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The diffraction part of the pion-nucleon elastic scattering is described by the Dirac equation, using an
absorptive central potential with a hard core. Cross-section and polarization data for pion-proton elastic
scattering in the 1.7-18.4-GeV/c region are fitted with three parameters—a potential strength, range,
and core radius. The range and core radius are commensurable with values found in other elementary-

particle systems.

OR elastic scattering at GeV energies the number of

- experimental data is insufficient to determine the
large number of phase shifts.! Instead, the data may be
analyzed in terms of various simple models, for example,
by assuming a particle-particle interaction with radial
dependence. In the simplest of such models, cross
sections for proton-proton interaction have been fitted
by assuming the target proton to be a “black” absorbing
disk of radius R and mean free absorption length 1/K,
with K large enough that the disk, essentially black
initially, is of decreasing blackness with increasing
energy.? Experimental cross sections at 0.8-2.75 GeV
have been fitted with this model.

A more sophisticated model,® that of Brown, uses a
repulsive (hard) core of 0.45 F with an external absorp-
tive Gaussian potential ~exp(—72/R?) with R=0.86 F
in the Schrédinger equation and fits the elastic and total
proton-proton cross sections at 1 GeV and the forward
differential elastic scattering. By allowing the hard core
to shrink with increasing energy, the model is able to fit
differential elastic scattering data at higher energies up
to 6 GeV, at least at small angles, still using the
Schrédinger equation.

Extending the treatment of the elastic proton-
proton scattering to relativistic energies (10-30 GeV),
Serber? used a purely absorptive Yukawa potential
V(r)=1i9(1/r)e%" in the Klein-Gordon equation to
obtain an analytic fit, with A=(0.45 F)~% Real parts
were added to Serber’s potential by Auerbach and
Brown® and their effects explored in a computer search,
but without yielding significant improvement.

It is apparent that extending analyses of this sort
may give useful insight into elementary-particle re-
actions. In the present paper we have applied it to pion-
nucleon scattering at GeV energies. We have found that

* Supported by the U. S. Atomic Energy Commission,
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1J. Hamilton and W. S. Woolcock, Rev. 1.0, z. 35, 737
(1963). The authors state 300 MeV as an upper energy limit in
their dispersion-integral analysis. This limit has been exceeded
in recent phase-shift analyses [see, e.g., University of California
Radiation Laboratory Report No. UCRL-8030, 1968, p. 48
(unpublished)].
2W. B. Fowler, R. P. Shutt, A. M. Thorndike, W. L. Whitte-
more, V. T. Cocconi, E. Mart, M. M. Block, E. M. Harth, E. C.
I(?‘ovgle)r, J. D. Garrison, and T. W. Morris, Phys. Rev. 103, 1489
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3 G. E. Brown, Phys. Rev. 111, 1178 (1958).
4 R. Serber, Phys. Rev. Letters 10, 357 (1963).
5 E. K. Auerbach and G. E. Brown, Phys. Letters 6, 95 (1963).
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a single imaginary (absorptive) Yukawa potential is
able to fit the elastic mp data, provided that a radial
cutoff or hard core is also used. Real terms give no
significant improvement.

Differing from the analyses discussed above, we have
used the Dirac equation in our computer searches; thus
the spin-orbit terms are introduced in a natural way.
In order to computerize the Dirac equation we proceed
as follows.

We consider a central potential energy V(r) as the
fourth component of a 4-vector. The solution to the
Dirac equation in polar coordinates is written®

"‘(Z:Zi;) ’

where u1(r) and wus(r) satisfy coupled first-order equa-
tions which may be transformed into a second-order
equation for #;:

€Y

d?uy ' av/dr  duy 1 ((W— V)2—m2ct
ar (Wme2—V) dr ' #2c?
k(+1) «  dV/dr
- Jl >u1= 0 ) (2)
72 r (W+me—V)

where « is the (integral) eigenvalue of —g(e-14-1). The
mass m is taken” to be the nonrelativistic reduced mass
m=mMp/ (me~mp). It is convenient to perform a

transformation of variables
wy(r)=[W—V(r)+mc*]"u(r) 3

to obtain a single Schrédinger-like equation with no
first derivatives:

au | [(W—- V)2—m2ct | (&/7)(@V/dr)—1d2V /dr*
ar? ' #i%c? I W—V+mc?
3 av/d 2 1
__( /dr ) xlet )]u=0. @
4\W —V+mc? r?

