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E,I decays are considered within the framework of Sf/(3) &&Sf/(3) algebra. An effort has been made
to obtajn the momentum dependence of the axial-vector form factors involved in these decays. To achieve
this, we work with zero-mass external pions (P', q2 ~ 0, where p and q are the four-momenta of the two
pioIls), unlike 'thc soft pioIls (p, 9 ~ 0) 111corporatcd 111 carllcl' current-algebra calc111atloIls of %~I dccRys.
Further, we use the recently developed on-mass-shell three-point functions throughout our analysis. We
also make an estimate of the weak-amplitude term involving Z'- and Q-meson poles and the scalar term
involving the 0 meson. In this way, we obtain momentum-dependent E,4-decay form factors. These are
used to calculate the dipion energy spectrum, decay rates, and the vector form factor. The fair agreement
obtajned wj, th the experimental data is indirect evidence of small s-wave final-state interactions. Our
calculatjon neatly brings out, the fact that the E',4-decay form factors have slgniGcant momentum
dcpcnd cIlcc.

1. INTRODUCTION

"N recent years, E,4 decays have attracted vide
~ ~ attention within the context of algebra of currents

and s-wave m-x phase shifts. ' ~ Most of the calculations

deal with the axial-vector form factors only, and further,

jn almost all of these, the form factors are assumed to be
constants. It is our endeavor, in this paper, to bring

out the momentum-dependent structure of the E,4-

decay axial-vector form factors and show thereby that
the momentum dependence is not insigniicant. Our

starting point is the recent calculation of Kejnberg4

employing SU(3)XSU(3) chiral algebra. As is usually

the case with current-algebra applications, he workg

wj.th soft plons. Thc forIQ factoI's If q, If 2, and p3 are,
in general, functions of k P, )I q, and P.q, where /r, It,
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and p are the four-momenta of the X meson and the
pions, respectively. In the soft-pion limit, i.e., It, p —+ 0,
the form factors are evaluated essentially at the point
k p= k It= p It= 0. In the present calculation, we work
with zero-mass external pions (q'I P' —I 0), so that the
form factors are evaluated as explicit functions of
)'I p, k q, and p. q. In our analysis, we extensively use
the on-mass-shell three-point functions evaluated in
Ref. 8. In that particular calculation, utilizing Ward
Klcntltles fox' pI'opcx' vcI'tlccs and onc-meson dominance~
full structure for proper AA V, AVE, and VI'I' vertices
was obtained. Here, A, V, and P stand for axial-vector,
vector, and pseudoscalar mesons, respectively. In
obtaining these, we used the spectral-function sum rules
and introduced a parameter 8 which was 6xed to bc —1
to give mutually consistent good numbers for E*~
K+II, Q ~X*+Ir, Q ~K+p, and @—I E++Edecay'
widths. In thc pIcscnt analysis %'c will not go into the
details of the vertex-function calculation but use the
results obtained therein directly. Further, in evaluating
some matrix elements (see Sec. 2), we will use the pole
model. Proceeding thus, we bring out the essential
improvement in the present calculation over that of
Keinberg and, also, show how the momentum depen-
dence of the form factors is obtained. In our numerical
analysis, we neglect the o6-mass-shell corrections arising
from extrapolation in q' and p' from 0 to —IN '. This
point is further discussed in the next section.

Kith our form factors, we compute both the dipion
energy spectrum and the decay rates of the CI'-con-
scrvtng Ke4 decays. Thc cneI'gy sPcctrum obtalncd
(with the omission of final-state interactions and vector
form factors) is in fair agreement with the experimental
spectrum and, also, with a recent calculation' assuming
vector-meson pole dominance. The decay rates obtained
are also in good agreement with experiment.

