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D(q) =—D(q) ~ '(q) D(q) —D(q)

(T,T//)+ T——T//+ T//T .

(35)

IV. CONCLUDING REMARKS

We have extended our previous work to an arbitrary
current algebra making as few assumptions as possible.
Aside from assuming a local algebra with c-number
Schwinger terms, our main assumption has been the
specific model of symmetry breaking expressed in Eq.
(1). This model is general enough to encompass any
set of nonconserved currents. In particular, we have not
assumed any propagators to be saturated by single-

particle states. As well as making it possible to imple-

ment the requirements of unitarity in some future,
dynamical approach to current algebra, we note the
existence of certain terms in Eqs. (32)—(34) which

simply vanish in the single-particle approximation, and

hence do not appear in the analogous equations of
Refs. 1 and 2.

In the following paper, ~ we shall apply these results

to SU(3)@SU(3) to discuss various meson decays. Al-

though our present knowledge forces us to a single-

particle-dominance approximation there, such an ap-
proximation and its success (or lack thereof) in no way

compromises the generality of this paper.

7 I. S. Gerstein and H. J. Schnitzer, following paper, Phys. Rev.
175, 1876 (1968).
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We approximate the three-point functions constructed previously by using a single-particle approxi-

mation to all propagators and assuming that the primitive three-point functions are slowly varying functions

of the momenta. We use the available data on strong and weak decays of spin-one and spin-zero mesons

to compute the values of the parameters introduced in our model, with special reference to E~3 decay.

I. INTRODUCTION

''N the preceding paper' we extended the Dard
- ~ identity techniques for the three-point functions to
chiral SU(3)@SU(3)without making single-particle ap-
proximations or special assumptions about symmetry

breaking. Ke now use single-particle dominance for all

propagators, assume that the primitive three-point func-

tions are slowly varying functions of the momenta, and

assume that the symmetry-breaking term in the La-
grangian transforms as (3,3)8 (3,3).2 These approxima-
tions lead to predictions for meson decays in terms of a

~ This work is supported in part through funds provided by the
Atomic Energy Commission under Contract AT(30-1)2098.

f Research supported in part by the National Science
Foundation. :

'I. S. Gerstein, H. J. Schnitzer, and S. Weinberg, preceding
paper, Phys. Rev. 175, 18'tp'3 (1968).Equations from this paper are
denoted by I.

2 See S. L. Glashow and S..Weinberg, Phys. Rev. Letters 20, 224
(1968). .S. L. Glashow in I'roceediegs of the Ieteregtional School
0 Ikgs$cs Ettofe M)cofcwc (D67). Ecllted by E. R. Calanlello
Academic Press Inc. , New York, 1968).

number of arbitrary parameters, which are too numer-

ous to be determined by experiment, so that no speci6c
numerical predictions can be made without further
assumptions. %e shaH discuss these assumptions as
we make them. Finally, we determine the remaining

parameters from experiment, these are found to be con-

sistent with small SU(3) and chiral symmetry breaking.

II. SINGLE-PARTICLE APPROXIMATION

The spectral representations for the spin-zero mesons

are given in Eqs. (I.11), (I.14), and (I.17).' We define

the single-particle approximation by assuming for the
matrix propagators4

g (q)
— Z1/2 gl /2

M2+Z 'q' /22+qs

The notation, unless otherwise specified, is as in I.
4These approximations, their relation to the meson mass

spectrum and to mixing models are discussed in S. Coleman and
H. J. Schnitzer, Phys. Rev. 184, 8863 (1964}.



where /12= Z'/2M2Z'/2 is the phys2ca/ mass matrix. This the vector (F ) in the representation space R by
then implies that F =(Z '/'T X) 2

D(q) =Z'/ — Z'"
~2 ~2+ q2

(T &) (Z-1/2+2Fa) (&)

(2) in the single-particle approximation. From {I.2), we

find
iaaf'

«l~.-(0)lj)= (F-);,
(2~)2/2(2~. )i/2

D(q)=—D(q)~ '(q)D(q) —D(q) =o (4)

Thc %ard ldcntltlcs RppI'opI'1Rtc to these pI'opRgRtoI's

are obtained by substituting Eqs. (1)—(4) into Eqs.
(I.32)—(I.34).

