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The diffraction part of the pion-nucleon elastic scattering is described by the Dirac equation, using an
absorptive central potential arith a hard core. Cross-section and polarization data for pion-proton elastic
scattering in the 1.7-18.4-6eV/c region are 6tted mth three parameters —a potential strength, range,
and core radius. The range and core radius are commensurable vrith values found in other elementary-
particle systems.

~~OR elastic scattering at GCV energies the number of
experimental data is insufhcient to determine the

large number of phase shifts. ' Instead, the data may be
analyzed in terms of various simple models, for example,
by assuming a particle-particle interaction with radial
dependence. IIl thc simplest of such models, cI'oss
sections for proton proton lntcractlon have been Qtted
by assuming the target proton to be a "black" absorbing
disk of radius R and mean free absorption length 1/E,
with E large enough that the disk, essentially black
initially, is of decreasing blackness with increasing
energy. ' Experimental cross sections at 0.8-2.75 GeV
have been 6tted with this model.

A more sophisticated model, ' that of Brown, uses a
repulsive (hard) core of 0.45 F with an external absorp-
tive Gaussian potential exp( —r /Rs)swith 2=0.86 F
lD thc Schrodinger cquatloD RDd 6ts thc clRstlc and totRl
proton-proton cross sections at 1 GCV and the forward
differential elastic scattering. Sy allowing the hard core
to shrink with increasing energy, the model is able to 6t
d16crcntlal clastic scRttcI'lng dRta at hlghcI' cnclglcs up
to 6 GcV, at least at small angles, still using the
Schrodinger cquRtlon.

Extending the trea~men~ of the clastic pro~on-
proton scattering to relativistic energies (10-30 GeV),
Scrbcr' used a purely absorptive Yukawa potential
V(r)=sit(1/r)e —s' in the Klein-Gordon equation to
obtain an analytic fit, with A= (0.45 F) '. Real parts
were added to Serber's potential by Auerbach and
Brown' and their CBects explored in a computer search,
but without yielding signiacant improvement.

It is apparent that extending analyses of this sort
may give useful insight into elementary-particle re-
actions. In the present paper we have applied it to pion-
nudeon scattering at GCV energies. %e have found that
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R Slllgle 1maglnary (Rbsol p'tivC) Yukawa poteIitlal Is
able to fit the elastic wp data, provided that a radial
cutoG or hard core is also used. Real terms give Do
signi6cant improvement.

Differing from the analyses discussed above, we have
used the Dirac equation in our computer searches; thus
the spin-orbit terms arc introduced in a natural way.
In order to computerize the Dirac equation we proceed
as follows.

Wc consider R cclltl'al potc11tiRl cIiclgy V(r) Rs 'tile

fourth component of a 4-vector. The solution to the
Dll Rc equation ln polRI' coordinates ls wI'lttcn

f NI(r)X, & )
Sites(r)X, "3

where NI(r) and sts(r) satisfy coupled first-order equa-
tions which may be transformed into a second-order

equation foI' Nl:

d'Ni d V/dr dgi (W- V)'—m'c'

dr' (W+mcs —V) dr Ac

s(a+1) a dV/dr+- ~II=0, (2)
r' r (W+mc' V)~—

where a is the (integral) eigenvalue of —P(e 1+1).The
Inass m is taken~ to be the nonrclativistic reduced mass
m=m, mo/(m+m„). It is convenient to perform a
transformation of variables

tti(r) = LW—V(r)+mc')It'N(r)

to obtain a single Schrodinger-like equation with no
&st derivatives:

dsN (W V)' msc' —(a/r)—(dV/dr) ;d'V/dr'——
dr' k'c' W—V+mc'

3( dVjdr )s s(a+1)-

4 kW —V+mcsl

M. E. Rose, Relateeistsc Electrort Scatterirsg Qohn Wiley gr
Sons, Inc., New cwork, 1961).

'I Alternate choices of m should lead to slightly different values
of the optical potential parameters.
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If the potential vanishes rapidly [ we ignore the
Coulomb part of V(r)g, eq and e are asymptotically
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FIG. 2. Forward angle optical-model predictions at 3.5 and 5.0
GeV/c, compared with experimental s. p differential elastic
scattering at these energies (Ref. 12).
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1=K if K&0
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with H~(kr) denoting Hankel functions. ' The scattering
amplitudes are then

ab ———p (b+ -',—[s [gb)P)(COSe),
2k

bb= Q r)bPp(COSfI) q

2k ~ [s [

from which one obtains the cross section and
polarlzatlon:

