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A method for calculating scattering amplitudes at lour to moderate energies in terms of their hound-state
and resonant poles is presented. By comparing expressions obtained for s-vive scattering lengths with
corresponding predictions of current algebra, the widths of the p, E, 6, and eu resonances are calculated in
close agreement vrith experiment. Furthermore, vrithout reference to current algebra, all the detailed
features of mS elastic scattering (such as the behavior of the P~~ phase shift) up to an energy of 400 MeV
are obtained within an error of about 10 to 20'Po. The principal advantage of the present method over
previous pole-dominance models is that the calculation of amplitudes has been reduced to the evaluation
of a number of rapidly convergent integrals. In some cases, one or two undetermined subtraction constants
must be introduced, but in the examples of ~E and m X elastic scattering only one unknown constant arises,
and it can be evaluated by means of the Adler self-consistency condition or an M=1 O(4) assignment
for the pion.

HIS paper suggests a method. for representing two-
particle scattering amplitudes at love to moderate

energies in terms of their most prominent bound-state
and resonance poles. Perhaps the most novel feature
of the present approach is that it succeeds in expressing
the amplitude in terms of a number of rapidly con-
vergent integrals and a small number of subtraction
constants. Early work along these lines was done by
Frazer, Dietz, and Hohlcr, Cheer and Mandelstarn, and
CInI and Fublnl The plcscnt work doers fI'OID thcsc
earlier CBorts principally in the use of the Froissart-
Gribov form of the partial-wave amplitude together
with estimates of convergence based on Regge asymp-
totics. There is also a di6'erence of emphasis inasmuch

as we make no attempt to calculate the positions and
residues of poles, but rather simply require them as
input. Reduced in this way to asking relatively modest

ucst1ons thcI'c ls still a remarkable amount that can
be learned. Furthermore, comparison of our results for
s-wave scattering lengths with those calculated. from

current algebra by Wcinberg' gives relations involving

the parameters of the poles.
In Scc. II wc present the method of pole dominance

by giving a detailed discussion of its application to erg

scattering. %C 6nd unique results without any un-

determined constants if only the p poles are kept.
Furthermore, the contribution of the f, although

accompanied by one subtraction constant, is estimated
to introduce a correction of about 1%%u~ near threshold.
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In Sec. III the same techniques are apphcd to the ex-
ample of vrE elastic scattering. Including contributions
associated with the p and E* poles only, one undeter-
mined constant arises. In Sec. IV we discuss the diS-
culties associated with unequal-mass kinematics that
arise if one insists on basing the analysis on partial
waves in the s channel (xE—+ le) rather than the 1

channel {s.vr-+ EE). A method. is given by which one
can obtain the same results as in Sec. III.Sec. IV may be
omitted without loss of continuity by the reader who
is not interested in this rather technical problem. The
most critical test of the method of pole dominance is
given in Sec. V—application to xE elastic scattering.
This provides the only direct confrontation with ex-
perimental data in this paper (i.e., not relying on cur-
1'cllt Rlgcbl'R Rs Rn lntcrmcd1aly). Close aglcclllcllt ls
obtained, not only with s- and p-wave scattering lengths,
but with detailed features of the phase shifts {most
notably the PII) through energies of several hundred
MeV. As a anal example, in Sec. VI the reaction
x~ —+7f-x and the associated decay ~~mme are dis-
cussed. The results for the latter are exactly the same
as were obtained by Gell-Mann, Sharp, and Wagner, '
but it is suggested that the formulas may be appreciably
more accurate than one would previously have had
reason to believe. IIly also considering elastic harp scat-
tering, the width of the co is successfully calculated.

In both ~E and mE elastic scattering, one constant,
undetermIned by the method of pole domInance, ap-
pears. This constant, which may be taken to be the
isospin-symmetric combination of s-vrave scattering
lengths, is known either from partial conservation of
axial-vector current (PCAC) and the Adler self
consistency conditions or from 0(4) analysis and an
M = 1 assignIDcnt for the pion' to be smaH in both cases.
Thus the one constant that the present analysis does

4M. Gell-Mann, D. Sharp, and W. G. Wagner, Phys. Rev.
Letters 8, 261 (1962); W. R. Frazer, S. Patil, and H. L. Watson,
ibid 11, 231 (1963). .

~ S. Adler, Phys. Rev. 137, 1022 (1965).
6D. Z. Freedman and J. M. Wang, Phys. Rev. 160, 1560

(1967); S. Mandelstam, ibid. 168, 1884 (1968).
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not determine is provided by other theoretical
COD sidcratlons.

is elastic and not too broad) is

yp= mp'pp/&Ip',
where

(2 3)

mx elastic scattering is R particularly suitable reaction
for introducing the method of pole dominance, as it is
fx'cc from tbc complications of spin RDd unequal masses.
Also, it is of considerable interest in its own right. The
starting point is thc Froissart-Gribov formula for the
partial-wave amplitude, even though wc shall only
require physical v'alues of angular momentum. Letting
s, t, I bc the usual Mandelstam variables, q the center-
of-mass three-momentum in the s channel, and I the
isotopic spin in thc s channel, wc have in units with
A=c=m =j.,

q =(xm' —1)'I' (2.4)
and I', is the experimentally observed width of the p
resonance.

Perhaps the most dubious aspect of evaluating (2.1)
by p poles Rlone ls thRt there:may bc slgni6cant COD-
txibutions from an s-wave I=0 enhancement. In
close analogy with Keinberg's current-algebra ap-
proach, 3 wc shall proceed by ussleueg that this is not
the case. Recalling the s~5 isospin crossing matrix

5&

(2 &)

and using amplitudes with normabzation speci6ed by

(2.6a)

s1/2

(2.6b)

If a(»(g) denotes the rightmost singularity in the J
plane~ then thc lilgh-cnelgy bchavlox' of thc lntcglaQd
in (2.1) is P("('& g ', and the integrals converge for
J&u(»(g).

