is

8
Ag(q) = D'(q),

Bg)),

where D'(q) is the full propagator for a spin-0 meson;
in the case of a vector meson both A and D' have two

additional four-vector indices and the argument is

unchanged.
From renormalization theory, we know that we can

define a finite renormalized propagator by

D'= Z~(q),
where Z is a cutoff-dependent number and D is the

finite renormalized propagator. Thus, the derivative

acts only on the finite renormalized propagator and the
factor Z is absorbed in the charge renormalization of
the vertices at either end of the boson line.

The electromagnetic renormalization of this insertion

is given by the derivative of the diagram shown in

Fig. 5(a) as well as in the corresponding counter-term

diagrams of Figs. 5(b) and 5(c). Assuming strong re-

normalizations to have been carried out, we differen-
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tiate the Grst of these terms to obtain

8
D(q)8m p(q, —

q
—~;k+~, —k)D(q+~)

BI(.'g

=D(q) %r s(q, —
q
—z; k+))., —k) D(q)

BKy

8
+D(q)&-s D(q).

Bgg

The virtual photons are contracted with a photon
propagator D t)(k) and integrated. Then arguments
analogous to those of Appendix A give the resulting
self-energy parts as

&~(a )).=a= fd% D p(&)~ .~l.=a

=l)m' —Z '"'D '(q)+6nite terms

8
5s (q, ~) I

„0=——',Z~"" D '(q)+finite terms.
Bgy

(b)

(c)

'', K

I&K

q+K

qtK

—2Z ""is just the multiplicative factor which gives
the meson line contribution to the electromagnetic
renormalization of the meson-fermion coupling con-
stant. Thus Fig. 5(a) gives a net divergent contribution

8
D(q) --'Z "- D '(q) D(q)

Bgy

8
+DI bm' —Z " D'(q) ~D(q-)

Bgy

=D(q)l S D(q)+(—-', Z„"-)
I D(q)

Bqy i aq),

It is clear that these insertions will be cancelled by the
diBerentiation of the corresponding counter-terms of
Figs. 5(b) and 5(c).

The vector vertex insertions on a fermion line can be
discussed in a similar manner. The strong renormali-
zation problem is trivial since the di8erentiation is
equivalent to inserting a low-energy vertex for a con-
served current which suffers no renormalization by the
strong interactions.

As for electromagnetic corrections, it can be shown
that fermion diagrams corresponding the meson line
insertions of Fig. 5 combine in a similar way to cancel
their divergent parts.

APPEN'DIX C

We prove here that if a current is conserved, except
for mass terms in the Lagrangian, "then the renormali-

"It has been suggested by K. Wilson {private communication)
that such a current be called in general a partially conserved
current. We adopt his terminology here.

FIG. S. Two-photon and counter-term corrections to boson lines
on which zero-momentum vector vertices may be inserted.

zations of both the current and its divergence are Gnite.

The former result is well known and can also be proved
order by order in perturbation theory. This result is

sufhcient to show that the electromagnetic corrections
to p decay in the four-point Fermi theory are Gnite to
all orders of the Gne structure constant.

We consider the vertex of a current between two

states e and b with quantum numbers of the funda-

mental Gelds in our theory. The generalized partial-
conservation assumption implies that these are spin-,
Ge1ds. One derives straightforwardly the following Ward
identity:

t 1i (1
(p'-p)"r. "(p',p) =y. s '(p')I I-

I Is '(p)
Ep~) Lysi

+D"(p' p)

where I'q~ is the proper vertex of the current, D~' is the

proper vertex of the divergence, S~ and S are the
unrenormalized propagators of the particles 6 and u.
The multiplicative factors 1 or 75 refer to the two cases
of a polar-vector or axial-vector current, respectively.

The generalized partial-conservation assumption im-

plies that 8),J),(x) as well as J), itself is a bilinear local

product of Fermi fields. Therefore, the proper vertex
functions for both the current and its divergence are
rendered Gnite by a single multiplicative renormaliza-

tion. Following the standard Dyson procedure, we
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de6ne 6nite renormalized vertices and propagators by with respect to thc cutoK This yields

1"~"(P,P) =—f'~"(P',P)

1
o=f" b(Zr/Zs')~s '(P')I

Ep,i

Di"(P',P) = D"(P',P)
Zg)

ss(P') =zs'ss(P')

S.(P) =Zs ~.(P).

All the renormalized quantities denoted by the tilde are

6nite and cuto6-independent. The over-all renormali-

zation of thc weak current and its divergence are 6nite if

Zi/g(Zs'Zs ) and Zn/g(Zs'Zss) are respectively

finite, that is, independent of any cutoff.
To prove this is so, wc substitute for the renormalized

quantities in the Ward identity and take a variation

-h(Z, /Z:) ~; (P) +h(Z/Z )D"(P',P).

By evaluating this expression with b or u or both on the
mass shell, one 6nds

8(Zr/Zs') = b(Zr/Zs') = b(Zr/Zn) =0.
Thus, the ratios of these renormalization constants are

independent of any cutoR's and hence 6nite, and the
combinations Zr/g(Zs'Zs ) and Zn/4(Zs'Zs )
6nite.

It is well known that the four-point interaction for

p, decay can be rewritten by a Fierz transformation as
a V—A interaction between the charge-retaining

currents. By the preceding theorem, the electromagnetic
renormalization of such a p-e vertex is 6nite to all

orders. This is, of course, not a new result, '
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Eigenvectors for the Partial-Wave "Crossing Matrices"
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Let a, b, c, fg be spinless particles of equal mass, and consider the process a+9 —+ c+d. It was shown else-

where that the crossing symmetry of the scattering amplitude for such a process implies an in6nite number

of 6nite-dimensional "crossing relations" for the associated partial waves. In this paper, we derive explicit

expressions for complete orthogonal and biorthogonal sets of eigenvectors of the partial-wave crossing

matrices. The general form of a partial wave which is consistent with crossing symmetry is thus determined.

L INTRODUCTION

" 'N a previous paper, " we considered the process
~ - a+6 —+ c+d, where a, b, c, d were spinless particles

of equal mass. The scattering amplitude Ii of such a

process was expanded in terms of eigenfunctions which

displayed its dependence on all thc Mandelstam vari-

ables. It was shown that the crossing symmetry of Ii is

equivalent to a sequence of 6nite-dimensional "crossing

relations" for the partial waves.

Here we study the spectral properties of the partial-

wave crossing matrices arid construct their eigenvectors.

With the aid of these eigenvectors, it is easy to state the

~ Supported in part by the U. S. Atomic Energy Commission.

t Supported by NDEA Fellowship.
' (a) A. P. Balachandran and J. Nuyts, Phys. Rev. 172, 1821

(1968}; (b) A. P. Balachandran, W. I. Meggs, J. Nuyts, and P.

general form of the partial waves which is consistent

with the crossing symmetry of F. Section II sulnmarizes

the pertinent results from Ref. 1a. The eigenfunctions

are tabulated in Sec. III together with their orthogo-

nality and normalization properties, Section IV sketches

the requisite derivations.
In a forthcoming paper, ' the eigenfunctions asso-

ciated with the expansion of F (as well as the eigen-

vectors of the crossing matrices) will be identi6ed with

a subset of basis vectors of certain irreducible repre-

sentations of the group SU'(3). The partial-wave

crossing matrices that we discuss here are the matrix

elements of the Acyl reQections between these vectors,

Ramond, International Center for Theoretical Physics XCTP,
Report No. IC/68/46 (unpublished}; and Phys. Rev. (to be
published); (c) see also A. P. Balachandran and J, Nuyts (to be

published}.


