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K .4 decays are considered within the framework of SU(3) X.SU (3) algebra. An effort has been made
to obtain the momentum dependence of the axial-vector form factors involved in these decays. To achieve
this, we work with zero-mass external pions (p?, ¢> — 0, where p and ¢ are the four-momenta of the two
pions), unlike the soft pions (p, ¢ — 0) incorporated in earlier current-algebra calculations of K. decays.
Further, we use the recently developed on-mass-shell three-point functions throughout our analysis. We
also make an estimate of the weak-amplitude term involving K- and Q-meson poles and the scalar term
involving the ¢ meson. In this way, we obtain momentum-dependent K .~-decay form factors. These are
used to calculate the dipion energy spectrum, decay rates, and the vector form factor. The fair agreement
obtained with the experimental data is indirect evidence of small s-wave final-state interactions. Our
calculation neatly brings out the fact that the K.-decay form factors have significant momentum

dependence.

1. INTRODUCTION

N recent years, K. decays have attracted wide
attention within the context of algebra of currents
and s-wave m-r phase shifts.!~7 Most of the calculations
deal with the axial-vector form factors only, and further,
in almost all of these, the form factors are assumed to be
constants. It is our endeavor, in this paper, to bring

out the momentum-dependent structure of the K4

decay axial-vector form factors and show thereby that
the momentum dependence is not insignificant. Our
starting point is the recent calculation of Weinberg*
employing SU(3)XSU(3) chiral algebra. As is usually
the case with current-algebra applications, he works
with soft pions. The form factors Fi, Fe, and F; are,
in general, functions of k-p, k-g, and p-g, where £, g,
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and p are the four-momenta of the K meson and the
pions, respectively. In the soft-pion limit, i.e., ¢, p— 0,
the form factors are evaluated essentially at the point
k-p=Fk-g=p-¢=0. In the present calculation, we work
with zero-mass external pions (¢?, p%— 0), so that the
form factors are evaluated as explicit functions of
k-p, k-q, and p-g. In our analysis, we extensively use
the on-mass-shell three-point functions evaluated in
Ref. 8. In that particular calculation, utilizing Ward
identities for proper vertices and one-meson dominance,
full structure for proper AAV, AV P, and VPP vertices
was obtained. Here, 4, V, and P stand for axial-vector,
vector, and pseudoscalar mesons, respectively. In
obtaining these, we used the spectral-function sum rules
and introduced a parameter § which was fixed to be —1
to give mutually consistent good numbers for K* —
K+, Q— K*+r,Q— K+p, and ¢ — K++ K~ decay
widths. In the present analysis, we will not go into the
details of the vertex-function calculation but use the
results obtained therein directly. Further, in evaluating
some matrix elements (see Sec. 2), we will use the pole
model. Proceeding thus, we bring out the essential
improvement in the present calculation over that of
Weinberg and, also, show how the momentum depen-
dence of the form factors is obtained. In our numerical
analysis, we neglect the off-mass-shell corrections arising
from extrapolation in ¢? and p? from 0 to —#m,2. This
point is further discussed in the next section.

With our form factors, we compute both the dipion
energy spectrum and the decay rates of the CP-con-
serving K, decays. The energy spectrum obtained
(with the omission of final-state interactions and vector
form factors) is in fair agreement with the experimental
spectrum and, also, with a recent calculation® assuming
vector-meson pole dominance. The decay rates obtained
are also in good agreement with experiment.

In the final section, we have tried to give a rough

8 K. C. Gupta and J. S. Vaishya, Phys. Rev. 170, 1530 (1968).
The procedure adopted closely follows the treatment of H. J.
Schnitzer and S. Weinberg [Phys. Rev. 164, 1828 (1967)] for

SU(2)XSU(2) chiral algebra. See, also, R. Arnowitt, M. H.
Friedman, and P. Nath, Phys. Rev. Letters 19, 1085 (1967).
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estimate of the vector form factor (F4). Writing down
general structure of the matrix element, assuming F,
to be a constant, and taking the experimental decay
rate for K*— w4744 as input, the missing
contribution is found and thus the vector form factor
is determined. A similar procedure had been adopted
by Berends et al.® with the axial-vector form factors
taken from Weinberg.* Using our Fy, F,, and F3;, we
obtain F4 much different from that of Berends et al.®
Finally, we would like to point out that our numerical
estimates for F1, F,, and F; are in good agreement with
those obtained from a detailed analysis of K,4 decay
carried out recently by Berends, Donnachie, and
Oades. 10