In the 6nal section, we have tried to give a rough

' K. C. Gupta and J. S. Vaishya, Phys. Rev. 170, 1530 (1968).
The procedure adopted closely follows the treatment of H. J.
Schnitzer and S. Weinberg LPhys. Rev. 164, 1828 (1967)g foi
SU(2))&SU(2) chiral algebra. See, also, R. Arnowitt, M. H.
Friedman, and P. Nath, Phys. Rcv. Letters 19, 1085 (1967).
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estimate of the vector form factor (F4). Writing down
general structure of the matrix. element, assuming F4
to be a constant, and taking the experimental decay
rate for E+~2r++2r +e++v as input, the missing
contribution is found and thus the vector form factor
is determined. A similar procedure had been adopted
by Berends et a/. ' with the axial-vector form factors
taken from steinberg. ' Using our Fj, F2, and F3, we
obtain F4 much different from that of Berends et ut. '
Finally, we would like to point out that our numerical
estimates for F~, F2, and F3 are in good agreement with
those obtained from a detailed analysis of E.4 decay
carried out recently by Berends, Donnachie, and
Oades. "

2. AXIAL-VECTOR FORM FACTORS
IN X,4 DECAYS

We shall consider the CP-conserving decays, namely,

axial-vector form factors are definecl as

(s&nec)( (q) ~'(p)
I
A~"(o) IE"(k))

X L(q+p)&F&+(q —p)) Fm+(k —
q
—p)Faj. (4)

The form factors thus defined are dimensionless and
functions of k q, k.p, and p q, where q, p, and k are the
four-momenta of the pions and the kaon, respectively.

Following Weinberg, 4 we maintain that in order to
use the partially conserved axial-vector current
(PCAC) and the current commutation relations
(CCR) systematically, both the pions should be taken
off the mass shell simultaneously. Dispersing the pions
and using the PCAC relation"

B„A„(x)=F.m 'y0(x) a=1, 2, 3
E+~ 2r++2r +s"+v,
E+~ 2r0+2r0+e++v,
E2'~ 2r +2r'+e++v.

Eq. (4) becomes
(1)

(F„m.')-'(q'+m. ')(p'+m. ') d'xd'y

Firstly, we shall fix our notations and definitions. "We
consider the general process

Em —+ 2r0+2r'+s++v (2)

where m, a, and b are the SU(3) indices. Taking the
Cabibbo picture" for the hadronic current, the total
matrix element is given by

(G/~2(2r'2r'I sine&I A„"+V„"$I
E") N. y(1 +y )(I„()

where A„" and V„" are the &S=DQ=1, DI=2 ax»l-
vector and vector currents, " respectively, 0& is the
Cabibbo angle, and 6 is the universal weak-coupling
constant. In the present analysis, we shall concentrate
mainly on the axial-vector part. For this purpose, the

X(: " '" "(0I2"fa„A„'(x),B„A„'(y) A„"(0))I
E™(k))

=i(22r) 'f'(2ko) "'
mar slIlecl

XI (q+p) F +(q—p) F +(k—
q
—p) F ]

Note that now the F s are functions of q' and p' as
well. If the two pions are on the mass shell, i.e., q',
p'= —m ', these F; become identical with the physical
form factors defined earlier in Eq. (4). The time-
ordered product on the left-hand side in Eq. (6) is
analyzed easily, and with the use of the Jacobi identity
reduces to the following form:

(F m ') '(q'+m )(P'+m ') q P d'xd'y e "' 'v'(7(OIT(A„'(x) A„})(y),A),"(0)}IE"(k))

—ir)" d'x (,'""+"'*(0IT{(r(x)A),"(0))IE (k))—2i(p —q)„(2if0~0) d'x e '(v+') *(0I2'(Vx(x)A& (0)) IE (k))

—2(2if "')(»f'"')(0
I Ax'(0) IE"(k))—2(»f'"') (»f "')(o

I Ax'(0) IE"(k))

—(2 f )d e"'(''}x"'( '0( r)8Vee7„'0(*)}~70 (2))—(2 j )fd'x e ' '( t''"V0}(()Be„A0„'(x))[E' (2)) . (7)

' F. A. Berends, A. Donnachie, and G. C. Oades, Phys. Letters 268, 109 (1967)."F.A. Berends, A. Donnachie, and G. C. Oades, Phys. Rev. 171, 1457 (1968).
"Our metric is such that p q=p q —p0q0,

' we work in natural units A=c=1. In our definitions, :we follow closely the notation
of Ref. 4.