From the structure of the resulting equations, one
6nds that it is useful to renormalize the @rave functions
of thc spin-zcI'o mcsons. To this cnd) %'c dc6nc

@/{o)= (Z "')/.e'(o),
where p/ is the renormalized meson Geld. If we define

Rnd

I',p. ,vi(q P)=(Z'")" I',p. ,21(q P) {9c)

The renormalized Nard identities corresponding to
(I.32)—(I.34) Rlc, 111 tile siilglc-pal ticlc Rppl'oxlnlatloil,

so that (F"); is the decay amplitude of meson j, via
the current J„.The corresponding de6nitions for the
renormalized verticles are

I'* 2 2(q P) = (Z"')" (Z'")/'(Z'")» I"' '.2 (q 0) (»)
I'',;,.(q,j)=(Z'")"(Z'");;p'.;., (q,~), (»)

(F )'Cp—p C7'I', p".'1(q P)= C- Cpp—Cvv q"I'".,p".2'(q P)
+C-', t:~- -""V)C,- C;,-~-;;""()C C;,j, (IO)

(F )'(FP)'C—.~ I'', '1(q,P)= —C- Cpp C- q"P"I' ',p".'1(q,P) q'C"p'—C~; ~ '"'"'"(r) «(F"F )
+p"'C p, C„,.d, ';.,"'"(r) tr(Fp'—Fp)+2r" trp' Z-'/'{T, Tp}Pj

;{q-p) C, -.C„,+,(q-P) C.„-~ ';;""(.)C,--,S, (»)

—(F")'(Fp)/(»)21'*./2(q p)= —C-Cpp C.~q"p&"I'-.,"~ 1(qp) —2(p' —«')C- pv tr(F"F )
—;{"-q)C,, t (F'Fp) —:«-WC-p,t (F F )+-: t LF-("+q)Z-"{Tp,T,}+~j
+-'tr[FP(/22+P2)Z-'"{T„T }+X/+2 tr LF&(/'2+r') Z-' /2{T., Tp}X+)—-', tr(F /2'Z-'/'{Tp, T,}+X)

——,
' tr(Fp/22Z '/2{T~, T }Q)+26 tr(F&/22Z '/2{T, T-p}+X), (12)

vFhcrc the Schwlngcr tcrxQ 5 ls

SB p Cp+tr(F FP)——.

III CHIRAX SYMMETRY-BREAKING MODEL'
(3,3)+ (3,3)

ID ox'dcr to make dc6nitc predictions, one must Rs-

sume a symmetry-breaking model by choosing the repre-
sciitRtloii (or 1'cplcsciltRtloils) R fol' wliic11 thc ficlds f;
form a basis. Here we investigate the consequences of
assuming that R is the representation (3,3)g(3,3) of
chiral SU(3)&(SU(3). Recall that

~.~."(~)= 2'{T-) /4~( ).
Vhth our particular choice of symmetry breaking, m'e

6nd) for thc RxlRl-vcctox' and vcctox' currents~

(14)

8„V /'(X) =f p, (Xp) P2. 'O~(X),

where (Xp) 2o is thc 3&3 matrix defined by Gell-Mann,

P~(x) is the pseudoscalar meson Geld with SU(3) index

y, o~(x) is a scalar meson Geld, and/f p„and f„p~ are the
SU(3) coupling parameters for 888. As a consequence
of pRrlty conscrvRtlon fol thc stlong interactions 6p
=2s' ——22, where the barred (unbarred) indices refer
to the left (right) chiral component of the (3,3)$(3,3)
meson representation. It is convenient to label the ~ by
the name of the meson appearing in the right-hand side
of Eqs. (14) and (15). Thus, for example,

B„A2/"(x)= 2„y2(x), etc.