Consider 6rst the case I=i, for which the p tra-
jectory is the leading J-plane singularity, and (2.1)
is nonvanishing for odd values of J only. %C shall
attempt to derive expressions that are accurate even
when the energy is comparable to the mass of the p.
Hence, even though (2.1) converges for J=1 when
g &m, ', we shall nevertheless use (2.1)only for the values
J=3, 5, 7, ~ ~ .. The J=j. vrave shall be handled
separately. For J&1, we shall suppose that (2.1) can
be accurately evaluated by including only p poles in
the t and u channels and using the narrow-width
approximation. Thc evaluation of the J=3 wave be-
comes inaccurate as the energy approaches the mass of
the 6rst Regge recurrence of the p meson, believed to
be the &t» (1660}.At a higher level of approximation
than wc are presently considering, the J=3 wave
would be handled separately and the contribution of
'tlie pv(1660) 1n the clossed cllaIlllels fol' J=5, 7) 9, ' ' '

vrould also be included.
To evaluate the contribution from the crossed p

poles, let us erst de6nc y~, the pole residue, by re-
quiring that for s~N, 2

(2.2)

Thc pole position 18 complex, of couI'sc, but wc Shall
make the approximation of taking m, ' to be real. In
this approximation y„ is no longer completely well
defined but a reasonable definition (since the resonance

bg (1& (g) —
gg (» (g)/pm'

and use the partial-wave dispersion relation

1 ' Imbg(»(g')
bg (» (g) —— dg'

(2.8)

1 "Imbg(» (g')+- — dg'. (2.9)
s —s

For the case at hand (I=1=1),the right-hand integ'ral
ls highly coDvcI'gent Rs a conscqucncc of thc unltarlty
bound. It may be evaluRtcd by simply including a p
pole in thc DRrrow-width RppIoximRtloQ once again.

For the left-hand-cut integral, the natural choice is
to include the contribution due to p exchange. One
reason is that it provides a good approximation to the
upper end of the cut, and hence, if thc integral is

one can evaluate the contribution of the crossed p poles.
The easiest way to get the total contribution to
J=3, 5, 7, ~ . is to sum the contributions to all waves
and to remove the J=1 part. In this way one obtains

j.2 &" (g,s) =
Say p (2g+mp' —4)

m, ' tm, '——e, 3

9'ypgp 01p ) ( g
Qi 1+ ~P1~ 1+ s+3ai('& (g)s. (2.7)

2g' 2g') & 2g,'

The p wave has been explicitly added in (2.7), since
the first two terms have no p-wave part, but contain
the other waves accurately. The next step is to evaluate
the partial-wave amplitude ui(i&(g). For this purpose
we dehne
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reasonably convergent, it should be adequate for evalu-
ating the entire integral. Another reason is that the
p-exchange left-hand cut is needed in order to cancel
the singularity in the second term of (2.7), which by
standard analyticity requirements should not be pre-
sent in 2 &'&(s,s). The contribution of the p to the im-

aginary part on the left-hand cut is

3Ã'rpqp ( mp
Im, I&,&'&(s)= I',

I
1+ I', 1+ I. (2.1o)

4q' k 2q' 2q, ')

@or large s (2.10) goes as 1/s, so that its contribution
to the left-hand cut integral converges quite rapidly.
If one believes that the complete left-hand cut integral
also converges rapidly, then no corrections to account
fol othcl left-hand cut, coQtrlbutlons would Rppcar to
be required. The expression Anally obtained for the
left-hand cut contribution, when substituted into (2.7),
precisely cancels the second term. This can be demon-
strated by doing the integral. A more elegant method is
to notice that the two contributions to b&o&(s) have
cancelling cuts, vanish at inhnity, and thus, by a
standard theorem of complex analysis, must cancel.
Assembling the results, we are left with

1 1
A &» (s,t) = ay, (2s+mp' —4)

m, '—t m, '—u)

which is almost the same as %'einberg's value of O.N.
However, as both methods assume that there is no
strong s-wave scattering, lt ls not 11Tlphed that this close
agreement proves (2.14) necessarily to be correct.

Another way of expressing the agreement with cur-
rent algebra is to equate the two expressions, obtaining

2m, ' &Gv)'
g'I

9m' (Gg
(2.15)

where m is the nucleon mass and g'=14.6. A similar
formula has been previously deduced from current-
algebra considerations alone':

mp' Gr)'
y, =—g'

I
E'(0),

3m2 Gg3
(2.16)

wher«(0) &s «orm fa««associated with an off
mass-shell continuation of the vrE coupling constant.
Notice that (2.15) and (2.16) agree for X'(0) =-', .
Using (2.3), (2.15) may be reexpressed in the form

2qp' &|'Gr '
I'„= g'I — = 120 'MeV.

9m'' '4G@
(2 17)

In the case of 8 &"(s,t) the s wave should be treated
scpaI'Rtcly while thc hlghel wRvcs Rrc evaluated by
saturating (2.1) with p-meson poles in the narrow-
width approximation. This yields, in analogy with (2.7),

1
A&'&(s, t)= ,'yp(2s+m, -' 4) —+

m, '—t m, '—uJt—I
(2.11)

t8P
3rpqp mp && f s

Qo 1+ IP
I
1+ +a,"'(s). (2.18)

q2 2q&i && 2q 2

3%'ppg p s
Iml.b, &'&(s)= P, 1+

2q' 2q,')
'

2A &0& (s t)—5A &'& (s t) =62 &'& (t,s)—3A "'(s,t)
(2.19) approaches a constant for 1«ge s, thus giving a
logarlthIMcally divergent integral Thc divergence ex
presses the fact that higher-mass exchanges are also
important fol this wave. Thcll' conti'lbutlon Rt lo%'

energies can be approximated by making one subtrac-
tioQ. in the partial-wave dispersion relation, thereby
lntI'oduclng onc undetermined constRQt. AssuDling thRt
the contribution to ho&0& (s) from the (subtracted) right-
hand cut is vanishingly small, wc then have

27'rye' s—u s
+ I. (2.12)

g Im, 2—t m' —ui

Equation (2.12) implies, in particular, that the s-wave

scattering lengths satisfy

2ao-5am= (27/2)y, /m, '. (2.13)

Unfortunately, there is R good deal of confusion about
the experimental width of the p meson, values obtained

ranging from 90 to 150 MCV. ' lf rve usc the value

Fp= 120 McV, then yp=1.53 and

2uo —5@2=0.70, (2.14)

~ J. Pisut and M. Roos, CERN RepoIt No. TH 885, 1968
(unpublished).

A &o& (s,t).

=4& (2s+m, ' 4)I + I+const. (2.2o)

8 K. Ka~aI'abayas1D and M. Suzuki Ph+s. Rev. Letters 16
2/5 (16); Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071
{j.966).

(2 11) is a f&&rmula that undoubtedly has been con-

jectured prcvlously by many o"hers Howcve ~ h Thc contrlbutlon of p exchange to thc lmaglnRI'y part
the proviso of no strong s-wave enhancement, the of p, &0&(s) on the left-hand cut is
reasoning by which it has been obtained here precludes
the possiblllty of substantial addltlons such as «(t—u).
By use of crossing, one readily obtains from (2.11) (2.19)
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s—u s—t )—o'LA &o& (s,t)—A &o& (s,t))= ',y, +-''m, o—~ m, '—N&

10»q4 Z, (1+~/2q')
+— +const,

3 gy ~y —s
(2.25)

It thus appears that the method of pole dominance
leaves one undetermined constant for pion-pion scatter-
ing at the present level of approximation. For other
reactions this will generally be the case, but for the
present example there is a trick that enables us to
determine the constant.

