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where _ _

. D(q9)=D(q)A~*(9)D(9)—D(q) (35)
an

{TaTs}+=ToTp+TpTa.

IV. CONCLUDING REMARKS

We have extended our previous work to an arbitrary
current algebra making as few assumptions as possible.
Aside from assuming a local algebra with c-number
Schwinger terms, our main assumption has been the
specific model of symmetry breaking expressed in Eq.
(1). This model is general enough to encompass any
set of nonconserved currents. In particular, we have not
assumed any propagators to be saturated by single-

SCHNITZER, AND WEINBERG

175

particle states. As well as making it possible to imple-
ment the requirements of unitarity in some future,
dynamical approach to current algebra, we note the
existence of certain terms in Egs. (32)—(34) which
simply vanish in the single-particle approximation, and
hence do not appear in the analogous equations of
Refs. 1 and 2.

In the following paper,” we shall apply these results
to SU(3)®SU(3) to discuss various meson decays. Al-
though our present knowledge forces us to a single-
particle-dominance approximation there, such an ap-
proximation and its success (or lack thereof) in no way
compromises the generality of this paper.

71. S. Gerstein and H. J. Schnitzer, following paper, Phys. Rev.
175, 1876 (1968).
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We approximate the three-point functions constructed previously by using a single-particle approxi-
mation to all propagators and assuming that the primitive three-point functions are slowly varying functions
of the momenta. We use the available data on strong and weak decays of spin-one and spin-zero mesons
to compute the values of the parameters introduced in our model, with special reference to Ki; decay.

I. INTRODUCTION

N the preceding paper! we extended the Ward
identity techniques for the three-point functions to
chiral SU(3)®SU(3) without making single-particle ap-
proximations or special assumptions about symmetry
breaking. We now use single-particle dominance for all
propagators, assume that the primitive three-point func-
tions are slowly varying functions of the momenta, and
assume that the symmetry-breaking term in the La-
grangian transforms as (3,3) @ (3,3). These approxima-
tions lead to predictions for meson decays in terms of a
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Atomic Energy Commission under Contract AT (30-1)2098.

t Research supported in part by the National Science
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11. S. Gerstein, H. J. Schnitzer, and S. Weinberg, preceding
paper, Phys. Rev. 175, 1873 (1968). Equations from this paper are
denoted by I.

2 See S. L. Glashow and S. Weinberg, Phys. Rev. Letters 20, 224.

(1968). S. L. Glashow in Proceedings of the International School
of ‘Physics, Eitore Majorana (1967). Edited by E. R. Caianiello
Academic Press Inc., New York, 1968).

number of arbitrary parameters, which are too numer-
ous to be determined by experiment, so that no specific
numerical predictions can be made without further
assumptions. We shall discuss these assumptions as
we make them. Finally, we determine the remaining
parameters from experiment, these are found to be con-
sistent with small SU(3) and chiral symmetry breaking.

II. SINGLE-PARTICLE APPROXIMATION

The spectral representations for the spin-zero mesons
are given in Egs. (I1.11), (1.14), and (1.17).* We define
the single-particle approximation by assuming for the
matrix propagators*

=712
M7 utg
3 The notation, unless otherwise specified, is as in I.
4 These approximations, their relation to the meson mass

spectrum and to mixing models are discussed in S. Coleman and
H. J. Schnitzer, Phys. Rev. 134, B863 (1964).

A(g)= Z2, M
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where p?=Z2M*Z'/? is the physical mass matrix. This
then implies that

1
D(q)=2Z'"— ZL2
¥ g
1
= 7112 —Z12 (2)
”2+q2 .u2
D(g) 21/21 121/2 3)
q)= N R ’
W2 e
and _ _
D(g)=D(9)A™(9)D(q)—D(q)=0. (4)

The Ward identities appropriate to these propagators
are obtained by substituting Egs. (1)-(4) into Egs.
(1.32)—(1.34).

From the structure of the resulting equations, one
finds that it is useful to renormalize the wave functions
of the spin-zero mesons. To this end, we define?