2. AXIAL-VECTOR FORM FACTORS
IN K., DECAYS

We shall consider the CP-conserving decays, namely,

K+ — rt4-a+et+v,
Kt — 7%+n4et+4v, 1
K — m+n4et+v.
Firstly, we shall fix our notations and definitions.!! We
consider the general process

Km— rot-nrdt-et+v, (2)

where m, @, and b are the SU(3) indices. Taking the
Cabibbo picture!? for the hadronic current, the total
matrix element is given by

(G/V2)(mom? l sinfe[4,"+V,"] I K™Yiiey(14y5)u, , )

where A," and V,* are the AS=AQ=1, Al=1% axial-
vector and vector currents,’® respectively, f¢ is the
Cabibbo angle, and G is the universal weak-coupling
constant. In the present analysis, we shall concentrate
mainly on the axial-vector part. For this purpose, the
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axial-vector form factors are defined as

(sinfc)(m(q),m*(p) | Ax"(0) | K™ (k))

=i(2m)~*1%(8pogoko) !/ 2<i>

MK
XL(g+pFi+(g— phFet (k—q—p)Fs]. (4)

The form factors thus defined are dimensionless and
functions of k-g, k-, and p-g, where g, p, and % are the
four-momenta of the pions and the kaon, respectively.

Following Weinberg,* we maintain that in order to
use the partially conserved axial-vector current
(PCAC) "and the current commutation relations
(CCR) systematically, both the pions should be taken
off the mass shell simultaneously. Dispersing the pions
and using the PCAC relation!

6,‘A,,“(x)=F,,m,,2¢“(x), e=1,2,3 (5)
Eq. (4) becomes

(B2 m ) (p-ms?) / diadty
X emie—o 00 T(8,4,5(2),0,4,9),4x*(0)} | E»(5))

1
=1(2mw)—3/2(2ko)~1 2(*——)
mg sinfg

XL+t (g— phFat (k—g— p)aFs]. (6)

Note that now the F’s are functions of g2 and p? as
well. If the two pions are on the mass shell, i.e., ¢
p*=—m.* these F; become identical with the physical
form factors defined earlier in Eq. (4). The time-
ordered product on the left-hand side in Eq. (6) is
analyzed easily, and with the use of the Jacobi identity
reduces to the following form:

(Fam o)~ +m?) (P2+mw2)[9ul>v / dtxdty 7= (0| T{A4,(x),45%(5),42"(0) } | K™(k))

g / 8 =5 H02(0| T{o(x), 4x7(0)} | K (B))—3i(p— ), (2i 1) / a4 i +0=(0| T(V,o(x), 4,7(0)} | K™(5))

—5(2if*n%) (2i f*3)(0] Ax*(0) | Km(k))—5(2i f>4) (23 f22) (0| 4x*(0) | K™(k) )

— i) / dtx &=50:5(0] T{V3%(0),3,4 ,7(x) } | K (k) — (23 foe) f a4z ¢=iv+(0| T{V2(0),3,4,(x)) le(k»]. %)
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1 Qur metric is such that p-g=p-q—pogo; we work in natural units Z=c=1. In our definitions, we follow closely the notation

of Ref. 4.
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Here we have used the conserved-vector-current
(CVC) hypothesis!s to drop one of the eight terms in the
T-product expansion, and the CCR’s!® have been used
in the form

d(wo—y0)[40%(x),4,.°()]

=2i foreV (%) (x—y)+- - -,
3(x0—y0)[40*(x), V> ()]

=2ifebe 4, (x)d*(x—y)+ -+, (8)
8(xo—y0)[46°(%),9,4,%(»)]