6 M. E. Rose, Relativistic Electron Scattering (John Wiley &
Sons, Inc., New York, 1961).

7 Alternate choices of m would lead to slightly different values
of the optical potential parameters.
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If the potential vanishes rapidly [we ignore the
Coulomb part of V(r)], #; and # are asymptotically
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Fic. 1. (a) Optical-model computation (solid curve) fitted to
1.7 GeV/c = p experimental differential elastic cross section.
The dashed curve is the smoothed “background” contribution
extracted by Hoff (Ref. 14). (b) Comparison of computed
optical-model prediction of (Pde/dQ) with the extracted “‘back-
ground”’ value of (Pdo/d)p.
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F16. 2. Forward angle optical-model predictions at 3.5 and 5.0
GeV/c, compared with experimental »~p differential elastic
scattering at these energies (Ref. 12).
proportional and satisfy

u(r) — Hl*(kr>_77le(kr) 3

Ft= (W2—m2ct) /%2, (5)
I=x, if k>0
=(—x—1), if k<0

with H,(kr) denoting Hankel functions.® The scattering
amplitudes are then

1
ab=-2-22 (45— k| ne)Pi(cosh)
. (©6)
i K
by=— 3 —mPi(cosh),
2k « {Kl

from which one obtains the cross section and
polarization:
(do/dQ)v=|as|*+|bs]?,
(Pde/dQ)s=2 Im(aphs*),

where the spin-nonflip term is ¢ and the spin-flip term
is bb.

The central potential was chosen to be pure imaginary
with a cutoff Yukawa radial dependence,

V(r)=—iV(r/ro)~t exp(—r/r)), r>7, o
u(’)=0;

8 H;=G;4iF;, where F; and G; are defined in Handbook of

Mathematical Functions, edited by M. Abramowitz and I. A.

Stegun (U. S. Department of Commerce, National Bureau of
Standards, Appl. Math, Ser. 55, Washington, D. C., 1965),

p. 538.
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Smooth curve calculated from Dirac equation using
potentiol determined from 85 GeV/c np
scattering data
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Fic. 3. Differential elastic scattering cross section for negative
pions on protons, at 8.5 and 18.4 GeV/c measured by D. O.
Caldwell, B. Elsner, D. Harting, A. C. Helmholz, W. C. Middel-
koop, B. Zacharov, P. Dalpiaz, S. Focardi, G. Giacomelli, L.
Monari, J. A. Beaney, R. A. Donald, P. Mason, and L. W.
Jones, Phys. Letters 8, 288 (1964) ; Nuovo Cimento 38, 60 (1965),
and at 14.84, 19.75, and 25.34 GeV/c measured by K. J. Foley,
R. S. Gilmore, S. J. Lindenbaum, W. A. Love, S. Ozaki, E. H.
Willen, R. Yamada, and L. C. L. Yuan, Phys. Rev. Letters 15,
45 (1965). The solid curves have been computed from the Dirac
equation using the potential determined from pion elastic scatter-
ing at 8.5 GeV/c and shown to fit elastic scattering from 1.7 to
to above 8.5 GeV/c. The curve computed from this potential,
for elastic scattering at 18.4 GeV/c, falls below the 18.4-GeV/c
data but may be fitted by a slight change of any of the three
parameters, well depth, core radius, or Yukawa radius; see Fig. 4
for examples.

so that 7, is essentially a hard-core radius. This radius
determines the large-angle scattering while Vo and 7,
govern the forward exponential scattering. Note that
the polarization is determined by V(r) without any
scaling parameter, and the corresponding spin-orbit
term in Eq. (4) is decidedly complex.?

Trials in fitting 1.7-GeV/c elastic differential 7
datal® yielded the parameters Vo=3580 MeV, 7=0.4 F,
and 7.=0.4 F. Using these, the total, reaction, and
differential cross sections are correctly given. The co-
incidence of our value of 7o(wp) with Serber’s value of
ro(pp) and of our value of 7.(rp) with Brown’s value of
r.(pp) is interesting and probably significant. Also, this
small range of the potential, 0.4 F, is found for other
elementary-particle systems," e.g., the A-nucleon sys-
tem and the $p system.*

9 However, unitarity is not violated (|n.|<1).

©D. D. Allen, G. P. Fisher, G. Godden, J. B. Kopelman, L.
Marshall, and R. Sears, Phys. Letters 21, 468 (1966).