(d~/dQ) b [ab [s+——[bb[',
(I'do/d 0) b 2 Im(a bb b*), ——
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FIG. 1. (a) Optical-model computation (solid curve) fitted to
1.7 GeV/c m p experimental differential elastic cross section.
The dashed curve is the smoothed "background" contribution
extracted by Ho6 (Ref. 14). (b) Comparison of computed
optical-model prediction of (I'Ck jdO) with thC Cx49cfeg 45Ck-
ground" value of {I'dfJ/dQ}f,,

whele the spin-nonQlp term ls cy and the spin-Qlp ternl
lS by.

The central potential was chosen to be pure imaginary
with a cutoR Vukawa radial dependence,

V(r) = sVs(r/rs) 'exp( ——r/r ), sr)-r,
N(r) =0, r&r,

sHI, =Gf+iFf, , vrhere Ff and G~ are defined in Irandbook of
Mathematicat, Functions, edited by M. Abramowitz and I. A.
Stegun (U. S. Department of Commerce, National Bureau of
Standards, Appl. Mg, tht Sep. 55, washington, D. C., I96$),
p. $88.
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Fxo. 3. Differential elastic scattering cross section for negative
pions on protons, at 8.5 and 18.4 GeV/c measured by D. O.
Caldwell, B. Elsner, D. Harting, A. C. Helmholz, W. C. Middel-
koop, S. Zacharov, P. Dalpiaz, S. Focardi, G. Giacomelli, L.
Monari, J. A. Beaney, R. A. Donald, P. Mason, and L. W.
Jones, Phys. Letters S, 288 (1964);Nuovo Cimento 38, 60 (1965),
and at 14.84, 19.75, and 25.34 GeV/c measured by K. J. Foley,
R. S. Gilmore, S. J. Lindenbaum, W. A. Love, S. Ozaki, E. H.
Willen, R. Yamada, and L. C. L. Yuan, Phys. Rev. Letters H,
45 (1965).The solid curves have been computed from the Dirac
equation using the potential determined from pion elastic scatter-
ing at 8.5 GeV/c and shown to fit elastic scattering from 1./ to
to above 8.5 GeV/c. The curve computed from this potential,
for elastic scattering at 18.4 GeV/c, falls below the 18.4-6eV/c
data but may be Gtted by a slight change of any of the three
parameters, well depth, core radius, or Yukawa radius; see Fig. 4
for examples.
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Fxo. 4. Curves computed from the Dirac equation for 18.4-
GeV/c negative pion proton scattering, using the otential found
to 6t elastic scattering from 8.5 down to 1.7 GeV c, and showing
the effect of varying the Yukawa radius and the core radius
separately. An acceptable fit to the 18.4-6eV/c data is found,
for example, by changing only the Yukawa radius by 5.5% and
holding well depth and core radius unchanged. The total cross
sections at all energies are correctly computed.

so that r, is essentially a hard-core radius. This radius
deternunes the large-angle scattering while Vo and ro
govern the forward exponential scattering. Note that
the polarization is determined by V(r) without any
scaling parameter, and the corresponding spin-orbit
term in Eq. (4) is decidedly complex. '

Trials in fitting 1.7-6eV/c elastic differential z p
data" yielded the parameters Vg= 580 Mev, ro ——0.4 F,
and r,=0.4 F. Using these, the total, reaction, and
diGerential cross sections are correctly given. The co-
incidence of our value of rs(s p) with Serber's value of
ro(pp) and of our value of r, (wp) with Brown's value of
r, (pp) is interesting and probably significant. Also, this
small range of the potential, 0.4 F, is found for other
elementary-particle systems, " e.g., the A-nucleon sys-
tem and the pp system. '

' However, unitarity is not violated (~v, ~
(1).ID. D. Allen, G. P. Fisher, G. Godden, J. S. Kopelman, L.