=18 (x)84(x—y)+ - - -

Now we shall analyze the structure of all the terms
in Eq. (7), one by one, in the off-mass-shell limit ¢?,
p*— 0. Since, we have used PCAC we are led to work
in this limit. However, we do not work in the much
stronger limit g, # — 0 as used by Callan and Treiman,?
Weinberg,* and others.”” Moreover, we shall evaluate
the pole contributions from the first term and also make
a plausible estimate of the so-called scalar term. These
terms have not been taken into account in earlier papers
on K4 decays. Also, for the last two terms in Eq. (7)
corresponding to the Kjs-decay vector form factors,
no momentum dependence was taken. Recently, Gupta
and Vaishya?® with the help of Ward identities (following
the Schnitzer-Weinberg® approach) have obtained K-
decay form factors with the K and = mesons on the
mass shell. Thus, they have obtained full momentum
dependence of the form factors within the framework
of SU(3)XSU(3) chiral algebra. In the same paper,
they have obtained expressions for proper VPP and
AVP vertices. These expressions involve a parameter
8 which has been set equal to —1 (note that this value
of & gave consistently good values for K*— K,
Q— K*r, Q—pK, and ¢— KK decay widths).
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Carrying over those results to Eq. (7), we see that the
contribution of the last two terms in Eq. (7) becomes

4
i(zﬂ)_alz(zk())"l/2-——-fbncfamc
F

T

1/Fg F.\ F. (k—¢q)?
X {(k+¢1)xl:—( + )——— ]
2\F, Fx/ Fg(k—q*+mx*

1 FK F1r F?r "ﬂK2
ol e
2\F, Fx/ Fg(k—q)?*+mg*

4
+1:(21[‘)"’3/2(2]30)”‘1/Zn._fancfbmc
F

el o mne]

R e

F, mx?

=21l o
Fg (k—p)*+mg+

where Fg is the kaon decay constant defined by

(0] 9,4,(0)| Km(k)) = Fxmg*(2m)~*/*(2ko)~*/25™™. (10)

With the above definition, the contributions of the
fourth and fifth terms in Eq. (7) are readily written
down:

2Fk
,L'(27r)-—3I2(2k0)—-1/2_;._2_k)‘(fandfbdm+fbndfadm) . (11)

The third term in Eq. (7) is again readily computed by
using the proper A VP vertex obtained in Ref. 8. Here,
we would like to point out that in order to calculate
this term Weinberg* had to invoke the Low model'®
and thus introduced some more parameters in the model.
In our case, this term attains the form

§ Q)12 22 {(q+p>x[~

Fx[my*+(p+9)*]

m ok (p—q) :l
me*[me*+(k—g—1)*]

o]

m2mg(p-k+q-k+mg?)—m2+me*—2k- ([J+q)——mK2]
me*+(k—q—p)*

2k-(p—q)  (Pg

2%-(p—9)p-q 1 Fg?
+ \~——(FK2F;2— 14— ):” . (12)
melme+(k—gq—p)*] mx*+(k—q—p)"\m,* 2 F?

As far as the second term in Eq. (7) is concerned, one may adopt the viewpoint, as Weinberg does, that this
matrix element, being proportional to m.% is negligible. However, one may, working in a ¢ model,' pick up the
meson poles and evaluate them in terms of unknown parameters defining the SPP and SAP couplings, where S

-I—(k—q—P)x[

15 The CVC hypothesis [R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1958)7] gives 9,V ,=0.

16 The first two CCR follow easily from the quark model; see, e.g., M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Physics 1
63 (1964). The last one follows from the ‘o model”’; see J. Schwinger, Ann. Phys, (N.Y) 2, 407 (1967) and M. Gell-Mann
and M. Lévy in Ref. 14. Throughout, we ignore the singular terms arising in the CCR.

17 In fact, limits p, ¢— O lead to different results for the form factors depending on the order in which thesé limits are taken; see
e.g., Berman and Roy in Ref. 7. In our case, the limits %, ¢*— 0 lead to an unambiguous result.

18 F, E. Low, Phys. Rev. 110, 974 (1958).
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stands for a scalar meson. This term can be written as equal to (g2, p?— 0)

— 390~ / d4x e @+0-2(0| T{o(x),4x"(0) } | K™(k)). (13a)

We assume that!?

