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A one-channel model, previously used for He, is extended to allow calculation of elastic
scattering by H and Li+ at energies up to 3 Ry. Nonseparable ground-state wave func-
tions are used, allowance being made for exchange, and dipole and quadrupole polarization
potentials. Results for Li+ are in good agreement with quantum-defect-method values.
Calculated differential cross sections for elastic scattering by H at energies of 2 and 1
Ry are presented. Deviations from Couloumb scattering are marked. Phase shifts (l = 0, 1)
for higher members of the isoelectronic sequence (4&Z & 10) are given at threshold and 1
Ry.

I. INTRODUCTION

A considerable number of theoretical investiga-
tions on elastic scattering of slow electrons by He
atoms' ' have been reported recently. They are
in substantial agreement with each other, and are
consistent (in the sense of dispersion relations' )
with experimental data, '&' except at small scatter-
ing angles at energies of 10 eV and below. In view
of advances in experimental technique which have
allowed measurement'~' of inelastic collision
cross sections of slow electrcns with H (in good
agreement with theory'), it is of interest to exam-
ine elastic scattering by two-electron ions.

In this paper the model of Williamson and
McDowell' has been extended and applied to elas-
tic scattering by H-, I i+ at energies up to 3 Ry.
Some results are also given for higher members
of the isoelectronic sequence. The theory' is out-
lined in Sec. II, and the numerical methods em-
ployed are discussed in Sec. III. Phase shifts and
scattered intensities are presented in Sec. IV, and
in the case of Li+ are compared with the result
of a Hartree-Fock calculation, ' and the quantum-
defect method. The work is summarized, and
conclusions are presented in Sec. V.

II. THEORY

the sum is over cyclic permutations.
Taking

S(123)= (I/~2) (o.,P, —a.,P,)a, ,

where a, P are the one-electron spin-up and spin-
down functions, we may write, in a usual notation

ff(3)
+(3)= '

Pf (P,),
the position vector of electron 3 with respect to
the target nucleus being

r, =(r„8„$,) and p, =cos8, .

The integrodifferential equation for the scatter-
ing functions ff(r, ) is obtained by projecting out (1)
on each partial wave in turn,

fq, (I, 2)p, (i,)S*(123)[II—Z]

& +(123)dF,dr, drs dspin=0.

For simplicity we assume that the ground-state
function for the target is known exactly

We consider an electron scattered by a two-
electron system of charge Z. The total three-
electron system is described by the Schrodinger
equation,

and 2E=2E +02.

012 =EZ 012 7
1 2

(a-z)@(1,2, s)=o,
We adopt a two-parameter" variational trial
function

with Hamiltonian operator"
3

i r r i)) r. .
S] Zg

In our model the total wave function 0 (123) is
represented by an ansatz,

(2)

'k(1, 2, 3) = Z go(1, 2)E(3)S(123),
1t2y3

(3)

where $0 (1, 2) is a wave function for the ground
state of the target when electrons 1 and 2 are
bound, S(123) is a spin function, and F (3) the
unknown scattering function to be determined, and
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( (12)=N(e ' '+e ' ")

for Z= 1~ 2y 3.

Then, on carrying out the angular and spin inte-
grations, (S) yields

(0) 16m2N 00I, f, ,)=, , [s,f, f, f,(I)Z„(123)dr,dr,

-2 f, f, f& (1)X (123)dr,dr, ]=R& (r,), (IOa)

where L "' is the operatorl
189
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[o) d'/dr2+k2 )(1+1)/r2 y (8)

The direct and exchange potentials are

V„(r)= ——+, , ([ 1-(1+nr)e ™~)

+[ 1 —(1+Pr)e ]+( p)4 [1
—P r 128asP

[I '(
p) ] ( +p)

3

Z„= (r, /X) q,*(28) r,'[( a2r, 2a—)e

+(P'r -2P)e " ' +(I/X)

x [I) (12)(r, k' +2 Z-2r, /r», )] (12)

ff(0) = o,

f (r) - k 'I'sin[kr+(Z, /k)in2kr &-Iw+o +)I ] (16)

with o& =argr'(E+ I -iz, /R)

and Z, = (Z- 2). The quantity of interest is the
non-Coulomb part of the phase shift q~. We shall
refer to it simply as the phase shift (for the fth
partial wave).