Since only the strangeness-changing vector current is
not conserved, we have

'(2)~ s (2)=.'(2) &= (3 3)(3 3)

= —P2..&, +(..—.x)&2.&2'j, (16)

&«&w &KI &K—s&28+g&~ P (1~)

(18)
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'(C-) = '(T-C), mp~= ~~my, '= 43m~~'= —',m~~'= 0.6 BCV'

as in Glashow and %einbcrg. ' One can perform a similar F =94 MCV
analysis for (T X), which satisfy equations essentially
identical to(16)-(18).Therefore, theseresults, together as determined from the pion decay rate. %e further
with Eqs. (6) and (7), imply define

( )—Z '"ii'F =Z '"p, 2P —Z "'p 'Fz (19)

(20)

Fz' ——2F„'(1—xc$g),

(2St )(Z l i/C

&7=—y''F. '+Iiz'Fz'
l l

—uz'F Fz
Pz- 'iZz/ Clearly, 0($p (4c and 0&(g(8/3.

iji In order to consider processes such as K~3 decay wc

I „.F,F, . (21) h.v. «o u.e the primitive fun«ion I
Z.& which contains six paraIQctcrs~ gy~

' ' )g6 not spccl6cd by
considerations of current algebra. It has been suggested' '
that there are reasonable arguments to support the
hypothesis that thc K x' E vcI'tcx ls no morc than
quadratic in the momenta, i.e.,

Slncc F„PO, onc obtains thc inequalities;

Case a:
(Z,/Zz)"'&0, F Fz&0,

~ & lu. IF. I
—~zlFzl I/IF. I z&8l Y»l l, , &

" ' (94tli) =0.
Case b:

which, upon using Eq. (13), in the single-particle ap-
whcre the renormalization constants and decay rates proximation, and the KSRF relations
are given the particle labels' as in (16)—(18). Equations
(16)—(20), are particular to our choice of symmetry- g, '/m, '= 2F„', (24)
breaking model. Combining the last two equations
gives (25a)

Case c:

(Z,/Zz)'I'&0, P.Fz(0,..& I..IF.I+.-IF I I/IF. I.

(Z./Zz)'"&0, F.Fz(0,
SaIQc as Case a.

(Z,/Zz)'"&0, F Fz&0,
SaHlc as Case b.

(22b) This requires

(22c)

and we shall assume that these conditions are satisFied.
For comparison, note that if SU(3) were an exact sym-

(22d) metry we would have

The first two of these were discussed in Ref. 2.
(27b)

IV. APPLICATIONS

Ke now apply our results to thc meson decays for the
unmixed channels. To complete our model we assume
that the vector and axial-vector propagators are single-
particle doxninatcd, and that the primitive functions~

are functions' of momenta as slowly varying as possible,
consistent with the %ard identities, In the Appendix,
we give the %ard identities appropriate to each channel,
together with the primitive functions for each case.

where the paxameter 8 is that introduced previouslyv in a
consideration of the primitive function I'„„&,"'"»(gi g2).
In terms of the SU(3) symmetry-breaking parameter
we note that Eq. (27a) is violated only in second order
while Eq. (27b) is violated by 6rst-order terms.

The Ega amplitudes, deined in the usual way by

(~(v) I~.(0) I ft'(P)) = (0+v).f+(&)+(P—v).f-(&) .

~ %e have found lt more convenient to de6ne P %'itb opposite
sign to that in Ref. 2.

6I. 3. Gerstein and H. J. Schnitzer, Phys. Rev. 170, j.638
(j.9').

i 1I.J.Schllltzcl' aild S.Qc!libel'g, Pllgs. Rcv. 164) 1828 (1967).

SK. Kawarabayashi and M. Suzuki, Phys. Rev. Letters N,
225 (I966); Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071
(1966).

9L. N. Chang and Y. C. Leung, Phys. Rcv. Qctte&8 gl, Qg
($968).
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are found from Eqs. (A19) and (A22) to be

gK~ g KggAq ~II,S

2F-Fxf+(&)=, 1+. . .(—gl —gl) I

~&a2~&xm g&*2

from Eq. (32) in favor of the E* width. The fact that
the residue of the E*pole in fg(I) is the physical E*EIr
vertex is a direct consequence of the de6nition of the
E*Ex proper vertex on the mass shell of all three
Inesons. This leads to

mxe'(
r(E~-+ E1r)=—q'

I f+(0)/ I
. (34)

8s. gze' k m„' )

gxggzg+ mx" (gl+gs), (28)
PS+y 5$gg

g~*' m ~—m~~
2F.F„f {I)=

gags, mz~
XI 1+ {—gu —ga) I

mx„'mph' gx"

+ — (mz —m ')(F '+Fz' —F„1)

so that

F(E ~Em)=49. 2 MCV,

Fz/F, f+(0)= 1.28,

Q= m. '/mxe'= 0. 0238,

$v= 1.11,

$g= 1.09,

g&+ =C&~ = j jgl»»