The key observation is that the combination A&')

+2A&'& crosses into itself in all three channels (it
corresponds to 7roo' scattering) and therefore has no p
poles. With the same approximations as above it
follows that

A "& (s,t)+2A &'&(s, &!)=0. (2.21)

The most questionable point in this reasoning (aside
from the possibility of an s-wave enhancement) is
that heavy-mass exchanges may be non-negligible in
the left-hand cut part of the s-wave partial-wave
dispersion relation. If one assumes the integral to be
reasonably convergent (as some Reggeized models
would suggest), then it may be small enough for (2.21)
to be a fairly good approximation, even if not as accu-
rate as (2.11).Combining (2.11) and (2.21) gives

fs—y s—t
A1o&(s,t)= —2A&'&(st)=~op/ +

I
(2 22)

'km, '—t m, '—N&

For the s-wave scattering lengths, one has

ao =0.155 and ao = —0.078. (2.23)

These results are numerically quite close to Wein-
berg's, although their algebraic structure is somewhat
different. (He found 2ao+7ao= 0.)

With the one possible exception discussed in the
preceding paragraph, we have used highly convergent
integrals for all key evaluations, so that contributions
to the amplitude at low energy from higher-mass states
should be greatly suppressed. To demonstrate this
suppression quantitatively we include the f meson as
well as the p. As the f has spin 2, the problem of the
convergence of left-hand-cut integrals becomes more
severe. This is one of the major difhculties in generaliz-
ing the method of pole dominance in its present form.
The best we can do now is to consider

LA"'(s~) —A1'&(s t))=A&'&(t s)+A&" (3 s)
=A &'& (N, s)+A &'&(N s) . (2.24)

Working at 6xed s, this combination has no crossed f
poles. The s and d waves are treated separately by the
same methods as before. Since there are crossed p
poles, the left-hand cut integral in the s-wave partial-
wave dispersion relation is logarithmically divergent,
and one subtraction is required, giving rise to one
undetermined constant. One Ands

where py, defined analogously to p„ is

y~=mg'Fs/qs'=0 96. . (2.26)

Although there is one unknown constant in (2.25), it
does not contribute to 2A&') —5A&'), which can be
constructed from (2.25) by use of crossing. For the
f contribution to the scattering lengths one obtains

(2ao—5ao)~ ———5»/q~'m&'= —0.003, (2.27)

representing about a 0.5% correction to (2.13). Al-
though we are unable to calculate the contributions of
the f to the two scattering lengths separately, it is
plausible that they are also of this order of magnitude.

Projecting the J=O, I=O partial-wave from (2.22)
gives

ao"'(s) = oV,
2s+mp' —4 4q'&&

In 1+
~

—1 . (2.28)
4q' m, o)

Since this expression is real, it only has a chance of
making sense when the phase shift is small and takes
the value

q 2s+m„'—4 p 4q'~
&o1'&(s) = ops 1n~ 1+

~

—1 . (2.29)

III. PION-KAON SCATTERING

As a second application of the method of pole
dominance we consider xE elastic scattering. The poles
that should be included in the first approximation are
the X*(893) in the s and N channels and the p in the t
channel. Once again we ussgmt, that there is no strong
s-wave enhancement in any of the three channels. We
shall furthermore (as a matter of convenience) assume

This gives, for example, bo1o& (m&r') = 27' and

&o"'(mx') —&o"'(mx') =40', (2.30)

a number of some interest in the analysis of CE
violation.

Since l&ohio&(s) continues to rise with increasing s,
the lack of unitarity begins to become disturbing for
s~&15 or so. This may be an indication of a need for
a resonance with mass of about 700—800 MeU. If there
is such a resonance, then it should be included in the
pole-dominance calculations, of course. For reasonable
parameters, such as m, '=30 and P,= 1 (still in units of
pion masses), one obtains corrections to the s-wave
scattering lengths u0 =0.33 and u2 =O.j.3, to be added
to the values in (2.23).The addition of such a resonance
is consistent with the fact that bo&'&(m, ') is known
experimentally to be negative. The 0. correction would
raise f&o '&(m, ') from —33' to —28' only. It is also
conceivable that there is an I=J=O resonance with
mass 400-500 MeV. These important and interesting
questions shall not be pursued further as they are
somewhat peripheral to the central issuse of this paper.
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universality of the p-meson coupling' to be valid. Then
aI&'I (/} has the pole and residue given by

I= (mx —1)', 1=0] gives the following relation for the
s-w'Rvc scRttcllng lengths:

it) ())~
ggg g 'ffIII —

it

(3 1)
1 ~-' 3yx~ 9y, ~

~v2 —~»~=
I 1+ —

I +
mxl mx* 2mp I

with y, as de6ned in (2.3) and

q = (8—1}"',
qt'= (-,'t—mx')'~'.

The E*pole and residue are given by

(1/q, m)tII&'I'&(s) axe/mxe' —s,
%'lth

(3.2a)

—I
=

i 1+ (0.123+0.233)=0.28. (3.11)
mx

{3.2b) Equation (3.11) is very close to the current-algebra
prediction of 0.27. Comparing (3.11) with the expres-
sion given by current algebra, and also using (2.15)

(3.3) and (3.5), gIves Ill RIlalogy wltll (2.17),

q,2= [s—(mx+1)'][s—(mx —1)']/4$, (3.4)

Vx*=mz*'I'Ir*/qx*'=1 6&, (3 5)

qz* Gr)
I"x*= g'

~

=47 MeV.
6m' Ggl

Taking the ratio of (2.1'I) and (3.12),

(3.12)

Z =2(mx'+1), (3 g)

Rnd using the lsospln CI'osslng I'clatlons

A "&(t,s) =-', (g6)[A '""(s,t)+2A@"'(s,t)], (3.9a)

A"'(~ s) = 8[A ""'(s,~)—A""'(s,~)], (3 9b)

we obtain, by the same reasoning as in Sec. II,

A "&(t s)= 'y x( 4qx'+21}-

(
x~ — ~+»t tII"'(I)

(text'2 smut' —I1—
y~*ttqz +tt) tmz'"'+t —

Z)Ql
2gggg 4q,q,

=vx (&+2qx")I
kmx& —s mx*' —Ni

tt s—tm

+47.1 (3 1o)' "Im, '—t

EvaluatIon of (3.10) Rt tllleshold [I.e., s= (mx+1) &

9 J. J. Sakurai, Ann. Phys. (N. Y.) j.l, j. (&960).

qx*' ——[mx*'—(m x+1)']
X[mIr"—(mx —1)']/4mxe'. (3.6)

St,RI'ting froIQ

ds 2s+3—Z
oz"'(~)=- ImA &'& (t,s)Qs-

(~x+&) ' 294~ 4g (gt.

dl
ImA &'&(t, Z —t—I)

(~x+1)' 29'&&

(
—ti—

t+Z)

I"x*/I'p 3qx"/4q——p', {3.13)

a relation that has been obtained previously from
current-algebra considerations alone by Riazuddin and
Fayyazuddin. ' [Exact SU(3) gives a ratio of xa.]

