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Structure of Three-Point Functions from SU(3) QxSU(3) Algebra*
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%'e construct three-point functions of vector and axial-vector currents consistent with the constraints
of chiral SU(3)QxSU(3) algebra. We make no single-particle approximations, nor do we assume that the
strangeness-changing vector currents are conserved. We do, however, assume that the e8ects of symmetry
breaking may be represented by a set of scalar and pseudoscalar 6eMs transforming as a representation of the
algebra. The results are presented in a form in which any approximations will be guaranteed to maintain
the constraints of current algebra.

I. INTRODUCTION

HK application of Ward-identity techniques' ' to
current algebra has made it possible to extend

chiral symmetry and the hypothesis of partially con-
served axial-vector current (PCAC) to situations in-
volving pions that are not soft. An essential feature of
the method is to convert %ard identities for n-point
functions of currents to similar identities for hadron
proper amplitudes. These identities can then be recast
entirely in terms of "primitive" proper functionsm
which are essentially undetermined by current algebra.
The formulation thus exhibits the entire content of the
current algebra in terms of the primitive functions
%hich are arbitrary, subject only to a constlaint on thc
longitudinal parts if there is a conserved current. As a
matter of convenience, this initial work was limited to
chiral SU(2)SU(2) even though the method is more
generally applicable. %e now extend the development'
to chiral SU(3)SU(3) in a way suKciently general to
allo~ the study of chiral symmetry breaking without
any assumption being made concerning the magnitude
of the symmetry-breaking term. The approximation of
spin-zero propagators by single-particle intermediate
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states %'hlch %'as made 1n our pI'cvlous work 18 also
avoided throughout this paper. Here we present results
appropriate to a general broken-symmetry group 6,
restricted to the three-point function for illustrative
purposes, while in a companion article we apply the re-
sults to SU(3)SU(3) to discuss strong, electromag-
netic, and weak two-body meson decay amplitudes.
Further assumptions and approximations which are
made for the purpose of practical applications are dis-
cussed in the following paper.

%e begin with a Lagrangian assumed to be of the
f 2= Ze+e,@; (&)

where Ze is invariant under G, and the @;are local imlds
which are the basis for a real representation R of G. It
follows that the currents constructed from Noether's
theorem satisfy the partial conservation law

r)„J.&(x)= e;(T.),,y, (x),
and the commutation rules

Ke also assume the local commutation relations

' The assumptions we make concerning symmetry breaking are
the same as those of Ref. 3, where Eqs. (I)-(9) are derived, In par-
ticular, only the continuous, connected part of 6 enters our
d1scusslon.

'The notation is as given in Refs. I and 3 unless otherwise
specified. The italic indices ~, j, k, ~ ~ ~ run over the representation
space 8 of the mesons @;.The Greek indices of n, p, y, ~ ~ ~ refer
to the adjoint representation of G, while p, y, X, ' ' ~ are space-time
lnd1ces



D;;(g)=

where C p„are the structure constants of G. Noncovari- is introduced:
ant or Schwinger terms (S.T.) appropriate to (4) are
not explicitly indicated, since wc assume that they are
e numbers. The matrices (T ) satisfy p;;(m'),

m'(m'+g')
(6)

as wcH as a spectral representation for the spin-j.

(P) Pl'OPagR'tol8,

Since the symmetry is broken, some of the fields P; may
have nonvanishing vacuum expectation values, which
we define:

~-p(g)""=
d5$ pg"

p pI'I(m') g&"+ . (18)
m'+g' m2

S.p= C.p trL4T—pD(0) T.e],
o=.;(T.);;x;.

dm'
— p.pI" (m2) .

tg2

The Schwingcr term is
It follows from the vacuum expectation value of Kq.
(2) that

(9)

{20a)

The propagators of the $; fields,

d'* -' *(T(~;(*)~,(0))&o=- ~;;(g),

In Eq. (16) rI& is the timelike unit vector (0,0,0,1).
Notice the necessity of defining three diferent represen-