$i(0)=(Z711%);0), ®)

where ¢; is the renormalized meson field. If we define
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the vector (F2) in the representation space R by
Fe=(Z712Ta\), (6)
then (I.21) becomes
(Tae)=(Z711u’F*) (7)

in the single-particle approximation. From (I.2), we
find
_iqﬁ"

—_— 8
(2m)312 (2e0;)1 12 ®

0]7,2(0)] 5)= (F2i,

so that (F%); is the decay amplitude of meson j, via
the current J, The corresponding definitions for the
renormalized verticles are

Ti.(g,0)= (21950 (ZV2) s (ZM D) T o e (0,0) ,  (92)
Ti (@)= (24D (Z412) 5T 30 N (0,1) 5 (9b)
and _

Ti g (@)= (ZY%)is T 7, (1) - (9¢c)

The renormalized Ward identities corresponding to
(1.32)-(1.34) are, in the single-particle approximation,

— (F*)CppCry T g1,y M(0,$) = — CaewCo5Copy¢*Tar v, N (0 9)
+Capry [A7 5" ($)CprrgCypy— ALyr (1) CrgCoyrry ], (10)
—(F*)i(FB)iCyy f‘i.j,v’)\(q’P) =—CaaCosCoyy @' Tar v, M0, 0) = " Cot oy Copyr ALy 1, NN (r) tr(F'Fe)
F DY Capr g Copgrr A1 MNr) tr(FEFE)+ 3 tr[FYZ7H3{ T, T4\ ]
—3(q—= ) CaporCyryt3(q— ) Coapy ALy (nCy1aS, (11)

and

— (F*)(FB){(F1)iTs,5,1(¢,9) = — Caar Cp3Copyr PP’ Lot oy 42 (9 ) — 5 (92— 12) C sy tr(F'F)
—3(r*—¢*)Capry tr(FFFB)—3(g*— p*)Capy tr(FY'F) 45 tr[Fe(u2+qH)Z7H{ T, T} 0]
+3 tr[FA(u+p2)Z VYT, Ta} N5 tr[Fr (1) 271 To, Tp)N]—§ tr(Fou?Z=V2{ T, T} 0)
— 3 tr(FAuZ VY Ty, T} M)+ 3 tr(FuZ ¥ Te, Te}4N) , (12)

where the Schwinger term .S is

Sdap=Cap+tr(F2F5). (13)

III. CHIRAL SYMMETRY-BREAKING MODEL:
(3,3)® (3,3)

In order to make definite predictions, one must as-
sume a symmetry-breaking model by choosing the repre-
sentation (or representations) R for which the fields ¢;
form a basis. Here we investigate the consequences of
assuming that R is the representation (3,3)®(3,3) of
chiral SU(3) X SU(3). Recall that

9t () = €(T o) ijpi () . (1.2)

With our particular choice of symmetry breaking, we
find, for the axial-vector and vector currents,

9,4 a"(x) = daﬁ*fo\ﬂ) b%€a b¢'y(x) (14)

0,V o*(%)= fapy(Ng)s"€aly (), (15)
where (Ag)3 is the 3)X3 matrix defined by Gell-Mann,

and

¢, (x) is the pseudoscalar meson field with SU(3) index
7, 0,(x) is a scalar meson field, and dogy and fag, are the
SU(3) coupling parameters for 8®8. As a consequence
of parity conservation for the strong interactions ey?
= %= ;% where the barred (unbarred) indices refer
to the left (right) chiral component of the (3,3)®(3,3)
meson representation. It is convenient to label the e by
the name of the meson appearing in the right-hand side
of Egs. (14) and (15). Thus, for example,

9ud s*(x)=e.Pp3(x) , etc.

Since only the strangeness-changing vector current is
not conserved, we have

(= 5"(9= (e, R=(33)®(33)

= —[$e:05%F (exr—€x)83%0:°], (16)
&@=er—ex, €x=3estter, @17

and
€90= %\/Z—(Er— GK) . (18)
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One can find the same results by defining

i(ea)= (T a€)

as in Glashow and Weinberg.? One can perform a similar
analysis for (T,\), which satisfy equations essentially
identical to (16)—(18). Therefore, these results, together
with Egs. (6) and (7), imply

—Z, V2 2F =7 V2 2 — 7 2k g (19)
and

—ZM2F =7 V2F, —Z 2R | (20)

where the renormalization constants and decay rates
are given the particle labels’ as in (16)-(18). Equations
(16)-(20), are particular to our choice of symmetry-
breaking model. Combining the last two equations
gives