In similar fashion,

A &'& (t,s) =-', (g6) (t+2qx~')

( 1 1
&&

i
+- i+const. (3.14)

kmx" —s mx*' —Ni

Equation (3.14) contains one undetermined constant
because the partial-wave dispersion relation for the
s-wave requires one subtraction. This constant cannot
be determined by the methods of this paper. (In
Feynman-diagram languages onc would say that this
constant depends on the choice of a coupling scheme. )

The results of this section would be signiicantly
altered by a low-mass scalar resonance in either of the
channels. The correction from the 2+ mesons f(1260)
and EI (1419) is probably of the order of 1% near
threshold, as was shown to be the case in the mw example.

IV. PROBLEM OF UNEQUAL MASSES

In the preceding section results were obtained for
zL elastic scattering by focusing attention on t-channel
partial waves. If the method of pole dominance is to
be generally applicable, the same results should be
obtainable from s-channel considerations as well.
Accomplishing this is not trivial, however, because
there are kinematical complications associated with
unequal masses.

Having isolated particular s-channel partial waves
for special consideration, it is necessary to properly
tak.e account of threshold behaviors before performing
dispersion relations. Ke believe the following rules to
be correct: (1) as(s) vanishes at the normal threshold.
proportionally to [s—(mtr+1)']~; (2) tIs(s) is finite
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A(s, t)= P (2n+1)c (s)P„(s), (4.1)

with

at s=(m)r —1)' for J=O, but vanishes there like
Ls—(mx —1)'J/2 for J&1; (3) as(s) has contributions
which at s=0 behave like s, sins, and s {",where
a(0) is the intercept of:the leading s-channel Regge
singularity' —this rule holding for all J.

Carrying out the calculations of Sec. III by use of
the above rules, or slightly modi6ed ones, leads to
expressions having spurious poles at either s= (m)r —1)'
or s=0 (or having the wrong equal-mass limit) and
consequently differing from (3.10) and (3.14). Suitable
analytieity necessarily requires admixtures of lower
partial waves to cancel o6 these spurious poles. This
automatically happens in writing down a Feynman
diagram for the E*pole in Xx scattering, for example,
with diBerent couplings giving somewhat diferent
prescript, ions.

A convenient method of circumventing the difhculties,
within the method of pole dominance, is to replace the
partial-wave expansion by another expansion for which
the analyticity of the individual terms is more favorable.
As a specific possibility let us consider

@=0,1, , J, in general, since a Jth-order polynomial
in t is required. For application of this expansion to the
example of rrE scattering it is convenient (but not
essential) to consider the isospin combination that is
free of crossed-channel E*poles:

aA ('/@(s, t)+xeA &'/'& (s&t) =A (r/'& (N, t)
= (g-')A(e&(t s)+-'A&'&(t s) (4 6)

Then, by the same methods as before,

(2$+mp —Z))
-'A "/'& (s t)+-'A (3/2) (s,t) = -,'y,

l

m, '—t

—(rt = 0.and )t = 1 projections)+-', ce('/2& (s)

+xc~(3/2)(s)+I 2c (1/2)(s)+c (3/2)(s)p (4 7)

The co's and cq's are once again given by "partial-
wave" dispersion relations (after removing the thresh-
oM factor q~ from cr). The convergence properties of
these integrals are the same as for ordinary partial
waves in the equal-mass case. The E* resonance con-
tributes to the right-hand cut of both co('t'2' and cg('I'~,

its total contribution to (4./) in the narrow-width
approximation being

s=1+t //P2

P=-',
I s—(m/r+1)'j.

(4.2)

(4 3)

t+ 2g)r* 1)
Vx*

m)r*' —s 2)
(4.8)

This expansion coincides with partial waves in the
limit of equal xnasscs, while for unequal masses it mixes
the various waves. Inverting (4.1) in a Froissart-
Gribov form,

1 "dt
c„(s)=— ImA (s,t)Q„I 1+

~ 4 2P ( 2Pi

dN
ImA (s, Z —s—I)

( a+L) 2Q

( Z—s—I)
&&Q-I 1+

I (4 4)
2P

From (4.4) and standard analyticity assumptions for
A(s, t), one can easily see that these amplitudes have
the threshold behavior

c-(s)-(a)'".
At s=O and s= (m)r —1)', c (s) is analytic, except for
possible left-hand-cut singularities which are logarithmic
at worst.

The method of pole dominance described in the
preceding sections may now be carried out using (4.4)
to replace the standard Froissart-Gribov formula. A
resonance of spin J will contribute to all the terms

")D. Z. Freedman and J.M. Wang, Phys. Rev. 153, 1595 (19Of).

Por the left-hand-cut integrals there is again a cancella-
tion against the subtracted m= 0 and e= i projections,
one unknown constant remaining because the dispersion
relations for the co's require a subtraction. In this way
one 6nds

gn2

(9.)"I'sl 1+
m)r2 —s I) gr/r 2Q~/

(4.11)

-', A &'/'& (s,t)+-',A (r/'& (s,t)

By, ( s—I ) t+2q)r*'
I+yx- +const. (4.9)

8 (m, '—t/) m)r" —s

By use of crossing, both (3.10) and. (3.14) can be
deduced from (4.9).

Lest the reader be misled, it should be emphasized
that the prescription suggested in (4.1)—(4.4) is not
unique and, in fact, there is an ambiguity associated
with its non-uniqueness. An example of another pos-
sible expansion is

CO (
A(s, t)= P (2m+1)(E (s)P„I 1+ I, (4.10)

gne 2g /

which has the convenient feature that a resonance of
mass mg and spin J will only contribute to the 7th
term. The contribution of such a resonance as it arises
from a right-hand eut integral would be of the form
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Equation (4.11) differs from what one would get from
expanding (4.1) by a polynomial in $ of degree J—1.
It is easy to show that such a polynomial carries all
the ambiguity in the choice of an expansion having
suitable analyticity of the individual terms. In the
example of xE scattering, an unknown constant should
tllcl'cforc be added to (4.8).As 1't llappclls, tllls constallt
can be absorbed in the constant already appearing
in (4.9), leaving the 6nal results unaffected.