"N. Cabibbo, Phys. Rev. Letters 10, 531 (1963). For the Cabibbo angle, we use the value sining 0.26."Our currents are twice the usually defined ones.
"M. Gell-Mann and M. Levy, Nuovo Cimento 16' 705 (1960); Y. Nambu, Phys. Rev. Letters 4, 380 (1960); S. Adler Phys.Rev. 137, 31022 (1965).
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ere we have used the conserved-vector-current
(CVC) hypothesis" to drop one of the eight terms in the
T-product expansion, and the CCR's" have been used
in the form

&(*o-yo)P o'(*),~.'(y)1
=2if"V '(x)84(x—y)+

&(so—yo)[~o (&),I".'b) j

=ii/"/r(33) 84(33 y)+—

Now vie shall analyze the structure of all the terms
in Eq. (7), one by one, in the off-mass-shell limit q',
p'-+ 0. Since, we have used PCAC we are led to work

in this limit. However, we do not work in the much

stronger limit q, p ~ 0 as used by Callan and Treiman, '
Keinberg, 4 and others. "Moreover, we shaH evaluate

the pole contributions from the first term and also make

a plausible estimate of the so-called scalar term. These
terms have not been taken into account in earlier papers
on E/4 decays. Also, for the last two terms in Eq. (7)
corresponding to the K&3-decay vector form factors,
no momentum dependence was taken. Recently, Gupta
and Vaishya' with the help of Ward identities (following

the Schnitzer-Weinbergs approach) have obtained E/3-

decay form factors with the X and x mesons on the

mass shell. Thus, they have obtained full momentum

dependence of the form factors within the framework

of SU(3)&&SU(3) chiral algebra. In the same paper,

they have obtained expressions for proper VI'I' and

AVI' vertices. These expressions involve a parameter
ib which has been set equal to —1 (note that this value

of b gave consistently good values for E*~Eg,
Q b lb. *or, Q -+ pK, and 413

—b EE decay widths).

Carrying over those results to Eq. ('i), we see that the
contribution of the last two terms in Eq. (f) becomes

j(24r)
—3/3(2k )

—1/3 fbncf acne

p-
(k-q)

&4' (k+q)s — +
Fx~ Fz (k —q)3+3Nx*s

1(Fx F. F. 3mxs

+(k—q)b:-I
Fx (k-q)3+~x'

+i(24r)—3/3(2k )
—1/3 fancfbcac

p

1(F» F ) F (k—p)'
X (k+p)b -I +

2 kF Fxl Fx (k p)3+m—z'
I Ii~ F Ii~ m~'

+(k-p)b — —--—,(9)
-2 F Fz Fx (k—p)3+mz "3

where IiI is the kaon decay constant defined by

(OI B„A„"(0)IE"(k))=Fx333x'(24r)—'"(2k )
—3"b"" ($0)

Kith the above de6nition, the contributions of the
fourth and fifth terms in Eq. (7) are readily written
dowIl:

2FE.
i(2z)—3/3(2k )

—1/3 k&(fandfbdcn+fbndfadcn) (I])
P 2

The third term in Eq. (7) is again readily computed by
using the proper Avt' vertex obtained in Ref. 8. Here,
we would like to point out that in order to calculate
this term Keinberg' had to invoke the Low model'
and thus introduced some more parameters in the model.
In our case, this term attains the form

4fabcfcnnc/33 3 433,3k (p—q)
i(24r)-3/3(2ko) '"- (q+P)1, —

F [,'+(P+q)'] — q'L q'+(k —
q
—P)'3-

3/3 smq '(p k+q k+Nbzs) sw 3+. mqs —2k—(p+q) mz'—
+(q—p)b

m q'+ (k—
q
—p)'