1 Z\?
Fi= -——I:uw“’F ~+u’F e’ — (-——) ur’FFx
I‘n2 VA K

Ze\M2
—(—-) u,,2F,,FK]. (21)
Zx

Since F2>0, one obtains the inequalities:

Case a:
(Z./Zr)'?>0, F.Fx>0, (22a)
< | pa | Fa | —ux| Fr| |/ | o] -
Case b:
(Z./Zr)'*>0, F.Fx<0, (22b)
ux> | e | Fa |+ x| Fx||/|Fel .
Case c:
(Z./Zp)12<0, F.Fg<0, (22¢)
Same as Case a.
Case d:
(Z+/Zg)'*<0, F.Fg>0, (22d)

Same as Case b.

The first two of these were discussed in Ref. 2.

IV. APPLICATIONS

We now apply our results to the meson decays for the
unmixed channels. To complete our model we assume
that the vector and axial-vector propagators are single-
particle dominated, and that the primitive functions®
are functions” of momenta as slowly varying as possible,
consistent with the Ward identities. In the Appendix,
we give the Ward identities appropriate to each channel,
together with the primitive functions for each case.

& We have found it more convenient to define F, with opposite
sign to that in Ref. 2.

6T. S. Gerstein and H. J. Schnitzer, Phys. Rev. 170, 1638
(1968).

TH.J. Schnitzer and S. Weinberg, Phys. Rev. 164, 1828 (1967).
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For our analysis, we take

mp2= %mAlzz %mKJ: %mKA2= 0.6 BeV"’
and
F,=94 MeV

as determined from the pion decay rate. We further
define
(23a)

(23b)

gK*2= EVgp2 y
gx®=Eags?,

which, upon using Eq. (13), in the single-particle ap-
proximation, and the KSRF relation®

gpz/m/»z: 2F,*, (24)

lead to
Fg*=2F,*(1—3t4), (25a)
F2=2F(1—%¢tv). (25b)

Clearly, 0<£p<% and 0<£458/3.

In order to consider processes such as K;3 decay we
have to use the primitive function T'y,\K441E* (g4,q5)
which contains six parameters, g1, * +,£¢ not specified by
considerations of current algebra. It has been suggested?:°
that there are reasonable arguments to support the
hypothesis that the «, =, K vertex is no more than
quadratic in the momenta, i.e.,

’3J1u420 Dy A A4 (g1,00) =0

This requires
1= 82, (26a)

gatg5=gs+86=0, (26b)
and we shall assume that these conditions are satisfied.
For comparison, note that if SU(3) were an exact sym-
metry we would have

1= 8= 1, (273)
g=g=g6=0, (27b)
g3=67 (270)

where the parameter § is that introduced previously”ina
consideration of the primitive function Ty, 241417(g1,q2).
In terms of the SU(3) symmetry-breaking parameter
we note that Eq. (27a) is violated only in second order
while Eq. (27b) is violated by first-order terms.

The K3 amplitudes, defined in the usual way by

(w (@ [Su0)| K°(p))= (p+Qufs(O+ (p—@)uf-(1).

8 K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16,
225 (§966); Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071
(1966).

( 9L.) N. Chang and Y. C. Leung, Phys. Rev, Letters 21, 122
1968). ) )
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are found from Eqs. (A19) and (A22) to be

975 {1l gKa84; MKt
T

2F.Frfi()=
mysi—1

(—gz“ga))

ME 24 R

gxst

+F 2 F—F 2~
m K'2

84:8K4
F————mg2(gatgs), (28)
ma2me 2
gxs? M mg?
2F.F f_()= _—

m K*2 m K*2“‘ t

g myst
X(1+ KafA; K

mKAzmAlz gKa:2

(—32—83))

+

[(mK"’— m?) (F*+Fg*—F?)

mi—1

Zx 1/2
+mx2(FK2—F1rz+Fx2" ZFKFK(}—) )] . (29)

We have written these so that the residues of the K*
and « poles are constants, i.e., they take on their dis-
persion-theroetic values. Equations (28) and (29) sug-
gest that f_(f) is unsubtracted (or pole-dominated),'
while f,(¢) needs one subtraction. Writing

¢
£0=£0)(1+0) (30)
zs
Eq. (28) yields
J+(0)= (FL+F—F7), 31)
2 'K
f (()))\ ME** 1 g K*
" * m,“’ ZF,FK '7)Z1{=o=2
gKa84, MEs
><(1—|——LL (“82“33)) . (32
mKA“’mAf gK*2