V. PION-NUCLEON SCATTERING

The obvious advantage of studying xÃ elastic
scattering over the other reactions discussed so far is
that it allows a direct comparison of calculated and
experinlcntal quantities. In the following we shall cal-
culate the four J= ~ phase shifts as well as the s- and
p-wave scattering lengths. The accuracy of the tech-
niques shall be estimated by finding the sensitivity of
the calculations to various possible modiications. Our
purpose is to determine the reliability of the approxi-
mations rather than to RttcIQpt achieving thc best
possible solution. The degree of success that shall be
reached, however, does suggest that the present
formaHsm nlay bc usefully incorporated in a thoroUgh
analysis of scattering data.

Some standard forIDulas given by Frautschl and
%alecka, "for cxannple, that shall be required are

where 8'=s'~2 and m is the nucleon mass. The ampH-
tude appropriate to unpolarized nucleons is

($—I)
F($,~)=A($,~)yj ia($,~).

'E 4m I
(5 4)

The most prominent poles to be included in a 6rst
approximation Rrc thc p, S, and A. %c continue to
assuQlc that thcrc ls no strong x'vP s-wave enhancement.
The contribution of each of these poles to F($,t) is as
follows. Near the nucleon pole one has

3x'g $—2
p(ljm) ($ t)~

5$8$ —S
(5 5)

where g2=t4.6 measures the pion-nucleon coupling.
In the vicinity of the p pole

3s''rp 2$+tÃp
po) ((. $)~

2
(5 6)

Since universaljty9 for the electric coupHng of the p
has been assumed in (5.6), y, is the same as in (2.3).
NcRr thc 6 polcq

Szqg'yg
F&&~»($,~)- h(~),

5$g2 —S

f2($,S)=Z Cfl-($) —f)+($)3'I'(s) (5.1b)

fl(»s) =2 fl+{$)F1+I'{S)—2 fI-($)&I-I (&) (5 1R)
lM l=2

where mg= 1236 MCV is the mass of thc di,

qg'= Lmg' —(m+1)')Lmg' —(m —1)'j/4m'',

yg ——mg'I'g/qg' =14.6,

(5.8)

(5 9)

nzg+m ))'

wllel'c fly($) ls t11c pal tlal WRvc llavlllg Orbital a~ngular g 1 ( 2 I j
~ ~ h(t)=3 ) 1+

momentum l Rnd total angular momentum J=l+~.
The inverse formulas are m~ —m 2m)1'+ t Z—

fI~($)= (1/q)c'&)+&') sin|))y{$) (mg —m)' —1 4m (mg+m)' —1

Lfl($,S)FI(s)+f (»s)F1+I(s)jds (5 2)
1

X/1+ (5.10)
2qg'i' (mg —m)' —1

Invariant anlphtudes, free of kinematical singularities,
are deined by

A ($,t) =8IrW fl{$,1)
(W+m, )'—1

Z= 2(nP+1). (5.11)

Thc xQcthod of pole domjnancc can now bc applied
to the calculation of F&"($,)!).For the isospin-syzametric
anlpHtude, one finds

8"—ns

f.($,&), (5.3R) F& I ) ($,~)+2F&1)($,~) =
(W—m)' —1

3'
(t—2)

St tlat —S 5$ —I
B{$,1)=8sW fl($,t)

(W+m)' —1 ( 1 1
+16sqgygh(t)i + i+ca+cga. (5,12)

mg —$ mg —I
+ f2($,t), (5.3b)

(W—m)' —1 The undetermined constants co and cl arise as sub-

uS C F«„t~h; ~„d I D ~~~c~a ph» R~v I2O j48~ traction constants in the dispersion relation for the
(1960). J=0 &-channel partial wave. Two subtractjons are



required because the d,-exchange contribution to the
left-hand cut integral is linearly divergent. Similarly,
the isospin-antisymmetric amplitude is

9~y, ( s—u )F ('&ll (s,t)—F( & 1(s,t}=
2m imp t)

3Irg' ( 1 1
+ (t—2)i —

i

—8n.qo'yo/I(t)
m km' —s m' —u)

1 1
X

i

— +co(s—u) . (5.13)
&mo' —s mo' —u

The constant c2 arises as a subtraction in the J=1
f-channel partial-wave dispersion relation, which other-
wise would be logarithmically divergent. The constants
c~ and c2 cannot be determined by present methods
from a consideration of E(II(s,t) alone. However, in
the subsequent discussion when the A's and 8's are
treated separately, only one undetermined constant
(corresponding to co) will appear. The difkrence is
attributaMe to the energy factor multiplying B(s,t) in
(5.4). A comparison of formulas allows us to deduce
that

(5.14)

A(o)(t s)=
16+6m qo'yo 1 1

gl(t) +
3 tag —s 8$g —I

+ (16+6)Irc, (5.".Oa)

16mqg2yg
A &" (t,s) = — g1(t)

3 tÃ/&,
—s Tsar

—I
6%+pup( s—u )

(5.20b)
m &m, ' t) '—

assignment of the x trajectory to an M=1 representa-
tion of O(4)' predicts it to be very smalL

all 2ao ———0.002+0.008 (5.19)

is the value found by Hamilton. The speciication of
E(1&(s,t) can be completed by simply requiring that
this combination vanish.

Formulas for the A's and 8's have already been
alluded to in justification of (5.14). A more important
reason to work out separate formulas for the A's and
8's is that a complete speci6cation of pion-nucleon
scattering requires them. Labeling amplitudes by
their t-channel isospins,

16~&n qo'yo 1 1
One combination of s-wave scattering lengths can now B(ol (t s)—

be obtained. The normalization conventions are such 3 mo smo —u—)
that

F(1&(s=(m+1)', t=o)=4 I 1+(1/m)ja„, (5.15)

where u2I denotes the s-wave scattering length of
isospin I From (5.1.3)—(5.15) and /I (0)= 1/m,

1) ' 9y, 3g' 2y
ol—(to=i 1+—

i +
m) 2m, & 2m' m, &)

=L1+1/m+I(0 233+0 486—0 375)

=0.299. (5.16)

This result is very close to the prediction of current
algebra. More importantly, it, is quite close to the
experimental value

al —co=0.2"/1+0.00'/

determined by Hamilton" from data on low-energy
scattering. Equating (5.16) to the current-algebra
prediction gives, in analogy with (2.1'/) and (3.12),

Fo= (3q~'/4m')g'L1 —k(Gr/G~)'j= 115 MeV (5 18)

which is to be compared with the experimental value
of 120 MeV.