+(k—
q
—p)b

2k (p q)p q 2-k. (p-q) (p q 1Fz')+- I (Fx F; »+-
4Nqs[mq'+(k —

q
—P)sg mxs+(k —

q
—P)3~433 ' 2 F sj

As fsr as the second term in Eq. (7) is concerned, one may adopt the viewpoint, as Weinberg does, that this

matrix elenMnt, being proportional to m ', is negligible. However, one may, working in a 0 model, &6 pick up the

meson poles and evaluate them in terms of unknown parameters de6ning the SI'I' and SAP coupllngs

» The CVC hypothesis PR. P. Feynmsn snci M. Geii-Mann, Phys. Rev. M9, j93 (1958)j gives Bci/'a—=(}.
&6 The &st two CCR follow easily from the quar'k model; see, e.g., M. Gell-Mann, Phys. Rev. 125, 10&& (19&2); Physics 1

63 (j.9+). The last one foBows from the "cr model"; see J. Schwinger, Ann. Phys. (N. Y.) 2, 40$ (&9&/) and M. Gell Mann

and M. L&yy in Ref. 14. Throughout, we ignore the singular terms arising in the CCR.
» In fact, limits p, q-+ 0 lead to dMerent results for the form factors depending on the order in which these limits are t~en' see

e.g., Qerman and Roy in Ref. 7'. In our case, the limits P', q'~ 0 lead to an unambiguous result.
» F. F.I.ow, Phys. Rev. 110, 974 (1958).
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stands for a scalar meson. This term can be written as equal to (q', p'-f 0)

—i pa'F d'x e-'(~a&'{0
t T(n(x),A),a(0))!Z"(k)). (13a)

%e assume that"

~
~

~
~

~
Fafna gAP PoPf )d'xd'y e '& ~'& f((T(B„A„'(x),A„'(y),o (0)))p= ( —lf' "f—) — g„„+-

q +&a p +tffAp fffAQ

F m, ' Fpp" F,fff p

p AaP(q p)+ pPoP('q p) (13b)
(P q)'+—fff ' P'+fff p' (P—q)'+fff, '

Further, we take the simplest momentum dependence for the vertices:

I „A P(q,p)=I,(p q)„+I—,q„, I P.P=I,(p q),

where the I"s are unknown parameters, F, is the or decay constant, and gA p (=go) =%fffP, P; note also that whereas
I"i, I'p are dimensionless, I'p has the dimensions of (mass) . Thus, expression (13a) simplifies to give

(13c)

ts,~
t VZ~,Z,

'(2~)- I (2k,)-" g"~- '(q+P). (Ii+1'p) +(k-q-P)i
F (pip+(p+q)' l fffo'+(k —

q
—p)'-

FxFpP'q ~2ffppFa
+ {I'p—fffo-'t I'i((p+q)' —k (p+q))+I'p(fffx'+k (p+q))j) . (14)

-tffx'+(k —
q
—p)' fifo'+(k —

q
—p)'

Finally, we consider the contribution of the first term in Eq. (7). In order to evaluate this matrix element, we
write onc of thc terms ln thc following form:

f f fo'mops-"'-""(O~A„'(x)A. '(y)Ae(o) ~x (fp. (15a)

Because of the time ordering, we will have Gve more similar terms. Novr, we introduce a complete set of one-
particle intermediate states and obtain

(15b)

For these states, we take vector, axial-vector, and pseudoscalar mesons only. ' Then, using the three-point functions
obtained in Ref. 8, it is easy to calculate the above contribution. Notice that in the q, p f 0 limits, only E- and
Q-meson poles survive. Summing over all such matrix elements, we finally arrive at the following contribution from
the first term in Eq. (7):

i(2fr)—'"(2kp)-'"
I"x

tfpx' fl:o tax' tlo +(k——
q) q kp (k—q))