Finally, the total width for the decay K* — K+ is
found from Eq. (A19) to be
2
(~e=89)

L ¢
(33)

P=‘_' T
87 mx? AF 2\ mgtmalt grot
We see that Egs. (31)-(33) depend on only three un-
known parameters, £y, £4, and go+4gs so that we may
use the experimental information about these decays
to deduce the values of the unknowns. It should be
noted that the combination gs+gs may be eliminated

g . gK484, MK

10 This is true only if g4+2¢5+g6=0.
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from Eq. (32) in {avor of the K* width. The fact that
the residue of the K* pole in f4(¢) is the physical K*Kxr
vertex is a direct consequence of the definition of the
K*Kw proper vertex on the mass shell of all three
mesons. This leads to

2

1 m K*a m K*Z 2
MR Kn)= ¢ (f+(0)>\+ ) (34)
2 m7|-

T EK*
Taking!!
I'(K* — K7)=49.2 MeV, (35a)
Fg/F,f(0)=1.28, (35b)
Nr=m,2/mg+2=0.0238, (35¢)
we find
fy=1.11, (36a)
£4=1.09, (36b)
so that
grt=grt=11g,?, (37a)
Fx?=1.18F,2, (37b)
F2=034F,2, (37¢)
f+(0)=0.85. (379)

Thus the experimental information indicates that the
second spectral-function sum rule,’? requiring the
equality of all vector and axial-vector coupling con-
stants, is satisfied for chiral partners as suggested by
the algebra of fields.!® Furthermore, we see that the
SU(3) symmetry breaking is small.

It must be noted, however, that the interpretation
of present experimental data is not unambiguous. In
particular, £4 depends extremely sensitively on the
value of ;. Taking A\;=0.023 yields

Ey=118, £4=085, f,(0)=0091.

At present it seems that it is best to use the second
sum rule, for chiral partners, as a guide since the experi-
mental error on Ay is too large to enable us to determine
£4 and £y conclusively.

We now turn to K* decay, which fixes the value of

(38)

Since we wish to interpret Eq. (37a) as indicating
small SU(3) symmetry breaking, we must assume that
g4, and gk, have the same sign. Then the K* width of
49.2 MeV predicts Ag»= —% or 6.2. The former value is
more reasonable and we note that it is of the same order

Ak, =gotgs.

1 The K* decay width is known quite accurately; see A. H.
Rosenfeld et al. Rev. Mod. Phys. 40, 77 (1968). The quoted error
for Eq. (35b) is about 5% ; see N. Cabibbo, in Thirteenth Annual
International Conference on High-Energy Physics, Berkeley, 1966
(University of California Press, Berkeley, 1967), p. 29. The
quantity A4 is not known as well. We have A, =0.023-£0.008 from
K* decay and A=0.013+0.009 from K° decay; see W. Willis,
Proceedings of the International Conference on High Energy Physics,
Heidelberg, 1967, edited by H. Filthuth (North-Holland Pub-
lishing Co., Amsterdam, 1968).

12 S, Weinberg, Phys. Rev. Letters 18, 507 (1967).

BT, D. Lee, S. Weinberg, and B. Zumino, Phys. Rev. Letters
18, 1029 (1967).
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of magnitude, but opposite in sign!* to the analogous
parameter A4,= 146 found from p and A4, decay

The total width for the decay K4 — K*+r is found
from Eq. (A16) to be

(K4 — K*r)="7.95¢v [ £(gs—g5)—3(gs—g5)
X (ga+3gs+3g5)+25(ge+ 345+ 3¢5)%] MeV.  (39)

Using the previously determined values &p=1.11, g»
—+g3=—1%, and taking the K4 width!® to be 60 MeV, we

find
+0.4}

b [—1.6

In order further to distinguish these solutions, we
need more information than is presently available on
K, decay. In particular, the ratio of transversely
polarized to longitudinally polarized K* mesons arising
from the decay would enable us to choose between the
two values.

