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A model of the pion and nucleon form factors is studied in which the isoscalar nucleon form factor is
dominated by monopole » and ¢ mesons, and the isovector form factor by a dipole p meson. The predicted
form factors are in good agreement with the data. The experimental p-, w-, and ¢-meson masses and the
nucleon magnetic moments constitute the only numerical input in the model.

ECENTLY,! the implications of assuming that the
p meson has a dipole structure have been investi-
gated for the nucleon form factors and xIV charge-
exchange scattering. It was found that the dipole p
meson provided an explanation of the 1/¢* falloff of the
nucleon form factors confirmed by the new measure-
ments performed at SLAC? The =V charge-exchange
scattering and a nonzero polarization were explained
on the basis of a Regge dipole model of the p meson,
which also satisfied the superconvergence relations. In
the following, we shall extend our predictions of the
form factors by taking into account the isoscalar con-
tributions due to the w and ¢ mesons. We shall assume
in our model that the » and ¢ mesons are simple poles
and that the p meson is a dipole. A dipole Lee model has
been constructed by Bell and Goebel® in which the
dipole nature of a resonance in momentum space arises
from a process of the type p; — p: — 2w, where the p;
and p; are mass-degenerate and there is a cancellation
of the single-pole residues for this process, because of
a particular relationship between the coupling constants.
The p meson may be explained in terms of such a mass
degeneracy, and we adopt the attitude that the » and
¢ mesons do not satisfy this type of degeneracy
condition.*
The proton and neutron form factors are defined in
terms of isoscalar and isovector contributions by

Ge,u?=%(Ge,+Geu"),

Ge,u"=%(Ge,u%—Gr,u"),

where Gg?(0)=1, Gg"(0)=0, Gu?(0)=p,=2.79, and
Ga™(0)=pn=—1.91.

* Supported in part by the National Research Council of
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We assume that the form factors obey the unsub-
tracted dispersion relations

1pr°  ImGgus(g?
G () =— f —2 e, o
. (3my)2 qlz+q2
Con¥ (@) 1[” IHIGE,MV(q,z)d( 2) @)
¥ (@) =— ——d(g?).
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The absorptive parts are taken to be dominated by the
dipole p meson and single-pole w and ¢ mesons such that

ImGe,%(F)=TRub(¢F—m)+ 7RO (F—mg?) (4)
and

ad
ImGg,u" (%)= Tde—(T)5 (¢P—m,?), ©))

q
where R, R4, and R, denote the corresponding resi-

dues. By assuming that Gg,° is superconvergent, it
follows that R,+Rs=0, and we obtain the results:

G () Gra’©) (©)
E,M = )
(A+¢/md) (1+¢/m)
Gg 7 (0
Grarr (@) =2 O )

(1+¢/m,*)? .
In view of Eq. (1) and the normalization conditions
at the origin, this leads us to the predictions for the pro-

12

G

;S.AC DATA FOR Fp Gomp

EMPIRICAL DIPOLE

Gemp
o8

0.7]

0.8

10
q2(BeV/c)?

F1e. 1. Predictions of Gr?/Gemp, Gu?/(upGemp), and G/
(#1Gomp) compared with the experimental data for Gu?/ (11;Gemp)
presented in Ref. 2.
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Fi6. 2 (a) Prediction of Gy?/u, compared with the SLAC data
for GuP?/up in Ref. 2. (b) Prediction of Gg* compared with the
neutron form-factor data shown in Ref. 5.

ton and neutron form factors

Ge*"(¢%)
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where the plus and minus signs refer to the proton and
neutron form factors, respectively.

The only numerical input in our predictions (8) and
(9) is the experimental meson masses and nucleon mag-
netic moments. Our predictions of the nucleon electric
and magnetic form factors are displayed in Fig. 1 as the
ratios of the predicted Gz?, Gu?/pp, and Gu"/pa to the
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empirical dipole fit
Gemp(¢*)= (10)

(14¢2/0.71)2

Also shown is the ratio of Gy?/u, obtained at SLAC?
to the empirical dipole fit.

In Fig. 2, we compare the predicted Gu?/u, and Gg”
to the experimental data.?® The experimental points
displayed do not include the systematic error (estimated
to be <6%,), and they assume® GgP=Gy?/up. This
latter assumption can introduce an error ~59%, and an
estimate shows that relaxing this condition shifts the
experimental Gu?/u, into better agreement with our
prediction.