Ii~2= i.iSJ' 2,

F„'=0.34F ~,

(35a)

(35b)

(35c)

(36a)

(36b)

(37c)
Pgx~ I/sy-

+m.1I Fzl—F.1+F„1—2F F„l I I
. (29)

IZ„) )
%'c have written these so that thc 1csldues of thc E*
and K poles arc constants l.c. they take on their dis-
persion-theroetic values. Equations (28) and (29) sug-
gest that f (I) is unsubtracted (or pole-dominated), "
while f+(t) needs one subtraction. Writing

f.(I)=f.(o)l I+). , I,
m.'j

Eq. (28) yields

f+(o)= (F-'+F+—F')
2' F~

fSg4 1 ggs
f,{0)),

2~~~z ~x~

l( gz~gx, mx~
~l 1+ (-g.-g) I. (32)

mz„'mz, 1 gz"

Finally, the total width for the decay E*-+E+~ is
found from Eq. (A19) to be

g gz* ( gz~ga, mx»
I1+ (—g

—gl) I
~

8s. mxa'4F 'FyP I mz„'mg, ' axe'
(33)

We see that Eqs. (31)—(33) depend on only three un-
kllowll parameters& $1& $g» Rnd gl+gg so 'tllR't wc 111Ry

usc the cxpcrlmcntal information about these decays
to deduce the values of the unknowns. It should be
noted that the combination g2+g3 may be eliminated

'o This is true only if g4+2g~+ge -—0.

(37d)

Thus the experimental information indicates that the
second spectral-function sum Iule rcqull 1Ilg the
equabty of all vector and axial-vector coupling con-
stants, is satisied for chiral partners as suggested by
the algebra of 6elds. " Furthermore, we sec that the
SU(3) symmetry breaking is small.

It IDust bc noted ho%'cvc1 that thc 1ntclprctat1on
of present experimental data is not unambiguous, In
particular, $~ depends extremely sensitively on the
value of X+. Taking A+=0.023 yields

)v=1.18, )g=0.85, f+(0)=0.91.

At present it seems that it is best to use the second
sum rule, for chiral partners, as a guide since the experi-
Inclltal error oil Q ls too 1R1'gc to enable lls to determine

$g Rnd $v collcluslvcly.
%e now turn to E~ decay, which fixes the value of

~x~—g1+ga. (38)

Since we wish to interpret Eq. (34) as indicating
slllall SU(3) symmetry blcaklllg, wc Illllst Rssullle tllat
g~, and gg„have the same sign. Then the X~ width of
49.2 MeV predicts X~*=——', or 6.2. The former value is
more reasonaMe and wc note that 1t 1s of the same order

"The E decay vridth is known quite accurately; see A. H.
Rosenfeld et al. Rev. Mod. Phys. 40, 77 (j.968). The quoted error
f01' Eq. (33b) ls Rb011't 3%, see N. Cabtbb0, 111 2 AffI888$k AsNNQI
INterecAoricl ColfererIce ow Irigh-Eriergy I'hysics, BerkeEey, A%66
(University of California Press, Berkeley, 1967), p. 29. The
quantity X+ is not known as we11, %'e have X+=0.023~0.008 from
E+ decay and X-0013&0009 from Xo decay' see %' VAlhs
Eroveedjegs of the IrIferwatioeal Conference og High ENergy I'byes,
HeideSerg, ZN7, edited by H. Filthuth (North-Holland Pub-
lishing Co., Amsterdam, 1968).

~ S. %einberg, Phys. Rev, I etters 18, M/ (19@').
~11 T. D. Lee, S. steinberg, and B.Zumino, Phys. Rev. Letters

18, 1029 (1967).
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of magnitude, but opposite in sign'4 to the analogous
parameter A.g, = 1+5 found from p and A~ decay

The total width for the decay Eg ~ X*1m is found
from Kq. (A16) to be

This yields
m„=635 MeV,

f (0)= —0.09.

I'(E~ ~ E*~)= & 95&v 'Li(g~ —a5)'—5(gs —g~)

&&(g2+-:ca+2'~)+25(g +-:g~+-:g~)'3 Mev. (»)
Using the previously determined values fv 1—.—11, g2

+gs= —-'„and taking the Eg width" to be 60 MeV, we
6nd

In order further to distinguish these solutions, we

need more information than is presently available on

E~ decay. In particular, the ratio of transversely
polarized to longitudinally polarized E* mesons arising
from the decay would enable us to choose between the
two values.