Fa a2 vPn
[ataity e 2 0, ) 0O (it B (g PO

q2+ma2LP2+mA bz\gvnTmA b

X per gy T Pm@,,,)]. (13b)
(o—a)+m2? protmat (9= ms?
Further, we take the simplest momentum dependence for the vertices:
T,49P(q,p)>=T1(p—q) s+ Taqy, TP PT4(p-q), (13¢)

where the I'’s are unknown parameters, F, is the o decay constant, and g4; (= go) =V2m,F . 8; note also that whereas
T';, I'; are dimensionless, I's has the dimensions of (mass)~L Thus, expression (13a) simplifies to give

: moFy

me*+(k—q—p)*

Ma

F,
i(zr)—-s/z(z]e )—1/2__.54b5mn__.__.__..___
YR, mAt(pte?

l: FgTsp-gq V2m,F - T [(Ti((p+9)*—k- (p+ )+ Te(mx®+k- (p+ ))]}:” (14)
= { —m —2| 1 2. o(m 9 . .
mit(k—q— 1) mo+(k—q—p)* ¢ a Ptq K 'l

Finally, we consider the contribution of the first term in Eq. (7). In order to evaluate this matrix element, we
write one of the terms in the following form:

{(‘H’P)x[(rrl‘ Ty) ]+ (k—g—p)h

Qub» f dtedly eiev(0] 4,%(x) 4,5(y)4\"(0) | K™ (k)). (15a)

Because of the time ordering, we will have five more similar terms. Now, we introduce a complete set of one-
particle intermediate states and obtain

qupy / dtedty emie=miry 3 (0] 4,%(x) |m)(m| 4,5(y) |n)n] 4x7(0) | K™ (R)). (15b)

For these states, we take vector, axial-vector, and pseudoscalar mesons only.?® Then, using the three-point functions
obtained in Ref. 8, it is easy to calculate the above contribution. Notice that in the ¢2, $2— 0 limits, only K- and
Q-meson poles survive. Summing over all such matrix elements, we finally arrive at the following contribution from
the first term in Eq. (7):

2 myt—me'mgm,+(k—q)* T q-kp-(k—q)
i(20)~3/2(2k —1/2__{_ ‘ame fbne. % h—
R B [moz+<k~q—p>23£mrz+(k—q)ﬂ]L(q”)‘(” )

q-kp-(k—q)

mr*?

+(q—1’)x<-’z- k—prq— )+(k—9"1’)x(

T
me? mg*? mx*2me?

k-gp(k—q) k-gp-(k—g) q'kp-(k—q)(k—q)”ﬂ

b—g—phpemf T L ()
o

+(@d)(pq)—
(@=8)(p9) [mK2+(k_q—p)2]mx‘2me‘2+(k-—Q)z\ mx*

| (k—q)-p(k-q>~q>

Msz K »2

X(mx'2+ (k—9)*— )2]+ (@ebd)(pe Q)} . (16)

mp

¥In writing this quantity, we are essentially picking up the axial-vector meson and pseudoscalar meson poles from the
axial-vector current and the scalar-meson pole from the scalar current. This is in the same spirit as the earlier vertex-function
calculations of Ref. 8.

% Notice that one can again introduce a scalar-meson intermediate state here but, as such, since this term gives a small con-
tribution on the whole, we do not think that inclusion of ¢ will produce any change in the final results.
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Combining Eqs. (6)—(16), we obtain the momentum-dependent decay form factors

F1(92=0, Pzz()’ k'Q7 k?y PQ)

[—mg2+memrt/m2— (k—q)*] [3p-k+q-kp- (k—q)/mx+*]

+@eb)(pe )

2
- o 0 —_— ame fbne.
(mx sinfc) I:FK [f f PTI—

m+ (= g)?
4fubcfmncmp4k . (p.... q)

T i
Vet (—g— ) Fxmam -+ () Ima+ (b—q— )]

F, M2 V2m,F oy
} §adbgmn. (P1+ )

F.? me*+(p+q)?

2k b bne 4 b

o s e (-5

F2(92=0: P2=O: kq: kp: pQ)

B
F,,ff

Fx ' 1F. 1F, 3(k’~q)2—|—mxz)
F. 2Fg 2Fg (k—l])2+m.K*2

Fx 1F. 1Fy3(k—p)+mz?
I S ):I, (17a)
F. 2Fx 2Fg (k—p)+mxs

[+ mame/mi— (k=91 [3p-h—pg—q-bp (b—0)/mc]

2
= iné — | famc fbdnc.
(mx sinfc) {Fx[f f et G—g—p)

mg?+(k—q)*

7, dmtferefmmelim,®/me®) ke p+k-gtme®) —m+me’—mx*—2k- (p+9)]

—(a“’b)(PHQ)_l |

Fy(q*=0, p*=0,k-q, k" p, p-q)