!
fafaof pao (q+p)„Jp. k+

L~,P+(k—
q
—P)Pjt ~x P+(k—q)Pj fffx'

q kp (k—q)) k.qp (k—q) k qp (k—q) q kp (k—q)(k —q)')-
!+(k—q- p)), + — +

tN~' fSQ fsx' tPbx'pfffop
+(q—p)il 'p k—p q--

( ffpo ((Sir' '((

XI ."+(k-q)'-,
I +(»(p

(k q p)i,f "'f—""'— 1 ( (k q) p(k —
q) q)—+(o~ &)(p~ q)—

I pq+
)mz +{k q P)qetx'—tl—gz

~ +(k q-) ~ — fnx'P

»In writing this quantity, we are essentially picking up the axial-vector meson and pseudoscalar meson poles from the
axial-vector current and the scalar-meson pole from the scalar current. This is in the same spirit as the earlier vertex-function
calculations of Ref. 8.

'0 Notice that one can again introduce a scalar-meson intermediate state here but, as such, since this term gives a small con-
tribution on the whole, we do not think that inclusion of cr vriH produce any change in the GaaI results.
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FI(q'=0 p'=0 k q k p p. q)
- 2 [ tl—~ +mq'm '/m, ' {k—q)—'] [-,'p k+q kp (k—q)/m~*']

(m Sing ) fceccfbcc +(g ~ b)(p b-b q)
-FK mo'+ (k-q- p)' mz"'+(k-q)'

p. tl 2 42m F 4fcbcf""cm 'k (p —q)+ bcbbcec (pI+ p2)
F 2 m 2+ (p+q)2 mo2+. (k

'

q p)2 F&mg2[m 2+ (p+q)2][mg'p+ (k q p)2]

2F 4 FII 1 F 1 F, 3(k—q)2+F2
aric btrie brie atri bric andric

F 2 F F 2 FII 2 Ftr (k—q)2+m. lrc2

4 (Flr 1 F 1 F 3(k—p)2+mII2)
+ fcccfbeccI +

l
(I/a)

F ~F, 2 Fz 2 FII (k P)2+m—x 9
F2(q'=0, P'=O, k q, k P, P q)

2 [ mlr c2—+mg2mlr'/m, 2 (k —q)'] —[,'P k P-. q q—kP. (—k q)/mlr—']
(m Sin8 ) fccecfb"'

~z- mo2+ (k q p) ' —— ma"'+ (k—q)'

4 m'f'"f""'[( m, /2m g)2( kP+k. q+mlr2) —m, 2+me' —mz' —2k (P+q)]—(g ~ b)(p +-+ q) +
F~[m'+(p+q)'][me'+(k q p)']——

2 mx2 —(k—q)'
+ fbccfcece 1+ (g ~ b) (p ~ q) (1)h)

Fx- (k—q)'+mxc2
Fb(q'=O, P'=0, k q, k P, P q)

2 [mx'+(k —q)' —mq2mlr'm, '] [mlr'+(k —q)' —mq2mtrc2m, ']
(m Sin eg) fceccfbsc'

~X mlr'+ (k—q)' mlr*2[mlr2+ (k—
q
—p)']

(
q (k—q)p (k—q) [q kp (k q)/mq2+q —kp (k q)/mII*2+q —kp (k—q)(k —q)2/ma'mq2]-

x pq+- +
8$+ m@2+ (k—

q
—p)'

mc Fxi 2P 'q %2m,F,
+(g~b)(p~q)+ &"~ " +

Fc2 m. '+(p+q)' mK'+(k q p)—' —m&2+(k—
q
—p)'

4m 2fcbcfcecck. (p q)
X{I'2 mo 2[I'I(2—p q -k(p+q))—+I'2(m~'+k (p+q))]) +

F~[m'+(p+q)']
2p'q 2 (p q FII2 ) 1FII2) — 2FII

+ I

—1 l+- I
— (f "'f'"'+f "'f'"')

mo2[mo2+(k —
q
—P)'] mx2+(k —

q
—P)' (mc2 F ' J 2 F 2J F '

(FAN

F m +II(2k q)' ~ 4— (Flr F mx2+(k p)' ~—
+ f'" f."