Because of the presence of co in (5.12}, the isospin-
sy111111e'tI'lc colllblllatloll gl+2 go callllot be calculated.
However, the Adler self-consistency condition' or the

1 1
+4/6mg' — i, (5.20c)

m' —s m' —u)

16m'qg ohio ( 1 1
B"'(t, )=- g (t)i +

3 &mo' —s mo' —u,

1 1
+81rg'

m'-s m' —ui

+12~yp(1+2pp), (5.20d)
8$tl —$

my+ m (
(mo+m)' —1 ( 2qo')

gl(t}=3
I
1+

(5.21a)
(mo —m)' —1

3
go(t)=, 1+, I—,(5»b)

(my+ m)' —1 2'') (mo m)' 1— —

y,p,, describes the magnetic coupling of the p to the
nucleon. A prediction, based on universality, is that
p,, should be the anomalous isovector magnetic moment
of the nucleon, i.e.,

ja I H@ ~go Pg+8 Legg@I'8 2{) 68$ (j.96g p,p= i.85. (5.22)
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The subtraction constant c in (5.20a) can be determined
by requiring the isospin-symmetric combination of
s-wave scRtterlng lengths to vanish~ ln which cRse

taking the pole position to be complex. Otherwise,
taking complex positions for the resonance poles would
generally introduce only a small correction. Thus we
can now calculate the J=-,' waves, which are nonres-
onant at low energy, using (5.20a)—(5.20d), and (5.24).
Defining

s,=1+m,'/2q',

sN =1+(Z-s-mn)/2q',

s~ = 1+(Z—s—m~')/2q',

To obtain the J=-,'partial waves, we use (5.20a)-
(5.20d) and

(W+m)' —1
f~-"&(W)= LA &

"&+(W—m)Bg(r& j Rlld

(W )2 1 m}L+m

les
fag('& —(W+m)BQ('& j, (5.24)

(my+ m)' —1

3

(5.26a)

(5.26b)

(5.26c)

(5.27a)

gg(1) —& B("(s,z)E((s)ds.

A &('& =-,'A &r& (s,s)p~(s){)ts,
'

(m, +m)-1'
(gg my+ m

( +m)-1

(5.27b)

f& (W) equals q
—'e" sin(& for the p wave when W) m+1,

while for W& —m —1 it describes the s wave (in
accordance with the MacDowell symmetry).

Since the formulas (5.20a)—(5.20d) are written in a
purely real form, the partial waves projected from them
obviously cannot be unitary. In evaluating phase shifts
we shall simply replace e" sinb by 8, an approximation
that should. make sense as long as phase shifts are less

than 30' or so. In the vicinity of a resonance pole,
unitarity can be restored, at least approximately, by

gg SSg—5S

+—,(5;2'k)
q' (mg —m)' —1

(5.27d)
q' (m{L—m)' —1

the I=~, J=~~ partial waves are given by

(W+m)' 1(3y—ppp

f ""'(W)=
I

' '(~-2 —,)Q (,)--:~.L2-.Q.(")+3PQ (")+-.Qo(")3 i

s (16mq'

(W+m)' —1 (3y, g'
+ (}P— )l (}+».)Q (")— Q(' )+lv L& Q (')+&PQ (')+ Q ( )&)

s (gq' gq'

(W m) 1( 3'Ypgp 37ppp
{p—»—~.')Q (*.)+ l»L Q (4)+P Q (*~)&—

~)
s k Sm 16mq'

(W—m)' —1 (3 g' g'
~ ~(W+ )~

— ——Qo( )+ (1+2~,)Q (.)+le L Q ( )+PQ ( )3 I (5»)
E4 m2 —s gq' t8g2

Similarly, for the I= ~, J= ~ partial waves,

(W+m)' —1 (3y,pp 1 q2p~{&,,
f~-'""(W)=

I
(»+m.'—~)Q~(s.)+- pe,Q—,(s.)+ 3p,Q, (z,)+n,Q, (s,)g ~

s &32mq' r6etg2 —s 36

(W+ )'-1 ( g' 3v, (1+2.,)
+ (}P—~)l Q (~~)— Q (*.&+- +—L2,Q, (s.}+~P,Q, (s,)+,Q,(.,&&)

s E4q' I6q2 6 mg2 —s 3Q

(W—m)' —1 (3yp&gp 3yppp 1 q'y@,
+ l

— (»+~.'—P)Q (~.)— +—,*.v~(P Q, (~~}+,Q, (z,}j—c)
s k 16m 32mq' 2 8$g —S

(W—m)' —1 ( g' 3j;(1+2p,,) 1 q2p~p,
(&P+ &l Q (-&- ' '

Q.(.)+- +—:.v.D4Q. (..&+-.Q, (..&j). (p.&p)
S (4q' 16q' 2 szg2 —s
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F11=2j.0 MeV, and elasticity factor xll ——0.65. Thus,
dining thc residue

~11I 11&ll=3.6,
fall

the contributions to be added to the A's and 8's in
(5.20a)—(5.20d) are

(g6) 8s (mu —m)
All (0) f11 +112

3 (mU, —m)' —1

Flo. 1. The s-wave mX phase shifts of solutions 1 and 2 com-
pared with the phenoxnenological analysis of Roper, Wright, and
Feld (RWF} (see Ref. 13).

The phase shifts deduced from (5.28) and (5.29)
are referred to as "solution 1." They are plotted in
Figs. j. and 2 together with the results of the phase-
shif t analysis of Roper, W'right, and Feld."In particular,
the upturning of the Pll phase shift is encouraging.
Approximately equal contributions to this behavior
are made by the p and 6 poles. It should be emphasized,
however, that as we are not performing dynamical
calculations in the conventional sense it does not
necessarily follow that the p and 6 forces should be
responsible for this behavior in a one-channel E/D
calculation. Indeed, the suggestion has been made that
the Pll phase shift should not come out positive in a
ou e-channel E/D calculation without the explicit
inclusion of a Castillejo-Dalitz-Dyson (CDD) pole."
In Ref. 14 it was also suggested that the turning positive
of the Ell phase shift at low energy and the presence of
a resonance in this wave at high energy are probably
independent phenomena, a point of view tha, t is sup-
ported by solution 1 inasmuch as it does not have a
resonance pole in it. Other remarks to be made about
solution j. are that it gives excellent agreement for
S31 and F31 waves, but only fair agreement for the
Sll phase shift.

In solution 2 the sensitivity of the phase shifts to
the magnetic coupling of the p is tested by taking p,,=0,
with all other quantities as in solution 1. As can be
seen in Figs. 1 and 2, this change causes the p-wave
phase shifts to deviate signi6cantly from their experi-
mental values, while it has very little effect for the s
waves. This reinforces the belief that (5.22) is a good
approximation.