Turning finally to the f_(¢) form factor in K3 decay,
we see that Eq. (29) involves two constants not yet
determined, m.2 and (Zx/Z,)'/?=y. There is a relation
between these parameters similar to Eq. (21) obtained
from Egs. (19) and (20):

FxFmg?— y (FK2MK2"‘F1r2m1r2)

me (40)
? —FKny+Fx2
From Egs. (29) and (40), we have
1 mK*2 1
£ O=ne=m O s )
’WL,‘2 m,,z mK*2
+ (F—F 2+ F2—2FgFy). (41)

2F.Fg

Using the values for Fx? and F? derived from f.(¢),
we have'$

£-(0)=—0.005+(0.196/m2)—0.58|y| . (42)

Thus, if we had an accurate measurement of f_(0) we
would be able to determine 2,2 and all of the ratios of
the renormalization constants. In the absence of such a
measurement at the present we make the ansatz.!?

V= gxa/gr+=0.99. 43)

1 Tf g4, and gx, had opposite signs, then the signs of Ak, would
change relative to those in the text. Ag,=% predicts T'(p — mr)
=115 MeV, T'(41 — pr) =95 MeV. There is no particular justi-
fication for asking that Ax4=XN4,.

15 All candidates for our K4 with mass ~V2Zmg+ are given this
width in the tables. However, we cannot tell what fraction of this
is background K direct decay relative to K*r decay. A similar
problem arises in 4; decay and in Ref. 6 we have argued that this
may be a non-negligible effect.

18 Since our solution has small SU (3) breaking, we assume the
sign of F, and F, are the same. Then Eqs. (40) and (37b) imply
that the sign of v is the same as the product FxF. This accounts
for the absolute value sign in Eq. (42).

17 This assumption was first introduced by Chang and Leung in
Ref. 9. It states that scalar and vector chiral partners undergo the
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This yields
my=0635 MeV, (44)
£-(0)=—0.09. (45)

Some comments about these values are in order. As
mentioned above, we feel that our values of £4 and &y
imply small SU(3) symmetry breaking, and hence that
the product F,Fx is positive. Then, as Glashow and
Weinberg have pointed out, 7,<670 MeV {ollows from
Eq. (22a). Thus our small value of m, is not surprising.
If F, had the opposite sign, then Eq. (42) would become

f-(0)=—0.0054(0.196/m.2)+0.58|y|,  (46)

and one would expect the sign of f_(0) to be positive
and the magnitude to be somewhat larger than we have
found. It is worth observing that 635 MeV is precisely
the K= threshold.

From Eq. (29), we have

fo(OnE
m

*2
= (mx—m ) £4(0)
1 ’I%K*2 mK*2 1
o msmr ma)
m,,z mK*Z

me m
(FKZ—FFL{-F,?— ZFKF,‘y) .

m K*2

(47
m? 2F.F,

For y=0.99, we obtain

F(O)A_mgs?/m,2=0.06. (48)

It seems to be a common feature of this kind of analysis
that f_(0) comes out small and negative, with A_ large.
This might suggest an alternative way of analyzing the
experiments.

V. DISCUSSION
A. Other Literature

Several papers recently'® have been concerned with
questions of a similar nature as those we have discussed.
We shall examine the relationship of our work to some
of them.

This paper is most similar in spirit to those of
Glashow and Weinberg,2 and Chang and Leung.?®
Glashow and Weinberg use the Ward-identity method,
but work at zero momentum transfer, so that they do
not have an expression for Ay in K3 decay. To make up
for this lack, they assumed £4= £y. Since we find that
this relation is predicted from A4, our values for gg»?
gx4? Fx, Fy, and f(0) agree with theirs.

same renormalization. We want to emphasize that we are only
making this assumption because of the confused experimental
situation regarding f—(0).

18 We have only elected to discuss papers by other authors which
we feel are similar in spirit to ours. Our list of references to other
papers is not meant to be exhaustive.
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Our basic equations agree with those of Chang and
Leung. These authors use Eq. (43) but, they add some
other hypothetical relationships among the model par-
ameters which express a notion of x dominance. A tech-
nical, although crucial, difference is that we take the
parameter F, as determined from the ; rate, in keep-
ing with the type of calculation made in the previous
section while they use the Goldberger-Treiman relation.
It is not surprising, considering the sensitivity of the
parameters to the experimental input that we obtain
such different results. They find no evidence for the
equality of &4 and £y. Much of thedifference may be
characterized by their value of A;=0.018 compared to
ours, A,=0.0238. Accurate information about this par-
ameter is the most crucial input at the present time.