I

—— I+ f." f'" I—
F kF FII (k—q)2+mxc2) F (F„FII(k p)2+mtr"j—

Noir, we shall assume that the form factors are
smooth functions of q' and p'. In other words, we assume

that the extrapolation from q', p'=0 to q', p'= —m ' is
smooth and small. " Kith this assumption, the form

. ~i It is-suggested that by writing a once-subtracted dispersion
relation for the form factors, taking the subtraction constant
from the a&re-determined values (for q2, P'= 0), and estimating the
dispersion integral with the help of known resonances, one can
determine the o8-mass-shell corrections LS. C. Bhargava, S. N.
Biswas, K.:C. Gupta, and K. Datta, Phys. Rev. Letters 20, 558
(1968); see also, S. Okubo, in Proceedirlgs of the 1967 IriterrfaQorIl
Confer@rice . om EarIicles arId Fields, Rochester (Interscience
Publishers, Inc, , New York, 1967),p. 469j.

factors obtained above become the physical E~4 decay
axial-vector form factors. In order to calculate the
decay rates and dipion energy spectrum, we shall use
the fuB structure" of F s as displayed in Eqs. (1'I).

22 However, we shall drop the cr term. We notice that it does not
contribute to P~. Also, unlike the assertion made by Berman and
Roy (see Ref. '1), in our non-soft-pions limit, its contribution to
either FI or F3 is always finite. The good agreement obtained with
experiments justifies a Priori the assumption about the smallness
of. the o.contribution (at least for Fi). We feel that since the com-
mutator that gives rise to the 0 term is proportional to F m ~, the
contribution of the scalar term will be important particularly in
those cases where the extrapolation in q2 -from 0 to —ms~~ is
appreciable.
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60- Tsnzz I. Predictions for E,4 decay rates (10' sec ').

30
O

& 20

Decay mode

E+ —+ ~+m e+~

E ~%3 e
Eg'~ qr xoe+v

Current-algebra
predictions

Present
calcu- %'ein-
lation berg'

2.83 1.81'

0.96 0.78
0.62 0.30

a Reference 4.
& References 9 and j.0.
e Reference 6.

From detailed
analysis of

Berends et aLb

2,9 +0.6
1.13+0.25
0.64+0.25

Rxpt. '
2.9~0.6

10

I I I I . I

280 300 320 340 360 380 400 420 440 460

D(PION ENERGY iN MCV

FIG. 1. Bipion energy spectr'um for X+—+ qr+~ e+v. The thick
(unnumbered) curve corresponds to the present calculation
(without vector form factor and fmal-state interactions). All
other curves have been taken from Ref. 10. These correspond to
(1) Constant form factors; (2) only FI enhanced; (3) all form
factors enhanced; (4) all form factors enhanced, the I=0 s-wave
phase being given by a Breit-%igner resonance at 500 MeV with
a width of 100 MeV; (5) all form factors enhanced, the I=O
s-wave phase having a scattering length of 1.0 and a resonance
at 500 MeV with a width of 100 MeV, The histogram represents
experimental mass spectrum for 208 events.

(from that given in Ref. 2) and given by

dl'(x') G'm~
—;P, Z (~Z, (xs,Rs)~ +-',Prs

dx' 16(2s.) '

&( ( Fs(x' Rs) i
'+Pr'x'Es/-'i Fs(xsRs) i s)dRs, (18)

where

Rs= (p+q)s= W = total c.m. energy of p1ons,

x'= R'/mrs',

Is q= sm'rrRp, Is p smxRs &—

P q=-', (m~sx' 2m '), —
For the sake of comparison and clarity, it is worthwhile
to calculate" these form factors at certain particular
points. These, along with a discussion, are given in the
Appendix.