Equation (10b) was solved by a noniterative
method. Writing

f) (r) = P(r)+ pq(r)+ vR(r),

where P, q, R, satisfy

X'0I = r, r, r, ')t)0~(12)(2/r» I)&0(23) )

E+ I'I
r18 i= r(/r)

y &13

LIP=a(P), L,q=P(q)+e, r '
e

&+ I -Pr 16))'&'
LIR =E(R) c+fr e ) cf (2f 1)

(18)

v (r) = —(9/2u4)[1 —3e "(1 + 2u+ 6u'+~su'+~4u4

—&e "(1+u)4],

v (r)=- (15/2y ) 1 —2y e (1+2y+~~y2+~~y~+a4y4

+1 y5 +My() ~yV+ ) ys ~y()) (14)

+ e (1+4y+Py'+ 6y'+22)y4+~4y'+ —,'y')

+re-yzoE&( 2y)

where Ei (-u) = -&, (u) and E, (u) is the exponen-
tial integral, '4

Q=Zp'p J=Z2& (15)

The parameters Z„Z, are chosen so Z,
=9/ad, ,Z(1)5/ a, where ad, ao are the dipole
and quadrupole pofarizabilities of the target re-
spectively.

III. NUMERICAL METHODS

The integrodifferential equation

Lfff(r) = Rf(r) (10 b)

must be solved subject to the boundary conditions

No account has been taken of the polarizability
of the target in this model, so we replace I I

"' by

L&=LI —2(vd+v ), (»)
cj

where vd and v& are potentials behaving as ~ ' and
~6 respectively at large r. They are chosen in
the Bethe-Reeh form"

f (r) k '~2 sin[&(r)+g&] (19)

and E((([)) involves linear combinations of integrais
over the range (O, r) only, the parameters p, , v
may be determined in terms of certain infinite
integrals once P(r), q(r), and R(r) are known.
For He this procedure yields phase shifts identi-
cal to those obtained, previously' by an iterative
method. The ordinary differential equations (18)
were solved by a Fox-Goodwin predictor-correc-
tor method.

The differential equations were integrated out
from x=0, the first four points being obtained
from powers-series solutions, at an interval H, .
The Fox-Goodwin method is started by computing
the solution at the fourth point from the power-
series values at the second and third. If this es-
timate does not agree with the powers-series value,
the initial interval is halved. Otherwise the solu-
tion is carried out to the fortieth point, the inter-
val doubled, and a further 100 points computed at
interval H„100 at H3= 2H„and finally 200 at H~=
2H3 8Hj For each value of k and l, at least two
values of H, were used. The asymptotic ampli-
tudes were stable to five significant figures, and
the phase shift (modulo w) to three significant fig-
ures. . Some representative values for the case of
H (the quadrupole polarizability being set equal to
zero) are shown in Table I.

The solutions were normalized by the Stromgren
procedure. " The usual method of obtaining the
phase shift by matching the solution to a linear
combination of regular and irregular Coulomb
functions is unsatisfactory close to threshold, "
particularly when a long-range polarization poten-
tial is present. Burgess" has given an alternative
analytic procedure which is rapidly convergent at
all energies. His procedure for determining the
phase shift when a polarization potential is present
may be extended easily to the case of a negative
ion (Zo = —1).
At large x,
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TABLE I. Stability of the computed values of tanp~ for
e-H scattering, using the method discussed in the text
for different initial intervals H&, and selected values of
k2, l, with e =0.