Solution 3 is the same as solution 1 except for the
explicit addition of the Roper resonance with nucleon
quantum numbers, mass esll= 1470 MeV, width

WF

20'-

0

-lO'—
2

RV/F

~6 8s.qu'
'Yll

3 (mn —m)' —1

( 1 1
X

i

— i, (5.31c)
11 S 5511 I)

2 8Xqll'
~ll (1) +11

3 (mn —m)' —1

1 1
x~ + ~. (s.31d)

(my/ —s tÃyP NJ—
The phase shifts corresponding to solution 3 are shown
in Figs. 3 and 4. One change is that the s-wave scattering
lengths have been increased by about 10%. Other
changes are generally of this same order or less, except
for the E'll phase shift which becomes much more
strongly positive for energies above 200 MeV, in close
agreement with experiment. Fortunately, the change
in this phase shift below 200 MeV is not very large.

"L. D. Roper, R. M. Wright, and B.T. Feld, Phys. Rev. Ds,
B190 (&965}."J.H. Schwarz, Phys. Rev. 152, 1325 (1966);J. S. Ball, 0, L.
Shaw, and D. V. Wong, ibid. 155, 1725 (1967).
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Flo. 2. The J= &~ p-wave phase shifts of solutions
1 and 2 compared with RWF.
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FIG. 3. The s-wave phase shifts of solutions 3
and 4 compared with RWF.

VI. u DECAY

The techniques developed in the preceding sections
may be used to calculate the amplitude for the process
m-co —& mx in terms of p-meson poles. This amplitude also
describes the decay of the co into three pions, providing,
in particular, an accurate expression for the distribu-
tion over the Dalitz plot. The formula to be obtained
for the integrated partial width is exactly the same as
was suggested by Gell-Mann, Sharp, and Wagner4

some time ago. Nevertheless the derivation is given in
some detail, as the method of pole dominance provides
reason for believing the amplitude to be accurately
represented in a larger region than just in the immediate
vicinity of the poles.

Invoking parity conservation, the process x~ —+ xx
has just one independent helicity amplitude

In solution 3 the s-wave scattering lengths are about
20% larger than the experimental values. Furthermore,
inclusion of the D» resonance would increase them by
another 10% or so. A likely cause for this discrepancy
involves the narrow-width approximation for the
h(1236) resonance. Its width is of magnitude compar-
able to its distance from threshold. Since we have taken
this resonance to be concentrated at. 1236 MeV inside
integrals in which it multiplies rapidly decreasing
functions, 6nite-width effects may be estimated by
taking its effective mass" to be somewhat lower than
j.236 MeV. The principal effect of reducing the mass

by 10MeV, say, is a decrease in q& and hence an increase
in yq to 16.6 from the value of 14.6 given in (5.9).
Solution 4 shows the effect of making this change in
solution 3.The agreement of the phase shifts, especially
the Sz&, is generally improved by this modification.

In Table I we compare the s- and p-wave scattering
lengths for each of the four solutions with the experi-
mental values. "'~ The J=-,'scattering lengths are
determined from (5.28) and (5.29), with the modifica-

tions indicated for solutions 2, 3, and 4. For the J= ~

p-wave scattering lengths (in the notation a2r, 2r),
we use

1
&2r, s= rs2r+rr~r, i B&r& (thr—eshold) . (5.32)

4m' 8m'

f(s,z)= Q (2J'+1)fg(s)dp gs(8).
J=l

(6.1)

All kinematical singularities are removed from (6.1) by
constructing

f(s,z) = f(s,z) [stN (m„' —1)']—'I' -(6.2)

The following kinematical relations are required:

sin8 = fstN —(re.'—1)']'I'/k (s),

k(s) =—',((s—4)Ls—(m„+1)'jI s—(m„—1)'])"'
=2qq's"' (6.4)

(6.3)

q= (-'s—1)'" (6.5a)

q'= {$s—(m„+1)'$
XLs—(m„—1)'j}'I'/2s'~', (6.5b)

do qs(8) = —L'J(J+1)$ '" sin8Ps'(cos8) . (6.6)

fs (s)= —~
~LJ(J+1)+~1 k (s)

1

X f(s,z) (1—z')Ps'(z)dz. (6.7)

From (6.1)—(6.6) and the orthogonality of the d

functions one obtains

To summarize the discussion of mS scattering, we

find it proper to conclude that using E, p, and 6
poles, as well as the isospin-symmetric s-wave scattering
length, we have succeeded in representing xE scattering
up to about 400-MeV pion lab energy within an error
of 10 to 20%. To achieve better accuracy would require
including additional resonances, determining couplings
more accurately, and correcting for finite-width effects.
Furthermore, at an improved level oI accuracy it may
be necessary to include corrections for xx scattering
in the s wave.

30'—

20'—

IOO—

0—

-I 0'—

-20'
0

I

IOO
I I

200 300
T (MeV)

WF

1

400

RWF

4

500

'~ J. Hamilton and W. S. Woolcock, Rev. Mod. Phys. 35, 737
(&9O3).

FIG. 4. The J=-,' p-wave phase shifts of solutions
3 and 4 compared with RWF.



Tmxx I. AN s- and p-wave scattering lengths.

Experiment'
Solution

3

81
Cg

~11
t2'81

@13

@33

0.180—0.091—0.101—0.039—0.02'tt

0.216

0.200—0.100—0.091—0.040—0.053
0.239

0.200—0.100—0.120—0.025—0.039
0.233

0.220—0.110—0.083—0.042—0.036
0.240

0.185—0.093—0.0'l1
—0.034—0.018

0.265

a See Refs. 12 and i5.

Ppgpto 1t

b (Z —s—t—I)Estl —(m„s—1)'$
2

The remaining procedure is now the same as before.
Substituting a 6xed-s dispersion relation for f(s,s) in
(6.7) and performing the s integration yields an ex-
pression of the Froissart-Gribov form. The remaining
integrals are highly convergent for J&1 (only odd J
occurs) and can be evaluated by the substitution of p
poles. The J=i wave is considered separately. To
calculate it, one first removes threshold factors by
forming

fi(s) = f~(~)/&(s) . (6.8)

The partial-wave dispersion relation for f~(s) then has
a highly convergent right-hand cut, which is once
again evaluated by substitution of a p pole in the
narrow-width approximation. The contI'lbutlon of p
exchange to the left-hand discontinuity of f~(s) vanishes
at large s like 1/ss, so that the cancellation discussed
in the previous sections occurs without a need for any
unknown subtraction constants.