Turning finally to the f (I) form factor in E~a decay,
we see that Eq. (29) involves two constants not yet
determined m ' and (Zrr/Z )"'=—y. There is a relation
between these parameters similar to Eq. (21) obtained
from Eqs. (19) and (20):

F&F rnx' y(Frr—'m Jr' F.'m—.')
ptÃg =—

FxF „y+F—„2

From Eqs. (29) and (40), we have

Some comments about these values are in order. As
mentioned above, we feel that our values of P~ and $v
imply small SU(5) symmetry breaking, and hence that
the product Ii,F~ is positive. Then, as Glashow and
Keinberg have pointed out, m„&670 MCV follows from
Kq. (22a). Thus our small value of ns„ is not surprising.
If F had the opposite sign, then Eq. (42) would become

f (0)= —0.005+(0.196/m ')+0.581y I ~ (46)

and one would expect the sign of f (0) to be positive
and the magnitude to be somewhat larger than we have
found. It is worth observing that 635 MCV is precisely
the Ex threshold.

From Eq. (29), we have

f (0)X -= (mls' —es ')f+(0)
m~ 2

55K ~X

&m.2 nz.2 m.' mz*'&

(F 2 F„+F„2F—F„y). (47—)
m„' 2F Ii„

For y=0.99, we obtain

f (0)X mme'/m, '=0.06.

It seems to be a common feature of this kind of analysis
that f (0) comes out small and negative, with X large.+ " x "y)' ( ) This might suggest an alternative way of analyzing the
cxpcl lIQcnts.

Using the values for Fx' and F.' derived from f+(t),
we have"

y (0)= 0.005+(0.196/~„2)—0.5gy.
Thus, if we had an accurate measurement of f (0) we

would be able to determine ns„' and all of the ratios of
the renormalization constants. In the absence of such a
measurement at the present we make the ansatz. '~

y=gx /go*=0. 99.
'4 If ggj and g~z had opposite signs, then the signs of X~& would

change relative to those zn the text. Xg, =-', predicts I'(p ~ ~~)
=115 MeV, F(A1 —+ p~) =95 MeV. There is no particular justi-
fication for asking that X~~=Xg,."All candidates for our Eg with mass ~vs~* are given this
width in the tables. However, we cannot tell what fraction of this
is background Em~ direct decay relative to X*+ decay. A similar
problem arises in A1 decay and in Ref. 6 we have argued that this
may be a non-negligible effect.

'6 Since our solution has small SU {3)breaking, we assume the
sign of Ii and E, are the same. Then Eqs. {40) and {37b) imply
that the sign of y is the same as the product F~P„.This accounts
for the absolute value sign in Eq. (42).

'7 This assumption was erst introduced by Chang and Leung in
Ref. 9.It states that scalar and vector chiral partners undergo the

V. DISCUSSION

A. Other Literature

Several papers recently" have been concerned with
qucstlons of R similar nature Rs those wc have discussed.
%C shall examine the relationship of our work to some
of them.

This paper is most similar in spirit to those of
Glashow and %einberg, 2 and Chang and Leung. 9

Glashow and %einberg use the Ward-identity method,
but work at zero momentum transfer, so that they do
not have an expression for X+ in X~3 decay. To make up
for this lack, they assumed $~= $v. Since we find that
this relation is predicted from A+, our values for g~*',
gx~', Fx, F„, and f+(0) agree with theirs.

same renormalization. We want to emphasize that we are only
making this assumption because of the confused experimental
situation regarding f (0).

» We have only elected to discuss papers by other authors which
we feel are similar in spirit to ours. Our list of references to other
papers is not meant to be exhaustive.



Our basic equations agree with those of Chang and
Leung. These authors use Kq. (43) but, they add some
o'ther hypothetical relationships among the model par-
ameters which express a notion of ~ dominance. A tech-
nical, although crucial, di6erence is that we take the
parameter F as determined from the m~2 rate, in keep-
ing with thc type of CRlculRtlon Dlllc ln thc plcvlous
section while they usc the Goldbergcr-Treiman relation.
It 18 not SUI'pI'lslng consldcllng thc scnsltlvlty of thc
parameters to the experimental input that we obtain
such diRerent results. They find no evidence for the
equality of $~ and &v. Much of thedifference may be
characterized by their value of X+=0.0j.8 compared to
ours) X+=0.0238. AccuI'atc lnfornlRtloIl Rbout this par-
ameter is the most crucial input at the present time.