1S, Ali and A. R. Bodmer, Phys. Letters 24B, 343 (1967);
%l.glsié))ba and G. Takeda, Progr. Theoret. Phys. (Kyoto) 19, 269
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Curves computed from Dirac equation
for 18,4 GeV/c pion proton elastic
scattering
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Fic. 4. Curves computed from the Dirac equation for 18.4-
GeV /¢ negative pion proton scattering, using the potential found
to fit elastic scattering from 8.5 down to 1.7 GeV/¢, and showing
the effect of varying the Yukawa radius and the core radius
separately. An acceptable fit to the 18.4-GeV/c data is found,
for example, by changing only the Yukawa radius by 5.5%, and
holding well depth and core radius unchanged. The total cross
sections at all energies are correctly computed.

The potential (7) as determined above was found
to fit forward diffractive scattering'? for #—p data from
1.7-8.4 GeV/c (see Figs. 1-4) with no change in V,,
70, and 7., and to give the total cross sections correctly.
No attempt was made to obtain a best fit at large
angles because of the lack of information on N* reso-
nances at high energy. It is hoped that the model
may be useful in extracting resonance information in
the high-energy region, and alternatively to gain under-
standing of the energy dependence of the hard core.

For example, the diffraction contribution to the
proton polarization computed from this model (see
Fig. 5) may be compared with polarizations measured
at high energy.’® Taking into account the polarization
in the Regge-pole model computed from interference

12 See compilation, Ned Dikman, Ph.D. thesis, University of
Michigan, 1966 (unpublished).

18 M. Borghini, C. Coignet, L. Dick, K. Kuroda, L. di Lella,
P. C. Macq, A. Michalowicz, and J. C. Olivier, Phys. Letters
24B, 77 (1967).
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Fic. 5. Curves show polarizations computed from the Dirac
equation for 5.0, 8.5, and 18.4 GeV/c negative pion proton
elastic scattering using the imaginary Yukawa potential with
hard core described in the text. Measured polarizations for 6.0,
8.0, and 12.0 GeV/c are shown, taken from Ref. 13. It is obvious
that resonances make a large contribution to the interference
terms producing polarization, and that resonance terms like those
computed by Hoff (Ref. 14) at lower energy must be taken into
account. In Ref. 13 are shown predictions of polarization com-
puted in the Regge framework. It would appear that away from
the forward direction, other Regge pole terms will be needed if
the diffraction polarization is taken into account.

terms contributed by the p meson (as shown in Ref. 13),
one tentatively concludes that higher resonances may
play a role.

APPENDIX

It is interesting that using the model described above
we have been able to compute the background polariza-
tion deriving from optical diffraction scattering as
recently estimated by Hoff.}*

Hoff separated the scattering amplitude into two
terms: a resonant term and an optical diffraction term
called “background.” Thus the spin-nonflip term ¢ and

14 G. T. Hoff, Phys. Rev. Letters 18, 816 (1967).
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the spin-flip term b are written

a=ayta,,
b="bp+0b..

The differential cross section (do/d€2) and the polariza-
tion P are given by

do/dQ= (do/dQ) s+ (do/dQ)i+ (do/dDQ),,
Pdo/dQ= (Pds/dQ) s+ (Pds/dQ);,

where the subscript ¢ denotes a background-resonance
interference term. By making reasonable assumptions
about phases, Hoff has written fixed-angle relationships
connecting the background and resonance components
with the data at different energies “‘near” the resonance.
The dominant N* resonances of mass 2.0 GeV have
J=1; in particular, Hoff, in application to =—-p scat-
tering near 2.0 GeV/c, has computed a resonant com-
ponent for N*(2070) of Grs.

In the Hoff analysis, the background amplitude
(do/d2)s is not computed. Instead, it is estimated as the
difference between the experimental data and the com-
puted resonance scattering. However, we have com-
puted it from the Dirac equation as described above
using the previously mentioned values of Vo, 7o, and 7.
and show the computed values in Fig. 3. For comparison
(do/dQ)s, estimated by Hoff’s procedure,'® is shown as
the smoothed curve.

Since the resonance-interference term in (A2) domi-
nates, the extraction of the background term is inaccu-
rate, as shown by the error bars. Nevertheless, the
optical-model computation gives the over-all behavior
with no adjustable paramelers, the parameters V, 7o,
and 7, having been obtained from the experimental
elastic-scattering data. In contrast to the situation for
the nuclear optical model, there is needed no large scale
factor to account for the polarization.

(A1)

(A2)

16 The original data are presented in A. Yokosawa ef al., Phys.
Rev. Letters 16, 714 (1967). The extraction of the background
contribution is taken from Ref. 14.