(10) tations hg{q), D;;(q), and D;,(q) for the spin-zero mesons
in order to satisfy thc %ard identities. They ale of
course connected by the equations

b,;;(g)= p;;(mm).
m'+g'

Thc relation

q'D(q)+ h{q)= A(0),

q'D(q)+D(q) =D(o)

.,(T.);;=x,pr.~ (o}j;;, -

g~ d4* e-'"&T(J.~(z)@;(0))&0

=Xi(T.)I;—e,(T,);iAi, (g), (12)

used in Eqs. (15), (16), and (19), is obtained from Eq.
(12) in the limit q' ~0. Eq~~tio~ (21) In««onn«ts the
parameters e; of the symmetry-breaking Lagrangian
and &g,&0, which exhibits the asymmetry of the vacuum.

d4z e-'4*&T(J,&(z)y, (0)))0=g~e,(T.);pDp;(g), (13) III. THREE-POINT FUNCTIONS

SlIQllarlf~ from

dm'
---pi;I'I(m').

m'(m2+g')

In this section we exploit thc Ward ldcntltles for thc
three-point functions of currents and their derivatives.

(14) We find the following notation useful:

d d yd" -"-'--'"&T{~;{*)~;(y)~.(»&.

g~ de e-'4*&T(J.~(z)Jp"(0))), =(2-) ~ (g+P+ )e;(g)~;(P)~.()&. (22)

ig" trL4T—pD g T,e„l (15 There are three Ward identities which must be con-

we find that the propagator of currents can be written

e-*'4*(T(J ~(z)Jp"(0)))0

4~.p(g)"+4g q
—«tt.TpD(g)T:j+4v e ~.p, {16)

wlMie Bl (15) RIld {16)tllc tl'acc Is taken lzl tllc 1'cprcscIl-
tation space E of the spin-zero mesons. In Eq. (16) still
another spectral representation for the spin-zero mesons

q.&J-"(q)4»(P)@i(r)&

=-';{T-)';&~:(q)~;{P)~.()&
+49'-~(r)j ~

—4t:~(P)T-jI~

q„(J &(q)Jp"(P)yl,.(r)&
= —' '(T-).' &0' (q)Jp"(P)A( )&

~.„'.,~T.D( n;.+P';CTpD{P)T.j;., (24)
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which requires
(2t')

q.&J-"(q)~p"(P)~."(r))
=-"(T.) &~. «» W~,"()&

ic.—p, {a„(r)"" r"r—" trC«T.D(r) T,«]}
—iC.w{Aw(P)""—P"P" «C«T«D(P)Tp«l} (25)

Schur's lemma implies

(27)

where 5 caN have a different value for each simple sub-
algebra of G.'

The next step is to dehne proper functions which are
"diagonalized" according to the singularity structure
and transformation properties of the external currents,
These are defined by

Further, since we have assumed that the Schwinger
terms are c numbers, we have

P Cq.P-"(q)~ "(P)J."( ))j=q.CP 9'-"(q)~ '(P)~."( )&j,

&4'(q)4»(P)A()&=~ '(q)A '(P)~ ()I'', '. (qP), (28)

(29)(~-"(q)4~(P)4~(r) &=i~- ""'(q)~~a(P)~» (r)I'- ' ~' '(q f )+iq"«CT-D(q) O'*'A '(P)A» (r)P ' ~' ~ (q P)

&~-"(q)Jp"(P)4 ()&=—~-""'(q)~pp""'(P)~ ()P ' p" (q f)-~- ""'(q)P"«CTpD(P) j '~» (r)I'-', ',~ (q,P)—q"«'LT-D(q) j"~pp ""'(P)~» (~) P'. p",~ (q P)
-q";CT.D(q)r' ~;CT DW j;;~- ()P',;.'(q, f), (3o)

and

&~. (q)Jp (~)I,"()&=-'~..-'(q)~pp-'(I )~„""'()P- ..p".,'(q, ~)
'~-""'(q)~pp""'(f)" LT.D()3 I'-', p". (qP) —~- ""'(q)P" CTPD(P) j '~-""'()I'-",', ~ (qP)
q" 'LT—-D(q) j'~pp""'(P)~. ""'()P';p. (qP) —~-""'(q)P"'CTPD(P)j ' " CT»()3 I"-',f, (qP)