Lee!® has studied K;3 decay using a chiral phenom-
enological Lagrangian. It has previously been ob-
served that this technique yields results essentially
similar to ours. However, Lee’s method of symmetry
breaking is quite different from ours. He rejects partial
conservation for the strangeness-changing vector cur-
rents, takes its divergence proportional to a bilinear
function of = and K fields, and has no x meson. His
Egs. (2) and (3) for f.(f) are obtained from our
Eqgs. (28) and (29) if we take

mt— o, (49)
F=0 ) (50)
and identify
K484
F2—F H————mg+*(gatgs) =B F *(14+6).  (51)
mKA"’mAl?

We have some comments about the numerical values
for the parameters found by Lee:

(i) The solution of our Eq. (35b) using Eq. (2) of
Ref. (19) yields Fx/F,=1.33, f1(0)=1.04, rather than
Fg/F,.=1.28, f,(0)=1.0 as quoted there.

(ii) Using either of the above in our Eq. (34) yields
Momgst/m.2=0.9, a value midway between the one
favored by us and that quoted by Lee.

Fenster and Hussain,? and Lai and Young® use the
Ward-identity approach in their work on three-point
functions. However, they allow the strangeness-chang-
ing vector current to be conserved so they do not ex-
amine the type of question we are conserned with. Fur-
thermore, they do not consider K;; decay and hence
ignore a powerful constraint on the theory.

Riazuddin and Sarker?? have used the Ward-identity
approach and studied K;; decays. However, they as-
sume F,=0 and further, make the questionable demand
that f1(0)=1, including second-order symmetry break-
ing.

19 B, W. Lee, Phys. Rev. Letters 20, 617 (1968).

2 S, Fenster and F. Hussain, Phys. Rev. 169, 1314 (1968).

2 C, S. Lai and B. L. Young, Phys. Rev. 169, 1241 (1968).
2 Riazuddin and A. Q. Sarker, Phys. Rev. 173, 1752 (1968).
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Finally, there have been papers?® which use disper-
sion relations for f.(f) along with current-algebraic
derivations of the subtraction constants. It is easy to
connect our results with theirs, since we have written
our expressions for f4(f) in dispersion-theoretic form.
There have also been some attempts to compute quan-
tities such as F,/Fx by using some set of postulated
(usually without particularly firm foundations) sum
rules.?* The values obtained by this approach do not
particularly agree with ours.

B. Conclusions

We have presented a consistent picture of several
processes involving strange mesons. Our basic assump-
tion is the validity of the local chiral algebra of vector
and axial-vector currents. We have supplemented this
with a specific model of symmetry breaking, single-
particle dominance of propagators, and minimum mo-
mentum dependence of primitive functions. Our results
indicate a simple pattern of symmetry breaking in
which the second spectral-function sum rule is valid for
chiral partners and the variation from exact SU(3)
results is small.

We used experimental values for Fx/[F.f+(0)], Ay,
and I'(K* — Kr) to compute gx+, gx4, Fx, and F,.
It is unfortunate that at present we can only say that
the pattern of symmetry breaking we found is consis-
tent with the data; it is by no means predicted uniquely.
In particular, more accurate measurement of A, is
needed to make satisfactorally definite statements.

Our theory involves a x meson whose existence is
certainly in doubt. Our calculation of gx+ and gk, from
f+(@) and the K* decay rate does not depend on the
existence of a physical scalar-meson state corresponding
to the « field. If we knew A more accurately and had a
measurement of f_(0), then we would have a unique
prediction for the position of the « and it would be a
simpler experimental question to verify that portion of
the theory. The value, 635 MeV, which we give is not a
firm prediction since it is subject to the uncertainties
introduced by Ay as well as depending on our use of
Eq. (43).

If the « does not exist, then we believe that an attrac-
tive alternative is to let m,2—o, F,— 0 as in Lee’s
theory.'® However, an accurate value for A, could rule
out this possibility since then we can simply compute
F. We recall that for Ay =0.9m,2/mg+® we have F,=0.
Were Ay not given by this value and nevertheless no «
found, we would then try parametrizing the x prop-
agator by a continuum rather than a pole.