Fe[my®+(p+¢)*[[m*+ (k—g—$)*]
+_.2_|:fbncfamc(1+
Fx

mx*— (k—q)*

@TM)_(“H”)(PH@:”, (17b)

[mx 24 (k—g)P—momg*my* JT[mx 4 (k— 9)*—me*mu *m, "]

2
— (mK Sin00) {___famcfbnc

L mxTme+(h—g—p)7]

.qT

Fx (= g)?
X(P /T

MK *2

Mo l’

Fglsp-q

PG SUaCAY [q'kﬁ'(k—Q)/m02+Q‘kP'(k—Q)/mK*Z-I—Q'kP'(k—Q)(k—9)2/mK*2m02]]

me*+(k—q—p)*
V2, F e

F,
+@eb)(pe— g+ 7 dabgmn.

2wt (—g— ) ma+(i—g—p)*

X{Te—mg 2 [T1(2p- q—k- (p+)+Tolmx+k- (p+¢)) 1}

. 7

Fx?

1, 2R (=)
17 Pelm+(p+9)]

[ - 2peq 2
melma+(—g— )71 mx*+(k—q—p)*\m,?

(

y
Fr F, sz-|-(k---q)2\l 4

1)+1FK2)] ZFK( ¢ bmc+ ame £b c)
T X Jenefrmed- feme f

e
waf

Now, we shall assume that the form factors are
smooth functions of g2 and p2%. In other words, we assume

that the extrapolation from ¢?, p?=0 to ¢, p*=—m,?is
smooth and small.?! With this assumption, the form

2 Tt is suggested that by writing a once-subtracted dispersion
relation for the form factors, taking the subtraction constant
from the afore-determined values (for ¢2, p2=0), and estimating the
dispersion integral with the help of known resonances, one can
determine the off-mass-shell corrections [S. C. Bhargava, S. N.
Biswas, K..C. Gupta, and K. Datta, Phys. Rev. Letters 20, 558
(1968); see also, S. Okubo, in Proceedings of the 1967 Internationl
Conference on Particles and Fields, Rochester (Interscience
Publishers, Inc., New York, 1967), p. 469].

F. Fx(k—q)*+mx?) F,

Fx Ty mx2+(k—;ﬁ)2)}. W)

anc fobme
) (F?r Fx (k—p)2+mg+

factors obtained above become the physical K;4 decay
axial-vector form factors. In order to calculate the
decay rates and dipion energy spectrum, we shall use
the full structure® of F/’s as displayed in Egs. (17).

22 However, we shall drop the o term. We notice that it does not
contribute to F. Also, unlike the assertion made by Berman and
Roy (see Ref. 7), in our non-soft-pions limit, its contribution to
either F; or F;is always finite. The good agreement obtained with
experiments justifies ¢ priori the assumption about the smallness
of the ¢ contribution (at least for F). We feel that since the com-
mutator that gives rise to the¢ term is proportional to F,m.2, the
contribution of the scalar term will be important particularly in
those cases where the extrapolation in ¢ from 0 to —m,? is
appreciable.
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Fi6. 1. Dipion energy spectrum for K+— #tn~e¢*y. The thick
(unnumbered) curve corresponds to the present calculation
(without vector form factor and final-state interactions). All
other curves have been taken from Ref. 10. These correspond to
(1) Constant form factors; (2) only F; enhanced; (3) all form
factors enhanced; (4) all form factors enhanced, the I=0 s-wave
phase being given by a Breit-Wigner resonance at 500 MeV with
a width of 100 MeV; (5) all form factors enhanced, the I=0
s-wave phase having a scattering length of 1.0 and a resonance
at 500 MeV with a width of 100 MeV, The histogram represents
experimental mass spectrum for 208 events.

For the sake of comparison and clarity, it is worthwhile
to calculate? these form factors at certain particular
points. These, along with a discussion, are given in the
Appendix.