Lcc hRs studied E~3 dccRy UslIig R chlI'Rl phcnoIQ-
enological Lagrangian. It has previously been ob-
served that this technique yields results essentially
similar to ours. However, Lee's method of symmetry
blcRklng 18 qultc d16crent fronl OUI'8, Hc rejects pRI'tlRl

conservation for the strangeness-changing vector cur-
rents, takes its divergence proportional to R bilinear
function of x and E fields, and has no ~ meson. His
Eqs. (2) and (3) for f~(/) are obtained from our
Kqs. (28) and (29) if we take

Rnd ldcntlfy

nsz +
p

Ii „=0,
(49)

(50)

g~~&1
Fz' —F.'+ rnz" (gs+gs) =O'Fz'(1+~) (51)

ns+g ns+y2 2

%c have some comments about the numerical values
fol thc pRlamctcrs found by Lcc:

(i) The solution of our Eq. (35b) using Eq. (2) ot
Ref. (19) yields Fz/F, =1.33, f+(0)=1.04, rather than
Fz/F. = 1.28, f+(0)= 1.0 as quoted there.

(ii) Using either of the above in our Eq. (34) yields
X+nrz~'/ns '=0.9, a value midway between the one
favored by us and that quoted by Lee.

Fenster and Hussain, '0 and Lai and Young" use the
Ward-identity approach in their work on three-point
functions. However, they allow the strangeness-chang-
ing vector current to be conserved so they do not ex-
amine the type of question wc are conserned with. Fur-
thcrnlor, they do not consider X~3 decay and hence
ignore a powerful constraint on the theory.

Riazuddin and Sarker2' have used the Nard-identity
approach and studied X~3 decays. However, they us-

sense Ii „=0 and further, make the questionable demand
that f+(0)= 1, snduding second-order symmetry break-
ing.

'9 B. %'. Lee, Phys. Rev. Letters 20, 617 (1968).
'0 S. Fenster and F. Hussain, Phys. Rev. 169, 1314 (1968)."C. S. Lai and 3.L. Young, Phys. Rev. 169, 1241 (1968).
"Riasuddia and. A. Q. Sarker, Phys. Rev. 173, 1752 (1968}.

Finally, there have been papers" which use disper-
sion relations for f~(t) along with current-algebraic
derivations of the subtraction constants. It is easy to
connect our results with theirs, since we have written
our expressions for f+(t) in dispersion-theoretic form.
There have also been soIne attempts to compute quan-
tities such as F,/Fz by using some set of postulated
(usually without particularly 6rm foundations) sum
rules. '4 The values obtained by this approach do not
particularly agree with ours.

B. Conclusions

Ke have presented a consistent picture of several
processes involving strange mesons. Our basic assump-
tion is the validity of the local chiral algebra of vector
and axial-vector currents. %e have supplemented this
with a speci6c model of symmetry breaking, single-
particle dominance of propagators, and minimum mo-
mentum dependence of primitive functions. Our results
indicate a simple pattern of symmetry breaking in
which the second spectral-function sum rule is valid for
chiral partners and the variation from exact 5U(3)
results is small.

We used experimental values for Fz/LF, f+(0)j, +,
and F(IP ~ E7r) 'to compute gze& gz&& Fz& and Fz.
It is unfortunate that at present we can only say that
the pattern of symmetry breaking we found is consis-
tent with the data; it is by no means predicted uniquely.
In particular, more accurate measurement of A+ is
needed to make satisfactorally de6nite statements.