% For example, H. T. Nieh, Phys. Rev. Letters 21, 116 (1968);
N. H. Fuchs, Phys. Rev. 170, 1310 (1968); 172, 1532 (1968);
J. Mackey, J. McKissic, D. Scott, and W. Wada, Phys. Rev. 172,
1590 (1968).

# For example, D. Majumdar, Phys. Rev. Letters 20, 971
(1968). P. K. Mitter and L. J. Swank, University of Maryland
Report (unpublished); P. P. Srivastava, CERN Report (un-
published).
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Recall, too, that we have imposed Egs. (26) on the
primitive function I'4:K4K* Tt is also possible that these
are not satisfied although it then appears to be difficult
to analyze the data. It may be reasonable to require
only

gat2¢—8=0,

which follows from demanding that the Ky; form factor
f-(t) be unsubtracted.

There are several questions we have not considered
here, although most of the machinery for doing so is
contained in the paper. First of all, there is the study
of channels where mixing is permitted when SU(3)
symmetry is broken. Secondly, there are the abnormal-
parity vertices (444 and AVV) such as #° decay and
w decay. Some discussion of these have been given by
other authors.?s In any event it appears that sufficient
new parameters (such as mixing angles) must be intro-
duced so that consideration of these processes does not
put any new constraints on the parameters we have been
studying.
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APPENDIX: WARD IDENTITIES FOR
PARTICLE CHANNELS

We have used the symbol C, when single-particle
dominance is not implied. In general,

Pz (m?)
Cy= / dmP————,
m2
and in the single-particle model Co= g.2/m.>

000

Vector Constraint

=- Cpqﬂru.v,X’P'(q,P)‘*‘ LA, (PIn— A,,"l,,)‘(r)] ’

where we have defined

Tap oo \***(q,0) = faﬁ*rrnyv,k”'(q,;p) .

Primitive Function:

Ty \*(q,p)=— (m?/ g, ) Lgw(g— It 2(gunr— &)
— (grgu—ginpn)]. (A2)

K*K*p

(A1)

Vector Constraint

0=— Cp")‘ru.v,)\K*K*’(q,P)"‘ [AK*—I#V(Q) - AK*-—IW(P)] ’
(A3)

2 Riazuddin and A. Q. Sarker, Phys. Rev. Letters 20, 14355
(1968). See also Refs. 20 and 21.
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where
Tappr, WEE2(q,0) = fapy Tup K" E*(g,) -

Primitive Function:

Pu,v,)\K*K*p(q’p) = — (m,*/gx+*g,2) 8w (q— P
+2(14-6x+) (gurrv— gvVM) - (gv)\%'— gu)\PV)] . (A4)

Nonprimitive Functions:

FKFVAKK*'(%?) = ICK*(]”FM,V,XK*K*"(‘]’P)
—[ArsIn(p)—Axs1(r)], (AS)
where
fé,ﬁv,v)‘jK*’ (g,)=dssy T\ K% (g, p)
—F2Th(q,p) = — Crsg"p"T s NEE2(q, )

—3(@—=pht3(g— )8 n()(C,—2F ),
where -

(A6)

Ty 5.00#(g,0) = fraal2**(g:9) -

A 1 A 10
Vector Constraint

0= —Cy T 2 41412(q,p)
+ [AAl_I#V((])_ Adx_luv(P)] ’ (A7)

oy, nA1412(0,0) = fapyUupn41412(q,1) -
Primitive Function:
Fu,ﬂ,)\AlAlP(%P) = ('— mpz/gA12gP2)[gW(q_ P))\+ 2(1+ 6111)
X (gunrv— g ) — (gngu— gnpr) ] (A8)
Nonprimitive Functions:
wav.x"Alp(q;P) [ CAlqMI‘"'y‘)‘AlAlﬁ(q’P)
+A4 () —As ()], (A9)

where

- where

Lo, pr, ™ 41%(g,p) = f«xﬁvf‘v')\wmp(q,P) 5
- F,QF)’”’(Q,?) = CA12Q“P”Fn,v.>\A1A1"(Q:P) - %(Q“ P))\
+3(g— ) () (C,—2F, ?), (A10)
where
T g ™™(g,0) = fasyIN™™(q,p) -

K4K40
Vector Constraint

0=— p")‘Pu,v.)\KAKA’(qyp)

+[AKA—1MV(Q)_ AKA_IMV(P)J ’ (All)

where
Tap, gy, 4K 42(q, p) = faﬂvru.v.kKAKA’(q,P) .