TABLE II. Parameters for H, Li

k'(Ry) 0. 05 o. o6

H
Li+

1.04 0.2808
3.295 2.079

203
0.19

1300 1 -1
0 3 +1

G. 05
0. 06
0. 10

8. 192, -3
1.264, —2
4, 056, -2

8. 191,-3
1.262, —2

4. 052, -2

0. 25
0. 25
l. 0
1.0
2. 25

O. O25

2. 215, -1
8. 912, -1

-5.655
2. 017
l. 858

O. O3O

2. 215, -1
8. 914, -1

-5.646
2. 018
1.858

where to sufficient accuracy

4(~) = 4, (~)+-,'C(~).

Defining

p= IZy I, P= IZ,kl,

we have (the a sign being that of Z, ),

5(p + c) X (3P'+ 4)+ pp(3p'c+ 2) +pc
24X(+)' 24X(I+V")(X++ I3p)

with

+ — ' cos T+ (p),
C

(20)

=+ (O'p'+2p —c)'", c=f(f+ I),
T+ (p) = (pcX++ c+p)/p(1+ p'c).

& = x(p)'+ p-'I [(e'p+ Px' 1)l&1
,

p"-I'6 '

its quadrupole polarizability was taken as zero.

IV. RKSUI.TS AND DISCUSS1ON

The calculated phase shifts for H are shown in
Tables III-VI. The program actually calculates
tan gf, and qf (mod v). The calculations indicated
that if the phase shift was defined to go to zero in
the high-energy limit, then the s-wave phase
shift must be chosen to be m in the zero-energy
limit. This was confirmed by comparing the nu-
merical solution for k'=0. 05, l=0 with the cor-
responding pure Coulomb solution. An extra node
is present in the calculated solution at small &."
Physically this occurs because the incoming elec-
tron cannot enter the filled 1s shell, and there is,
in our model, no bound (Is)' 2s state of H . A
similar situation occurs for electron scattering
by He, but not for Li . In the latter ca,se the
(Is)'2s state is the ground-state configuration of
Li, and the zero-energy s-wave phase shift is
found to be 1.261 (mod m).

We conjecture that the actual zero-energy phase
shift is @+1.261. This is in accord with a. recent
extension of Swan's theorem, ""that for electron
scattering by positive ions qf(~) —qf(0)= (mf+ qf)&,
where mE is the number of bound states of angular
momentum l excluded by the Pauli principle, and q~

is, in general, not an integer. The calculated phase
shifts for H, He, and Li are shown in Fig. 1
(o.q being taken as zero for He and l,i+), that for
Li+ being plotted modulo m for convenience. The
agreement of the calculated He phase shifts with
those obtained previously by an iterative solution, '
and by other authors in similar models' &' is sat-
isfactory. The zero-energy phase shift for Li+
(modulo v) of 1.261 agrees well with a value, ob-

The. polarization term is

Qd ~~
3(2p 5 c) CX

4c'
& p(X'+&p)

cos 'T (p) i, cWO
3+P c

Wc

2Z, 'o,d(9ppX + 11pp'+6p)
1 5p2(X R + Pp)3

When c= 0 the cos ' term in (20) is replaced by
0. 25 (X++ Pp) '. No special treatment of the qua-
drupole potential is required. Dipole and qua-
drupole polarizabilities for H are given by
Stewart. " The value of the quadruyole polariz-
ability used is uncertain by a 20%%uq. The adopted
parameters for H and Li+ are displayed in
Table II. The dipole polarizability used for i,i+
is the Hartree-Fock value of Labiri and Mukkerji";

TABLE III. s-wave phase shifts for H

tan 'go

k (Ry)

0.05
0.06
0.07
0.08
0.09
0.10
0.25
0.50
0.75
1.0
2.0
3.0

8.19,-3
1.26, -2
1.84, -2
2.51, -2
3.26, -2
4.06, -2
2.22, -1
4.71, -1
3.49, -1
1.74, -1