3. DIPION ENERGY SPECTRUM AND
DECAY RATES

In order to calculate the dipion energy spectrum and
the decay rates, we consider Egs. (3) and (4), substitute
for the form factors from Egs. (17), square up the
resulting expression, and sum over the spins. For the
phase-space integrations,?* we follow exactly the pro-
cedure of Cabibbo and Maksymowicz.2 In doing these
integrations we retain the full momentum dependence
of the form factors obtained in Eqs. (17) and further
do not introduce either the vector form factor or the
final-state interactions. Also, in this section, form factor
F; is completely dropped since it gives a contribution
to decay rate proportional to (m./mg)?. Since now we
are retaining k-¢ and %-p dependence of the form
factors in addition to the p-g dependence, the expres-
sion for the dipion energy spectrum is slightly modified

23 For numerical purposes, we take Fx/Fr,=1.17, 0.22 nF,?
=m.?; see Ref. 8 and the literature quoted therein. All the masses
have been taken from A. H. Rosenfeld ef al., Rev. Mod. Phys.
39, 1 (1967). o .

2¢ The metric used in Ref. 2 is p-¢=pogo—p* q. Since the form
factors obtained in Eqgs. (17) are functions of invariant quantities
and only their moduli squared appear in the final integrations,
our results are easily carried over to this metric.
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TasLE 1. Predictions for K4 decay rates (103 sec™?).
Current-algebra
predictions
Present From detailed
} calcu- Wein- analysis of
Decay mode lation berg®  Berends ef al.P Expt.c
K+ — gtrety 283 1.87 2.9 0.6 2.94+0.6
K+ — gOrlety 096 0.78 1.1320.25 oo
Ky — 7%ty 0.62 0.30 0.64+0.25

& Reference 4.
b References 9 and 10,
¢ Reference 6. -

(from that given in Ref. 2) and given by
dr'(x?) G?mk
dx? =16(27r)5
X PR | 482D Falat R) o |, 19)

[%m f P Fi(Re) |38

where
R2=(p+¢)?=W?=total c.m. energy of pions,
x%=R*/mg?,
k-q=3mgRy, k-p=3imgR,,

- q=3(mx*c*—2m.?),
(19)

K?=mg*(1+2%)—2mgRo= (k—R)?,
P=(Ry—mg22)!2,
(Ro)m&:::%mK(l‘l'x?) ’

The mass spectrum obtained for K+ — wt+47~4-¢t+v
along with the experimental histogram and results of
Ref. 10 are plotted in Fig. 1. We observe good agree-
ment. In order to calculate the decay rates, we integrate
over x? from 4m.*/mg? to unity. The numbers ob-
tained are in good agreement with experiments. These
are listed in Table I. It is easy to calculate, in a similar
manner, total decay rates for K,4 decays. However, in
these, one must include the form factor Fs.

(Ro)min= XMEK .

4. VECTOR FORM FACTOR

From invariance considerations, we can write, in

'particular for the decay K+ — nt+a4¢et4»,

(@, (p) | VX*H(0) | K+(k))

iFy
=——erwo(k—q— ) u(g+1)(q—)s.

mK3

(20)

Again, the form factor F4 is, in general, a function of
k-q, k-p, and p-q. If we assume it to be a constant, its
contribution (because of parity considerations it does
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not interfere with the axial-vector form factors) to the
total decay rate is easily calculated. It comes out to be
equal to® :

3.31|Fy|2secl.
The total contribution of the axial-vector form factors
has been found to be equal to

2.83X10% sec™t.

Taking the experimental rate® to be the sum of these
two, we obtain

2.94-0.6=2.83+3.31X1073| F4|?; (21)

(22)

thereby,
IF4‘§4.6—4.6+9'6.

5. CONCLUDING REMARKS

Working within the framework of SU(3)XSU(3)
chiral algebra, we have obtained momentum-dependent
Ks-decay axial-vector form factors. The dipion energy
spectrum obtained is in good agreement with experi-
ment and this supports the fact that the final-state
interactions are indeed small. Comparing with Wein-
berg’s calculation, we find that our form factors (at
zero momentum transfer) are different from his, and
the total decay rates obtained are in better agreement

F, V2m.,
F1(0,0,0)= (mx sinf¢) {5“1’5”’”}—2(P1+ I'y) ;

me*—mg x

4 2
F2(0,0,0)= (mx sinf) [;—(1—mp2mo—2>fabcfm+—~(

& Fg

+2(fa b+b )I:FK_L
P o) 2

mEK

ME*2I—mxg
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with experiment. We would like to point out that in
carrying out the phase-space integrations for the decay
rates, we have retained full momentum dependence of
the form factors. Further, since our calculation is a
non-soft-pions calculation, the form factors obtained
are free from the ambiguities (related with the limiting
procedure) arising in earlier current-algebra calculations
of K4 decays. We close with the remark that, within a
current algebra and PCAC framework, it is better to
work with off-mass-shell pions than with soft pions.
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APPENDIX

Here, we calculate the form factors at three sets of
points and show thereby that they vary appreciably
from point to point. For the first set, we choose %-¢
=k-p=p-¢=0. From Egs. (17),

F,{ N 2mK2

A mK‘z—sz)]} » (A1

Yagmegine g,

2 +mx?