The asymptotic limits of the form factors for large
¢* can all be expressed in the form a?/¢*. We find that

¢Gr7=—> h(mstmimg)= (0.7 (11)

Also, ¢*Gu?/u, tends to (0.64)* at large ¢%, and ¢*Gg"
tends to (0.37)% We stress that these results follow just
from the experimental masses, as seen in other reactions,
and the measured magnetic moments. For the slope of
the neutron form factor at ¢*=0, we obtain

{[d/d(¢®)JGE"(®)} —0=0.0144 FZ,
which is ~259%, smaller than the experimental value
{[d/d(¢®) ]G+ E(¢*)} q2=0=0.01930.0004 F2

obtained from the scattering of electrons and thermal
neutrons.” This prediction of the neutron form-factor
slope corresponds to a predicted root-mean-square
radius of the neutron r,=0.29 F. The predicted root-
mean-square radius of the proton is 7,=0.83 F. In order
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F1c. 3. Comparison of our prediction for F, with the
experimental data in Ref. 8.

§ K, W. Chen, J. R. Dunning, Jr., A. A. Cone, N. F. Ramsey,
J. K. Walker, and R. Wilson, Phys. Rev. 141, 1267 (1966).

6 One normally assumes the equalities Gg?=Gu?/up=Gu"/1n
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to estimate the theoretical uncertainty in our predic-
tion, we use the neutron form-factor slope at the origin
as an indication that at ¢*=0 the isovector and isoscalar
form factors will have approximately a 109, uncer-
tainty. We expect that Gz, being a difference of form
factors, will be much more sensitive to this uncertainty
than Gg? and it is interesting to note that our predicted
Gg? is close to the empirical dipole fit [Eq. (10)], and
approaches it exactly in the limit of large ¢

Let us now consider the pion form factor. In this
case, there is only an isovector contribution and we

N AND = FORM FACTORS AND DIPOLE ,
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obtain
1

(+g/mp2e
Our predicted F,(¢?) is displayed in Fig. 3, and it is
clear that the result is consistent with the available

data.® The predicted charge radius of the pion is 7,
=0.88 F.
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Kemmer’s equation is modified to include the rotational contribution to the rest energy characteristic of
a spherical top. The resulting representation-invariant eigenvalue equation is solved, giving the rest energy
as a function of the spin. An order-of-magnitude calculation yields a mass difference for the two superposed

spin states characteristic of the elementary particles.

THE applicability of certain linear relativistic wave
equations, with the capacity to admit a mass-spin
spectrum, to a description of the elementary particles
is a subject of considerable current interest.! In this
spirit, we here treat the rest-energy eigenvalue problem
deriving from Kemmer’s equation,? modified to include
a rotational contribution to the rest energy. This is a
specialization of Corben’s formulation® for a relativistic
rotator to the case of a spherical top with spin O or 1.
The calculation is independent of any particular repre-
sentation of the Duffin-Kemmer matrices.

Kemmer’s equation with a mass operator character-
istic of the rotational energy of a spherical top is

(iBuP#'!‘MG)‘P: 0,

Mc=mc+m'cBuPBu

@
@)

is the mass operator, Py=—1%9,, Buw= (B4B,) defines
the spin operator, and the algebra of the 8 matrices is

given by?
3

where

B #5»3 p+:3nﬁvﬂn = BI‘aVP—I_ﬁpamﬁ-

* Work supported in part by the Office of Naval Research.

+ Permanent address: Queens College of the City University
of New York, Flushing, N. Y.

1H. C. Corben, Proc. Natl. Acad. Sci. US 48, 1559 (1962);
48, 1746 (1962); Phys. Rev. 134, B832 (1964); Phys. Rev.
Letters 15, 268 (1965); Y. Nambu, Progr. Theoret. Phys. (Kyoto)
37, 368 (1966); Phys. Rev. 160, 1171 (1967); K. Rafanelli, Phys.
Rev. 175, 1761 (1968).

2 N. Kemmer, Proc. Roy. Soc. (London) A952, 91 (1939).

3H. C. Corben, Classical and Quantum Theories of Spinning
Particles (Holden-Day Publishing Co., San Francisco, 1968),
Chap. 4.

There are two parameters in (2), m and
m' =12/41 @

where I is the moment of inertia of the spherical
rotator.®

Introducing the spin and boost operators
1J = (B23,831,812) (5a)
1K= (814,824,834) , (5b)
then in the rest system, P,= (0,iE°»/c), Eq. (1) becomes
By =[1+2a(+K) ]y, (6)

whert} a=m'/m and W= E®/me It is the solution of
the e'lgenvalue problem (6) we wish to present here.
With 4=1+2aJ? squaring (6) yields

(A+2eK)BW Y= (A2+4ad K>+ 4Ky, (7)

where we have used (J%4K2)=0. After some lengthy,
but straightforward, algebra, we see that

K?844-B4K?=3B, @®

©)

With these last two algebraic identities, and the linear
equation (6) in the form

20K = BV —A),

we obtain, from (7),

WA= (A2+4aJ?+6aAd)y.

and
Ké=3K—J2.

(10)

(11)