-3.49, -1
-7.43, -1

8.22, -3
127 -2
1.85, -2
2.54, -2
3 31 -2
4.13, -2
2.50, -1
5.59, -I
4.20, -1
2.30, -1

-3.07, -1
-6.97, -1

3.150
3.154
3.160
3.167
3.175
3.183
3.389
3.650
3.540
3.369
2.844
2.533

d indicates dipole potential only.
d+ q indicates dipole plus quadrupole potentials.
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k (Ry)

l =2

TABLE IV. Calculated H phase shifts
(notation as in Table III).

l=1
d+q

TABLE VI. Phase shifts for H-, l + 4, no exchange
(dipole-plus-quadrupole potential only) .

k
(Ry 10

0.10
0.15
0.20
0.25
0.50
0.75
1.0
1.5
2.0
3.0

4.32, -2
1.49 -1
3.72, -1
7.28, -1
1.71
1.78
1.75
1.65
1.57
1.44

4.38, -2
1.53, -1
4.00, -1
8.12, -1
1.82
1.86
1.82
1.70
1.61
1.46

2.95, -2
7.41, -2
1.59, -1
2.64, -1
8.13, -1
1.04
1.11
1.12
1.09
1.03

2.99, -2
8.08, -2
1.63, -1
2.76, -1
8.78, -1
1.11
1.18
1.17
1.14
1.07

tained using the quantum-def ect method" and
tables of atomic energy levels, of q, (0)= 1.254
+0.005. The slight discrepancy may be attributed
in part to uncertainties in the available values of
the dipole polarizability of Li+, and the high s-
state energies of Li.

Higher terms in the multipole expansion of the
adiabatic polari'zation potential might be expected
to be of importance for systems with large static
polarizabilities such as H —. In fact, only the
quadrupole component of this potential significantly
modifies the usual dipole approximation, and its
effects are noticeably only over a small range of

The local potentials for H given by Eqs. (12)
and (14) are shown in Fig. 2. The quadrupole
component V (x) is important within the range
ao (x (5ao on y. The incoming electron sees a
repulsive Coulomb potential at large x which is
strongly modified by the attractive polarization
potentials around x= 10a„becoming attractive at
x= 10a„and going over to a Coulomb attraction
for x(a, . Exchange effectively increases the
attractive part of the potential for x (10ao.

The local potential shows a broad positive max-
imum of magnitude =0.2 Ry, indicating the possi-
bility of trapping of low-energy electrons. The cor-
responding local potential for electrons incident on
He is more attractive, but not sufficiently so to pro-
duce an s-wave resonance. However, Herzenberg
and Lau ' using our model, but with a simpler form
of polarization potential, have been able to induce
such a resonance by suitably modifying the strength
of the exchange term. Peterkop" has also re-
ported such a resonance at k = 1.25 in a one- channel

0.50
0.75
1.0
3.0

0.230
0.390
0.497
0.687

0.147 0.0944 0.0637
0.244 0.158 0.107
0.329 0.221 0.152
0.552 0.447 0.360

0.0449 0.0327 0.0244
0.075 0.0540 0.0403
0.107 0.0775 0.0577
0.288 0.231 0.185

3.0

(U ~

2.5

model of e-He scattering, using a target ground-
state wave function containing polarization terms.
In view of these results, we made a search for an
s-wave resonance in e-H scattering in the range
0. 05 (k' (0.2 Ry at intervals of 0. 01 in k' (i. e.
0. 136 eV). None was found, the values of tan q,
being smoothly varying (cf. Table III) over this
range of energies. The search in He was con-
centrated around k'=1. 5 Ry, in view of Peterkop's
result, but in contrast to Herzenberg and Lau we
did not treat the polarizability and the strength
of the exchange term as variable parameters. We
conclude that no s-wave resonance broader than
0. 1 eV exists in our model for either H —or He.
An extension of Peterkop's work on He to H using
the same type of wave function mightbe worthwhile.