Marshall, and R. Sears, Phys. Letters 21, 468 (1966).
ll S. Ali and A. R. Bodmer, Phys. Letters 24B, 343 (1967);

Z. Koba and G. Takeda, Progr. Theoret. Phys. (Kyoto) 19, 269
(1958).

The potential (7) as determined above was found

to fit for'ward d181actlve scat tel'1Ilg fol' w p dR'tR f1Gill

1./ —8.4 GeV/c (see Figs. 1—4) with no change in Vo,

ro, and r., and to give the total cross sections correctly.
No attempt was made to obtain a best fit at large
angles because of the lack of information on Ã* reso-

nances at high energy. It is hoped that the model

may be useful in extracting resonance information in
the high-energy region, and alternatively to gain under-

standing of the energy dependence of the hard core.
For example, the diffraction contribution to the

proton polarization computed from this model (see
Fig. 5) may be compared with polarizations measured
at high energy. l' Taking into account the polarization
in the Regge-pole model computed from interference

See comPllatlons ¹dDlkmans Ph.D. theslss ljnlverslty of
Michigan, 1966 (unpublished).

l M. Borghini, C. Coignet, L. Dick, K. Kuroda, L. di Lella,
P. C. Macq, A. Michalowicz, and J. C. Olivier, Phys. Letters
248, 77 (1967).
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terms contributed by the p meson (as shown in Ref. 13),
one tentatively concludes that higher resonances may

play a role.

APPENDIX

It is interesting that using the model described above

we have been able to compute the background polariza-

tion deriving from optical diffraction scattering as

recently estimated by Hoft. '4

Hoff separated the scattering amplitude into two

terms: a resonant term and an optical di6raction term

called "background. "Thus the spin-nonAip term a and

'" G. T. Hoif, Phys. Rev. Letters 18, 816 (1967).
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FIG. 5. Curves show polarizations computed from the Dirac
equation for 5.0, 8.5, and 18.4 GeV/c negative pion proton
elastic scattering using the imaginary Vukawa potential with
hard core described in the text. Measured polarizations for 6.0,
8.0, and 12.0 GeV/c are shown, taken from Ref. 13. It is obvious
that resonances make a large contribution to the interference
terms producing polarization, and that resonance terms like those
computed by Ho8 (Ref. 14) at lower energy must be taken into
account. In Ref. 13 are shown predictions of polarization com-
puted in the Regge framework. It would appear that away from
the forward direction, other Regge pole terms will be needed if
the diffraction polarization is taken into account.

the spin-Hip term b are written

(A1)

The differential cross section (do/dQ) and the polariza-
tion I' are given by

do./dQ= (do/dQ)s+(do. /dQ);+(do/dQ)„,
P do/dQ= (Pdo/dQ) s+ (Pdo/dQ);,

A2

where the subscript i denotes a background-resonance
interference term. By making reasonable assumptions
about phases, Ho6 has written fixed-angle relationships
connecting the background and resonance components
with the data at djtfferent energies "near" the resonance.
The dominant E* resonances of mass 2.0 GeV have
J=-,'; in particular, Hoff, in application to s. -p scat-
tel'lllg lleal 2.0 GeV/c, llas computed a 1'esorlallt colll-

ponent for $*(2070) of G7~s.

In the Ho6 analysis, the background amplitude
(do/dQ) s is not computed. Instead, it is estimated. as the
di6erence between the experimental data and the com-
puted resonance scattering. However, we have com-
puted it from the Dirac equation as described above
using the previously mentioned values of Vo, ro, and r,
and show the computed values in Fig. 3. For comparison
(do/dQ) s, estimated by Hoff's procedure, " is shown as
the smoothed curve.

Since the resonance-interference term in (A2) domi-

nates, the extraction of the background term is inaccu-
rate, as shown by the error bars. Nevertheless, the
optical-model computation gives the over-all behavior
wi4h no adjgstclble paratlsten, the parameters Vs, rs,
and r, having been obtained from the experimental
elastic-scatternig data. In contrast to the sstuatjon for
the nuclear optical model, there is needed no large scale
factor to account for the polarization.

'5 The original data are presented in A. Yokosawa et u/. , Phys.
Rev. Letters 16, 714 (1967). The extraction of the background
contribution is taken from Ref. 14.