From the above discussion, it may be concluded that
to high ucclrucy,

1 1 1
f(s,t) =constX

i + + i. (6.9)
Im, s—s m„s—t m, s—NJ

The coupling constant pp„ is defined by"

s"'t~(s)/(n')'t'- h"-v.)'t'/(~. '—s), (6 1o)

where (6.10) refers only to the immediate vicinity of
the pole and t~(s) denotes the off-diagonal matrix
element of (8—1)/2s for J=1. (s.~-+as is not an
elastic process. ) By combining (6.9), (6.10), employing
standard rules for three-body decays, and including a
6nite-width correction for the p poles, we obtain

where Z=ns„s+3 and R is the region for which the
second factor in the integrand is positive. The integral
in (6.11) is increased by about 10% if the imaginary
parts of the pole positions are omitted. The eGect is
not greater because the boundary of the Dalitz region
is kinematically suppressed, and therefore regions close
to the poles do not contribute strongly to the integral.
It should be emphasized that previously there was no
good reason to believe (6.11) to be an accurate formula
for the contributions near the center of the Dalitz
plot, the region from which the bulk of the integral
al 1ses.

Evaluating (6.11) numerically, we 6nd that for
y, =1.53, F„„s =11 MeV, and m„=5.68 (correspond-
ing to an ~ mass of 783 MeV and a m mass of 138
MeV), we have

yp = 10.5. (6.12)

s—I
Po&(t,s)=sy, +s'y, (2t—1—2m, s)~

fop 41-s 1-Ni

This result is extremely sensitive to phase space.
Repeating the calculation with m =5.60 (corresponding
to an &o mass of 783 MeV and a s mass of 140 MeV),
one obtains yp =12.6. The value m =138 MeV is
preferred because that is the average for the three
pion charges (each of which always occurs in the decay).
This serves as a warning, however, that electromagnetic
corrections could alter (6.12) by as much as 10%%u~.

In order to obtain a "theoretical value" for the decay
width I" 3, an independent calculation of yp„ is
required. For this purpose we consider xp elastic scatter-
ing, with the inclusion of only the m and + poles in the
s and I channels and the p pole in the t channel. The
As meson (or mesons) probably represents a small
correction near threshold. An A i meson, having J&= j.+
and hence contributing to the mp s wave, might not
be negligible. However, for purposes of comparison

the current-algebra formulas for the s-wave
scattering lengths, the A j contribution should probably
be omitted. The reason for this is that the current-
algebra calculations assume the absence of strong
s-wave scattering. This reasoning has been successfully
applied in other contexts by von Hippie and Kim. '~

Once again assuming universality of the p electric
couplings (this time to the p), the method of pole
dominance gives for the unpolarized isospin-anti-
symmetric amplitude (the only one not requiring a
subtraction constant)

~p ~wp I p s tÃp NgpI p

2

dsdtdN, (6.11)—'ws I —Ip p p

"The relationship between our constants yp and y,„and the
eoupiings y, and f,„used in Ref. 4 is y„'/4s = —,*y, and f,„'/4s
=tl(vp ./~n').

where

g
'= t".es '—(m, +1)sjfm„s- (ng, —1)sj/4'„s. (6 14)

"F.van Kppet and J. K. Kin, Phys. Rev. Letters 20, 1303
(19&8).
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Evaluation of (6.13) at the s-channel threshold gives a
relation among the s-wave scattering lengths:

(
m, J

3y, (2',p'+1)y,
X — + . (6.15)

m, ' 2w, '(m, ' 4—) m„'

Equating (6.15) with the current-algebra prediction for
the scattering lengths,

(6.16)

Substitution of (6.16) into (6.11) gives the theoretical
value

I'„3 ——12.1 MeV, (6.1"/)

in satisfactory agreement with the experimental value
of 11 MCV, especially in view of the sensitivity of the
calculation to small corrections.

VII. CONCLUSION

In summary, the basic steps in the method of pole
dominance are the following. The 6rst step is to express
the scattering amplitude in the form

J'0 2s'+t —Z)2 (2~+1)Q~
s'—s 2q,q,

' ~-0 4qggg'

(2s+t—Z)
XI'ql

l +(I integral)
4gggg . )

For a speci6ed range of I, there is then a value of Jo
such that the integrals are highly convergent and may
be evaluated. by substituting for ImA&'&(ts') pole
contributions in the narrow-resonance approximation.
It is convenient to include only low-mass resonances.

The second step is to calculate ay~i'(t) for J=O, 1,
, J'0 by means of a dispersion relation for b~&r'(t)

=aJ&1'(t)/(qggt, ')~. The right-hand cut integrals are
convergent (except possibly for J=O) and may also
be evaluated by substitution of pole contributions. The
left-hand cut integral is evaluated by substituting the
contributions from the same poles as were used in the
evaluation of the s- and I-cut integrals in step one.
These are the most important contributions whenever
the left-hand cut integrals converge. In examples having
no external spins, a spin-5 contribution to the left-hand
cut of the Jth partial wave converges for 5&J. If
8&J, .higher-mass exchanges are necessary to cancel
the divergence. They may be represented by n1aking
8—J subtractions. The third step is to observe that
except for terms corresponding to the previous sub-
tractions, there is an exact cancellation between the
left-hand cut integrals and the portion of the t- and
u-cut integrals involving the sum of Q functions.

Of the various approximations involved in the method
of pole dominance, the most dificult to justify
quantitatively is the neglect of other contributions to
the left-hand cut integrals. The procedure given seems
plausible to us, but perhaps further justi6cation should
rest on comparison with experiment.

As a anal (and somewhat gratuitous) remark, we
suggest that if a Reggeized version of the method of
pole dominance should be found, it would quite likely
be free from the need for subtraction constants. Further-
nlol c~ lt Inlgh t provldc R sultRblc formalism fol im-
plementing the bootstrap conditions. At that stage
one would be performing true dynamical calculations,
representing a substantial advance over what has been
accomplished in this paper.

Pote added iN proof. It has been pointed out to me

by Dr. H. Harari that a more careful calculation of the
6 6nite-width CGects increases the discrepancy in the
mS s-wave scattering lengths, rather than decreasing it
as claimed in the text. We have also noticed that a
subtraction constant in 8&'& Lsee (5.20d)) cannot be
excluded. This constant can be chosen to 6x up the
lsospln-antlsymmctrlc scRttcrlng length. Thus~ thc suc-
cess of Eqs. (5.16) and (5.18) is due, at least in part,
to the cancellation of errors. The phase shifts would be
only very slightly altered by reducing the 6 term by
30%%uz and adding an appropriate constant to 8&'~.