The effect of the quadrupole potential on the s-
wave phase shift for H is shown in Fig. 3. Se-
lected computed values are also given in Table III.
The percentage increases in rl, (k') (mod z) on in-
cluding the quadrupole potential varies from less
than 1% (k'&0. 06 Ry) to 30% at k'= 1.0 Ry, de-
creasing to 5% by k'=3. 0 Ry. The computed phase
shifts are stable to better than 1'% (cf. Table II).
The over-all uncertainty of the tabulated s-wave
phase shift, column 4 of Table III, should be less
than 10%, and much less than this at small (k' (0.1
Ry) and high (k') 3. 0 Ry) energies. This uncer-
tainty is due primarily to the uncertainty in the

TABLE V. Calculated H phase shifts (dipole-plus-
quadrupole potentials only) . 2.0

k (Ry)
l=4

no exchange

0.25
0.5
0.95
1.0
1.5
2.0
3.0

0.139
0.400
0.667
0.768
0.858
0.869
0.846

0.0798
0 ~ 221
0.403
0.503
0.624
0.669
0.687

0.230
0.390
0.497

0.687

1.0 0
I

1.0
I

2.0
k~ (rydbergs)

I

3.0

FIG. 1. Calculated s-wave phase shift for elastic
scattering of slow electrons by the two-electron systems
indicated {dipole polarizability only for He and Li+,
dipole-plus-quadrupole for H ).
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0.5

0.4—

0.3—

0.2—

& 01—

0

-0.1—

./ 'W Vpp(r)
/

/

t

l
Vpp+ 2Vd

V~+ 2Vd+ 2Vq

I

I

I

-0.2—

-0.3—

-0.4 I i I i I i I i I i I

2 4 6 8 10 12
r (sp)

F&0. 2. The local potentials occurring in Eq. (10b)
for Z=l (H ).

a'(Hy) l =0 1=1
HF

0
0.04
0.09
0.16
0.25
0.36
0.49
0.64
0.81
1.0

(1.261)
1.258
1.255
1.248
1.241
1.230
1.221
1.209
1.194
1.178

(0.170)
0.173
0.177
0.182
0.189
0.195
0.202
0.210
0.217
0.224

(0.110)
0.113
0.117
0.120
0.126
0.132
0.140
0.147
0.153
0.161

~ ~ ~

0.122
~ ~ ~

0.133
0.140
0.146

(0.0038)
0.0044
0.0052
0.0063
0.0074
0.0088
0.0108
0.0135
0.0157
0.0182

TABLE VII. Phase shifts for Li+, (dipole potential only).
(1) Values for k = 0 are obtained by graphical extrap~
olation. (2) For the p-wave phase shift, the successive
columns show the results (i) in our model with G.'d
=-0.19, (ii) in a Hartree-Fock calculation (Ref. 10),(iii)
in our model with ed=0.

available values of a&, and to neglect of higher
multiyoles in the adiabatic potential. Nonadiabatic
and exchange-adiabatic effects may also be sig-
nificant, but are not examined here. The effect of
the quadrupole potential on the p-wave and d-wave
phase shifts is shown in Table IV, and nowhere
exceeds 10%. The quoted dipole-plus-quadrupole
phase shifts should be reliable to 1%, within the
context of the model, the chief uncertainty again
being the value of n . Table V gives the l=3 and
l = 4 phase shifts in 4e dipole-plus-quadrupole
case. For I = 4, the effect of the exchange terms
on the phase shift was small, and was therefore
neglected for /&4. Phase shifts for 4 &l &10 in
the nonexchange approximation are given in Table
VI, and have been computedfor allE ~ 28 at&'= 0. 5,
0. 75, 1.0, and 3.0 Ry.

Phase shifts for electron scattering by Li+ are
given in Table VII. They are excellent agreement
with those obtained by a totally different numerical
technique in a one-channel model using a Roothaan
Hartree-Fock ground-state wave function for Li+,
and the same dipole polarization potential, "as
were the corresponding sets of results'~ ' for He.

Al

0
C

—.2

This confirms the conjecture made for He that
short-range relative I = 0 correlation in the target
is not important.