—iq"«'CT-D(q)3" ~pp ""'(f)r"«~CT.D(r)j» P '; p, ~ (q P)—iq"«'CT-D(q& j"P"«~CTpD(P) j '~v'""'(r) P', ~',.~ (q P)
—iq"«LT-D(q) j ' P"'CTpD(P) l 'r"«~C»D(r)3» P','.'(q, P) (3I)

Equations (28)—(31) are inserted into Eqs. (23)—(25) to obtain Ward identities for the proper functions. We do
not write these lengthy expressions, but instead go on to the next step, which is to express the proper functions
in terms of a primitive" function. That is to say, from the %ard identities for the proper functions one observes
that I';,;,q(q, p), F,„,;,«(q, p), and I' „,p„,q(q, p) cannot be chosen arbitrarily. Rather, they are constructed from the
Ward identities once F „, p~q( pq) is specified. This latter proper amplitude we call the primitive function. It
can be specified arbitrarjtly, subject only to a vector constraint if there is a conserved current, and still satisfy all
the Ward identities. We now express the proper functions in terms of the primitive function I" „,p„,~q(q, P) and the
various two-point functions, It is in this sense that we "solve" the %ard identities.

The solutions are

'I T-A(0)j"CppC. v I'.p".v ~(qf)
= —C;Cpp C„,q P; ~ p, ~.g(q p) —p"p"'C p;C„"6-';;.""'(r) trC«Tp D(P)Tp«3

+r"'r"C-p ~ Cpp-~ 'p p-"'"(P) «C«Tv D(r)T~«3+C.p 'C~ 'p p-""(P)Cp-pCv v
—& 'v ' ""(r)Cp pCv-v (32)

—'CT-~(0) j"';CTp~(0));;C„I'.;,;.(q,~)
= —C, CppC„q"p"I' „p„7)(q,p)+q"'C p, C~~ a ',"," (r) trC«T h(0)h '(q)D(q)T «j

f"'C.p ~ C—»-~ '~-~ "'"(~) trL«Tp ~(0)~-'9)D(f)Tp«j
r" trC«T~D(r)d '(r){T,Tp}+X] s'(q —p)"C p;C;, —

+l(q —P)"C.p'~ "'""( )C -P+l(q' —P') "C-p t L T D( )T. j, (33)

«*CT-~(0)j'*'«'CTp~(0G'"CT. ~(0)j» I''. ', ~ (q P)
C- Cpp Cv;q"P"r—"P-'.p".v ~(q f)+k(P' —r')C. pv «L«T"~(0)~ '(q)D(q)T. «j
+k(»' q')C-p. t—rL«Tp ~(0)~ '(P)D(P)Tp«1+5(q' P')C-pv trC«Tv ~—(0)~ '(r)D(r)T.«j—'gtrC«T. d (0)dk-'(q) {Tp, Ty}+Xj—y trC«Tpa(0)6-'(P) {T„T.}+X]—xg trC«T, A(0)A-'(r) {T.,Tp}+X/

+—t C T {Tp,T } X)+—' t C Tp{T,T } Xj+—' t C T {T,Tp} X7, (34)

Equation (27) is the generalization of the 6rst spectral-function sum rule to G. See S. %einberg, Phys. Rev. Letters 18,
507 (1967). The generalization to SU(3) &SU(3) was given in S. L. Glashow, H. J. Schnitzer, and S. Weinberg, Phys. - Rev. Letters
19, 139 (1967); and T. Das, V. Mathur, and S. Okubo, Phys. Rev. Letters 18, 761 (j.9Q'). Recall that the applicition of Schur's
lemma requires C p~ to be irreducibl. If not, then 8 can take a diferent value for each simp/e subalgebra of G. This means that
for a chiral subalgebra, the algebra for V+A and V—A could have separate Schvnnger terms, However, because of parity con-
servation of the strong interactions, these Schwinger terms must in fact be equal.
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D(q) =—D(q) ~ '(q) D(q) —D(q)

(T,T//)+ T——T//+ T//T .