Our theory involves a ~ meson whose existence is
certainly in doubt. Our calculation of g~* and g~„ from

f+(t) and the X* decay rate does not depend on the
existence of a physical scalar-meson state corresponding
to the ~ 6eld. If wc knew X+ more accurately and had a
measurement of f (0), then we would have a unique
prediction for the position of the ~ and it would be a
simpler experimental question to verify that portion of
the theory. The value, 635 MCV, which we give is not a
firm prediction since it is subject to the uncertainties
introduced by X+ as w'ell as depending on our use of-

Kq. (43).
If the ~ does not exist, then we believe that an attrac-

tive alternative. is to let ns„2 —+~, F„-+0 as in Lee' s
theory. "However, an accurate value for P+ could rulc
out this possibility since then we can simply compute
F„.We recall that for +=0.9tn, '/rnz*' we have F„=O.
Were X+ not given by this value and nevertheless no x
found, we would then try parametrizing the a prop-
agator by a continuum rather than a pole.

'3 For example, H. T. Nieh, Phys. Rev. Letters 21, 116 (1968);
N. H. Fuchs, Phys. Rev. 170, 1310 (1968); 172, 1532 (1968);
J. Mackey, J. McKissic, D. Scott, and %.Wada, Phys. Rev. 172,
1S90 (1968).

'4For example, D. Majumdar, Phys. Rev. Letters 20, 971
(1968). P. K. Mitter and L. J. Swank, University of Maryland
Report (unpublished); P. P. Srivastava, CERN Report (un-
published).
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Recall, too, that we have imposed Eqs. (26) on the
primitive function I' '~~~'. It is also possible that these
are not satisfied although it then appears to be de.cult
to analyze the data. It may be reasonable to require

only
g4+2gs —g6= 0,

which follows from demanding that the /~3 form factor

f (t) be unsubtracted.
There are several questions we have not considered

here, although most of the machinery for doing so is

contained in the paper. First of all, there is the study
of channels where mixing is permitted when, SU(3)
syxnmetry is broken. Secondly, there are the abnormal-

parity vertices (AAA and A UU) such as 4ro decay and

co decay. Some discussion of these have been given by
other authors. ~' In any event it appears that sufhcient

new parameters (such as mixing angles) must be intro-

duced so that consideration of these processes does not

put any new constraints on the parameters we have been

studying.

where
1'",e,» ' *'(q P)=f.eP'.;,~

' "(q P).
I'rzmztk e FNmctI'oe:

1'. .. " "(q,p) = (m—.'/cz "g.')Lg"(q P) ~—

+2(1+~ *)(g."—g. .)—(g. q.—a. P )) (A4)

Eonprimitioe Functions:

F„f'„,g"z"p(q,p) = 1Czuq»I'u, „,gz'z'p(q, p)
—L~zp '.x(p) —~z* '.) (r)], (As)

where

f'4, e.,»" *'(q P)=~4e~f', ~" "(q P)
F.'1'~—""'(q P) = Cz"q—"P"1'u;. &

' "(q P)
—l(q —P) +l(q —P)"~. ' ()(C.—2F')

p, , .'"(q,p) =f, -1'" (q,p).
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APPENDIX: WARD IDENTITIES FOR
PARTICLE CHANNELS

Ke have used the symbol C, when single-particle

dominance is not implied. In general,

p, &'& (m')
C,= de

tn2

and in the single-particle model C,= g '/tn '.

0= -C r"l'
&,"»»(q p)

+LtsA '"(q) ~A '"(P—)j, (A&)

1'",e,»"'""(q P) = f-e 1'»;.~"»"(q,p)

Przpsltz8e FNsctzorI'

1". ~"'""(q,p)=(—m. '/aA, 'g. ')Lg"(q—P)~+2(1+~A,)
&&(g."—g.~")—(g"q.—g.~p )3 «g)

cYonprimitioe Functions:

F f &wAyp(q p) C q»p AgA4p(q p)
+L~. '(P)-~. "()3, (A9)

f'-, e..»'"(q,p) =f-e.f'. .~ ""(qP)
—F.'1'x "(q P) = —CA 'q"P"1'u..~"'""(q,p) —k(q —P) ~

+-,'(q —p)"6,—'.),(r)(C,—2F„'), (A10)

Vector Coestrazet

0= —C q»I' xppp(q p)+PA
—'(p) x—6 -'

),(r)] (A1)

where we have de6ned

r-.,e,»"'(q,p) =f-crt'u ""(qP).