The extrapolated zero-energy phase shifts q, (0)
= 0. 170 and q, (0) = 0. 0038 are in good agreement
with the corresponding quantum-defect values of
0. 148 and 4x10 3. The effect of the dipole polar-
ization potential is, as in the case of He, large.
Calculations" to be reported in another paper
suggest that the effects of the other multipoles of
the adiabatic polarization potential are largely
cancelled by the exchange-polarization terms,
ag31n as ln the case of electron-He scattering.
The calculations reported here for H and Li+
may be readily extended to higher members of the
isoelectronic sequence for which ground-state
wave-function parameters and dipole polarizabil-
ities are available in the literature. "~" Since
for electrons on Li+ the phase shifts obtained in
an alternative formulation" using a Hartree-Pock
Li+ ground state and the same polarization poten-
tial do not differ from those of the present model
by more than 1% (0 &k' &1.0 Ry), it was more
convenient to carry out the calculations for Z) 3
with the Hartree-Fock wave functions, as they are
available for more members of the sequence. Such
calculations have been performed for the s and
P-wave phase shifts (which are needed to evaluate
free-free absorption cross sections) for 4 «Z «10.
In each case the s-wave phase shift (mod w) is a
slowly decreasing function of increasing km (0(k'
«3. 0 Ry), while the p-wave phase is almost in-
dependent of energy. Values at threshold and at
1 Ry are given in Table VIII and are sufficiently
slowly varying to allow a linear interpolation in
that range for Z ~ 4. The phase shifts for Z) 3
and l ~ 2 are very small in this energy range.

—.8
2

k (rydbef'gs)

FIG. 3. Tan go gh ) for elastic scattering by H . Full
curve 0. =0, dashed curve 0.&QQ.

Angular Distribution of Electrons Scattered
Elastically by 8

Differential cross sections for elastic scattering
of slow electrons by He, in a model closely equiv-
alent to ours, havebeenreportedby Lawsonetal. '
Those calculated using the phase shifts obtw'red
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TABLE VIII. 8- and p-wave phase shifts for the Li+ sequence 3 & Z &10 at threshold and A = 1.0 Ry. The Li+ values are
computed using Eq. (10a), the others using a Roothaan Hartree-Fock target function; dipole polarization potential only.

k2(Ry) 10

10-' l =0
l=1

1.261
1.70, -1

8.28, -1
1.72, -].

6.13, -1
1.48, -1

4.87,--1
1e27 p 1

4.02, -1
1.10, -1

3.43, -1
9.60, -2

3.00, -1
8.56, -2

2.65, -1
7.64, -2

1.0 12178
l =1 2.24, -1

8.02, -1
1.81, -1

6.00, -1
1.49, -1

4.81, -1
127 -1

4.02, -1
1.10, -1

3.43, -1
9.61, -2

3.00, -1
8.56, -2

2.65, -1
7.64, -2

/ (2)= (l/22') csc'-,'ll escI([ne 2e, -(/S(n(sin'H))}

(22)

and the non-Coulomb part by
2$0') 2ZQ)

f~(8) =
2fk

+ (2l+ 1)e (e —l)Pl(cos8).
(23)

The differential cross section

I(8)= If,(8).y„(8) I

I

(24)

then shows interference effects. It is convenient
to examine the ratio R(8, k') of the calculated
differential cross section I(8) to that due to the
Coulomb repulsion alone, IC(8) =

I fC(8) I'. This
may be expressed as"

R(8 k') = I 1+12( I

with (for H )

N = —2k sin' —exp —ln(sin' —)
8 i . 8
2 k 2

x Z (2l+ 1)e sing e ' P (cos8).( (26)
2LfJ1 . 2$ ((Tl —(To

l=o

The calculations were carried out at four en-
ergies, using the previously calculated phase
shifts (both dipole and quadrupole potentials be222g

in our model are indistinguishable, on the scale
of their figures, from the values in Fig. 2 of
Ref. 3. No calculations of the angular distributions
to be expected in electron scattering by H —have
been published. In view of the oscillatory behavior
observed" in the scattering of slow protons by
nuclei, due to interference between the effects of
the repulsive Coulomb force and the nuclear force,
it is of interest to examine the behavior in the
ease of electrons on H —. Here interference is
expected between the repulsive Coulomb scattering
and that due to the short-range force (which is
dominated by the attractive polarization potential
at large r). Since at large ~ the non-Coulomb
partof thepotentialbehaves as —o,d//y4, od =203a,',
many angular momenta should contribute to the
non-Coulomb part of the scattering amplitude.