4m '~'~'
pr=

I
1—

m~sxV

Ks= m~'(1+x') —2m+Re= (&—R)',
I' = (Rss—m~'x') "',

(Ro) =-;me(1+x'), (Rs);.= xmz.

(19)

In order to calculate the diplon energy spectrum GIll
the decay rates, we consider Eqs. (3) and (4), substitute
for the form factors from Eqs. (1"/), square up the
resulting expression, and sum over the spins. For the
phase-space integrations, '4 we follow exactly the pro-
cedure of Cabibbo and Maksymowicz. ' In doing these
integrations we retain the full momentum dependence
of the form factors obtained in Eqs. (17) and further
do not introduce either the vector form factor or the
6nal-state interactions. Also, in this section, form factor
Fe is completely dropped since it gives a contribution
to decay rate proportional to (m,/ma)'. Since now we
are retaining k q and k p dependence of the form
factors in addition to the p q dependence, the expres-
sion for the dipion energy spectnun is slightly modiied

~3For numerical purposes, we take F~/F =1.1"j, 0.22 ~F I
=m ~; see Ref. 8 and the literature quoted therein. All the masses
have been taken from A. H. Rosenfeld et al. , Rev. Mod. Phys.
39, 1 (1967).

"The metric used in Ref. 2 is P g= pog() —y- q. Since the form
factors obtained in Kqs. (17) are functions of invariant quantities
and only their moduli squared appear in the 6nal integrations,
our results are easily carried over to this metric.

Themassspectrumobtainedfor E+~ s++s. +s++v
along with the experimental histogram and results of
Ref. j.o are plotted in Fig. 1. We observe good agree-
ment. In order to calculate the decay rates, we integra, te
over x' from 4m s/m&' to unity. The numbers ob-
tained are in good. agreement with experiments. These
are listed in Table I. It is easy to calculate, in a similar
manner, total decay rates for E„4 decays. However, in
these, one must include the form factor Ii 3.

4. VECTOR FORM FACTOR

From invariance considerations, we can write. in
particular for the decay E+ -+ rr++s. +s"+v,

(s.+(q),s (p) ~
Vg+(0) ~X+(k))

$P4

,"".(&—
q
—P).(q+p). (q—f)' 0o)

8$+

Again, the form factor Ii4 is, in general, a function of
k q, A p, and p q. If we assume it to be a constant, its
contribution (because of parity considerations it does
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not interfere with the axial-vector form factors) to the
total decay rate is easily calculated. It comes out to be
equal to'

The total contribution of the axial-vector form factors
has been found to be equal to

2.83X IO' sec '.
Taking the experimental rate' to be the sum of these
two, we obtain

2.9~0.6=2.s3+3.31xlo-
I F,I', (»)

thereby,
I
p

I
~4 6 +b.s

5. CONCLUDOTTG REMARKS

Working within the framework of SU(3)&(SU(3)
chiral algebra, we have obtained momentum-dependent
EE4-decay axial-vector form factors. The dipion energy
spectrum obtained is in good agreement with experi-
ment and this supports the fact that the final-state
interactions are indeed small. Comparing with Wein-
berg's calculation, we 6nd that our form factors (at
zero momentum transfer) are different from his, and
the total decay rates obtained are in better agreement

with experiment. %e would like to point out that in
carrying out the phase-space integrations for the decay
rates, we have retained full inomentum dependence of
the form factors. Further, since our calculation is a
non-soft-pions calculation, the form factors obtained
are free from the ambiguities (related with the limiting
procedure) arising in earlier current-algebra calculations
of EI4 decays. We close with the remark that, within a
current algebra and PCAC framework, it is better to
work with OQ-mass-shell pions than with soft pions.
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Here, we calculate the form factors at three sets of
points and show thereby that they vary appreciably
from point to point. For the 6rst set, we choose k q
=)'b P=P q=o From Kqs (17)