Primitive Function:

Pu.v.hKAKAP(q’P) =(— mp2/gK42gp2)[gAW(q_ ?)X
+2(148x,) (guwrv— g ) — (gngu—gnpn) . (A12)

Nonprimitive Functions:

FgT, \KaKas(g, p)= — Ci 4q*Tup K45 42(g, p)
+[Ak )= A 0()], (AL3)
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where where
f‘a,ﬂV.‘yXKAKAP((IaP) = faﬂvfﬂ'vKAKAﬂ(‘I’P)S I‘au.ﬁv.valKAK*(‘]’p) = faﬂvI‘u.v')\A'KAK*(‘]ap) .
— Fg?TZ\KEBr(q,p) = —Cr ,2q*p’ Ty, 2K4K4(q,p)  Nonprimitive Functions:
—3(@—pht+3(g— AN (C,—2F k%), (Al4) F, T, \tKaK* (g p)= — C 4,¢*T , \AKAK* (g 5)
where B ~ +[Ax, () —AxsT(r)], (A16)
I‘a.ﬁ.'r)\KKp(q:P) = faﬂvI‘XKKﬂ(‘I»P) . where
A4, K K* favﬂwﬂ”KAK*(q’P) = faﬁ‘yfv.)\”KAK*(Q;P);
r . FKF#.)\AIKK*(%P)z _—CKAPVI‘#,V-\AIKAK*(%?>
No Vector Constraint F[Ar ()~ A4 ()], (A17)
Primitive Function: where
Ty AE4E (g, p)= — (mx+*/gr+*g 4,8k ) (818w (g — P)r Tap, g WAEE(,9) = fapy Tun B XK (g, 0);
+ 2ol gin(r— @) gn(p—1) ]+ gs(gunrv—gxr) F T, AK4x(g pY= — C g T, , z 41K AK* (g p)
TgawntgoLgn(r— ) —gn(p—1).] +HALT (@)= Ax ' w(p)],  (A18)
+ge(gar+gar)}, (A15)  where
f‘au,ﬂv,'yAlK“(Qy?)=daﬂ*/f'#yvAlK“(‘b?x
— F FgT\mE 8 (q,p) = — C4,Cryg* P’ Tup NP EAK (g, ) — 3(q— pIat3(g— )’ Axs"'0() (C,— F .2 — Fx?)
—(1/2Ck ) (Fr2=F)+ 1/ m®) [ 1aF 22— u?F K24 12 F o F(Z 2/ Z &) 2 — g F. Fx(Z,/Z5)V?]}, (A19)
where ~
Lo g \"EE* (g, )= fapy [A"EE*(g,5);
"FKFKFMAIKK(‘LP) == CK*CKAP"MF#.M\AIKAK*-%(P"‘r)u‘i‘%(P—f)vAKA_lw(Q) (Cp‘“sz_FKZ)
—(1/2C4)qu[F >+F 2~ Fx?— 2F . Fx(Z,/Zx)~1%], (A20)
where ~ _
Toaup,x254(q,p) = dap, Tu?15(q,p) ;
—FF,T,"%4x(g,p) = — CgsCa, g Ty a1 54K (g, 0) — 3 (r— @)y + 5 (r— 0)* Ak s (p)(C,— F 2— F2)
+(1/2CKA)PVEFKL‘F12_FK2+ZFWFK(ZW/ZK)IMJ; (AZl)

where

Lo v,y K4%(q,p)= daﬂvf‘vTK“(q,P)S
F FgF.I7g,p)=—Ca,Cr,Crrq"p’r Ly N4 K K (q,0) — 3 (P2~ 11 Fo2—§ (r*— g1 ) Fk*— 3 (¢*— p?)F 2
F3(ua+ @) Fr?—2F ;Fx(Z )/ Z k) V2 ]+ 3 (ur+ p)[ = F&*+2F s F(Z 2/ Z 1) 2143 (i +72) /1a?]
XLur®F g2 = pa?F 2+ FoF gur*(Zo/Zg)"*— F o F ki (Zx/ 2o )V 145 F o F [ 02 X(Z &/ Z )2~ ux™(Z o/ Z&)1?],

where

(A22)

f‘a'ﬁ»vaK(‘],?) = daﬂvf‘"KK(‘IaP) .