The scattering amplitude may be written as f(8)
=fC(8)+fg(8) where the Coulomb amplitude fC(8)
is given by

included, and the exchange terms being omitted for
l ~ 4). The real and imaginary parts of 1))) (Eq. 26)
were computed separately, the consequent value
of R(8, k') being compared with that obtained from
evaluating (22) and (23) directly. The phase-shift
program gives OE as a byproduct": the Legendre
functions Pl(cos8) were expressed as polynomials
in cos8 for l & 4 and a recursion relation used for
higher E. The calculation terminated when the
real and imaginary parts of the sum in (26) had
converged to a,'%%u(). For most angles and energies,
convergence was comparatively rapid (by l = 14) but
occasionally (for example at k'= 0. 5 Ry, 8= 2. 60
radians) as many as 28 terms were required to
ensure convergence. If the convergence criterion
was relaxed to 5%%uo, convergence was obtained by
i=14 in all cases.

Calculated values of R(8 k') at k'=0 5 and 1.0 Ry
are shown in Fig. 4. For small k', the ratio
R(8, k') has a slow oscillation in 8 after first de-
creasing to a minimum value, and then rises to
a value considerably in excess of unity in the
backward direction (8= v). As the energy in-
creases, the first minimum becomes sharper
and moves to smaller angles (8 = 0. 45, k'= 0. 5 Ry;
8 = 0. 40, k = 0. 75 Ry; 8 = 0. 36, k2 = 1.0 Ry; 8 = 0. 22,
k'= 3, 0 Ry), while the slower oscillations to the
large-angle side of the first minimum damp out
rapidly with increasing energy. At larger values of
of k', the first minimum shows some structure,
and for k'= 3.0 Ry the ratio R(8, k') first decreases
to a value of 3 && 10 ' at 8=0. 22, increases to
1.5&&10 at 8=0.4, has a subsidiary minimum
of 7. 6 x10-' at 8 = 0. 5, and then slowly increases
to a maximum value of 2. 01 at 8= m. For com-
parison, differential cross sections were also
calculated at k' = 0.5 Ry using the dipole-only
phase shifts. They are shown as the dashed curve
in Fig. 4(a). The general features are unchanged
but the positions of the extrema (in particular the
second minimum) shift appreciably, the slow os-
cillation at intermediate angles having a smaller
amplitude, and the backward enhancement is now
only a factor of 2. 4, rather than 4. 0. Although
including the quadrupole potential should improve
the model, it is clear that the details of the angu-
lar distribution at moderate and large angles
(8)0.8 radians) are sensitive to the model param-
eters, in particular to the value of the s-wave &

phase shift.
Differential cross sections computed usi. ng the

dipole-plus-quadrupole phase shifts at k' = 0. 5 and
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FIG. 4. Calculated values of R(8, k ), the ratio of I(8)
to the Coulomb intensity I (8) for H, (a)k =. 0.5 Ry,
(b) k = I..ORy. The dashed curve in (a) shows the behavior
of B(8,k ) when n is taken as zero.
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c
O

U 10

1.0 Ry are shown in Fig. 5. It should be noted
that the absolute values are large, and the major
deviations from the Coulomb differential cross
section should be amenable to experimental ob-
servation. No account has been taken in this mod-
el of inelastic processes. At energies below 0. 8
Ry, the only such process energetically accessi-
ble is electron detachment e+H e+H(ls)+ e, and
although the total cross section for this process
may be as large as 40ma', at k' = 0. 5 Ry, the angu-
lar distribution of scattered electrons should be
distinguishable from those elastically scattered
provided the energy resolution involved is better
than 0. 75 eV.