F. &2m, 2 F» F, 2m»'
P,(0,0,0) = {m» sin8c) 8 b " (&b+&b) + (f'"'f '+f "'f' ') + 1+

mq' —tnK Il F F» m»'2 —m»bl

4 2 (mx*'+m» )
p (() () ()) { () ) (l m mm 2)fobefmno+

I
I(faelafbBa fa efb 0)

p» F» (mx mx

2~K
p (o o 0)=(m»»n&o) (f'"'f'"'+f "'f'"')

-PK p 2

(m»'2 mx mo m»—' m —)
A

m»'2(m»'2 tl»)—
F,p F»I'b v2m pFb) 2F»

+b"&""—
I

— + --- I+ f'"f""'P— (A3)
m, J

TAsxx II. Predictions for "constant" E',4-decay axial-vector form factors.

ForDl
factor

Current-algebra predictions
Present calculation

Set 1 Set 2 Set 3

Detailed
analysis of

Berends et al.b

@20~~ 1l. 8+v

2.I8
2.12

(0.91+2.6&+0,91P}

2.18
0

(0.9j.+2.6e)

0
24 12

—0.91P

1.33
2.76
1.88

1.33
0.05
1.88

0
2\7 j
0

1.52
2.44
2.27

1.52
0.06
2.27

0
—2.37

0

0.97
0.97

1 41L1 k' (p g)lk' (p+g)g

0.97
0
I.4i

0
—0.97

-141Lk (p e)l& (p+e)j-
1.j.9+0.03
I.34+0.30

a Reference 4.
b Reference 10.
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k q+k p-p q

k (q-p)

kq+k p—pq
Alternatively, one may say that these form factors are functions of (k—q)~, (k—p)', and (k—

q
—p)', and thus,

one wants to evaluate them at zero values of these momentum transfer squares. Hence we define a second set
such that k p=k p=p q= —2rsx'. Also, fromkinematicalconsiderations, thesearethemaximum. Now, theform
factors are given by

Pi( ,'m—~'-, —-', ms', ',—mi-r')

52&2 ~ 4P&2
(i' sing ) (famcf bee+ fancfbnac) ~ 2(i' 2 ~ 2)+4~ 1 ~+

-2~x

F~ t' w, ') %2'~
i(r,+ r,) (As)

F. &iii.'—ma'& mq'

Pg( ~fix, gtÃyP—, stsx—)

4f."f""
~ ts '

~ ~~ '+rN ' os -'~
=(~z»neo) — (f'"'f'"'+f'"'f~')rex'(~o ' ~~ ')+-

2Ii g Px 4g, '—m, x'i 5 mo' i

Fii(—-,'eix', ——,'ma', —-', mx')

t' ego') ' 2F»' 4m''
(

'
g ) (fan fbee+ fonofbm ) i

1
i +

-~X m, 'r' P ' tair*'

F, t m. '
t

F~ ~2m,
+—&"6""~

I

— 1'8+
F. k~.~ ~x2 k 2F. ~,2 )

However, from phase-space considerations (see Sec.
3), we see that

(k q) =(k p). =(p q)...=-0.5~~,
(k'q)min= (k'p)min= (p q)min —0 155wir

So, if the decay rates are evaluated by treating the form
factors as constants, one must evaluate these at the
point

(k q)=(k p)=(p q)= —0327''.
This defines a third set of constant form factors. It is

evident that these three sets receive different contribu-
tions from Eqs. (17). For numerical purposes, we drop
the scalar-term contributions for reasons mentioned in
Ref. 22. The values of the form factors obtained from
the three sets defined above along with the values ob-
tained by %einberg4 and Serends et al." are listed in
Table II.%e see that the form factors vary appreciably
from point to point (compare sets 2 and 3).Thus, we are
led to believe that the momentum dependence of the
form factors cannot be ignored.