2

(A2)

1
F3(0,0,0)=(mx sinfc) [_F_‘_( fome fonoy. fane fome)

K L

F.f Fgl's
+ 5ab5mn__(__ O£+

TasLE II. Predictions for “constant”

2FK2 ' (mK‘Z—sz—-MQ2mK‘2mP_2)2
P2

(42
mI(‘z(mK‘L—sz) }

\/Q_m,,l‘z)_*_ZFK . :| (A3)
F,, mq F,f f ﬂ ’

~

K .4-decay axial-vector form factors.

Current-algebra predictions

Detailed

Form Present calculation analysis of
Decay mode factor Set 1 Set2  Set3 Weinberg» Berends ef al.”

K*— wtrety F1 2.18 1.33 1.52 0.97 1.19:0.03

F, 2.12 2.76 2.44 0.97 1.34:£0.30

Fs (0.91-+2.6a-+0.918) 188 227 14101~k (p—q) /% (p+q)]
K+ — x%n%*y F 2.18 1.33 1.52 0.97

Py 0 0.05 0.06 0

Fs (0.9142.6a) 1.88 227 141
K0 — o~ %t Fy 0 0 0 0

F2 —2.12 =271 =237 —-0.97

Fs —0.918 0 0 ~141[k- (0—9)/k- (p+9)]

» Reference 4.
b Reference 10.
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where

P9
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k-(g—p) (Ad)

a

Ckegthop—pg

kegthep—pq

Alternatively, one may say that these form factors are functions of (k—¢)?, (k—p)?, and (k—¢—p)?, and thus,
one wants to evaluate them at zero values of these momentum transfer squares. Hence we define a second set
such that k- p=Fk-p=p-q=—jmg?2 Also, from kinematical considerations, these are the maximum. Now, the form

factors are given by

1 1 1
Fy(—3mx®, —3mx?, —3mx®)

( '0)[1( et e 1) L 22 +4 1 mK2)+4FK2}
_ m Sln amc nce. anc me m m — _.m st ——
k sinfc ZFKf fore-fenef x*(mq ’ "y Y
F, Mme? V2m,
+—~aab5m(—)(r1+l‘2) ] (AS)
. m¢2__mK2 m02

1 1 1
Fy(—3mx®, —3mx’, —img?)

1
=(mg sinBc)[—
2F

K

1 1 1
Fy(—3mg®, —imi?, —imx?)

(famcfbnc+fancfbmc)mKZ(mQ—2__ mp—z)_lL

4fabcfmno/ mpZ )(m'02+m1(2'-mp2)

Fk \m,,'-’-mx"’ m02

2 e g

mg*

ne

= (mx sinac)[F—lK(f“’“f RS {(1

m,?

However, from phase-space considerations (see Sec.

3), we see that

(k 'Q) max = (k 'P)max= (? : q) max—2— O.SMK2 ,

(k- Qmin= &) min= (p* P min>=—0.155mx?.
So, if the decay rates are evaluated by treating the form
factors as constants, one must evaluate these at the
point

(k-g)=(k:p)=(p-q)=—0.32Tmx’.

This defines a third set of constant form factors. It is

mq2>2 2Fg? 4mK2}
|
F-,z V(34 »2

Fo‘ m,2 FK \[Z‘mp
+_5.,b5m(_.___)(_ Iyt rz)]. (A7)
F. me—mg®/\ 2F,  mg?

evident that these three sets receive different contribu-
tions from Egs. (17). For numerical purposes, we drop
the scalar-term contributions for reasons mentioned in
Ref. 22. The values of the form factors obtained from
the three sets defined above along with the values ob-
tained by Weinberg* and Berends ef al.2° are listed in
Table IT. We see that the form factors vary appreciably
from point to point (compare sets 2 and 3). Thus, we are
led to believe that the momentum dependence of the
form factors cannot be ignored.