(35)

IV. CONCLUDING REMARKS

We have extended our previous work to an arbitrary
current algebra making as few assumptions as possible.
Aside from assuming a local algebra with c-number
Schwinger terms, our main assumption has been the
specific model of symmetry breaking expressed in Eq.
(1). This model is general enough to encompass any
set of nonconserved currents. In particular, we have not
assumed any propagators to be saturated by single-

particle states. As well as making it possible to imple-

ment the requirements of unitarity in some future,
dynamical approach to current algebra, we note the
existence of certain terms in Eqs. (32)—(34) which

simply vanish in the single-particle approximation, and

hence do not appear in the analogous equations of
Refs. 1 and 2.

In the following paper, ~ we shall apply these results

to SU(3)@SU(3) to discuss various meson decays. Al-

though our present knowledge forces us to a single-

particle-dominance approximation there, such an ap-
proximation and its success (or lack thereof) in no way

compromises the generality of this paper.

7 I. S. Gerstein and H. J. Schnitzer, following paper, Phys. Rev.
175, 1876 (1968).
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We approximate the three-point functions constructed previously by using a single-particle approxi-

mation to all propagators and assuming that the primitive three-point functions are slowly varying functions

of the momenta. We use the available data on strong and weak decays of spin-one and spin-zero mesons

to compute the values of the parameters introduced in our model, with special reference to E~3 decay.

I. INTRODUCTION

''N the preceding paper' we extended the Dard
- ~ identity techniques for the three-point functions to
chiral SU(3)@SU(3)without making single-particle ap-
proximations or special assumptions about symmetry

breaking. Ke now use single-particle dominance for all

propagators, assume that the primitive three-point func-

tions are slowly varying functions of the momenta, and

assume that the symmetry-breaking term in the La-
grangian transforms as (3,3)8 (3,3).2 These approxima-
tions lead to predictions for meson decays in terms of a

~ This work is supported in part through funds provided by the
Atomic Energy Commission under Contract AT(30-1)2098.

f Research supported in part by the National Science
Foundation. :

'I. S. Gerstein, H. J. Schnitzer, and S. Weinberg, preceding
paper, Phys. Rev. 175, 18'tp'3 (1968).Equations from this paper are
denoted by I.

2 See S. L. Glashow and S..Weinberg, Phys. Rev. Letters 20, 224
(1968). .S. L. Glashow in I'roceediegs of the Ieteregtional School
0 Ikgs$cs Ettofe M)cofcwc (D67). Ecllted by E. R. Calanlello
Academic Press Inc. , New York, 1968).

number of arbitrary parameters, which are too numer-

ous to be determined by experiment, so that no speci6c
numerical predictions can be made without further
assumptions. %e shaH discuss these assumptions as
we make them. Finally, we determine the remaining

parameters from experiment, these are found to be con-

sistent with small SU(3) and chiral symmetry breaking.

II. SINGLE-PARTICLE APPROXIMATION

The spectral representations for the spin-zero mesons

are given in Eqs. (I.11), (I.14), and (I.17).' We define

the single-particle approximation by assuming for the
matrix propagators4

g (q)
— Z1/2 gl /2

M2+Z 'q' /22+qs

The notation, unless otherwise specified, is as in I.
4These approximations, their relation to the meson mass

spectrum and to mixing models are discussed in S. Coleman and
H. J. Schnitzer, Phys. Rev. 184, 8863 (1964}.