Allowing for the uncertainties in the description
of the expected angular distribution afforded by the
model, the principal features of experimental in-
terest at energies up to 1 Ry, would be the shoul-
der in the differential cross section in the neigh-
borhood of 30' from the forward direction, and

10 ~ ~

10
0.6 1.2 1.8

8 (radians )

2. 4 3 0 5'

FIG. 5. Calculated differential cross sections for
scattering by H . The full curve is I~(8), the dashed
curve I(8). (a)k = 0.5 Ry, . (b)k2 1.0 Ry.

the backward enhancement, which should be more
than a factor of two at angles exceeding 160'. (k'
= 0. 5 Ry). At the lower of the two energies for
which differential cross sections are shown in Fig.
5, there is a flat shoulder in l(8) near 8= w/2,
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followed by a deep minimum near 8 = 3v/4 (when
z&= 0, this becomes slightly shallower and shifts
to 8 = 2. 4). The additional structure predicted
for k'= 0. 5 Ry is clearly associated with the max-
imum in the s-wave phase shift (the P-wave phase
shift being near n/2), and as we have seen in Fig.
4(a), is not very model-dependent.

V. CONCLUSIONS

A one-channel model, previously used for elas-
tic scattering of slow electrons by He, has been
extended to study elastic scattering by He-like
ions. Particular attention is paid to the cases of
H- and Li+. In the former case, a long-range
repulsive Coulomb interaction is modified by a
strong attractive adiabatic polarization potential.
This is represented by Bethe-Reeh dipole and
quadrupole polarization potentials. Although the
Coulomb force is then attractive, the dipole po-
larization potential remains important in the pos-
itive-ion case.

In the case of H, the s-wave phase shift which
goes to m at zero energy first increases to a max-
imum value (3. 650) at 0. 5 Ry and then slowly de-
creases with increasing impact energy. The
omission of the quadrupole potential yields a
significantly smaller s-wave shift in the range
0. 25 & k' & 2. 0 Ry, but the general behavior is
unaffected. The phase shifts for l ~ 1 rise
smoothly to a maximum value from zero at
threshold, and then decrease slowly to zero at
high energies. Only the P-wave phase shift
reaches v/2 (near k'=0. 45 and 2. 0Ry). The ef-
fect of including the quadrupole potential on
these phase shifts is to slightly increase them
(by at most 12/p). Exchange effects are negli-
gible for /& 4, and the phase shift at fixed energy
is a slowly decreasing function of increasing l

(I & 1).
The Li+ phase shifts are in reasonable agree-

ment with quantum-defect values at threshoM,
and are very slowly varying with k' in the range
k' ~ 3.G.Ry. As in the case of elastic scattering
by He ' ' the phase shifts obtained when a Root-
haan Hartree-Pock target wave target wave
function is used instead of an open-shell function
are unchanged to better than 1%. Hartree-Fock
target functions are used therefore to obtain s
and P phase shifts for He-like ions up to Ne'+.

The elastic differential cross section for scat-
tering by H has been examined at several ener-
gies. Results are presented for 0. 5 and 1.0 Ry.
There are marked departures from Coulomb
scattering, particularly at k'= 0. 5 Ry. The
general features which include a small value of
the ratio I(8)/Ic(8) near 35', a clearly shown
minimum near 135', and a strong enhancement
in the backward direction do not appear very
sensitive to the strength of the quadrupole po-
tential, though the precise angle of occurrence
of a given feature and the magnitude of the ef-
fect do vary appreciably on going from a&= 0 to
(yq= 1300.

At low energies (k'(1.0 Ry), the differential
cross section for e-H scattering remains larg-
er than 1.5 x 10 "cm'/sr at all angles. Mea-
surements of the ratio R(8,k'}=I(8)/Ig(8) at
angles near 35 and 180, with sufficient energy
resolution to reject inelastically scattered and
ejected electrons, should be possible and would
clearly test the adequacy of the model for the
negative-ion case.
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