I'ri +utile Ii lection:

1'..~"'(q P)= (m'/g')I:r"—(q P)~+2(g"r ——g"r»)

(g.~qu
—gulp. )3 —(A2)

QQ gg

Vector Coestrairlt

0=-C„."1... ' "(q,p)+L~ -'„(q)-~ -', (p)~,
(A3)

25 Riazuddin and A. Q. Sarker, Phys. Rev. Letters 20, j.455

(j.968). Sec also Refs. 20 and 21.

f'-, e,» "(q,p) = f-e.f'~-p(q, p).

XgX@I9

Vector Colstruznt

0= C,r'r„,„,PAz»(q—,P)
+L~z '"(q) ~z '"(P)j, —(A11)

pAzAp(q p) —f e 1' „pAzAp(q p)

I'rimiti~e Flection:

1'. 2" "'(q P)=(—m. '/gz. 'g, ')Lg"(q —P).
+2(1+bzA)(gu~' —

g "»)—(g'qu —au~p )l (A»)

iVon primi ti ee Functions:

Fzf' xzAzAp(q p)= Cz qul pAzAp(q p)
+L~zA ' x(p) ~p ' ~(r)j (A1—3)
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P „ICAKAP(q P)
—f f' XAKAP(q P)

P 2fv„ICK1v(q P) — CK 2q1vPvIv &KAKAv(q P)
—2(q —P).+2(q—P)"~. "(»)(C.—2FK')

f'. ,y, ,~ "'(q,p) =f.22f'1 '(q P) .

Ag J 'PEP

)Yo Vector Constraint

I'nmitiee Function:

&A&KAKv(q P) —f P „A~KAK"(q P)

NonP«i miti1/e Functions:

P Iv &vvKAK~(q P)
— CA q1vP &A&KAKv(q P)

+)~K, ', 1,(p) —&K* ', 1,(»)j, (A16)

p 2 1v'KAKv(q p) f 2 p ~v KAKv(q p)
.

FKp 1A&KKv(q p)
— C ~vtv A)KAKv(q p)

+L~--..()-~.,—..(q)j, «»)

'(q p) = f-o.I'. ."' *(q,p);
p Iv A&KAa(q p) Cxv»1P „A&KAKv(q p)

+L~ "(q)—~ "(P)j,

"(q,P) = (~K—*'/g K"gA,gX.)41g"(q P)~—
+g2LC/&(«q)v+g &(P r)1 j+g2(g1 &r g 1«1)

+g4g/ «2+g2l g~1(» q) —g1(p—«)~j-
+g2(g„gr„+g„1»„)), (A15) where

Iv
2 AxKAa(q P) /I fv A1ICAv(q P) ~

"'(q P)= CA, CKAq—"P"I'.;,I"' ' "(q P) 2(q P)I—+2(q—P)"t1K '—.1(«)(C, F.' FK—')—
—(1/2CK )«1,((FK'—F.')+ (1//1. 2)L/1. 2F.2—/IK'FK2+/1. 2F FK(Z /ZK) '"—/IK'F. FK(Z./ZK)'"j) (A19)

*(q P)=f-2 f'1 '(q P)'
F„FKf'„A'K"(q—,p) = —CXvCK p"r"I'„, 1,

"'K'K' —', (p —«) + '(p —r)"t1K -'„„(q)(C,—-F,'—FK')
—(1/2CA, )q„)F.2+F„' FK' 2F F—K(Z,/—ZK)-'/'], (A20)

where
fv

O
AiKa(q p) d &

fv AiKv(q p) .

'"(qP)= CC q"—"P "' " "(qP)—-'( —q)+-'( —q)"~ ' (P)(C —F'—F ')
+(1/2CXA)pv/LF '—F '—FK'+2F FX(Z /ZK)'/'j (A21)

where
Iv vvICAv(q P)

—d O
Iv vKAa(q P)

~

P P P fvvKv(q P) C C C q1vPv«XP A1K Xv(q P) 1(P2 «2)P 2 1(12 q2)P 2 1(q2 P2)P
+l(u-2+q2)I:F-2 2F-FK(z—-/zK) '"j+l(/ K'+P')L —Fx'+2F-FK(z-/zx)"2]+lD/. + 2)/t«2. j2

2PX2 I 2P 2+P FK/IK2(Z~/ZX)1 2 P FX/I 2(ZK/Z )1 2j+1F PKQ 2(ZX/Z )1/2 0 2(Z /Z )1/

(A22)
where

"(qp)=d 2 I' "(qP)


